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Efficient algorithms for average completion time scheduling

René Sitters∗

December 7, 2009

Abstract

We analyze the competitive ratio of algorithms for minimizing (weighted) average
completion time on identical parallel machines and prove that the well-known shortest
remaining processing time algorithm (SRPT) is 5/4-competitive w.r.t. the average
completion time objective. For weighted completion times we give a deterministic
algorithm with competitive ratio 1.791 + o(m). This ratio holds for preemptive and
non-preemptive scheduling.

1 Introduction

There is a vast amount of papers on minimizing average completion in machine scheduling.
Most appeared in the combinatorial optimization community in the last fifteen years. The
papers by Schulz and Skutella [20] and Correa and Wagner [6] give a good overview.

The shortest remaining processing time (SRPT) algorithm is a well-known and simple
online procedure for preemptive scheduling of jobs. It produces an optimal schedule on a
single machine with respect to the average completion time objective [18]. The example
in Figure 1 shows that this is not true when SRPT is applied to parallel machines. The
best known upper bound on its competitive ratio was 2 [16] until recently (SODA2010),
Chung et al. [5] showed that the ratio is at most 1.86. Moreover, they show that the ratio
is not better than 21/19 > 1.105. In this paper, we show that the competitive ratio of
SRPT is at most 1.25.

The SRPT algorithm has a natural generalization to the case where jobs have given
weights. Unfortunately, our proof does not carry over to this case. No algorithm is known
to have a competitive ratio less than 2. Remarkably, even for the offline problem, the only
ratio less than 2 results from the approximation scheme given by Afrati et al. [1]. Schulz
and Skutella [20] give a randomized 2-approximate algorithm which can be derandomized
and applied online (although not at the same time). A deterministic online algorithm for
the preemptive case is given by Megow and Schulz [14] and for the non-preemptive case
by Correa and Wagner [6]. The ratios are, respectively, 2 and 2.62. The first bound on the
algorithm is tight, the latter is probably not. On the single machine, no non-preemptive
online algorithm can be better than 2 competitive [25] but it was unknown if the same is
∗Department of Econometrics and Operations Research, Free University, Amsterdam.
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t = 0 1 2 3 4 t=0 1 2 3

Figure 1: There are two machines. At time 0, two jobs of length 1 and one job of length
2 are released and at time 2, two jobs of length 1 are released. The picture shows the
suboptimal SRPT schedule and the optimal schedule.

true for parallel machines. We give a simple online algorithm that runs in O(n log n) time
and has competitive ratio 1.791+o(m), i.e., it drops down to 1.791 for m→∞. This gives
new insight in online and offline algorithms for average completion time minimization on
parallel machines.

The first approximation guarantee for weighted non-preemptive scheduling was given
by Hall et al. [9]. This ratio of 4 + ε was reduced to 3.28 by Megow and Schulz [14] and
then reduced to 2.62 by Correa and Wagner [6]. Table 1 gives a summary of known best
ratios for a selection of problems. Remarkable is the large gap between lower and upper
bounds for parallel machines. Not mentioned in the table are recent papers by Jaillet and
Wagner [11] and by Chou et al. [4] which analyze the asymptotic ratio for several of these
problems. Asymptotic, in this case, means that jobs have comparable weights and the
number of jobs goes to infinity.

1.1 Problem definition

An instance is given by a number of machines m, a job set J ⊂ N and for each j ∈ J
integer parameters pj ≥ 1, rj ≥ 0, wj ≥ 0 indicating the required processing time, the
release time, and the weight of the job. A schedule is an assignment of jobs to machines
over time such that no job is processed by more than one machine at the time and no
machine processes more than one job at the time. In the non-preemptive setting, each
job j is assigned to one machine and is processed without interruption. In the preemptive
setting, we may repeatedly interrupt the processing of a job and continue it at any time
on any machine. The algorithm has to construct the schedule online, i.e., the number of
machines is known a priori but jobs are only revealed at their release times . Even the

Problem (Online) L.B. Rand. U.B. Rand. L.B. Det. U.B. Det.

1|rj , pmtn|
∑

j Cj 1 1 [18] 1 1 [18]

1|rj , pmtn|
∑

j wjCj 1.038 [23] 4/3 [19] 1.073 [23] 1.57 [22]

1|rj |
∑

j Cj e/(e− 1) [24] e/(e−1)≈1.58 [3] 2 [25] 2 [10][13][16]

1|rj |
∑

j wjCj e/(e− 1) [24] 1.69 [8] 2 [25] 2 [2][17]

P |rj , pmtn|
∑

j Cj 1 − 1.86→ 5/4 [5] 1.047 [25] 1.86→ 5/4 [5]

P |rj , pmtn|
∑

j wjCj 1 − 2 → 1.791 [20][14] 1.047 [25] 2 → 1.791 [14]

P |rj |
∑

j Cj 1.157 [21] 2 → 1.791 [20] 1.309 [25] 2 → 1.791 [12]

P |rj |
∑

j wjCj 1.157 [21] 2 → 1.791 [20] 1.309 [25] 2.62→ 1.791 [6]

Table 1: Known lower and upper bounds on the competitive ratio for randomized and
deterministic online algorithm.
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The SRPT algorithm:

Let t = 1. Repeat:
If there are more than m jobs available for slot t, then process m jobs in slot t that have
the shortest remaining processing times among all available jobs. Otherwise, process all
available jobs. Let t = t+ 1.

number of jobs n = |J | is unknown until the last job has been scheduled. Given a schedule,
we denote the completion time of job j by Cj . The value of a schedule is the weighted
average completion time 1

n

∑
j∈J wjCj and the objective is to find a schedule with small

value. We say that an algorithm is c-competitive if it finds for any instance a schedule
with value at most c times the optimal value.

2 The competitive ratio of SRPT

Phillips et al. [16] showed that SRPT is at most 2-competitive and showed that their
analysis is tight. Hence, a new idea is needed to prove a smaller ratio. Indeed, the proof
by Chung et al [5] is completely different and uses a sophisticated randomized analysis of
the optimal solution. On the contrary, our proof builds on the original proof of Phillips et
al. and continues where that proof stops. Their main lemma is one of the four lemmas in
our proof (Lemma 2).

In the proof, we may restrict ourselves to schedules that preempt jobs only at integer
time points since all processing times and release times are integer. For any integer t ≥ 1
we define slot t as the time interval [t−1, t]. By this notation, the first slot that is available
for j is slot rj + 1. Given a (partial) schedule σ, we say that job j is unfinished at time t
(or, equivalently, unfinished before slot t + 1) if less than pj units are processed before t
in σ. A job j is available at time t (or, equivalently, available for slot t+ 1) if rj ≤ t and j
is unfinished at time t. Let σ(t) be the set of jobs processed in slot t and denote by µi(σ)
the i-th smallest completion time in σ.

The SRPT algorithm as defined here is not deterministic since it may need to choose
between jobs with the same remaining processing time. We say that a schedule σ is an
SRPT schedule for instance I if it is a possible output of the SRPT algorithm applied
to I. Note that the values µi(σ) do not depend on the non-deterministic choices of the
algorithm, i.e., if σ and σ′ are SRPT schedules for the same instance on n jobs, then
µi(σ) = µi(σ′) for all i ∈ {1, 2, . . . , n}.

All four lemmas are quite intuitive. For the first lemma, imagine that for a given
instance we reduce the release time of some job by δ and increase its processing time by
at least the same amount. Then, the optimum value cannot improve since there is no
advantage in starting a job earlier if this is undone by an increase in its processing time.
The first lemma shows that SRPT has an even stronger property in this case. The proof
is given in the appendix.

Lemma 1 Let I and I ′ satisfy J = J ′ and for each j ∈ J satisfy r′j = rj − δj ≥ 0 and
p′j ≥ pj + δj, for some integers δj ≥ 0. Let σ and σ′ be SRPT schedules for, respectively,
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I and I ′. Then, for every i ∈ {1, 2, . . . , n},

µi(σ) ≤ µi(σ′).

Lemma 1 shows a nice monotonicity property of SRPT. The next lemma is closely related.

Lemma 2 (Lemma 4.3 in [16]) Let instance I ′ be obtained from I by removing some of
the jobs from I. Let σ and σ′ be SRPT schedules for, respectively, I and I ′ and let n, n′

be the number of jobs in I and I ′. Then, for every i ≤ n′,

µi(σ) ≤ µi(σ′).

Proof: For each job j that is included in I but not in I ′ we add a job j to I ′ with r′j = rj
and p′j = ∞ (or some large enough number). In the SRPT schedule for the extended
instance, the added jobs will complete last and the other jobs are scheduled as in σ′. Now
the lemma follows directly from Lemma 1 with δj = 0 for all j. (N.B. Phillips et al. [16] use
the same argument. However, we do need the stronger version of Lemma 1 with arbitrary
δj ≥ 0 to proof Lemma 4.) �

An advantage of unweighted completion times over weighted completion times is that
we can use a volume argument. For example, in any feasible schedule, the sum of the
last m completion times is bounded from below by the sum of all processing times. To
approximate the sum of the last m completion times we may compare the total volume
that SRPT has done until a moment t with the volume that could have been done by
any other schedule. This backlog argument enables us to bound the sum of the last m
completion times as we do in Lemma 4.

Given schedule σ, let Vt(σ) be the volume processed until time t. Say that a schedule
is greedy if at any moment, either all available jobs are being processed or all machines
are busy. Any SRPT schedule is greedy. The next lemma gives an upper bound on the
volume that a greedy schedule may do less than any other schedule. Figure 2 shows that
the lemma is tight for m = 2.

Lemma 3 Let
α = sup

I,t,σ,σ∗

Vt(σ∗)− Vt(σ)
mt

,

where σ is an arbitrary greedy schedule and σ∗ is any feasible schedule, both for the same
instance I on m machines. Then, α ≤ 1/4.

Proof: We give a short proof that α ≤ 1/2. Using this bound it follows that SRPT is
at most 3/2-competitive. The stronger bound is included in the appendix. Consider an
arbitrary time t and job j and assume the remaining processing time of j at time t is qj
in σ and q∗j ≤ qj − 1 in σ∗. Then there are at least qj − q∗j slots where j is processed in σ∗

but not in σ. For each slot mark the position (time and place) in σ∗. Note that σ must
process some other job at this position. Doing this for all jobs we see that the volume that
σ processes before t is at least the total backlog. Hence, Vt(σ∗) − Vt(σ) ≤ Vt(σ), which
implies

2(Vt(σ∗)− Vt(σ)) ≤ (Vt(σ∗)− Vt(σ)) + Vt(σ) = Vt(σ∗) ≤ mt.
Hence, α ≤ 1/2. �
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t = 0 321

Figure 2: A tight example for Lemma 3. Take m = 2 and two jobs of length 1 and one
job of length 2. All are released at time 0. It is possible to complete the jobs by time 2.
The remaining volume at time t = 2 in the SRPT schedule is 1 = mt/4.

Lemma 4 Given an instance I with n ≥ m jobs, let τ be its SRPT schedule and ρ be an
arbitrary feasible schedule for I. Then,

n∑
i=n−m+1

µi(τ) ≤ 5
4

n∑
i=n−m+1

µi(ρ).

Proof: Let t = µn−m(ρ). We change the instance I into I ′ as follows such that no job
is released after time t in the new instance. Every job j with rj ≥ t+ 1 gets release time
r′j = t and processing time pj + rj − t. Let τ ′ be an SRPT schedule for I ′. Then, by
Lemma 1 we have

µi(τ) ≤ µi(τ ′), for any i ∈ {1, 2, . . . , n}. (1)

On the other hand, we can change ρ into a feasible schedule ρ′ for I ′ without changing
any of the completion times since at most m jobs are processed after time t in ρ. Hence,
we may assume

µi(ρ) = µi(ρ′), for any i ∈ {1, 2, . . . , n}. (2)

Let Wt(τ ′) and Wt(ρ′) be the total remaining processing time at time t in, respectively, τ ′

and ρ′. Since the last m jobs complete at time t or later in ρ′ we have
n∑

i=n−m+1

µi(ρ′) ≥ mt+Wt(ρ′). (3)

Since no jobs are released after t, the SRPT schedule satisfies

n∑
i=n−m+1

µi(τ ′) ≤ mt+Wt(τ ′). (4)

(Equality holds if τ ′ completes at least m jobs at time t or later than t.) By Lemma 3,
Wt(τ ′)−Wt(ρ′) = Vt(ρ′)− Vt(τ ′) ≤ mt/4. This combined with (3) and (4) gives

n∑
i=n−m+1

µi(τ ′) ≤ mt+Wt(τ ′)

≤ 5
4
mt+Wt(ρ′)

≤ 5
4
(
mt+Wt(ρ′)

)
≤ 5

4

n∑
i=n−m+1

µi(ρ′).
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Equations (1) and (2) complete the proof. �

Theorem 1 SRPT is 5/4-competitive for minimizing total completion time on identical
machines.

Proof: Let ϕ be an optimal schedule. Take any n′ ≤ n and let J ′ be the set of the first
n′ jobs completed in ϕ. Consider an SRPT schedule σ′ for J ′. By Lemma 2 we know that

µi(σ) ≤ µi(σ′) for all i ≤ |J ′|. (5)

We distinguish between the cases n′ ≤ m and n′ ≥ m. In the first case we have µi(σ′) ≤
µi(ϕ) since σ′ starts each job at its release time and processes it without preemption.
Combining this with (5) we get that

µi(σ) ≤ µi(ϕ) for all i ≤ n′. (6)

Now assume n′ ≥ m and let ϕ′ be the schedule ϕ restricted to jobs of J ′. By definition,

µi(ϕ′) = µi(ϕ) for all i ≤ |J ′|. (7)

We apply Lemma 4 with τ = σ′ and ρ = ϕ′.

n′∑
i=n′−m+1

µi(σ′) ≤
5
4

n′∑
i=n′−m+1

µi(ϕ′). (8)

Using (5) and (7) we conclude that

n′∑
i=n′−m+1

µi(σ) ≤ 5
4

n′∑
i=n′−m+1

µi(ϕ). (9)

Hence, we see from (6) and (9) that the theorem follows by partitioning the completion
times in groups of size m. The first group may be smaller. �

2.1 More properties of SRPT

Given Lemmas 1 and 2 one might believe that a similar statement holds with respect to
release times. However, it is not true that completion times do not decrease if release
times are increased. In the example of Figure 1, SRPT will produce an optimal schedule
if we change the release time of one small job from 0 to 1. The same example shows that
SRPT may not be optimal even if no job is preempted. Finally, it is also not true that
SRPT is optimal if it contains no idle time. This can be seen if we add two long jobs to
example of Figure 1. This will not change the schedule of the other jobs and the sum of
the completion times of the two long jobs is the same for SRPT and the optimal schedule.
We conjecture that an SRPT schedule is optimal if it is non-preemptive and has no idle
time.
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3 Weighted jobs

The volume argument which is useful for bounding the average completion time becomes
useless if jobs have arbitrary weights and we want to minimize the weighted average of
completion times. A common approach is to use the mean busy time of a job which is
defined as the average point in time that a job is processed. Given a schedule σ let Z(σ)
be the sum of weighted completion times and ZR(σ) be the sum of weighted mean busy
times. On a single machine, the average (or total) weighted mean busy time is minimized
by scheduling jobs preemptively in order of highest ratio of wj/pj [7]. This is called the
preemptive weighted shortest processing time (WSPT) schedule. The WSPT-schedule is
not unique but its total mean busy time is. Now consider a fast single machine that runs
each job m times faster, i.e., job j has release time rj and processing time pj/m. For a
given instance I, let σm(I) be its preemptive WSPT-schedule on the fast single machine.
The following inequality is a well-known lower bound on the optimal value of a preemptive
and non-preemptive schedule [4, 20].

ZR(σm(I)) +
1
2

∑
j

wjpj ≤ Opt(I). (10)

Our algorithm uses the same two steps as the algorithms by Schulz and Skutella [20] and
Correa and Wagner [6]: First, the jobs are scheduled on the fast single machine and then,
as soon as an α-fraction of a job is processed, a job is placed as early as possible on one
of the parallel machines. The algorithm in [20] uses random values of α and a random
assignment to machines. The deterministic algorithm of [6] optimizes over α and simply
takes the first available machine for each job. Our algorithm differs at three points: First,
we take a fast single machine schedule of a modified instance I ′ instead of I. Second, we
do not apply preemptive WSPT but use non-preemptive WSPT instead. Third, we simply
take α = 0 for each job. The behavior of our algorithm depends on the input I and a real
number ε > 0.

Theorem 2 With ε = 1/
√
m, algorithm Online(ε) is δm-competitive for minimizing total

weighted completion time, where δm = (1 + 1/
√
m)2(3e− 2)/(2e− 2). The ratio holds for

preemptive and non-preemptive scheduling on m identical parallel machines.

We denote the start and completion time of job j in the fast machine ρm by, respec-
tively, sj and cj and in the parallel machine schedule ρ by Sj and Cj . First, we prove that
the optimal value does not change much by the modification made in step (i).

Lemma 5 Opt(I ′) ≤ (1 + ε)Opt(I).

Proof: Let σ∗ be an optimal schedule for I and for any job j let C∗j be the completion
time of j in σ∗. We stretch the schedule by a factor 1 + ε such that each job j completes
at time (1 + ε)C∗j and starts at time

(1 + ε)C∗j − pj ≥ (1 + ε)(rj + pj)− pj = (1 + ε)rj + εpj ≥ r′j .

We see that the schedule is feasible for I ′ and its value is exactly 1 + ε times the optimal
value of I. �
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Algorithm Online(ε):

Input: Instance I = {(pj , wj , rj) | j = 1 . . . n}.

(i) Let I ′ = {(p′j , w′j , r′j) | j = 1 . . . n} with p′j = pj , w
′
j = wj and r′j = rj + εpj .

(ii) Apply non-preemptive WSPT to I ′ on the fast single machine. Let ρm be this
schedule and let sj be the start time of job j in ρm.

(iii) Each job j is placed at time sj on one of the parallel machines as early as possible
(but not before sj). Let ρ be the final schedule.

Since we apply non-preemptive WSPT, the schedule ρm derived in step (ii) will in
general not be the same as the fast single machine schedule σ(I ′), which is derived by
preemptive WSPT. Hence, we cannot use inequality (10) directly. We define a new instance
I ′′ such that ρm is the fast machine schedule of I ′′. We shall proof this in Lemma 7 but
first we introduce I ′′ and bound its optimal value like we did in the previous lemma. Let
I ′′ = {(p′′j , w′′j , r′′j ) | j = 1 . . . n} with p′′j = pj , w

′′
j = wj and r′′j = min{γεr′j , sj}, where

γε = 1 + 1/(εm).

Lemma 6 Opt(I ′′) ≤ (1 + 1/(εm))Opt(I ′).

Proof: The proof is similar to that of Lemma 5. Let σ′ be an optimal schedule for I ′

and C ′j the completion time of j in σ′. We stretch the schedule by a factor γε such that
each job j completes at time γεC ′j and starts at time

γεC
′
j − pj ≥ γε(r′j + pj)− pj = γεr

′
j + (γε − 1)pj ≥ γεr′j ≥ r′′j .

We see that the schedule is feasible for I ′′ and its value is exactly 1 + ε times the optimal
value of I ′. �

Clearly, Opt(I) ≤ Opt(I ′′) since we only shift release times forward. Combining
Lemmas 5 and 6 we see that Opt(I ′′) ≤ (1 + 1/(εm))(1 + ε)Opt(I). Choosing ε = 1/

√
m

we obtain the following corollary.

Corollary 1

Opt(I) ≤ Opt(I ′′) ≤
(

1 +
1√
m

)2

Opt(I). (11)

If we want to prove a bound on the competitive ratio of our algorithm only for large
values of m, then we may just as well compare our schedule with the optimal schedule
of I ′′ instead of I since Opt(I ′′)/Opt(I) → 1 for m → ∞. The next lemma states
that the total mean busy time of ρm equals the total mean busy time of the preemptive
WSPT-schedule of I ′′ on the single machine.

Lemma 7 ZR(ρm) = ZR(σ(I ′′)).
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Proof: We show that schedule ρm is a preemptive WSPT schedule for I ′′. First, ρm is a
feasible schedule for the fast single machine relaxation of I ′′ since, by definition, r′′j ≤ sj .
Next we use sj ≥ r′j ≥ εpj .

cj/sj = (sj + pj/m)/sj (12)
= 1 + pj/(msj)
≤ 1 + pj/(mεpj)
= 1 + 1/

√
m.

Assume that at moment t, job j is being processed in ρm and job k is available in I ′′,
i.e., r′′k ≤ t. Denote γ = 1 + 1/

√
m, then by definition r′′k = min{γr′k, sk}. Since also

r′′k ≤ t < sk we must have r′′k = γr′k. Using (12) we get

r′k = r′′k/γ ≤ t/γ < cj/γ ≤ (1 + 1/
√
m)sj/γ = sj .

We see that job k was available at the time we started job j in step (ii). Hence, we must
have wk/pk ≤ wj/pj . �

We apply the lower bound of (10) to instance I ′′.

ZR(σm(I ′′)) +
1
2

∑
j

wjpj ≤ Opt(I ′′). (13)

Combining this with Corollary 1 and Lemma 7, we finally get a useful lower bound on the
optimal solution.

Corollary 2

ZR(ρm) +
1
2

∑
j

wjpj ≤
(

1 +
1√
m

)2

Opt(I).

The lower bound of Corollary 2 together with the obvious lower bound Opt(I) ≥
∑

j wjpj
results in the following lemma.

Lemma 8 Let 1 ≤ α ≤ 2. If Sj ≤ αsj for every job j, then

∑
j

wjCj ≤
(

1 +
α

2

)(
1 +

1√
m

)2

Opt(I).

Proof: Let bj be the mean busy time of j in ρm, then sj = bj − pj/(2m) < bj .

Cj = Sj + pj
≤ αsj + pj
< αbj + pj
= α(bj + pj/2) + (1− α/2)pj

Next, we add weights and take the sum over all jobs.∑
j wjCj ≤ α

(
ZR(ρm) + 1

2

∑
j wjpj

)
+ (1− α/2)

∑
j wjpj

9



Now we use Corollary 2 and use that Opt(I ′′) ≥ Opt(I) ≥
∑

j wjpj . For any α ≤ 2 we
have ∑

j wjCj ≤ α(1 + 1/
√
m)2Opt(I) + (1− α/2)Opt(I)

≤ (1 + α/2)(1 + 1/
√
m)2Opt(I).

�

First we give a short proof that α ≤ 2. This shows that the competitive ratio is at
most 2 + o(m).

Lemma 9 Sj ≤ 2sj for any job j.

Proof: Consider an arbitrary job j. At time sj , the total processing time of jobs k with
sk < sj is at most msj . Since these are the only jobs processed on the parallel machines
between time sj and Sj we have msj ≥ m(Sj − sj). Hence, Sj ≤ 2sj . �

The bound of the next lemma is stronger. The proof is given in the appendix. Lemma 8
tells us that the competitive ratio is at most 1 + e

2(e−1) ≈ 1.791 in the limit.

Lemma 10 Sj ≤ e
e−1sj and this bound is tight.

3.1 Removing the o(m)

We can easily get rid of the o(m) term at the cost of a higher ratio. Correa and Wag-
ner [6] give a randomized αm-competitive algorithm for the preemptive problem and a
βm-competitive algorithm for the non-preemptive version, where 2− 1/m = αm < βm < 2
for m ≥ 3. Let δm be our ratio as defined in Theorem 2. Then 2−1/m > δm for m ≥ 320.
Hence, we get a randomized 2 − 1/320 < 1.997-competitive for the preemptive version
when we apply our algorithm for m ≥ 320 and the αm-competitive for m < 320. The ratio
for the non-preemptive version is even closer to 2 (but strictly less than 2).

4 Conclusion

We have shown that approximation ratios less than 2 can be obtained for parallel machines
by simple and efficient online algorithms. The lower bounds indicate that competitive
ratios close to 1 are possible for randomized algorithms, especially when preemption is
allowed.

Our analysis for SRPT is tight and it seems that a substantially different proof is
needed to get below 1.25. Already, the gap with the lower bound, 1.105, is quite small.
Muthukrishnan et al.[15] show that SRPT is at most 14 competitive w.r.t. the average
stretch of jobs. Possibly, our result can reduce this ratio substantially.

The analysis for algorithm Online is not tight and a slight modification of the algo-
rithm and analysis may give a ratio e/(e−1)+o(m) ≈ 1.58+o(m). Moreover, the analysis
is not parameterized by m. A refined analysis will reduced the o(m) for small values of m.
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Appendix: Proof of Lemma 1, 3, and 10

Lemma 1 Let I and I ′ satisfy J = J ′ and for each j ∈ J satisfy r′j = rj − δj ≥ 0 and
p′j ≥ pj + δj, for some integers δj ≥ 0. Let σ and σ′ be SRPT schedules for, respectively,
I and I ′. Then, for every i ∈ {1, 2, . . . , n},

µi(σ) ≤ µi(σ′).

Proof We proof it by induction on the makespan of σ. Let qj(t) and q′j(t) be the remaining
processing time of job j in, respectively, σ and σ′ at time t. Define the multiset Q(t) =
{qj(t) | rj ≤ t}, i.e., it contains the remaining processing times of all jobs released at t
or earlier. Let Q′(t) contain the remaining processing times of the same set in σ′, i.e.,
Q′(t) = {q′j(t) | rj ≤ t}. Note that we take rj and not r′j in Q′. Let Qi(t) and Q′i(t) be the
i-th smallest element in, respectively, Q(t) and Q′(t). We claim that for any time point t,

Qi(t) ≤ Q′i(t), for all i ∈ {1, 2, . . . , |Qi(t)|}. (14)

If we can show (14) then the proof follows directly since µi(σ) (µi(σ′)) is the smallest t
such that Qi(t) (Q′i(t)) has at least i zero elements.

The proof is by induction on t. It is true for t = 0 since Q(0) = Q′(0). Now consider
an arbitrary time t0 and assume the claim is true for and t ≤ t0.

First we analyze the changes when no job is released at time t0 + 1. If σ pro-
cesses less than m jobs in slot t then all non-zero elements in Q(t0) are reduced by
one, implying, Qi(t0 + 1) ≤ Q′i(t0 + 1) for all i ≤ |Qi(t0 + 1)|. Now assume σ pro-
cesses less than m jobs in slot t0. Then it processes jobs with remaining processing times
Qk+1(t0), Qk+2(t0), . . . , Qk+m(t0) for some k ≥ 0 while Qj(t0) = 0 for any j ≤ k. Since
Q′k+1(t0), Q′k+2(t0), . . . , Q′k+m(t0) are also non-zero, only values Q′s(t0) with s ≤ k+m are
reduced for σ′. Again, Qi(t0 + 1) ≤ Q′i(t0 + 1) for all i ≤ |Qi(t0 + 1)|.

Now assume some jobs are released at time t0 + 1. We may use the analysis above
and only consider the affect of the newly added jobs. For any new job j we have
pj = qj(t0 + 1) ≤ q′j(t0 + 1). Clearly, (14) remains valid after the addition of these
jobs. �

Lemma 3 Let
α = sup

I,t,σ,σ∗

Vt(σ∗)− Vt(σ)
mt

,

where σ is an arbitrary greedy schedule and σ∗ is any feasible schedule, both for the same
instance I on m machines. Then, α ≤ 1/4.

Proof Given a schedule we say that a machine is idle in slot t if it is not processing any
job in that slot. The idle time in slot t is the number of machines idle in that slot. We
say that a slot is idle if at least one machine is idle in that slot.

We consider an arbitrary time T and show that VT (σ∗) − VT (σ) ≤ mT/4. First we
show that we may assume without loss of generality that σ∗ has no idle time before time
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T . Fill the idle time in σ∗ before T with dummy jobs of unit length and let each such job
be released at its start time. Now, take σ and add the same dummy jobs in the available
idle time in a greedy way, i.e., as early as possible. The resulting schedule is still greedy.
For any t ≤ T , the increase for Vt(σ) is no more than the increase for Vt(σ∗) since the
dummy jobs in σ are not placed earlier than in σ∗. Hence, the backlog can only increase
using these dummy jobs. We assume from now that VT (σ∗) = mT .

Our proof is by induction on T . If T = 1 then VT (σ) = m since σ is greedy and at
least m jobs are available at time 0. Hence, VT (σ∗) − VT (σ) = 0. Now let T ≥ 2 and
assume Vt(σ∗)− Vt(σ) ≤ mt/4 for any t ≤ T − 1.

Let A be the set of jobs processed in slot T in σ. If |A| = m then, by induction,
VT (σ) = VT−1(σ) +m ≥ 3

4m(T − 1) +m > 3
4mT . From now we assume |A| ≤ m− 1. For

any t ∈ [T ], let xt = 1 if slot t is idle in σ and xt = 0 otherwise. Let yt be number of
idle machines in slot t. Note that xt = 0 if yt = 0. Consider a job j ∈ A and let qj be its
remaining processing time at time T . In each idle slot t with rj + 1 ≤ t ≤ T , job j must
be processed since it is available and the schedule is greedy. This implies

qj ≤ pj −
T∑

t=rj+1

xt. (15)

The remaining processing time of job j in σ∗ at time T , say q∗j , is at least pj + rj − T .
With (15) we get,

qj − q∗j ≤ T − rj −
T∑

t=rj+1

xt. (16)

Next, we replace the term rj in (16). Since j ∈ A = σ(T ) we have rj ≤ T − 1. By
induction,

∑rj
t=1 yt ≤ mrj/4. Hence,

qj − q∗j ≤ T −
4
m

rj∑
t=1

yt −
T∑

t=rj+1

xt. (17)

Let Q =
∑

j∈A(qj − q∗j ). Since there is at least one machine idle in slot T in σ, we know
that any job j that has (partially) been processed by σ∗ before time T is either completed
by σ by time T − 1 or is processed in slot T . Therefore, Q is an upper bound on the idle
time in σ before time T , i.e.,

mT − VT (σ) ≤ Q. (18)

We will find an upper bound on Q. If |A| ≤ m/4 then by equation (16), Q ≤ |A|T ≤ mT/4.
From now on we may assume m/4 ≤ |A| ≤ m− 1. From (17) we get

Q ≤ |A|T −
∑
j∈A

 4
m

rj∑
t=1

yt +
T∑

t=rj+1

xt

 . (19)

To simplify notation we denote the right hand side of (19) by R. Hence Q ≤ R. Let
At = {j ∈ A | t ≥ rj + 1}. By changing the order of summation, we can rewrite R as

R = |A|T −
T∑
t=1

(
4
m

(|A| − |At)|yt + |At|xt
)
.
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We continue rewriting and define for all t ∈ [T ]

z(t) =
{

0 if yt = 0
4
m(|A| − |At|) + |At|/yt if yt ≥ 1.

(20)

Then

R = |A|T −
T∑
t=1

ytzt. (21)

Next, we give a lower bound on zt which is independent of t. We plug in a general
inequality. Let a < 1, then

(2a− 1)2 ≥ 0 ⇒
4a2 − 4a+ 1 ≥ 0 ⇒

a ≥ (4a− 1)(1− a) ⇒
a/(1− a) ≥ 4a− 1.

We substitute a = |At|/m. (Note that a < 1 since |At| ≤ |A| ≤ m− 1.)

|At|
m− |At|

≥ 4
|At|
m
− 1. (22)

If yt ≥ 1 then yt ≤ m−|At| since each job in At is processed in slot t. We use this together
with (22) and the definition of zt. If yt ≥ 1 then

zt ≥
4
m

(|A| − |At|) +
|At|

m− |At

≥ 4
m

(|A| − |At|) + 4
|At|
m
− 1

=
4|A|
m
− 1.

Note that this value is non-negative since |A| ≥ m/4. We substitute this in (21).

Q ≤ R ≤ |A|T −
(

4|A|
m
− 1
) T∑
t=1

yt. (23)

The total idle time until time T is
∑T

t=1 yt = mT −VT (σ). Equations (18) and (23) imply

mT − VT (σ) ≤ Q ≤ |A|T −
(

4|A|
m
− 1
)

(mT − VT (σ)).

From this linear inequality we get mT − VT (σ) ≤ mT/4. Hence α ≤ 1/4. �

Lemma 10 Sj ≤ e
e−1sj and this bound is tight.

Proof Fix an arbitrary job k and assume for simplicity that sk = 1 and Sk = α > 1. We
may do this if we assume processing times to be arbitrary rational numbers. For every
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i ∈ {1, . . . , k − 1} let Vi be the total processing time done on jobs j ≤ i between time
si+1 and α on the parallel machines. We give two bounds on Vk−1 which results in an
inequality for α.

Between time 1 and α all machines are busy since otherwise the algorithm would have
started job k earlier. Further, only jobs i ≤ k−1 are scheduled in this interval. This gives
the following equation.

Vk−1 = m(α− 1). (24)

Next, we give a different bound on Vk−1. We define V0 = 0 and deduce a recursive
bound on Vi for i ≥ 1. Fix an arbitrary i ∈ {1, . . . , k − 1}. Job i becomes available
for processing on the parallel machines at time si and the next job becomes available at
time si+1. For any t let µi(t) be the number of machines working at time t on jobs from
{1, 2, . . . , i}. Since the algorithm places jobs in order of index and as early as possible,
the value µi(t) is non-increasing in t for any t > si. Let m′ = µi(si+1). Then, by the
monotonicity of µ,

Vi ≤ (α− si+1)m′. (25)

Since at least m′ machines are busy from si till si+1 and only jobs j ≤ i are processed we
have

Vi−1 + pi ≥ Vi + (si+1 − si)m′. (26)

Next, we combine (25) and (26) and use that pi = (ci − si)m ≤ (si+1 − si)m.

Vi−1 + (si+1 − si)m ≥ Vi + (si+1 − si)m′

= Vi +
si+1 − si
α− si+1

(α− si+1)m′

≥ Vi +
si+1 − si
α− si+1

Vi

=
α− si
α− si+1

Vi.

Hence,

Vi ≤ F(Vi−1), with F(Vi−1) =
(
α− si+1

α− si

)
(Vi−1 +m(si+1 − si)) .

Note that F is monotone increasing in the argument (assuming all other values are fixed).
Hence, if we define W0 = 0 and Wi = F(Wi−1) for i ≥ 1 then Wi ≥ Vi for all i ≥ 1 and in
particular Wk−1 ≥ Vk−1. The recursion can easily be removed.

Wk−1 =
k−1∑
i=1

m(si+1 − si)
k−1∏
j=i

α− sj+1

α− sj

=
k−1∑
i=1

m(si+1 − si)
α− sk
α− si

= m(α− sk)
k−1∑
i=1

si+1 − si
α− si

.
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Note that sk = 1 and that for any i ≤ k − 1

si+1 − si
α− si

≤
si+1∫
t=si

1
α− t

dt.

Hence,

Wk−1 ≤ m(α− 1)

1∫
t=s1

1
α− t

dt ≤ m(α− 1)

1∫
t=0

1
α− t

dt = m(α− 1) ln
α

α− 1
.

We combine this upper bound with equality (24).

m(α− 1) ≤ m(α− 1) ln
α

α− 1
⇒ e ≤ α

α− 1
⇒ α ≤ e

e− 1
.

Now we sketch a tight example. For simplicity we only give the single machines schedule
with values si and pi. Let s1 = 0, p1 = e/(e− 1) and for any i ∈ {2, . . . ,m},

si = si−1 + pi−1/m and pi = e/(e− 1)− si.

Note that is not really a possible realization of ρm (for example s1 > 0 always holds), it is
a tight example for the analysis and can be modified to make it valid realization.

Substituting pi−1 we get

si = (1− 1
m

)si−1 +
e

m(e− 1)

If m→∞ then

sm+1 →

(
1− 1

m
+
(

1− 1
m

)2

+ · · ·+
(

1− 1
m

)m) e

m(e− 1)

→

((
1− 1

m

)m+1 − 1
(1− 1

m)− 1

)
e

m(e− 1)
→

(
1/e− 1
(− 1

m)

)
e

m(e− 1)
= 1.

We see that the first m jobs are placed consecutively on the single machine in the interval
[0, 1]. Each job starts on the parallel machine at its release time and ends at time e/(e−1).
At time 1, job m+1 becomes available and all machines are blocked until time e/(e−1).�
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