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Scheduling problems received substantial attention during the last decennia. The job-shop problem is a very
important scheduling problem, which is NP-hard in the strong sense and with well-known benchmark instances
of relatively small size which attest the practical difficulty in solving it. The literature on job-shop scheduling
problem includes several approximation and optimal algorithms. So far, no algorithm is known which solves the
job-shop scheduling problem optimally with a lower complexity than the exhaustive enumeration of all feasible
solutions. We propose such an algorithm, based on the well-known Bellman equation designed by Held and Karp
to find optimal sequences and which offers the best complexity to solve the Traveling Salesman Problem known
to this date. For the TSP this means O(n22n) which is exponentially better than O(n!) required to evaluate all
feasible solutions. We reach similar results by first recovering the principle of optimality, which is not obtained
for free in the case of the job-shop scheduling problem, and by performing a complexity analysis of the resulting
algorithm. Our analysis is conservative but nevertheless exponentially better than brute force. We also show
very promising results obtained from our implementation of this algorithm, which seem to indicate two things:
firstly that there is room for improvement in the complexity analysis (we observe the generation of a number of
solutions per state for the benchmark instances considered which is orders of magnitude lower than the bound we
could devise) and secondly that the potential practical implications of this approach are at least as exciting as
the theoretical ones, since we manage to solve some celebrated benchmark instances in processing times ranging
from seconds to minutes.
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1. Introduction. In a job-shop scheduling problem n jobs have to be processed by m dedicated
machines. Each job has to visit all the machines following a specific order. The time each job requires in
each machine depends on the job and on the machine and it is assumed to be known in advance. The jobs
can not overlap in the machines and no job can be processed simultaneously by two or more machines.
Preemption is not allowed. The goal is to schedule the jobs so as to minimize the makespan, which is the
maximum of their completion time.

The job-shop scheduling problem is one of the most studied combinatorial optimization problems.
Nevertheless, it still remains a very challenging problem to solve optimally. From a complexity point of
view, the problem is NP-hard (Lenstra and Rinnooy Kan [21]). Lenstra et al. [22] show that even some
‘simplified’ versions are NP-hard. These include 3 machines and 3 jobs; 2 machines and no more than 3
operations per job (in this case a job may have to visit a machine more than once); 3 machines and no
more than 2 operations per job; 3 machines and unitary processing times. Nevertheless, some particular
cases of the job-shop scheduling problem are polynomial, such as the problem with 2 machines and no
more than 2 operations per job (Jackson [14]) and the problem with 2 machines and unitary processing
times (Hefetz and Adiri [12]).

Among the methodologies that have been considered for tackling the job-shop scheduling problem we
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can distinguish exact procedures (working for instances with a rather limited size), heuristic procedures
and polynomial time approximation algorithms.

To the best knowledge of the authors, all the exact algorithms that have been proposed for the job-shop
scheduling problem are branch-and-bound procedures. Without being exhaustive we can cite the works
of Applegate and Cook [3], Brucker et al. [4], Carlier and Pinson [5], Lageweg et al. [17] and Martin and
Shmoys [24].

Many heuristic approaches have been proposed in the literature for obtaining good quality solutions to
the job-shop scheduling problem. A well-known procedure is the so-called shifting bottleneck procedure
by Adams et al. [1]. Genetic algorithms were proposed by Croce et al. [6] and Dorndorf and Pesch [7].
Van Laarhoven et al. [30] and Steinhöfel et al. [28] proposed simulated annealing procedures for obtaining
feasible solutions to the problem. A tabu search procedure was proposed in the works by Taillard [29] and
Nowicki and Smutnicki [25]. Recently, Zhang et al. [33] proposed a new hybrid approach combining tabu
search and simulated annealing, which proved to be very efficient for finding optimal or near-optimal
solutions for many benchmark instances of the problem. Rego and Duarte [26] proposed a procedure
that combines the basic shifting bottleneck procedure by Adams et al. [1] with a dynamic and adaptive
neighborhood search procedure based on the so-called filter-and-fan method.

As far as the polynomial time approximation algorithms are concerned, Shmoys et al. [27] propose a

procedure with a performance guarantee O( log(mµ) log(min(mµ,pmax))
log log(mµ)) ) for a job-shop scheduling problem in

which a job may have to return more than once to each machine. pmax = maxij pij , m is the number
of machines and µ denotes the maximum number of operations over all jobs. When each job has to
visit each machine exactly once, the factor µ can be ignored in the performance guarantee. Goldberg
et al. [10] improve the above performance by presenting a polynomial time approximation algorithm

with a performance guarantee O( log(mµ) log(min(mµ,pmax))
log log(mµ))2 ). For the case in which each job visits at most

once each machine the above performance is still improved by Feige and Scheideler [8] who provide an
approximation guarantee O (mµ log(mµ) log log(mµ)). For a fixed number of machines and also for a
fixed maximum number of operations per job, Shmoys et al. [27] present a 2+ ǫ approximation algorithm.
Jansen et al. [16] improve the previous performance guarantee. Leighton et al. [19] and Leighton et
al. [20] propose polynomial time approximation algorithms with constant performance guarantee for the
job shop scheduling problem with unitary processing times assuming that each job has to be processed
exactly once on each machine.

Unlike the above mentioned complexity results about approximations, little seems to be known about
the complexity of optimal algorithms for many NP-hard problems. Woeginger [31] stresses the importance
of such algorithms and points out that for many such problems it is possible to do better than ‘brute force’.
In particular, for a single machine scheduling problem, an algorithm based on dynamic programming is
mentioned. This algorithm follows along the lines of the celebrated work by Held and Karp [13] for the
Traveling Salesman Problem, which offers still to this date the best complexity of an optimal algorithm
for the TSP (see Woeginger [32]).

In the case of the job-shop scheduling problem, the decision to be made regards the order by which the
n jobs will be processed on each of the m machines. Accordingly, a brute-force enumerative algorithm
for the problem has worst-case complexity O ((n!)

m
), which is lower than the worst-case complexity for

branch-and-bound algorithms.

In this paper we present an exact algorithm for the job-shop scheduling problem with a complexity
that we can prove to be O �(2pmax)

n−1
�
n
√
n+ (2pmax)

2
�
(m+ 1)nn

�
, which is exponentially lower than

brute-force. The new algorithm is based on dynamic programming. We show that for the job-shop
scheduling problem a straightforward application of the Held and Karp equation is not possible because
the optimality principle does not hold. Nevertheless, we show that it is possible to redefine the state
space and adjust the Belman equation accordingly, in order to recover the optimality principle.

The remainder of the paper is organized as follows. In the next section we present some background
which includes notation, definitions and basic properties of the problem. In section 3 we present the
new algorithm. Section 4 is devoted to a complexity analysis. In Section 5 some computational tests
performed with the new procedure are presented and discussed. The paper ends with a conclusion about
the research done.
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2. Notation, definitions and basic properties. Consider the job-shop scheduling problem as
defined in the previous section. Let J = {j1, j2, . . . , jn} denote the set of jobs andM = {m1,m2, . . . ,mm}
the set of machines. pij stands for the processing time of job j ∈ J on machine i ∈ M. A job consists
of m task operations each of which associated with a specific machine. The sequence of operations for
each job j ∈ J is denoted by πj(1), . . . , πj(m) that is, for job j ∈ J , πj(i) is the i-th machine that job
j has to visit. O = {o1, o2, . . . , on×m} is the set of operations. The first n operations refer to the first
operation of each job (in the order of the jobs), operations on+1, . . . , o2n concern the second operation of
the n jobs, and so on. For an operation o ∈ O we denote by j(o) and m(o) the corresponding job and
machine, respectively. Note that j(oi) = i mod n. We denote by p(o) the processing time of operation
o ∈ O. Note that p(o) = pm(o)j(o).

Definition 2.1 A schedule is a function ψ : O −→ N ∪ {0} such that for each operation o ∈ o, ψ(o)
gives the starting time of operation o. A schedule ψ is said to be feasible if:

(i) ψ(o) ≥ 0, o ∈ O;

(ii) ∀ok, ol ∈ O such that j(ok) = j(ol) and k < l one has ψ(ok) + p(ok) ≤ ψ(ol);

(iii) ∀ok, ol ∈ O such that ok 6= ol and m(ok) = m(ol) we have ψ(ol)+p(ol) ≤ ψ(ok)∨ψ(ok)+p(ok) ≤
ψ(ol).

The goal in a job-shop scheduling problem is to find the feasible schedule with the minimum makespan
that is, the feasible schedule ψ which minimizes maxo∈O{ψ(o) + p(o)}. In this study we consider the
value 0 for the origin of time.

For every feasible schedule for the job-shop scheduling problem it is possible to associate a sequence of
operations where the order of the operations processed on a single machine as well as the order defined
for each job is preserved. One example of such type of sequence is obtained by sorting all operations
by their starting time in the schedule considered. However, one single sequence of operations defines an
infinite number of schedules (e.g. all those obtained by the addition of positive constants to the starting
time of all operations). On the other hand, not all the sequences define a feasible solution. In fact, even
if a sequence preserves the order of operations given for each job, it may create a dead-lock.

Hereafter, we will be interested only in sequences that correspond to feasible solutions to the problem
that is, feasible sequences. For the sake of simplicity, in the remainder of the paper we will omit the word
“feasible” every time we refer to a sequence.

Given a sequence of operations of a job-shop scheduling problem, we can obtain the schedule that
results from starting all the operations as soon as possible in the order defined by the sequence and
keeping feasibility. This is the (unique) schedule which has the minimum makespan among all the
schedules that can be associated to the sequence. Hereafter, we will be interested only in such schedules.

0 10

machine 1

machine 2
o1 o4

o3o2

Figure 1: An illustrative
schedule

Note that different sequences of operations can lead to the same sched-
ule. Figure 1 depicts a feasible solution for a small instance of the job-shop
scheduling problem. The schedule associated with this solution can be ob-
tained from the following feasible sequences: o1 o2 o3 o4, o1 o2 o4 o3, o2 o1 o3 o4
and o2 o1 o4 o3. This small example makes it clear that there is not a one to
one correspondence between feasible schedules and sequences of operations.
The following result defines a unique sequence for every schedule.

Proposition 2.1 For every feasible solution for the job-shop scheduling
problem there is one and only one sequence of operations defining the sched-
ule such that the completion time of the operations along the sequence is
non decreasing and in which the order of the machines is increasing for two
consecutive operations with equal completion time.

Proof. Consider a feasible solution for the job-shop scheduling problem. A sequence of operations
featuring the conditions stated is obtained by sorting the operations non-decreasingly in terms of their
completion time and for those that have an equal completion time, by sorting them in increasing order
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of the machine associated with them. The total lexicographic order imposed on this sequence assures
unicity. �

An immediate consequence of the previous proposition is stated in the following corollary.

Corollary 2.1 For an optimal solution of the job-shop scheduling problem there exists one and only
one sequence featuring the conditions stated in proposition 2.1.

With the purpose of building (feasible) sequences (and eventually the optimal sequence) to a job-shop
scheduling problem, the operations can be iteratively added to the sequence. Before all the operations
are in the sequence, we have an incomplete or partial sequence which we define formally as follows.

Definition 2.2 A partial sequence is a sequence of operations defined by the first k operations of a
sequence for any k = 0, ..., |O|.

For a partial sequence T we denote by Cmax(T ) the corresponding (partial) makespan, which is the
maximum completion time for the operations scheduled in the order of the sequence.

Definition 2.3 If T1 and T2 are two partial sequences involving the same set of operations, we say that
T2 dominates T1 if Cmax(T2) ≤ Cmax(T1).

Definition 2.4

1. An ordered sequence is a sequence ordered as stated in proposition 2.1.

2. An ordered partial sequence is a sequence defined by the first k operations of an ordered sequence
for any k = 0, ..., |O|.

3. A sequence or a partial sequence not ordered as stated in proposition 2.1 is called unordered.

It is straightforward to conclude that any unordered partial sequence can be converted into an ordered
partial sequence with the same makespan. In fact, reordering the operations as stated in proposition 2.1
does not increase the makespan.

Definition 2.5 Let S ⊆ O denote a subset of operations such that at least one ordered partial sequence
can be associated to it. Let T denote an ordered partial sequence that can be associated to S.

1. Any set of operations obtained by adding to S one operation that is not in S but such that all the
operations that precede it in the same job are already in S is called an expansion of S.

2. A partial sequence that is obtained by adding to the end of T one operation o that can be used to
expand S is called an expansion of the ordered partial sequence T with o. Let T + o denote such
expansion.

3. Every partial sequence can be progressively expanded leading to a full sequence of operations
thus defining a feasible solution. Such final sequence is called a completion of the initial partial
solution.

Remark 2.1 A subset of operations S ⊂ O has no (ordered) partial sequence associated with it when for
some job an operation is in S while one of the preceding operations of the same job is not in S.

Hereafter we consider only subsets of operations S ⊆ O such that at least one ordered partial sequence
can be associated to them.

It should be noted that the expansion of an ordered partial sequence does not necessarily lead to an
new ordered partial sequence. That is the case when the operation selected to join the sequence has an
earliest completion time lower than the makespan of the partial sequence.

The job-shop scheduling problem can now be defined as the problem of finding the ordered sequence
of operations which leads to the minimum makespan that is, the job-shop shop scheduling problem can
be seen simply as a sequencing problem involving all the operations that have to be performed. This
motivates the approach that is presented and discussed in the following sections.
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3. A Dynamic Programming approach for the job-shop scheduling problem. Held and
Karp [13] presented a Dynamic Programming (DP) formulation for sequencing problems, which is famous
for its application to the Traveling Salesman Problem. For this particular problem, the resulting Bellman
equation is §

C({u}, u) = c0u
C(S, u) = minv∈S\{u} C(S \ {u}, v) + cvu

where C(S, u) is the cost of the optimal path starting at 0 visiting all nodes in S and ending in u, and
cvu is the cost of going from v to u.

As mentioned above, the job-shop scheduling problem can be seen as a sequencing problem. There-
fore, one could be tempted to use the Bellman equation above using the dominance criteria given by
definition 2.3 and considering only ordered expansions.

However a small example is enough to show that the optimality principle does not hold on ordered
(partial) sequences using the dominance concept introduced in the previous section. Figure 2a depicts
the optimal solution for an instance of the job-shop scheduling problem with 3 jobs and 3 machines (the
data can be easily retrieved from the figure). The ordered sequence defining the solution depicted is
o1 o3 o6 o2 o5 o4 o9 o7 o8. However, the ordered partial sequence o2 o3 o6 o1 o5 which leads to the schedule
depicted in Figure 2b dominates the partial sequence o1 o3 o6 o2 o5 from the optimal solution.

0 5

machine 1

machine 2

machine 3

o1

o3

o6

o2

o5

o4

o9

o7

o8

2a: Optimal solution.

0 5

machine 1

machine 2

machine 3

o2

o3

o6

o1

o5

2b: Dominating partial solution.

Figure 2: Loosing optimality

In order to use the recursive equation above we propose several adjustments, which allow us to ‘restore’
the optimality principle.

3.1 Restoring the optimality guarantee. Let S ⊆ O. Denote by Ξ(S) the set of all the ordered
(partial) sequences that can be associated with S (assuming that there is at least one such sequence that
is, Ξ(S) 6= ∅).

Denote by ε(S) the set of all operations that can be used to obtain an expansion of S. Note that
|ε(S)| ≤ n because S can only be expanded with the first unsequenced operation in each job. Note also
that if |ε(S)| < n, there are n− |ε(S)| jobs that have all their operations already sequenced.

Denote by η(T ) the set of all operations that can be used to obtain an ordered expansion of an ordered
partial sequence T . For T ∈ Ξ(S) we have that η(T ) ⊆ ε(S). For a partial ordered sequence T ∈ Ξ(S) let
i∗ denote the machine with the largest completion time (i.e. the machine determining the value Cmax(T )).
In case there are multiple such machines, let i∗ denote the highest-numbered machine.

For each o ∈ ε(S) and for each T ∈ Ξ(S) define ψ(T, o) as the earliest starting time for operation o if
this operation is added to the ordered partial sequence T . We have o ∈ η(T ) if and only if

ψ(T, o) + p(o) > Cmax(T ) ∧m(o) ≤ i∗ or ψ(T, o) + p(o) ≥ Cmax(T ) ∧m(o) > i∗.

Define also

ξ(T, o) =

§
ψ(T, o) + p(o), if o ∈ η(T )
Cmax(T ) + p(o), otherwise.
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Note that Cmax(T ) ≤ ξ(T, o) ≤ Cmax(T ) + p(o), ∀ o ∈ ε(S).

ξ(T, o) represents an ‘aptitude’ value for operation o if this operation is used to expand T . In case
T +o is an ordered partial sequence (o ∈ η(T )), ξ(T, o) gives the (minimum) makespan for the operations
in T + o. Otherwise, ξ(T, o) gives a loose upper bound on this makespan.

Actually ξ(T, o) gives a lower bound of the completion of o in any ordered sequence that starts with
T as a subsequence. For o ∈ η(T ) it follows directly from the definition. Otherwise, if o 6∈ η(T ) and o is
added directly to T then T +o is unordered. To add o to any (ordered) extension T ′ of T such that T ′+o
is ordered, an operation o′ with m(o′) = m(o) should be part of this extension (T ′ = T + . . .+ o′ + . . .).
Since T + . . . + o′ + . . . is ordered we have ψ(T + . . . , o′) + p(o′) ≥ Cmax(T + . . .) ≥ Cmax(T ). Since
o′ and o are on the same machine we have that ψ(T ′, o) ≥ ψ(T + . . . , o′) + p(o′) ≥ Cmax(T ), thus
ψ(T ′, o) + p(o) ≥ Cmax(T ) + p(o) = ξ(T, o).

Denote by λ(S) the set of operations that are the last operation of some job represented in S. Note
this set only depends on the set S and not on any sequence T ∈ Ξ(S). Taking into account this definition
we always have |λ(S)| ≤ n, ∀S ⊆ O.

In order to clarify the previous concepts, we consider the instance of the job-shop scheduling problem
that was introduced in Figure 2. In particular, for this instance, consider the ordered partial sequence
T = o1 o3 o6 o2 o4 (which leads to the schedule depicted in Figure 3a). In this case we have Cmax(T ) = 6,
S = {o1, o2, o3, o4, o6}, ε(S) = {o5, o7, o9}, λ(S) = {o2, o4, o6} and η(T ) = {o7, o9}. Taking into account
that p(o5) = 1, p(o7) = 1 and p(o9) = 3 we obtain (see Figure 3b):

ψ(T, o5) = 4, ψ(T, o7) = 6, ψ(T, o9) = 4 ξ(T, o5) = 7, ξ(T, o7) = 7, ξ(T, o9) = 7.

0 5

machine 1

machine 2

machine 3

o1

o3

o6

o2

o4

3a: Scheduled defined by T .

0 5

machine 1

machine 2

machine 3

o1

o3

o6

o2

o4

o5

o9

o7

3b: Possible schedules defined by T + o.

Figure 3: Illustration of the values ψ(T, o) and ξ(T, o).

Note that if we have T ′ = o1 o3 o6 o2 o5 o4 with T ′ ∈ Ξ(S′) and S′ = {o1, o2, o3, o4, o5, o6} we get
λ(S′) = {o4, o5, o6}.

Proposition 3.1 If T1 and T2 are two ordered partial sequences associated with S ⊆ O (that is T1, T2 ∈
Ξ(S)) such that ξ(T2, o) ≤ ξ(T1, o), ∀o ∈ ε(S) then any ordered expansion of T1 is dominated by the same
(possibly unordered) expansion of T2 obtained when we add to T2 the same operation that was added to
T1.

Proof. Let o ∈ η(T1) (so that (T1, o) is an ordered partial sequence). We have

ξ(T1, o) = ψ(T1, o) + p(o) = Cmax(T1 + o) ≥ Cmax(T1)

The inequality holds because otherwise adding o to T1 would not lead to an ordered partial solution.

Accordingly, taking into account that ξ(T2, o) ≤ ξ(T1, o) we can write ψ(T1, o) + p(o) ≥ ξ(T2, o).
Therefore, either we have

ψ(T1, o) + p(o) ≥ ψ(T2, o) + p(o)

directly, or we have
ψ(T1, o) + p(o) ≥ Cmax(T2) + p(o) ≥ ψ(T2, o) + p(o).
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In any case, ψ(T1, o) + p(o) ≥ ψ(T2, o) + p(o) and thereby ψ(T1, o) ≥ ψ(T2, o).

This shows that it is possible to add o to T2 starting at time ψ(T1, o). In this case, we would obtain
Cmax(T2+ o) = ψ(T1, o)+p(o) = Cmax(T1+ o). However, the best starting time for o when the operation
is added to T2 is ψ(T2, o) which can be lower than ψ(T1, o). In such case we would get Cmax(T2 + o) <
Cmax(T1 + o). In any case we get Cmax(T2 + o) ≤ Cmax(T1 + o), which proves the result. �

Corollary 3.1 In the conditions stated in Proposition 3.1, every ordered completion of T1 is dominated
by the same (possibly unordered) completion of T2

Proof. The result follows by induction using Proposition 3.1. �

The previous proposition and its corollary establish a means for comparing two ordered partial se-
quences namely, in terms of their possible expansions if done using the same operation. We introduce
some additional notation. For S ⊆ O and T1, T2 ∈ Ξ(S) when ξ(T2, o) ≤ ξ(T1, o), ∀o ∈ ε(S), we write
T2 ⋖ T1. The reverse relation will be denoted by ⋗ and equality by

.
=. Note that if ε(S) = ∅ then

T1, T2 ∈ Ξ(O) and T2 ⋖ T1 will be another way to write Cmax(T2) ≤ Cmax(T1).

The relation just established between ordered partial sequences allow us to partition the set Ξ(S) into

two sets, say óΞ(S) and Ξ(S) \ óΞ(S), such that for every T1 ∈ óΞ(S), ∄T2 ∈ Ξ(S) such that T2 ⋖ T1. We

consider the minimal set óΞ(S) among all the possibilities that is, if two or more potential elements for

being included in óΞ(S), say T1, T2, . . . , are such that T1
.
= T2

.
= . . . then only one is chosen to be included

in the set. Any rule can be defined to determine this choice. By construction,
���óΞ(O)

��� = 1 and it becomes

clear that for every possible choice of a sequence T ∈ óΞ(O), T is optimal for the job-shop scheduling
problem.

Denote by æΞ(S) the set ordered partial sequences T ∈ óΞ(S), such that all subsequences of T (naturally

all ordered), are also elements of the set óΞ(.) associated with their correspondent sets.

We have finally gathered all the ingredients that allow us to restore the optimality guarantee for the
job-shop scheduling problem. The following results assure this.

Proposition 3.2 The set æΞ(O) is non-empty.

Proof. Let T1 ∈ Ξ(O) be an optimal sequence and suppose that T1 /∈ æΞ(O). In this case, there is at

least one partial subsequence T ′
1 ∈ Ξ(S′) of T1 such that T ′

1 /∈ óΞ(S′). Among such sequences, let T
′

1 be

the one with the minimum number of operations. Then ∃T ′
2 ∈ óΞ(S′) such that T ′

2 ⋖ T
′

1. Accordingly, we
can consider the completion T2 of T ′

2 with the same operations and in the same order that is necessary

to obtain T1 from T
′

1. We can distinguish the following cases:

I. T2 is ordered. This gives us two cases.

a) T2 ∈ æΞ(O).

b) T2 6∈ æΞ(O). Now we can use the same procedure to find a new optimal solution T3. However,

since T ′
2 ∈ óΞ(S′), the subsequence T ′′

2 of T2 with the minimum number of operations among those

such that T ′′
2 /∈ óΞ(S′′) has more operations than T

′

1.

II. T2 is not ordered. We have that the ordered sequence T ∗
2 corresponding to the schedule defined by

this completion satisfies, for all operations o ∈ O \ S′, ψT∗

2
(o) ≤ ψT1

(o) with strict inequality for at
least one of them.

In case I.a we are finished. Case I.b increases the number of operations of the partial subsequence
eventually expanded to the the optimal sequence found in case I.a. Case II. does not necessarily increase
the number of operations of the partial subsequence nor decreases it. As the property stated in II. is
transitive it can not include any circular relations. As case I.b increases the number of operations known
of the optimal sequence T ∈ æΞ(O) to be found, the procedure of finding T may alternate between cases
I.b and II. but is finite and will end in case I.a. �

Corollary 3.2 The set æΞ(O) contains the optimal sequence to the job-shop scheduling problem.
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Proof. The proposition assures that æΞ(O) 6= ∅. Being non-empty, taking into account the way the
set is built, we conclude that it contains a single element, which is optimal. �

The question arising now is how can æΞ(O) be progressively obtained. In order to give an appropriate
answer, we define X(S) as the set of all ordered partial sequences T ∈ Ξ(S) such that T is an expansion

of an ordered partial sequence T ′ where T = T ′ + o and T ′ ∈ æΞ(S \ {o}). More formally, we define

X(S) =
[

o∈λ(S)

[
T ′∈æΞ(S\{o}) with o∈η(T ′)

T ′ + o.

Define �X(S) in a similar way as done for defining óΞ(S). The following result establishes a relation betweenæΞ(S) and �X(S).

Proposition 3.3 æΞ(S) = �X(S).

Proof. By definition æΞ(S) ⊇ �X(S). Let T ∈ æΞ(S) and suppose T /∈ �X(S) and define T ′ such that

T = T ′+ o. Accordingly, T ′ ∈ óΞ(S′) where S′ = S \ {o} and T ′ /∈ æΞ(S′). Since T ′ /∈ æΞ(S′) but T ′ ∈ óΞ(S′)

we conclude that there exists an ordered subsequence T ′′ ∈ Ξ(S′′) of T ′ for which T ′′ /∈ óΞ(S′′), so we

conclude that T /∈ æΞ(S) and thereby æΞ(S) = �X(S). �

3.2 Dynamic Programming formulation for the job-shop scheduling problem. We have
finally gathered all the necessary elements to propose a Dynamic Programming approach for the job-
shop scheduling problem.

Considering æΞ(S) and �X(S) (S ⊆ O) as defined above, we can introduce the following Bellman equation
for the job-shop scheduling problem:¨ æΞ({o}) = {T } where T = o.æΞ(S) = �X(S), S ⊆ O

Based on this equation we propose Algorithm 3.1 for building the set æΞ(O) that is, to find the optimal
solution to the problem.

Algorithm 3.1 Dynamic Programming for the job-shop scheduling problem

Input: An instance of the problem with n jobs and m machines

Assume: �X(S) = ∅ for all S
Output: A sequence T associated with an optimal schedule to the problem

and its makespan Cmax(T )

for all o ∈ ε(∅) do�X({o}) = {T } with T = o

for l = 1 to n ∗m do // for all sequence lengths

for all S ⊂ O : |S| = l do

for all T1 ∈ �X(S) do
for all o ∈ η(T ) do
T ′
1 = T1 + o

if T ′
1 6⋗T2 for all T2 ∈ �X(S ∪ {o}) then

for all T2 ∈ �X(S ∪ {o}) do
if T ′

1 ⋖ T2 then�X(S ∪ {o}) = �X(S ∪ {o}) \ {T2}�X(S ∪ {o}) = �X(S ∪ {o}) ∪ {T ′
1}

Let T be such that {T } = �X(O) // óX(O) = æΞ(O) and
��æΞ(O)

�� = 1

return T and Cmax(T )
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3.3 Reducing the state space. In this section we propose a reduction in the state space of our
Dynamic Programming approach for the job-shop scheduling problem.

Consider the additional notation ε(S, i) = {o ∈ ε(S) : m(o) = i}. ε(S, i) contains all the possible
expansions of S that are associated with machine i (i = 1, . . . ,m). Naturally,

Sm

i=1 ε(S, i) = ε(S). The
following result holds.

Proposition 3.4 Let T ∈ Ξ(S). If ∃i ∈ {1, . . . ,m} such that

i) ∃o∗ ∈ ε(S, i) : i /∈ η(T ) and

ii) ∀ o ∈ ε(S, i), ξ(T, o) = Cmax(T ) + p(o)

then there exists one optimal solution to the problem such the corresponding ordered sequence does not
start with T .

Proof. Consider that there is an optimal solution such that the corresponding ordered sequence
results from a completion of T . One of the operations in the completion is o∗ that appears after all
operations in T . This means that in the ordered sequence associated with the optimal solution, ψ(o∗) +
p(o∗) ≥ Cmax(T ). However, in the conditions of the proposition it is possible to schedule o∗ starting at
time ψ(T, o) ending in time ψ(T, o)+p(o∗) ≤ Cmax(T ). With this change, it might be possible to schedule
earlier the remaining operations in the completion of T . By reordering the sequence thus obtained we
obtain a new ordered sequence that does not increase the optimal makespan (so is optimal) and does not
have T as an ordered partial sequence. �

Remark 3.1 For the operations o that satisfy the second condition of Proposition 3.4 we cannot conclude
that o 6∈ η(T ). In fact it can be the case that ψ(T, o) = Cmax(T ).

Proposition 3.5 If we change the definitions of æΞ(S) and X(S) by removing from these sets every
T ∈ Ξ(S) satisfying Proposition 3.4, the Bellman equation still gives an optimal solution.

Proof. According to the conditions stated in Proposition 3.4 only possible optimal solutions are
removed where it is possible to change the schedule by advancing at least a single operation (o∗ as defined
in Proposition 3.4). For the optimal solution found according to the proof of Proposition 3.2 no operation
can be advanced without loosing the feasibility of the schedule, so this optimal solution is not removed.
�

This state space reduction can be easily incorporated in Algorithm 3.1 by checking the conditions of
Proposition 3.4 for each T1. When these conditions are satisfied do not expand T1 any further. Note that
T1 has to be added to �X(S) to enable it to discard other sequences (when T1 ⋖ T2).

4. Complexity analysis In this section we study the complexity of Algorithm 3.1 and present an
upper bound on this complexity. In this analysis, we are not taking into account the state space reduction
presented in Section 3.3, thereby also giving an upper bound for the complexity of Algorithm 3.1 with
the state space reduction.

4.1 The complexity of our algorithm. Considering the main body of Algorithm 3.1 we see that
the first two for loops together loop over all sets S ⊆ O. This is at most 2nm. As we will see below,
this value can be decreased. Next there is a loop over all elements T1 ∈ æΞ(S), after which all expansions
o ∈ η(T1) are made. Inside these loops we have to determine ξ(T ′

1, o) for o ∈ ε(S ∪ {o}), and we need

to compare T ′
1 with all T2 ∈ æΞ(S ∪ {o}) which is presented in Algorithm 3.1 as looping twice but can be

implemented by looping once over all elements of æΞ(S ∪ {o}). This leads to a complexity

O
�
2nm

���æΞ(S)��� |η(T1)|�|ε(S ∪ {o})|+
���æΞ(S ∪ {o})

�����
First we take a look into the number of subsets S ⊆ O. Note that not all of these subsets have (feasible)
ordered sequences associated with them, in which cases we have Ξ(S) = ∅. This is the case when an
operation of some job is in the set but one of the preceding operations of the same job is not in the set. In
fact, each job impose a sequence of precedence relations which must be respected by an ordered sequence.
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This gives us n independent precedence sequences of lengthm. According to Gromicho et al. [11] this leads

to a reduction of
�
m+1
2m

�n
in the possible subsets S ⊆ O. So we have at most

�
m+1
2m

�n
2nm = (m+ 1)

n

subsets S ⊆ O for which Ξ(S) 6= ∅.
Furthermore, observe that |η(T1)| ≤ n and |ε(S ∪ {o})| ≤ n.

Finally we need to determine
���æΞ(S)��� and ���æΞ(S ∪ {o})

���.
Let c be the minimal value of Cmax(T ) with T ∈ æΞ(S) and let TL be the sequence such that Cmax(TL) =

c. Observe that ∀o ∈ ε(S) we have c ≤ ξ(TL, o) ≤ c+pmax. Now we have ∀T ∈ æΞ(S) that Cmax < c+pmax,

otherwise TL ⋖ T . Hence ∀o ∈ ε(S)∀T ∈ æΞ(S) we know that c ≤ ξ(T, o) < c+ 2pmax.

Considering the values of ξ(T, o), ∀o ∈ ε(S) relative to c, we have 0 ≤ ξ(T, o)−c < 2pmax. These values
can be represented with a subset of the multiset S = k1, . . . , kn, with ki = 2pmax − 1 for i = 1, . . . , n. S
consists of ki = 2pmax− 1 copies of n different elements xi, i = 1, . . . , n, where xi is associated with job i.
Denote by σ(T ) the subset associated with T . Thus, σ(T ) ⊆ S is composed by taking ∀o ∈ ε(S), ξ(T, o)−c
copies of xi where i = j(o). Now observe that for T1, T2 ∈ Ξ(S), T1 ⋖ T2 if and only if σ(T1) ⊆ σ(T2)

with σ(T1) = σ(T2) when T1
.
= T2. We conclude that ∀T1, T2 ∈ æΞ(S) we have σ(T1) 6⊆ σ(T2) and

σ(T1) 6⊇ σ(T2).

Before proceeding our analysis, we recall the concept of an Antichain (see Anderson [2] for further
details).

Definition 4.1 An Antichain is a collection of subsets of a set where no two elements of the collection
are subsets of each other.

According to this definition, the collection of σ(T ), with T ∈ æΞ(S), is an antichain. To make this text
self-contained, we recall the following two results on antichains.

Proposition 4.1 The largest antichain in the collection of all subsets of a multiset is smaller or equal
to the largest rank number Ni (Ni the number of elements with rank i).

Proof. See [2]. �

Proposition 4.2 The size of the largest rank for a multiset is equal to size of the middle rank λ which
is

Nλ ≈
�
2

π

� 1

2

Q
i

(ki + 1)É
1
3

P
i

ki(ki + 2)

Proof. See [2]. �

In our case we have ki = 2pmax − 1 for all i. Accordingly, we have
���æΞ(S)��� ≈ �

2
π

� 1

2 (2pmax)
n√

1

3
n((2pmax)2−1)

.

Therefore, ���æΞ(S)��� = O

�
(2pmax)

nÈ
n((2pmax)2 − 1)

�
.

We can finally state and prove the following result.

Proposition 4.3 Algorithm 3.1 has complexity

O
�
(2pmax)

n−1
�
n
√
n+ (2pmax)

2
�
(m+ 1)n

�
Proof. The value obtained for

���æΞ(S)��� leads to the following value for the complexity of Algorithm 3.1.

O

��
(2pmax)

nÈ
n((2pmax)2 − 1)

+ n

�
n(2pmax)

nÈ
n((2pmax)2 − 1)

(m+ 1)n

�
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From here we obtain successively

O

��
(2pmax)

nÈ
n(2pmax)2

+ n

�
n(2pmax)

nÈ
n(2pmax)2

(m+ 1)n

�
O
��

(2pmax)
n−1

√
n

+ n

�
n(2pmax)

n−1

√
n

(m+ 1)n
�

O
��

(2pmax)
2n−2 + n

√
n(2pmax)

n−1
�
(m+ 1)n

�
O
�
(2pmax)

n−1
�
n
√
n+ (2pmax)

2
�
(m+ 1)n

�
�

With the analysis above, we were able to give an upper bound on
���æΞ(S)��� with S ⊆ O. This results in

an upper bound on the complexity of Algorithm 3.1. Note, however, that the actual value of
���æΞ(S)��� is

much lower and thus we strongly suspect that the actual complexity of our procedure is much lower. This
is also evidenced by the computational results presented in section 5. Nevertheless, the value achieved
represents already an important breakthrough as we show next.

4.2 Comparison with brute force. The following results holds.

Proposition 4.4 For a fixed pmax, the Dynamic Programming approached that we propose for the job-
shop scheduling problem has a complexity that is exponentially smaller than brute-force in n and in m.

Proof. Using Stirling’s approximation1 we can evaluate the ratio between the complexity associated
with brute-force and the complexity of our procedure. We have:

(n!)
m

(2pmax)n−1 (n
√
n+ (2pmax)2) (m+ 1)n

≈
�√

2πn
�
n
e

�n�m
(2pmax)n−1 (n

√
n+ (2pmax)2) (m+ 1)n

≈ 2pmax

√
2πm

m

(2pmax)2 + n
√
n

� �
n
e

�m
2pmax(m+ 1)

�n

This is clearly exponential in m, but is only exponential in n if
(n

e
)
m

2pmax(m+1) > 1, or equivalently. if�
n
e

�m
> 2pmax(m+ 1). Accordingly, for a fixed pmax the result holds. �

This result represents an important breakthrough because it shows that the new algorithm solves the
job-shop scheduling problem with a complexity exponentially lower than ‘brute force’.

5. Computational analysis. In order to evaluate our complexity analysis of the new algorithm,
we run some computational tests considering benchmark instances for the job-shop scheduling problem.
In particular we considered instances ft06 and la01-la05. The first instance was first proposed by Fisher
and Thompson [9]. The other five were proposed by Lawrence [18]. These benchmark instances (among
many others) are available in the OR Library [23].

We implemented the new algorithm including the state space reduction of Section 3.3 with C++ and
the tests were performed on a a windows 64 bit machine with a 2.66 GHz CPU and 8 GB memory.

In Table 1 we can observe the results obtained. In this table, the first three columns contain the
information defining the instance namely, the name, the number of jobs (n) and the number of machines
(m). Columns 4 and 5 depict the computational resources requirements for the instances considered. In
particular we present the CPU time in seconds for solving each instance as well as the memory required.

Columns 6-9 contain the observed and estimated values for the maximal size of æΞ(S) (max
S

���æΞ(S)���) and
for the total number of sequences in the state space (

����S
S

æΞ(S)����).
1
n! ≈

√
2πn

�
n

e

�
n
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Instance Size Resources Observed Estimated

n m CPU time Memory max
S

���æΞ(S)��� ����S
S

æΞ(S)���� max
S

���æΞ(S)��� ����S
S

æΞ(S)����
ft06 6 6 < 1 s 2MB 13 30.409 1.308 ·103 153.888 ·106
la01 10 5 1533 s 1922MB 142 63.170.946 134.992 ·1015 8.162 ·1024
la02 10 5 1961 s 2313MB 157 80.862.876 147.908 ·1015 8.943 ·1024
la03 10 5 1206 s 1400MB 191 50.910.284 69.286 ·1015 4.189 ·1024
la04 10 5 1629 s 2023MB 113 68.208.819 134.992 ·1015 8.162 ·1024
la05 10 5 965 s 1321MB 182 40.229.147 123.089 ·1015 7.442 ·1024

Table 1: Computational results

As we can see, the number of sequences needed to solve each instance is much smaller than the estima-
tion obtained in section 4, which gives strong evidence that the bounds presented in the previous section
can be improved significantly. For the first instance we were able to run our algorithm without the state

space reduction using 2.6 seconds and 8 MB, having values 16 and 190592 for max
S

���æΞ(S)��� and ����S
S

æΞ(S)����
respectively. According to these values even without state space reduction our complexity analysis is still
very conservative.

We should stress here that although using an exponential amount of memory our algorithm can be
implemented in such way that only the optimal value is found saving a constant factor in memory.
Nevertheless, for the instances that we could run not only the optimal value but also an optimal solution
was found.

We present our algorithm as one to find the optimal sequence of operations. From this sequence the
optimal solution immediately follows. For example, in the case of instance ft06 we obtained the following
optimal sequence:

o3 o1 o2 o7 o9 o4 o8 o6 o15 o10 o12 o13 o5 o14o11 o21 o16 o27 o18o22 o17 o19 o24 o28 o20 o25 o30 o36 o23
o26 o31 o29 o32 o35 o34 o33

This sequence corresponds with the solution in Figure 4. This solution has the well-known optimal value
of 55 (see for instance [15]).
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Figure 4: Optimal solution of ft06
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6. Conclusion. In this paper we proposed a Dynamic Programming approach for the classical job-
shop scheduling problem. The main achievements of this paper are twofold:

(i) We produce an optimal algorithm with complexity proven to be exponentially lower than ex-
haustive enumeration, which is to date the best complexity guarantee of an optimal algorithm
for the job-shop scheduling problem that we are aware of. Furthermore, our complexity analy-
sis is extremely conservative and our results show strong empirical evidence that they may be
improved by a few orders of magnitude.

(ii) Despite the theoretical interest, our algorithm proves to work in practice by solving some mod-
erate benchmark instances.
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