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Abstract 

The main topic of the research described in this thesis concerns adverse drug 

reactions (ADRs) and idiosyncratic drug reactions (IDRs). The first part of this thesis 

therefore consists of a general introduction which describes the present knowledge 

on ADRs and IDRs, the role of metabolism and reactive metabolite formation in this 

type of toxicity and the strategies currently applied by pharmaceutical industries to 

minimize risks related to this issue during drug development programs.  
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Adverse Drug Reactions 

Significance 

Adverse drug reactions (ADRs) defined by the World Health Organization are 

noxious, unintended and undesirable effects of a drug, which occurs at doses used in 

humans for prophylaxis, diagnosis, or therapy [1]. Although much effort has been 

spent on the development of safer drugs, ADRs still remain a major complication in 

drug development programs and during drug therapy. Overall, it is estimated that 7% 

of the general population may be affected by ADRs [1-3]. Demoly et al. described 

that ADRs occur in 10-20% of hospitalized patients, with up to one-third being of 

allergic or pseudo-allergic nature [4]. Drug hypersensitivity syndromes, anaphylactic 

reactions, Stevens Johnson syndrome and toxic epidermal necrolysis are all 

potentially life-threatening conditions that are associated with significant mortality in 

patients. Lazarou et al. showed in the United States that 0.32% of hospitalized 

patients died from ADRs, causing more than 100.000 deaths per year in the US in 

1994 [2]. This implied that fatal ADRs were ranked between the fourth and the sixth 

leading cause of death in the United States in 1994. More recently, a study 

performed in the United Kingdom showed that 6% of hospital admissions were due to 

ADRs, with a mortality rate of approximately 2% [5]. These statistics are in 

agreement with those observed by Einarson [6]. Apart from serious health risks for 

patients, ADRs also have a high socio-economic impact due to hospitalization 

prolongations, increased treatment costs, etc… [1, 2].  
 
Toxicity and prevention of ADRs therefore constitute a major challenge for the 

pharmaceutical industry. Lasser et al. recently highlighted that from 548 new 

chemical entities approved by the FDA in 1975-1999, 45 drugs (8.2%) acquired one 

or more black box warnings and sixteen (2.9%) were withdrawn from the market [7]. 

The economical impact for pharmaceutical companies concerned is huge. Another 

consequence is reluctance of physicians to prescribe drugs that were shown to be 

safe and efficacious in more than 99 % of the population.  
 
The main difficulty resides in the fact that ADRs can not always be predicted from 

(pre-)clinical studies. Because of their unpredictability and potential severity, ADRs 

constitute a major concern in clinical practice and in drug development processes. 
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Table 1. Examples of drugs withdrawn from the market for safety reasons. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table adapted from [7-9]. 
 

Drug Therapeutic class Warning/Toxicity Year of withdrawal 

Azaribine Dermatologic (psoriasis) Thromboembolism 1976 

Ticrynafen Antihypertensive Hepatotoxicity 1980 

Benoxaprofen Analgesic Hepatotoxicity 1982 

Zomepirac Analgesic  Anaphylaxis 1983 

Nomifensine Antidepressant Hemolytic anemia 1986 

Suprofen Analgesic Flank pain syndrome 1987 

Terfenadine Antihistamine Fatal arrhythmia 1998 

Encainide Antiarhythmic Fatal arrhythmia 1991 

Temafloxacin Antibiotic Hemolytic anemia 
Kidney failure 

1992 

Flosequinan Congestive heart failure Increased mortality 1993 

Mibefradil 
  

Antihypertensive calcium-
channel blocker 

Drug interactions 
Fatal arrhythmia 

1998 

Bromfenac Analgesic Hepatotoxicity 1998 

Astemizole  Antihistamine Fatal arrhythmia 1999 

Grepafloxacin Antibiotic Fatal arrhythmia 1999 

Cisapride Heartburn  Fatal arrhythmia 2000 

Troglitazone  Antidiabetic Hepatotoxicity 2000 

Levomethadyl Opiate dependence Fatal arrhythmia 2003 

Rofecoxib Analgesic Hearth attack, stroke 2004 

Valdecoxib Analgesic Skin disease 2005 
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Types of ADRs 

Typically, ADRs can be classified in four main types [9, 10] (Table 2). 

Type A: Pharmacological. Type A reactions are the most frequent, usually 

dose-dependent and can be predicted from the known pharmacology of the drug. 

Toxicity generally arises from an exaggeration of the pharmacological effect and can 

usually be eliminated by discontinuation of therapy. 

Type B: Idiosyncratic. These reactions are generally not predictable from the 

known pharmacology of the drug and do not necessarily show classic dose-response 

relationships. Reactions usually have a high degree of individual susceptibility, a 

delayed time of onset, are likely to have an immunological basis and to involve 

reactions between macromolecules and drugs and/or reactive metabolites. No animal 

model is currently available and idiosyncratic drug reactions (IDRs) therefore remain 

poorly understood.  

Type C: Chemical. These ADRs also involve the reaction of a drug and/or 

reactive metabolite with macromolecules but there is a rapid response. In this case, 

covalent binding to macromolecules can be predicted or rationalized by the chemical 

structure of the drug and/or of its metabolites. Covalent binding to proteins may lead 

to alteration of protein function, redox cycling, oxidative stress and ultimately cell 

death and/or necrosis.  

Type D: Delayed. These ADRs occur from long-term treatment with a drug 

and show a delayed response. Examples of this type of reactions include 

carcinogenicity and teratogenicity. These types of toxicities can usually be detected 

in pre-clinical screening assays and may therefore be prevented.  
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Clinical characteristics of IDRs 

The work described in this thesis mainly focused on compounds causing 

idiosyncratic drug reactions (IDRs). Characteristic points of IDRs are:  

Low incidence. The frequency of occurrence of IDRs is usually less than one 

in 5000 individuals [11]. Others report incidences of drug-related hepatotoxicity 

ranging from 1 in 10.000 to 1 in 100.000 patients [12] (Table 3). The low incidences 

explain why IDRs usually go undetected during clinical trials and only appear once 

the drug is launched on the market and that a large population is exposed to the 

compound. 

Organs and Systems affected. Four major forms of idiosyncratic drug 

toxicities are typically observed (Table 3). These include anaphylactic reactions, 

blood dyscrasias (e.g. hemolytic anemia, agranulocytosis, idiosyncratic aplastic 

anemia…), hepatotoxicity (varying from asymptomatic increase in serum 

transaminases to fulminant hepatic necrosis) and severe cutaneous reactions (e.g. 

Stevens-Johnson syndrome and toxic epidermal necrolysis) [13]. 
 
 
Table 3. Clinical characteristics of IDRs: systems affected, toxicities and incidence rates. 

 
 
 
 
 
 
 
 
 
 

Target system 
 

Drug Toxicity Incidence (%) References  

Anaphylaxis Penicillin 
 

Allergic reaction 
Anaphylaxis 
Anaphylactic fatality 
 

8  
0.001 
0.0001 

[14] 

Hematopoietic 
system 

Carbamazepine 
Clozapine 
Ticlopidine 
Vesnanirone 
Amodiaquine 

Blood dyscrasias 
Agranulocytosis 
Agranulocytosis 
Agranulocytosis 
Agranulocytosis 
 

0.2  
0.8  
1-2  
1-2  
0.005  

[3, 15, 16] 
[17]  
[18] 
[19] 
[20, 21] 

Liver Amodiaquine 
Carbamazepine 
Diclofenac 
Tienilic acid 

Hepatotoxicity 
Hepatotoxicity 
Hepatotoxicity 
Hepatotoxicity 
 

0.005 
0.2  
0.004-0.02 
0.1-0.7  

[20] 
[15, 16] 
[22] 
[23] 

Cutaneous 
system 

Carbamazepine 
Cimetidine 
Co-trimoxazole 
(trimethoprim-
sulfamethoxazole) 
Diazepam 
Phenytoin 

Rash 
Cutaneous ADR 
Cutaneous ADR 
 
 
Cutaneous ADR 
Rash 
 

1  
1.3  
3.4  
 
 
0.1  
3.3 

[3, 15, 16] 
[24] 
[24] 
 
 
[24] 
[25] 
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Time to onset. One characteristic of IDRs is the delay between exposure to 

the drug and the onset of the adverse reaction. This delay can differ from drug to 

drug; varying from a few days, to weeks or even months (Table 4).  

Dose-dependence. IDRs are usually considered as not dose-dependent. 

However, it has been observed that IDRs are rare for drugs given at a dose of 10 mg 

per day or less [11, 26] (Table 4). Li et al. have indeed observed that many drugs 

involved in idiosyncratic hepatotoxicity are “high-dose” drugs (given at more than 100 

mg per day) [11]. One important factor to consider, however, is that the critical 

exposure factor is not the administrated dose but the concentration of drug (and/or 

metabolite) present at the target organ that could elicit the adverse event.   
 
Table 4. Clinical characteristics of IDRs: toxicity, dosage and time of onset.  

 
Adapted from [33]. 
 

Risk factors. Genetic predisposition might explain the susceptibility of a few 

patients to a drug that is safe in the majority of individuals. Several studies have tried 

to find an association between a specific genotype and a higher risk of developing 

IDRs. However, only few weak associations were found until now. For example, the 

slow acetylor phenotype has been associated with a higher risk to develop IDRs to 

isoniazid and sulfonamides [34, 35]. Different human leukocyte antigen (HLA) 

genotypes have been associated with hypersensitivity reactions to abacavir [36, 37] 

and allopurinol-induced Stevens-Johnson/toxic epidermal necrolysis syndromes [38]. 

A weak association between cytokine genotypes and diclofenac-induced 

hepatotoxicity was also found [39]. Next to genetic predisposing factors, other 

parameters may represent a risk for developing specific IDRs. For example, women 

have higher risks in developing halothane-induced hepatitis [40] and clozapine-

Drug Toxicity Dose (mg/day) Onset (months) References 

Felabamate Aplastic anemia 800-5400 0.8-25 [27] 

Felabamate Hepatotoxicity 1200-3600 0.8-18 [27] 

Bromfenac Hepatotoxicity 100-200 2-3 [28] 

Troglitazone Hepatotoxicity 400 0.5-9 [29] 

Talcapone Hepatotoxicity 300-600 2-4 [30] 

Clozapine Agranulocytosis 300 1-75 [31] 

Carbamazepine 
 

Stevens-Johnson syndrome 
Toxic epidermal necrosis 

500-1500 0.3-1 [32] 

Phenytoin 
 

Stevens-Johnson syndrome 
Toxic epidermal necrosis 

500-1500 0.5-1 [32] 

Phenobarbital Stevens-Johnson syndrome 
Toxic epidermal necrosis 

150 0.2-1.2 [32] 
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induced agranulocytosis [17]; while age, weight and pre-existing diseases and/or 

infections may predispose to other types of IDRs [26, 41].  

Mechanistic hypotheses 

Little is known about the exact mechanisms of IDRs. However, most of the 

mechanistic hypotheses proposed so far have an immune basis. Additionally, they 

suggest that reactive drugs and/or reactive drug metabolites might play an important 

role in the onset of IDRs [26]. 

Hapten Hypothesis 

The hapten hypothesis is based on the classic concept that the immune system is 

able to differentiate “self” from “non-self”. This theory is also based on the 

observation that chemicals are usually too small to be recognized by the immune 

system. A reactive drug (hapten) and/or reactive metabolite of a chemically inert drug 

(pro-hapten), however, can covalently bind to a protein. The drug-protein adduct may 

be perceived as foreign by the immune system and elicit specific B and T cell 

immunologic responses [23, 26]. The protein adduct must be taken up by antigen 

presenting cells (APCs), processed into peptides, and presented via the major 

histocompatibility complex (MHC) to T cells in order to generate an immune 

response. Recognition of processed antigens by the T cell receptor (also referred to 

as “Signal 1”) leads to an immune response. A scheme of the hapten hypothesis is 

depicted in Figure 1.   

Examples of drugs associated with IDRs having a mechanism consistent with the 

hapten hypothesis include penicillin allergies, as well as halothane- and tienilic acid-

induced hepatitis. It should however be emphasized that not all reactive metabolites 

generate IDRs and that covalent binding to proteins as such does not necessarily 

mean toxicity. 



  Chapter 1 

 21

 
Figure 1. Hapten hypothesis. The reactive drug (hapten) or reactive metabolite of a chemically inert 
drug (pro-hapten) binds to a protein to form a drug-(metabolite)-protein adduct. The modified protein is 
taken up by antigen presenting cells (APCs), processed, and drug-modified peptides are presented in 
the context of the major histocompatibility complex (MHC) to helper T cells via the T cell receptor. 
Recognition of processed antigens by the T cell receptor (also referred to as “Signal 1”) leads to an 
immune response. Adapted from [26]. 
 

Danger Hypothesis 

The observation that reactive metabolites and covalent binding to proteins will not per 

se generate IDRs has led to the proposition of the danger hypothesis. This 

hypothesis states that damage to cells is needed to release “danger signals” that 

stimulate the innate immune system [26, 42]. Previous data has indeed shown that 

next to “Signal 1”, co-stimulation of T cells by activated APCs is required to generate 

an immune response. Without co-stimulation (also referred to as “Signal 2”), the 

immune response equals tolerance. Danger signals from stressed cells stimulate 

APCs, leading to up-regulation of co-stimulatory molecules, generation of “Signal 2” 

and an immune response. Consistently, next to their ability to function as haptens, 

reactive metabolites can damage cells leading to “danger signals” and up-regulation 

of “Signal 2” in order to induce IDRs. This theory could explain the increased 

incidence of some types of IDRs in patients having certain types of injuries and/or 

infections (e.g. HIV-positive patients) [13]. A general depiction of the danger 

hypothesis is given in Figure 2. 
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Figure 2. Danger hypothesis. The danger hypothesis states that next to covalent binding to proteins, 
reactive metabolites may damage cells, thereby releasing “danger signals” (also referred to as “Signal 
2”) which are needed to activate APCs, up-regulate co-stimulatory molecules and generate an immune 
response. In absence of “Signal 2”, the immune response is tolerance. Adapted from [26]. 
 

Pharmacological Interaction Hypothesis 

The pharmacological interaction hypothesis is based on the observation that clones 

of T cells from patients with a history of IDR to a specific drug were able to proliferate 

in presence of that drug, but in the absence of metabolism [26]. This observation 

suggests that T cells would recognize the parent drug, rather than modified peptides 

as proposed in the hapten hypothesis. This then would imply that covalent binding of 

reactive metabolites to proteins is not necessary to generate an IDR. It was proposed 

that chemically inert drugs may bind reversibly to the MHC-T cell receptor complexes 

and thereby stimulate a selective T cell immune response and possibly an IDR [26] 

(Figure 3). This theory fits with other clinical observations such as selective T cell 

stimulation without antibody response [43]. Both labile and hapten like presentations 

of drugs may take place simultaneously and lead to clinically distinct symptoms. 

Examples of compounds that may act by this mechanism include metals (e.g. nickel 

and beryllium) and drugs like sulfamethoxazole, carbamazepine and lidocaine [43].  
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Figure 3. Pharmacological Interaction (PI) Hypothesis. This hypothesis suggests that the drug can 
reversibly bind to the MHC-T cell receptor complex, generate a “Signal 1” and thereby stimulate an 
immunological response to the parent drug. Adapted from [26]. 
 

Nonimmune Hypotheses 

Although most of the evidence and symptoms of IDRs suggest an immune-mediated 

mechanism, some drugs and toxins could be considered as directly cytotoxic. For 

example, metabolic idiosyncrasy has been proposed to explain the absence of some 

typical immune-mediated symptoms of the IDR. However, none of these 

observations are very conclusive and a clear separation between immunologic and 

direct cytotoxic agents might not be possible as both mechanisms are probably 

closely related in the pathology [26]. 
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Drug Metabolism and ADRs 

Drug Metabolism 

Metabolism of drugs 

Although the exact mechanism is as yet unknown, drug metabolism and reactive 

metabolite formation seem to play an important role in ADRs and IDRs. Classically, 

the main role of drug metabolism is to convert lipophilic drug molecules to hydrophilic 

polar metabolites that are easier excreted from the body. Drug metabolic processes 

are typically divided into two types of reactions. Phase I metabolism include 

oxidation, reduction, hydrolysis, hydration and dehalogenation reactions [44]. 

Cytochrome P450 enzymes (P450s) constitute an important class of enzymes 

involved in the phase I metabolism of drugs. Due to their broad substrate specificity, 

P450s can catalyze a wide range of biotransformation reactions such as 

hydroxylation, dealkylation and oxidation reactions [44]. Other phase I metabolic 

enzymes include monoamine oxidases, flavin-containing oxygenases, amidases and 

esterases [44]. Phase II conjugation reactions mainly couple polar groups (e.g. 

glucuronic acid, sulfate and acetyl groups) to drugs and/or phase I drug metabolites 

to further increase their hydrophilicity. These biotransformation reactions involve 

sulfation, glucuronidation, GSH conjugation, acetylation, amino acid conjugation and 

methylation reactions [10, 45]. Phase II enzymes include UDP-

Glucuronosyltransferase (UGTs),  sulfotransferases (STs), N-acetyl transferases, 

methyl transferases and glutathione S-transferases (GSTs) [45].  

Bioactivation of drugs 

In some cases, however, metabolism can lead to the bioactivation of drugs and to the 

formation of reactive metabolites. Both phase I and phase II metabolic enzymes can 

be involved in the generation of reactive species. Different types of reactive 

metabolites exist such as electrophiles, radicals and reactive oxygen species. 

Electrophilic molecules, for example, are characterized as electron-deficient and will 

react with nucleophilic (electron rich) sites in proteins and/or in DNA. Free radicals 

possess unpaired electrons and can also lead to covalent binding to 

macromolecules. Additionally, they can abstract a hydrogen atom from 

macromolecules; a reaction that may lead to lipid peroxidation, oxidative stress and 

subsequent toxicity [10]. There is convincing evidence that reactive intermediates 

(RIs) are involved in the onset of many drug-related toxicities. Table 5 lists examples 

of drugs that are known to be bioactivated to reactive metabolites, give covalent 
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binding to proteins and have been associated with toxicity. Structures of RIs thought 

to be involved in ADRs are presented in Table 6. 

 
Table 5. Examples of drugs and reactive metabolites possibly involved in ADRs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

* Drugs withdrawn from the market due to unacceptable safety profiles. Adapted from [13, 66].  

Drug Reactive metabolite Toxicity References 

Carbamazepine Epoxide 
Quinoneimine 
 

Skin rash 
Hepatotoxicity 
Blood dyscrasias 

[15, 16, 46] 

Phenytoin Catechol 
Quinone  

Skin rash 
 

[47, 48] 
 

Acetaminophen Quinoneimine Hepatotoxicity [49-51] 

Diclofenac Quinoneimine 
Acyl glucuronide 

Hepatotoxicity [52-55] 
 

Amodiaquine Quinoneimine 
 

Hepatotoxicity 
Agranulocytosis 

[21, 56] 

Troglitazone* Isocyanate Hepatotoxicity [57, 58] 

Bromfenac* Acyl glucuronide  Hepatotoxicity [7] 

Halothane Acyl halide Hepatotoxicity [59, 60] 

Clozapine Nitrenium ion Agranulocytosis [61, 62] 

Tienilic acid* Sulphoxide Immunogenic hepatitis [63-65] 
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Table 6. Examples of reactive intermediates (RIs) of drugs involved in ADRs.  

 

 

Types of RIs Structures and bioactivation pathways Examples of drugs 
 

Quinone 
 

 

 

Bromobenzene 
Rifampin 

 

Quinoneimine 
 

 

 

 

Acetaminophen 
Diclofenac 
Carbamazepine 
 

 

Catechol 
Quinone 
 

 

 

 

Carbamazepine 
Phenytoin 
Fipexide 

 

Arene oxide 
Epoxide 
 
 

 

 

 

Furosemide 
Imipramine 
Bromobenzene 
Carbamazepine 

 

Nitrenium ion 
Free radical 

 

 

 

Clozapine 
Mianserin 

 

Nitroso 
 

 

 

Sulfamethoxazole 

 

Acyl glucuronide 
 

 

 

Diclofenac 
Benoxaprofen 
Bromfenac 

 

Trichlomethyl radical 
Free radical 
 

 

 

 

Carbon tetrachloride 
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Defense mechanisms 

Organisms possess a wide range of defense mechanisms against reactive 

metabolites. The endogenous glutathione (GSH) peptide and enzymes such as 

GSTs, epoxide hydrolases (EH) and quinone reductases are efficient in detoxifying 

reactive electrophilic species whereas enzymes such as catalase, glutathione 

peroxidases and superoxide dismutases are mainly detoxifying by-products of 

metabolism (e.g. hydrogen peroxide) [10].  The nature and efficiency of the 

detoxification of reactive species is dependent on several factors including: the 

chemical nature/reactivity of the species, enzyme substrate-selectivity, tissue 

expression/localization and up-regulation of enzymes and co-factors [10]. 
 
The structure and chemical nature of electrophiles are also important factors 

determining the selectivity of their reactions with target nucleophilic macromolecules. 

For example, the “hard-soft” theory suggests that soft electrophiles will react more 

efficiently with soft nucleophiles, whereas hard electrophiles will more readily react 

with hard nucleophiles (Figure 4). “Hardness” and “softness” is determined by the 

polarizability of the electrophilic/nucleophilic center. Consistently, soft electrophiles 

such as quinones or polarized double bounds will react with soft nucleophiles such 

as GSH and thiol groups in proteins. Hard electrophiles (e.g. epoxides or alkyl 

carbonium ions) will react more promptly with hard nucleophiles such as basic 

groups in DNA and lysine residues in proteins. Consequently, the nature of the 

electrophile will also determine the toxic outcome. Hard electrophiles may react with 

DNA and be involved in mutagenicity and carcinogenicity whereas soft electrophiles 

reacting with thiol groups in proteins will most likely lead to protein disfunction and 

direct cytotoxicity. Ultra-reactive intermediates may react in their site of formation 

(e.g. P450) and thereby lead to mechanism-based inhibition of the enzyme involved. 

Intermediate-reactive electrophiles may react with nucleophilic sites in proteins being 

less critical for protein function but would thereby constitute antigens that might 

trigger an immune response and possibly an IDR (Figure 4). 
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Low-dose exposure to electrophiles can also induce protective mechanisms such as 

the endoplasmic reticulum (ER) stress response system and the induction of genes 

regulated by the antioxidant response element/electrophile response element 

(ARE/ERE). Electrophilic stress may lead to the induction of genes and proteins that 

express chaperone, antioxidant, xenobiotic detoxification and protein degradation 

functions [67]. For example, alkylation of cysteine residues of the thiol-rich Keap1 

protein activates the transcription factor nrf2 which allows nuclear accumulation of 

nrf2 and activation of phase II and antioxidant genes. 

Overall, the toxic outcome is a balance between drug bioactivation to potentially 

harmful metabolites and their detoxification by protection mechanisms of the body. 

Figure 5 proposes a general scheme summarizing different mechanisms and factors 

that are thought to be involved in this process.  

 

 

 
 

Figure 5. General scheme depicting the possible impact of drug metabolism and other factors in 
determining the toxic outcome in ADRs. Adapted from [68, 69]. NK (T): natural killer (T) cells.  
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Examples of bioactivation pathways 

Below, the metabolism of some drugs involved in ADRs, and which have been 

subject of study in the research described in this thesis, will be discussed. The aim of 

this section is not to thoroughly describe the metabolism of those compounds but to 

focus on the major bioactivation pathways leading to reactive metabolites that have 

been suggested to play a role in observed drug-induced toxicities.  

Acetaminophen 

Acetaminophen (APAP) is a widely used analgesic agent. Although considered a 

safe drug, it is also a well known hepatotoxicant. It is estimated that APAP is the 

leading cause of acute hepatotoxicity in the United States upon overdosis [70]. In the 

UK and Wales, about 500 deaths per year involving APAP were recorded between 

1993 and 2002 [71]. 
 
The metabolism of APAP has been well studied (Figure 6). In therapeutic doses, 

APAP is mainly metabolized by phase II enzymes to glucuronidated and sulfated 

conjugates that are subsequently eliminated in the urine [72]. A small proportion of 

the drug is also converted by P450s to the reactive electrophilic N-acetyl-p-

benzoquinoneimine metabolite (NAPQI) [73, 74]. NAPQI is usually detoxified by 

conjugation to GSH. However, in cases of APAP overdoses large amounts of NAPQI 

are formed, leading to the depletion of the GSH pools in the liver, covalent binding to 

liver proteins and subsequent hepatotoxicity [75]. 
 
Although covalent binding is thought to be the main mechanism involved in the 

hepatotoxicity of APAP, other hypotheses have been proposed as well. These 

include oxidative stress, alterations in the GSH/GSSG (reduced/oxidized glutathione) 

status, redox cycling resulting in lipid peroxidation, disruption of Ca2+ homeostasis, 

gene expression changes and activation of the antioxidant response element (ARE) 

[10]. These different pathways are most likely acting in combination resulting in 

hepatic apoptosis and necrosis. 
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Figure 6. Scheme of the major metabolism and bioactivation pathways of APAP in humans. The 
reactive intermediate is depicted in brackets.  
 

 

Recently, Kaplowitz proposed that APAP hepatotoxicity could be divided in two 

different group of events (Figure 7) [69]. “Upstream events” comprise the actual 

NAPQI formation, GSH depletion and covalent binding to proteins with subsequent 

mild hepatic injury. Up-regulation of transcriptor factor nrf2 may regulate the toxicity 

threshold. Mild hepatic injury would subsequently activate “downstream events” by 

stimulating the innate immune system which is controlling a tenuous balance 

between pro- versus anti-inflammatory cytokines and chemokines. Circumstances 

perturbing the factors of the innate immune system may consequently influence the 

outcome of the pathology from little (or no) injury to more severe hepatotoxicity [69]. 

This suggests that covalent binding to proteins and GSH depletion can not alone 

explain APAP-mediated hepatotoxicity, but that these processes are part of a more 

global and complicated process as discussed previously (Figure 5). 
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Figure 7. Current concepts of APAP hepatotoxicity. Adapted from [69].  

 

3-Hydroxyacetanilide 

In the context of covalent binding to proteins and its role in hepatotoxicity, it is 

interesting to discuss the case of 3-hydroxyacetanilide (AMAP), a non-toxic 

regioisomer of APAP. AMAP is known to be bioactivated to reactive metabolites by 

P450s, to give similar amounts of covalent binding to liver proteins as APAP but 

whereas APAP is hepatotoxic, AMAP is not [76, 77]. In mice, AMAP is mainly 

glucuronidated and sulfated by phase II enzymes (Figure 8) [77]. AMAP can also be 

hydroxylated by P450s [72, 78]. Although these hydroxylated metabolites are mainly 

glucuronidated and sulfated to the corresponding conjugates, a small proportion can 

be further oxidized to reactive benzoquinone intermediates that can alkylate proteins 

and/or be trapped by GSH to form GSH adducts [79, 80]. 
 
This example clearly shows that reactive metabolite formation and covalent binding 

to proteins is not sufficient for the development of toxicity. Consequently, it was 

proposed that alkylation of critical protein targets, with subsequent protein function 

disruption, could explain the different toxicity outcomes of the two compounds. In 

view of this, diminished mitochondrial function due to covalent binding to 

mitochondrial proteins may be of special importance in APAP hepatotoxicity since it 

is minimal with AMAP in comparison to APAP [81].  
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Figure 8. Scheme of the major metabolism and bioactivation pathways of AMAP in mice. Reactive 
intermediates are depicted in brackets. 

 

Diclofenac 

Diclofenac is a widely used non steroidal anti-inflammatory drug that has been 

involved in rare but severe hepatotoxicity cases. It has been estimated that 3.6 per 

100.000 diclofenac users develop severe liver injury [22, 82, 83]. Although the exact 

mechanism is as yet unknown, formation of reactive metabolites has been suggested 

as a possible explanation for the idiosyncratic liver toxicity observed during 

diclofenac treatment.  
 
Diclofenac is metabolized by P450s to the major 4’-OH-diclofenac metabolite, to 5-

OH-diclofenac and other minor hydroxylated metabolites (Figure 9) [52, 53]. Further 

oxidation of 4’-OH-diclofenac and 5-OH-diclofenac can generate reactive 

quinoneimine intermediates which can be trapped by GSH [52, 54, 84, 85]. 
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Figure 9. Scheme of P450-mediated bioactivation pathways of diclofenac in humans. Reactive 
intermediates are depicted in brackets. 
 

 

Additionally, diclofenac and its hydroxylated metabolites can undergo phase II 

metabolism and be glucuronidated to the corresponding conjugates (Figure 10) [86, 

87]. Attack at the carboxyl carbon of the labile ester bond of the acyl glucuronide by 

nucleophilic sites of proteins can lead to covalent binding to proteins. Moreover, acyl 

migration of unstable acyl glucuronides can generate reactive keto-groups that can 

alkylate nucleophilic sites on proteins [55, 88, 89]. Both types of RIs (originating from 

phase I and phase II metabolism) have been involved in covalent binding to proteins 

and are suggested to play a role in diclofenac-induced idiosyncratic hepatotoxicity 

reactions [90].  
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Figure 10. Scheme of the bioactivation pathways of diclofenac by phase II metabolism in humans. Two 
mechanisms of covalent binding of diclofenac acyl glucuronides to proteins are proposed. The first 
mechanism involves spontaneous acyl migration of the aglycone moiety with isomerization, ring 
opening, exposure of a reactive keto-group which can be attacked by nucleophilic sites on proteins. The 
second consists of the nucleophilic attack of the carboxy carbon of the acyl glucuronide by nucleophilic 
residues of proteins. hUGT2B7: human UDP-Glucuronosyltransferase-2B7 isoenzyme. Adapted from 
[23]. 
 
 

Clozapine 

Clozapine is an antipsychotic agent that is used for the treatment of refractory 

schizophrenia [91]. Clozapine has also been associated with agranulocytosis and 

neutropenia reactions in approximately 1% of the patients using the drug [92]. 

Although the exact mechanism is not known yet, formation of reactive metabolites 

has been proposed as a possible explanation for the observed IDRs.  
 
Clozapine is mainly biotansformed by the cytochrome P450 system to the N-

demethylated and N-oxide metabolites (Figure 11) [93, 94]. A reactive nitrenium ion 

is also formed by P450s and by myeloperoxidases (MPOs) in activated neutrophils 
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and/or bone marrow cells [95-97]. Several GSH adducts have been identified in 

different types of in vitro enzymatic incubations [62, 93, 96, 98]. Moreover, this 

cytotoxic reactive metabolite was shown to covalently bind to cellular proteins and 

neutrophils [61, 62, 97].  

 

 
 
Figure 11. Scheme of the major metabolism and bioactivation pathways of clozapine in humans. The 
reactive intermediate is depicted in brackets. 
 

Carbamazepine 

Although carbamazepine is a widely used anticonvulsant agent, it has also been 

associated with severe hypersensitivity reactions in a minority of patients taking the 

drug. It has been estimated that 1 in 1000 to 1 in 10.000 exposures to 

carbamazepine might lead to hypersensitivity reactions [99, 100]. Reactions include 

skin rashes as well as blood, renal and hepatic disorders [101-103]. The exact 

mechanism of carbamazepine-induced hypersensitivity reactions is yet unknown. 

However, clinical manifestations suggest an immune etiology and a mechanism in 
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agreement with the “hapten hypothesis” described previously [101, 104-106]. 

Consequently, reactive metabolite formation has also been suggested as a potential 

cause for these adverse events  [101, 107].  
 
Carbamazepine is extensively metabolized in humans, with more than 30 metabolites 

identified in the urine of patients taking the drug [108]. Major metabolism pathways 

include hydroxylation of the side rings of carbamazepine, epoxidation towards the 

carbamazepine 10,11-epoxide (CE) metabolite and glucuronidation of the parent 

compound and/or of the hydroxylated metabolites [91, 109]. Several cytotoxic and 

protein-reactive metabolites of carbamazepine have also been identified [16, 46, 110-

112]. For example, one of the major metabolite (e.g. 2-OH-carbamazepine) can be 

further metabolized to 2-hydroxyiminostilbene and to the reactive iminoquinone 

intermediate that has been shown to generate GSH and N-acetyl cysteine (NAc) 

adducts [15, 113]. Other GSH adducts have also been identified in human liver 

microsomes (HLM) incubations, including GSH adducts originating from the CE [114] 

and from the 2,3-arene oxide (Figure 12) [115]. Next to hepatic enzymes, 

carbamazepine can also be bioactivated by MPOs of activated neutrophils to reactive 

metabolites (e.g. 9-acridine carboxaldehyde) [116]. Covalent binding to neutrophils 

has also been observed, suggesting that this metabolite might also play a role in 

carbamazepine-induced IDRs [117]. 

 

 
 
Figure 12. Structures of reactive metabolites (in brackets) of carbamazepine produced by P450s and 
which are possibly involved in carbamazepine-induced hypersensitivity reactions.  
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Screening methods for reactive intermediates 

“Early phase/discovery” in vitro screening tools 

Although much effort has been spent on better understanding ADRs, the current 

mechanistic knowledge is still limited. The role of reactive metabolites of drugs in 

ADRs is however generally accepted. Therefore, strategies that are currently used 

for the safety assessment of novel drug candidates usually rely on screening and 

characterizing potentially reactive metabolites of drugs. A “panel screening” approach 

of well-characterized in vitro and/or in vivo toxicity assays is being used to profile 

novel drug candidates for their potential to form RIs and to be possibly involved in 

ADRs. Predicting ADRs will remain challenging but this combined approach may 

minimize and identify drug candidates showing unacceptable safety profiles [118]. 

Trapping experiments 

Detection of reactive metabolites is difficult due to the chemical reactivity of the 

intermediates and to the usually low amounts present in incubations. Therefore, the 

most common way to screen for reactive metabolites is to perform trapping 

experiments with model nucleophiles and to analyze the formed adducts with 

spectroscopic techniques. 
 
The endogenous tripeptide GSH is commonly used as trapping agent for soft 

electrophilic metabolites of drugs produced in microsomal incubations. As previously 

discussed, GSH can trap different types of RIs including quinones, quinoneimines, 

iminoquinone methides, epoxides, arene oxides and nitrenium ions [118]. The 

corresponding GSH adducts are typically analyzed by liquid-chromatography mass 

spectrometry (LC-MS). Usually, tandem mass spectrometry (MS/MS) is used to 

characterize GSH adducts since they show a characteristic fragmentation pattern 

consisting of losses of 75 and/or 129 Da corresponding to the peptidic side chains of 

the GSH moiety. This property has been exploited to develop sensitive and selective 

MS-based methodologies for the screening of GSH adducts; such as neutral loss, 

precursor ion and multiple reaction monitoring scanning techniques (Table 7) [119-

121]. Although MS detection is usually performed in the positive mode, a recent 

report suggests that scanning for precursor ions in the negative mode might actually 

be more efficient in detecting GSH adducts [122].  
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Table 7. Glutathione-based trapping agents and screening methods for “soft” reactive intermediates. 

 

Examples of glutathione-based trapping agents and methods used to identify and characterize in vitro-
generated “soft” reactive metabolites of drugs. Advantages (+) and disadvantages (-) of the 
methodologies are also indicated. MS: mass spectrometry; HPLC: high performance liquid 
chromatography; FLD: fluorescence detection. 

Trapping agent Trapped drug-conjugate Detection Characteristics References 
Glutathione 

 
 

 

MS + Standard 
methodology 
+ Structural 
information 
- Sensitivity and 
selectivity dependent 
on MS instrument 
 

[119, 121] 
 

Tritiated 3H-glutathione  

  

Radio-
activity  
MS 

+ Quantitative 
+ Structural 
information 
- Radioactivity 
- Still requires HPLC 
separation 
 

[123] 
 

Mixture glutathione and stable isotope-labeled glutathione 

  

MS + Unique isotopic MS 
signature 
+ Unambiguous 
identification of GSH 
adducts 
+ Structural 
information 
- Radioactivity  
 

[98, 124] 
 

Quaternary ammonium glutathione 

 
  

MS + Fixed positive 
charge 
+ Semi-quantitative 
+ Structural 
information 
 
 

[125] 
 

Glutathione ethyl ester 

 
 

MS + Extraction possible 
+ Increased sensitivity 
+ Structural 
information 
 
 
 
 

[126] 
 

Dansyl glutathione 

 
 

 

FLD 
MS 

+ Quantitative 
+ Fluorescence 
detection 
+ Not MS-dependent 
+ Structural 
information 
- Still requires HPLC 
separation  

[127] 
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Stable isotope trapping experiments (using a mixture of GSH and isotope-labeled 

GSH) and the use of GSH ethyl ester are other variants that have shown to increase 

the selectivity and sensitivity in GSH adduct detection [118, 124, 126, 128]. Attempts 

to quantify amounts of trapped RIs were done by developing novel trapping agents 

consisting of fluorescent, radio-labeled and quaternary ammonium GSH analogues 

[125, 127, 128]. An overview of the different glutathione-based trapping agents and 

methods discussed above are depicted in Table 7. 

 
 

Table 8. Cyanide-based trapping agents and screening methods for “hard” reactive intermediates. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Examples of cyanide-based trapping agents and methods used to identify and characterize in vitro-
generated “hard” reactive metabolites of drugs. Advantages (+) and disadvantages (-) of the 
methodologies are also indicated. CN: cyanide. 

 

One generic limitation of the above mentioned methodologies is that GSH trapping 

experiments are unable to detect all types of RIs [133]. Some of the GSH adducts 

are unstable and GSH is known to have limited trapping efficiency towards “hard” 

electrophiles. The latter RIs will more readily react with lysine and histidine residues 

in proteins and/or with “hard” nucleophilic sites in membranes or DNA. These RIs can 

be trapped by hard nucleophiles such as the cyanide (CN) anion. Consistently, 

enzymatic incubations are often performed using sodium or potassium CN as 

trapping agents for “hard” electrophiles. Radio-labeled [14C] sodium CN was used to 

study the bioactivation of alicyclic amines towards reactive iminium intermediates 

[131]. Recently, a quantitative high-throughput method was set up to evaluate 

Trapping agent Trapped drug-conjugate Detection Characteristics References 
Cyanide 
 

 

 
 

 
MS 

 
+ Structural 
information 
 

 
[129, 130] 
 

14C-Cyanide  
 

 

 

 

 
Radioactivity 
 

 
+ Quantitative 
- No structural 
information 
- Radioactivity 
 

 
[131, 132] 
 

Mixture cyanide and stable isotope-labeled cyanide 
 

 
 
 
 
 

 

 
 

 
 

 
MS 

 
+ Unique isotopic
MS signature 
+ Unambiguous 
identification of 
CN adducts 
+ Structural 
information 
- Radioactivity  

 
[66, 133] 
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reactive metabolite formation using [14C] potassium CN [132]. CN adducts also show 

a typical fragmentation pattern allowing the development of sensitive and selective 

MS-based methodologies such as neutral loss scanning [66, 133]. The typical 

isotopic MS profile obtained when using a mixture of CN and radio-labeled [13C15N] 

CN may also facilitate adduct detection. A summary of cyanide-based trapping 

agents and screening methodologies is presented in Table 8.  
 
Interestingly, a new bifunctional trapping agent containing both a cysteine and lysine 

residue was developed for the simultaneous screening of “hard” and “soft” 

electrophiles [134]. Neutral loss MS scanning can be performed since this trap also 

shows the typical 129 Da loss when fragmented. Combined with isotope trapping 

techniques, this approach could constitute an efficient high-throughput methodology 

for the screening of a wide variety of reactive metabolites of novel drug candidates 

(Table 9).   
 
Table 9. Bifunctional trapping agent. 
 

 

Bifunctional trapping agent used to trap both “soft’ and “hard” electrophiles. Advantages (+) and 
disadvantages (-) of the methodologies are also indicated [134]. 
 

Trapping agent Trapped drug-conjugate Characteristics 
Mixture bifunctional and stable isotope-labeled bifunctional traps   
 

  
 

 

 
 
 

 
 

+ Structural 
information 
+ Can trap both 
“hard” and “soft” 
intermediates 
+ Unique MS 
signature 
+ Unambiguous 
identification of 
adducts 
- Not quantitative 
- Radioactivity 
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(Bio)synthesis of (reactive) metabolites 

Mass 7spectrometry provides a highly sensitive readout of mass. A major 

disadvantage, however, is that structural information of the adducts obtained by LC-

MS/MS experiments is to some extent limited. MS alone may be insufficient in 

identifying the exact position of oxidation, to differentiate isomers, or to provide the 

exact structure of the metabolite [135]. Moreover, excess of endogenous material in 

biological samples often suppresses the ionization of drug-related compounds, 

thereby complicating metabolite identification by MS. Novel MS strategies as well as 

derivatization techniques (e.g. accurate mass measurements, H/D-exchange) may 

however help to overcome some of the limitations mentioned above [135, 136]. 
 
Complementing MS data with Nuclear Magnetic Resonance (NMR) experiments 

usually allows the determination of the precise location(s) of compound modifications 

and the exact structural elucidation of drug metabolites and/or resulting adducts. In 

addition to being particularly good in providing structural information, NMR also has 

the advantages of being a non-destructive process, a quantitative technique, and to 

be relatively rapid. Major limitations, however, of classical NMR include its relative 

insensitivity and its inability of separating compound-dependent signals from those of 

sample matrices. As a consequence, large amounts of pure metabolite (≥ 1 mg) are 

necessary for high-quality NMR spectra; which requires laborious metabolite 

isolation, purification, concentration and sample reconstitution in deuteriated solvent. 

Although the development of LC-NMR and LC-NMR-MS techniques mitigates to 

some extent the need for sample purification, other challenges remain (e.g. lack of 

sensitivity, need of expensive deuteriated buffers) when using those techniques in 

routine metabolite identification processes [135, 137, 138]. 
 
Overall, the main bottleneck in NMR studies remains the need of high amounts of 

pure metabolites. Classical organic synthesis of drug metabolites may be problematic 

due to the lack of appropriate synthetic routes and usually only low amounts of 

metabolites can be generated by mammalian enzymes due to their low catalytic 

activities. An alternative approach is to use electrochemical oxidation of the parent 

drug to obtain large amounts of oxidative metabolites. While not all relevant 

enzymatic metabolites may be obtained, this method has the advantage of being 

suitable to up-scaling metabolite production, thereby allowing their structural 

elucidation by NMR as has been shown recently for GSH adducts of clozapine [139] 

and troglitazone [140]. 
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Biosynthetic tools and fermentation techniques can also be used for the up-scaling of 

metabolite production [141]. For example, the biosynthesis of large amounts (up to 

169 mg) of human-relevant P450 metabolites of diclofenac was demonstrated using 

microbial bioreactors, allowing their structural characterization by MS and NMR [142]. 

More recently, the concept of using microbial P450 enzymes (e.g. P450 BM3 also 

known as CYP102A1) for the production of high amounts of drug metabolites has 

been proposed. Advantages of bacterial P450s in comparison to human P450s are 

their stability, higher catalytic activity and their ability to be “engineered” towards the 

production of human-relevant metabolites [143]. Recently, several P450 BM3 

mutants were obtained by a combination of random- and site-directed mutagenesis, 

and used to metabolize drug-like molecules such as APAP, dextromethorphan, 

amodiaquine and MDMA [144]. P450 BM3 mutants were also shown to generate 

high amounts of human metabolites of 7-ethoxycoumarin [145]. Moreover, when 

prodrugs are converted to “active metabolites” by human P450s, large quantities of 

the pure metabolites are required to further investigate the drug efficacy, possible 

toxic effects and pharmacokinetics. In this context P450 BM3 mutants were shown to 

be successful in generating high amounts of Piceatannol, the human active 

metabolite of the anticancer agent Resveratrol [146]. The properties of these P450 

BM3 mutants could therefore also be used for the production of high amounts of 

reactive metabolites, thus facilitating their identification, characterization and 

structural elucidation. This concept will be further explored in the second part of this 

thesis.      

Covalent Binding Studies 

Although trapping experiments can give an indication of the intrinsic potential of a 

drug to be bioactivated to reactive metabolites, little is known about the degree of 

protein covalent binding in vitro and/or in vivo. Baillie et al. have adopted the 

measurement of in vitro covalent binding to liver microsomal proteins as an early 

screening tool for drug candidates. For compounds showing a high degree of efficacy 

and potency in animals, with good pharmacokinetic and physico-chemical properties, 

a radio-labeled drug analogue is synthesized. Levels of covalent binding are 

assessed by performing incubations with the radio-analogue in vitro with liver 

enzymatic preparations and in vivo in rats. Levels of covalent binding are then 

compared to a theoretical safety “threshold value of 50 pmol drug equivalent/mg total 

liver protein”; which is 20-fold less than the covalent binding observed in animals 

suffering from liver necrosis after administration of a model hepatotoxicant such as 

APAP [66]. Importantly, this threshold value was considered as a target upper level 
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more than as an absolute value not to be exceeded. Seeing that as yet no coherent 

link between reactive metabolite formation, covalent binding to proteins and onset of 

ADRs is available, covalent binding data should be considered along with other 

parameters (e.g. the intended clinical use, the severity of indication, dosing-regimen, 

intended clinical population, etc) in order to decide whether the development of the 

drug should be discontinuated or not [66]. A major advantage of this method is that 

quantitative data on covalent binding to proteins of the drug and of its metabolites is 

possible. Major drawbacks, however, include the need of synthetic radio-labeled drug 

analogues and the complications related to working with radioactivity [118]. 

“Avoiding structural alerts” 

A well-known strategy to decrease the potential of novel drug candidates to form 

reactive metabolites is to modify the chemical structure of the compounds [148]. This 

strategy includes the measurement of covalent binding levels of radio-labeled drug 

candidates in parallel with trapping experiments using GSH, NAc and/or CN. 

Structural analysis of the trapped adducts allows, in principle at least, the elucidation 

of the underlying bioactivation routes of the drug candidate. Subsequent chemical 

modification of the compounds can be performed to avoid and/or minimize these 

bioactivation pathways as well as the adduct formation and covalent binding levels 

[66]. A major difference in comparison to traditional risk assessment strategies is that 

radioactivity studies are performed early in the drug discovery process, when 

structural changes in the structure of the new chemical entities are still feasible. 

Worth mentioning is that a large amount of experimental data is currently available 

on the chemical motives that potentially can form reactive metabolites. A 

comprehensive listing of these potentially harmful chemical structures is available for 

medicinal chemists [149].  
 
In summary, it is likely that a panel of screening assays has to be performed to 

assess and decrease the intrinsic potential of novel drug candidates to be 

bioactivated to reactive metabolites and to covalently modify proteins. A summary of 

some of the “early” in vitro and/or in vivo screening tools for RIs is presented in 

Figure 13.  
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Figure 13. Examples of early screening methods for reactive metabolites. Based on [118, 138]. 
E+:  electrophile. 
 
 
 

“Late phase/development” in vivo biomonitoring tools 

In vitro screening tools can assess the potential of novel compounds to be 

bioactivated to reactive electrophilic intermediates. However, in vivo data on covalent 

binding of drugs and/or drug metabolites to proteins are highly necessary to perform 

reliable risk assessments. While GSH adducts and/or their decomposition products 

(e.g. mercapturic acids) measured in vivo represent short-term exposure to reactive 

chemicals, protein adducts better reflect chronic exposure to electrophiles [150, 151]. 

As such, protein adducts may reflect the internal exposure to RIs in vivo which is 

more relevant for risk assessment purposes. However, as shown for example with 

the nonhepatotoxic regioisomer of APAP, AMAP, covalent binding to proteins per se 

is not sufficient to induce toxicity. So, next to dosimetry and quantitative 

considerations, identifying many, if not all, real protein targets of RIs is an important 

challenge to better understand the links between covalent binding to proteins and 

organ toxicity [67].  
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Protein adduct analysis 

Protein adduct analysis is difficult and complicated since protein adduct structures 

are highly complex and variable; they have a short half-life and are usually in very 

low abundance in comparison to “parent” unmodified proteins [152]. This is typically 

due to low amounts of reactive metabolites, high concentrations of endogenous 

trapping agents (e.g. GSH) and to the presence of multiple protein targets [67].  
 
Different methods and strategies have been applied for the investigation and/or 

detection of drug protein adducts in vivo [91, 152]. Briefly, the strategies usually 

involve first the isolation of drug-protein adducts from the tissue using 

chromatographic and/or electrophoretic techniques. Direct (semi-)quantitative 

analysis of protein adducts can be performed using radioisotope-based assays 

(when the drug is radio-labeled) or by immunological techniques (after raising 

antibodies against drug-protein adducts in animals) [153]. Adduct analysis can also 

be performed after chemical and/or enzymatic detachment of the drug moiety from 

the protein. Digestion of proteins by proteases, with subsequent isolation and 

purification steps of the peptides, may also facilitate adduct analysis. Adduct and/or 

drug moiety detection can be performed using different analytical techniques but 

usually involves chromatography in combination with MS. A scheme of general 

strategies that can be adopted for protein adduct analysis is depicted in Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Chapter 1  

 47

 

 
 
Figure 14. Scheme of general strategies that can be applied for drug-protein adduct analysis. Adapted 
from [146-148]. AC: affinity chromatography; IEC: ion exchange chromatography; (2D) SDS-PAGE: 
(two-dimension) sodium dodecyl sulfate polyacrylamide gel electrophoresis; CE: capillary 
electrophoresis; GC-MS: gas chromatography-mass spectrometry.  
 

 

Initial work, using radioassays and immunochemical methods, succeeded in 

measuring covalent binding of several drugs to proteins and to relate it to toxicity. 

However, at the time, few protein targets of drugs (e.g. halothane, APAP, diclofenac 

and trichloroethylene) were identified [67]. Major advances in the proteomics 

technology (e.g. (2D) SDS-PAGE separation techniques combined with 

autoradiography, MS and/or immunoblotting techniques) have allowed for a more 

precise identification of proteins adducts. In 2007, more than 120 individual target 

proteins of drugs and/or other xenobiotics were identified [155]. A web-accessible 

Target Protein Database was subsequently created for the storage of such 

information and to facilitate the identification of common protein alkylation patterns of 

different drugs and/or toxicants [156]. The number of identified target proteins is 

rapidly expending and, at the time of the writing of this thesis, this number had 

increased to 268 in that same database. For example, 32 target hepatic proteins of 

APAP, 32 target lung proteins of BHT (2,6-di-tert-butyl-4-hydroxytoluene), 17 target 
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proteins of naphtalene and more than 46 target proteins of bromobenzene have 

currently been identified. Table 10 depicts some of the identified proteins alkylated by 

reactive metabolites of drugs involved in ADRs.  
 
Interestingly, recent developments in the proteomics technology (e.g. shotgun 

proteomics) and in protein functional assays have allowed the study of specific 

biological consequences of protein adduction (Table 11). For example, biotin-labeled 

model electrophilic probes (e.g. IAB, PEO-IAB and BMCC, Table 11) have been used 

for selective and efficient isolation of alkylated proteins and/or peptides by affinity 

capture. Using this technique, several protein alkylation sites were identified that 

could directly be related to specific alterations in protein function [175-178]. This 

approach could therefore be useful to better understand and establish predictive 

relationships between specific protein modifications and functional changes related to 

toxicity [67, 176].  
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In vivo biomonitoring methods 

The methods for protein adduct analysis described previously are time-consuming 

and labor-intensive. Moreover, they are mainly aimed at the identification of protein 

targets of reactive metabolites of drugs and to study the biological consequences of 

protein adduction. In addition to these aspects, biomonitoring tools allowing the 

determination of internal exposures to reactive metabolites would greatly help risk 

assessment programs. 
 
Previous work has shown that protein, DNA and mercapturic acid adducts can be 

used as biomarkers to reflect internal exposures to electrophilic chemicals in vivo in 

humans. Usually, adducts originated from occupational exposure of individuals to 

reactive, potentially genotoxic, chemicals. While DNA and protein adducts are 

reflecting (semi-)chronic exposures, mercapturic acid adducts are decomposition 

products of GSH adducts reflecting recent exposures to electrophilic compounds 

[150]. For instance, mercapturic acid adducts were measured in the urine of 

individuals exposed to 1,3-dichloropropene, acrylonitrile and/or benzene. Hemoglobin 

adducts were found in the erythrocytes of individuals exposed to ethylene oxide, 

propylene oxide and butadiene; albumin adducts in the blood of workers exposed to 

benzene and polycyclic aromatic hydrocarbons (e.g. naphthalene and 

benzo(a)pyrene), and DNA adducts were found in smokers and in individuals 

exposed to polycyclic aromatic hydrocarbons and butadiene (Table 12) [150]. 
 
Most adducts mentioned above arise from chemicals that can be considered as 

potential mutagens and/or carcinogens, and consequently characterized as “hard” 

electrophiles. In contrast, only few tools exist for the in vivo biomonitoring of protein 

adducts originating from RIs of drugs related to ADRs and IDRs. In animals, and as 

discussed previously, Baillie et al. have adopted an approach including in vivo 

studies with radio-labeled drug analogues early in the discovery process. Using this 

approach, pharmacokinetic parameters as well as covalent binding levels to both 

liver and plasma proteins can be determined in vivo in the presence of all 

bioactivation and/or detoxification pathways [66, 118]. Major disadvantages, 

however, include the necessity of synthesizing adequate radio-labeled drug 

analogues and the fact that these studies can not be performed in humans. 

Consequently, complicated extrapolation of in vivo animal data has to be performed 

subsequently for risk assessment purposes.  
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Few methodologies exist for the biomonitoring of protein adducts related to ADRs in 

humans (Table 12). Indeed, many methodologies are too in-sensitive to detect 

protein adducts in vivo. For instance, a Western immunoblotting assay using antisera 

against protein adducts of acetaminophen showed APAP protein adducts only in the 

sera of one patient showing the highest increase in liver enzyme levels (>6000 IU/L) 

and suffering from severe hepatocellular injury [183]. A more sensitive method was 

developed to detect APAP-cysteine adducts by HPLC with electrochemical detection 

[184]. In this case, APAP adducts were detected in patients with mild hepatic injury 

suggesting that this method could be a useful biomonitoring tool to follow exposure to 

NAPQI and APAP toxicity. 
 
Because of the difficulty in identifying drug-protein adducts in vivo in humans, an 

alternative approach is the detection of plasma antibodies against drug metabolite-

modified proteins adducts. For instance, this has allowed the biomonitoring of drug-

protein adducts in patients suffering from diclofenac and/or halothane-induced 

toxicity [153]. Recently, an immunologic methodology was also developed for the 

biomonitoring of covalent binding of acyl glucuronide metabolites of mycophenolic 

acid to plasma proteins in renal pediatric patients. This method was used to assess 

in vivo exposure levels to acyl glucuronides that have immunosuppressive and pro-

inflammatory activities [185]. This work shows how albumin can be used as model 

protein for the biomonitoring of reactive metabolites of drugs; a concept that is 

subject of study in the third part of this thesis.    
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Table 12. Examples of biomonitoring tools for electrophiles in vivo in humans.  
 

 

ECD: electrochemical detection. 
 
 

Aims and outline of the thesis 

State of research when starting in 2003 

When the research described in this thesis started, no reliable strategies were 

available to predict whether or not the formation of reactive metabolites in patients 

will result in an adverse drug reaction (ADR) and/or idiosyncratic drug reaction (IDR) 

to a specific drug. Previous and current in vitro and in vivo screening strategies 

usually consist of assessing the potential of novel drugs and drug candidates to 

generate reactive metabolites that may alkylate macromolecular targets (e.g. 

proteins) and as a consequence potentially induce ADRs and/or IDRs in humans. 

Although the causal link “reactive metabolite formation-covalent binding to proteins-

onset of ADRs/IDRs” is still unclear, current knowledge supports the assumption that 

bioactivation to reactive metabolites, whether or not combined with immune-mediated 

responses, may pose a risk for patients or other drug users. 
 
Nowadays, common strategies during drug discovery and development programs 

focus on the generation and the characterization of reactive metabolites of drugs, 

and their assessment in vivo. Reactive metabolites are usually initially detected in in 

vitro trapping experiments using different trapping agents (e.g. GSH and CN). These 

adducts typically reflect the potential of compounds/drugs to form electrophilic 

metabolites and are meant to better understand the bioactivation mechanisms of the 

Clinical Biomarker Chemicals/drugs Matrix Analytical methods References 

Chemicals related to mutagenicity/carcinogenicity 

Mercapturic acid adducts 1,3-dichloropropene 
Benzene 

Urine 
Urine 

GC-MS [186, 187] 
 

Hemoglobin adducts Butadiene Blood MS [188, 189] 

Albumin adducts Benzene 
Benzo(a)pyrene 

Serum 
Serum 

GC-MS 
Immunoassays 

[190, 191] 
 

DNA adducts Butadiene  32P-postlabelling [192, 193] 

Drugs related to ADRs/IDRs 

Protein adducts Acetaminophen Serum Immunoassays [183] 

Albumin adducts Mycophenolic acid Plasma Immunoassays [185] 

Cysteine adducts Acetaminophen Serum HPLC with ECD [184] 

Antibodies against protein 
adducts 

Diclofenac Plasma 
Serum 

Immunoassays 
Immunoassays 

[39, 194] 
 

 Halothane Serum Immunoassays [60, 195] 
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drug under study but also as a guidance to redesign drug candidate molecules. Major 

challenges with these experiments, however, are the varying reactivity of the 

intermediates, their limited extend of formation and consequently their low 

abundance which is complicating their detection and structural elucidation. 
 
Another major issue for risk assessment purposes is the estimation of in vivo 

exposures to reactive metabolites generated from drugs and drug candidates. As 

previously discussed, one has meanwhile included in vivo experiments with radio-

labeled drugs in animals as tool to assess in vivo covalent binding levels of drugs 

and/or their metabolites to proteins. In contrast, when the present research started, 

no appropriate methods existed for the assessment of the levels of protein adducts 

and covalent binding to proteins in vivo in humans.  

Aims and scope of the thesis 

The main aim of the research described in this thesis was the development of 

screening methods for reactive intermediates (RIs) of drugs. The main aim of this 

work can be divided in two specific aims. More specifically, the first aim of the 

research consisted of the development and/or improvement of early phase in vitro 

assays for the screening of reactive metabolites. These assays assess the potential 

of novel drugs and drug candidates to form RIs and GSH adducts in vitro. This part of 

the work therefore focused on the development of novel efficient tools for the 

generation of high amounts of “reference” reactive metabolites of drugs. The 

generation of high levels of RIs should enable the development of sensitive and more 

universal analytical methods for the screening of reactive metabolites. Next to the 

detection at low levels, higher amounts of reactive metabolites were aimed at to 

facilitate their characterization and/or structural elucidation by various spectroscopy 

techniques including NMR. 
 
The second specific aim of the thesis consisted of the development of novel concepts 

and tools for the biomonitoring of reactive metabolites in vivo in humans. As protein 

adducts, in contrast to GSH-conjugates and mercapturic acids, are typical 

biomarkers reflecting longer-term exposure to reactive compounds, this strategy 

aimed at the determination of the in vivo human exposure to reactive metabolites. 

New analytical strategies were developed to assess the potential of drugs and novel 

drug candidates to be bioactivated to RIs and to covalently bind to proteins in vivo, 

using albumin as a prototype protein. This concept might help achieving more 

reliable risk assessments.  
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Outline of the thesis 

In the first part of this thesis, Chapter 1 concerns a general introduction describing 

the current knowledge about ADRs and IDRs, the role of metabolism and reactive 

metabolites in the onset of ADRs as well as the current strategies applied for the risk 

assessment of novel drug candidates. 

The second part of the thesis concerns the development of novel in vitro tools for the 

generation, identification and characterization of reactive metabolites. In this section, 

Chapter 2 focuses on the use of cytochrome P450 BM3 mutants as novel 

biocatalysts for the generation and characterization of reactive metabolites of drugs. 

This chapter shows how higher amounts of (reactive) metabolites of drugs can be 

generated by mutant bacterial cytochromes P450. This allowed the discovery of 

novel human-relevant GSH adducts of several marketed drugs. The potential role of 

glutathione S-transferases (GSTs) in catalyzing the conjugation of reactive 

metabolites of drugs with GSH was investigated in Chapter 3. Here, it was 

investigated whether GSH adduct formation could further be increased by the 

addition of GSTs in enzymatic incubations.  Eventually, the tools developed in 

chapter 2 and 3 with several model drugs (e.g. acetaminophen, clozapine, 

diclofenac, carbamazepine and 3-hydroxyacetanilide) were evaluated with 

trimethoprim, a drug that has been involved in serious IDRs in humans but of which 

the involvement of cytochromes P450 in its bioactivation was still largely unknown. 

The overall bioactivation and GSH adduct formation of trimethoprim were 

investigated in Chapter 4. 

The third part of the thesis concerns the development of novel tools for the 

biomonitoring of reactive metabolites in vivo in humans. Albumin adducts of 

acetaminophen were evaluated as in vivo biomarkers for reactive metabolites formed 

in humans in Chapter 5. A generic strategy for the generation of reference albumin 

adducts of acetaminophen, with subsequent adduct analysis in plasma of patients 

exposed to the drug, is proposed. An automated on-line LC-MS/MS system, allowing 

a higher throughput in albumin adducts analysis, was subsequently developed and is 

described in Chapter 6. 

In the last part of this thesis, Chapter 7 concerns an overall summary of the work 

described in the thesis including general conclusions and perspectives for future 

work. 
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Abstract 

Recently, several mutants of cytochrome P450 BM3 (CYP102A1) with high activity 

toward drugs have been obtained by a combination of site-directed and random 

mutagenesis. In the present study, the applicability of these mutants as biocatalysts 

for the production of reactive metabolites from the drugs clozapine, diclofenac and 

acetaminophen was investigated. We showed that the four CYP102A1 mutants used 

in this study formed the same metabolites as human and rat liver microsomes, with 

an activity up to 70-fold higher compared to human enzymes. Using these 

CYP102A1 mutants, three novel GSH adducts of diclofenac were discovered which 

were also formed in incubations with human liver microsomes. This work shows that 

CYP102A1 mutants are very useful tools for the generation of high levels of 

reference metabolites and reactive intermediates of drugs. Producing high levels of 

those reactive metabolites, that might play a role in adverse drug reactions (ADRs) in 

humans, will facilitate their isolation, structural elucidation, and could be very useful 

for the toxicological characterisation of novel drugs and/or drug candidates.  
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Introduction 

Cytochromes P450 (P450s) are involved in the metabolism of approximately 80% of 

the drugs currently on the market [1, 2]. Most often, metabolism by P450s increases 

solubility of the compound, facilitating urinary and biliary excretion. However, in some 

cases, metabolism of drugs by P450s leads to the formation of highly reactive 

electrophilic metabolites that can subsequently react with macromolecules, leading to 

covalent adducts to proteins. These events are thought to be related to serious 

adverse drug reactions (ADRs) and to rare idiosyncratic drug reactions (IDRs). 

Consequently, it is important to assess the potential of novel drug candidates to form 

reactive electrophilic metabolites early in the drug discovery process [3].  
 
The most common way to determine the formation of electrophilic metabolites is to 

screen for the formation of glutathione (GSH) adducts by LC-MS/MS analysis. 

Currently, several methods exist for the sensitive and selective detection of GSH 

conjugates [4-6]. Reactive intermediates (RIs) are usually generated in in vitro 

incubations using rat or human liver microsomes in the presence of GSH. However, 

due to the relatively low activity of human P450s and the occurrence of suicide 

inhibition of the enzymes by the RIs, generally only low concentrations of reactive 

metabolites are formed by liver microsomes [7]. Consequently, only major GSH 

adducts can be identified easily while minor adducts might stay undetected.  
 
The soluble cytochrome P450 BM3 (CYP102A1) from Bacillus megaterium is 

considered a good candidate for use as a biocatalyst in biotechnology, because this 

very stable enzyme has the highest catalytic activity ever recorded for a P450 [8]. In 

a previous study we described a site-directed mutant of CYP102A1, 

R47L/F87V/L188Q, that is able to metabolize various drug-like molecules, including 

acetaminophen. Acetaminophen is metabolized by this triple mutant into the reactive 

N-acetyl-p-benzoquinoneimine (NAPQI) intermediate, albeit with an activity still 15-

fold lower than human P450 3A4 [9]. In a subsequent study, this mutant was 

subjected to several rounds of random mutagenesis, which resulted in four mutants 

with an up to 90-fold increased activity towards drug substrates compared to human 

P450 2D6 [10].  
 
In the present study we evaluated whether these novel drug metabolising CYP102A1 

mutants can be used as biocatalysts for the biosynthesis of high amounts of reactive 

metabolites of drugs. We chose clozapine, diclofenac and acetaminophen as model 
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compounds since these drugs have been involved in serious ADRs in humans [11-

13]. These compounds are known to be bioactivated to several reactive electrophilic 

intermediates that can be trapped by GSH [14-18]. We therefore investigated 

whether the CYP102A1 mutants (Table 1) were able to metabolize these drugs and 

to produce GSH adducts. The metabolites formed were subsequently compared to 

those formed by rat liver microsomes (RLM) and human liver microsomes (HLM). It 

was determined whether the same metabolites were formed and it was studied 

whether the CYP102A1 mutants produce higher levels of GSH adducts when 

compared to human and/or rat enzymes. In previous studies, E. coli cytosolic 

fractions were used for metabolism studies with these CYP102A1 mutants. However, 

to prevent conjugation of the reactive metabolites to cytosolic components instead of 

GSH, for this study we used His-tagged CYP102A1 mutants, that were based on the 

mutants described in [10], which were purified by nickel column chromatography.  
 
Table 1. Mutations present in the CYP102A1 mutants used in this study. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Mutations indicated by asterix are additional in comparison to the non-His-tagged 
CYP102A1 mutants M01, M02 and M11, as previously described in [10]. 
 

Experimental procedures 

Enzymes and plasmids 

The CYP102A1 mutants M01, M02, M05 and M11 were prepared in the pT1-

P450BM3 plasmid as described previously [10]. These mutants were cloned into a 

pET28a+ vector system, which contains an N-terminal His-tag to allow purification by 

nickel column chromatography. The pET28a+ vector containing wild-type CYP102A1 

Mutant M01his Mutant M02his Mutant M05his Mutant M11his 

R47L R47L R47L R47L 

   E64G 

  F81I F81I 

 L86I   

F87V F87V F87V F87V 

   E143G 

L188Q L188Q L188Q L188Q 

   Y198C * 

E267V  E267V E267V 

   H285Y * 

 N319T   

G415S  G415S G415S 

 A964V *   

G1049E *    
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as described in [19] was kindly provided by dr. V. Urlacher (Institut für Technische 

Biochemie, Universität Stuttgart, Germany). The genes of the mutants M01, M02, 

M05 and M11 were cloned into this pET28a+ vector as described in [19]. The 

resulting His-tagged CYP102A1 mutants M01his, M02his, M05his and M11his were used 

in this study. Sequencing showed that one or two extra mutations were introduced in 

the genes of M01his, M02his and M11his during the cloning process (Table 1). Enzyme 

kinetic analysis of these mutants using benzoxyresorufin and dextromethorphan as 

substrates did not show significant differences when compared to the corresponding 

non-His-tagged mutants M01, M02, M05 and M11 (data not shown), suggesting that 

the extra mutations are without effect. 
The plasmids pCWh3A4 and pLCMhOR, containing P450 3A4 and human NADPH 

P450 reductase, respectively, were a kind gift from dr. M. Kranendonk (Department 

of Genetics, Faculty of Medical Sciences, Universidade Nova de Lisboa, Portugal) 

and were expressed as described in [20]. The plasmid pCWh2C9/hOR, containing 

P450 2C9, bicistronically co-expressed with human NADPH P450 reductase, was a 

kind gift from dr. F. Guengerich and was expressed as described in [21].  

Expression and purification 

The His-tagged pET28a+ constructs were transformed into E. coli BL21 (DE3) cells 

using standard procedures. For expression, 300 ml Terrific Broth (TB) [22] medium 

(24 g/l yeast extract, 12 g/l tryptone, 4 ml/l glycerol) with 30 μg/ml kanamycin was 

inoculated with 15 ml of an overnight culture. The cells were grown at 150 rpm and 

37°C until the OD600 reached 0.8. Then, protein expression was induced by the 

addition of 0.6 mM isopropyl-β-D-thiogalactopyranoside (IPTG). The temperature 

was lowered to 30°C, and 0.5 mM of the heme precursor δ-aminolevulinic acid was 

added. Expression was allowed to proceed for 5 h. Cells were harvested by 

centrifugation (4000 g, 4°C, 15 minutes), and the pellet was resuspended in 15 ml 

KPi-glycerol buffer (100 mM potassium phosphate (KPi) pH 7.5, 10% glycerol, 0.5 

mM EDTA and 0.25 mM dithiothreitol). Cells were disrupted using a French press 

(1000 psi, 2 repeats), and the cytosolic fraction was separated from the membrane 

fraction by ultracentrifugation of the lysate (120.000 g, 4°C, 60 minutes). The mutants 

were purified using Ni-NTA agarose (Sigma). To prevent aspecific binding, 1 mM 

histidine was added to the cytosolic fraction. 2 ml Ni-NTA slurry was added, and the 

cytosolic fraction was equilibrated at 4°C for 3 hours. The Ni-NTA agarose was 

retained in a polypropylene tube with porous disc (Pierce, Rockford, USA), and was 

washed 3 times with 5 ml KPi-glycerol buffer containing 2 mM histidine. The 

CYP102A1 mutants were eluted in 10 ml KPi-glycerol buffer containing 300 mM 
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histidine. The histidine was subsequently removed by repeated washing with KPi-

glycerol buffer in a Vivaspin 20 filtration tube (10.000 MWCO PES, Sartorius) (4000 

g) until the histidine concentration was below 300 nM.  

Formation of GSH adducts from clozapine, diclofenac and acetaminophen 

All incubations were performed at a final volume of 250 μl and consisted of 100 mM 

potassium phosphate (KPi) buffer, pH 7.4, containing 250 nM of CYP102A1 mutant 

(M01his, M02his, M05his or M11his), 1 mM of substrate (clozapine, diclofenac or 

acetaminophen) and 5 mM GSH. Reactions were initiated by the addition of an 

NADPH regenerating system resulting in final concentrations of 0.4 mM NADPH, 0.3 

mM glucose-6-phosphate and 0.4 units/ml glucose-6-phosphate dehydrogenase. The 

reactions were allowed to proceed for 60 minutes at 24°C, after which they were 

terminated by the addition of 25 μl 10% HClO4. The reactions containing diclofenac 

were terminated by the addition of 250 μl cold methanol instead of HClO4. Samples 

were centrifuged to remove precipitated protein (4000 g, 15 minutes), and the 

resulting supernatants were analysed on HPLC, as described below. To determine 

which peaks represent metabolites, control incubations without NADPH were 

performed. To establish which of the metabolites are GSH adducts, control 

incubations in the absence of GSH were also performed. 
 
To compare the activity and the metabolic profile of the CYP102A1 mutants with 

those formed by mammalian P450s, incubations were also performed with pooled 

human liver microsomes (HLM) from BD GentestTM (Cat. No.: 452161) and with non-

induced rat liver microsomes (RLM) that were prepared as described in [23]. A final 

microsomal protein concentration of 1 mg/ml was used and these incubations were 

performed as described above, at 37°C instead of 24°C.  

 
For positive identification of some of the GSH conjugates, diclofenac incubations 

were also performed with human P450 2C9 and P450 3A4. P450 2C9 and P450 3A4 

produce different GSH-conjugates which have been characterised previously by a 

combination of mass spectrometry and NMR [16, 28, 29]. Diclofenac was incubated 

at a concentration of 1 mM in presence of 250 nM P450 2C9 or P450 3A4, 5 mM 

GSH and a NADPH-regenerating system (0.4 mM NADPH, 0.3 mM glucose-6-

phosphate and 0.4 units/ml glucose-6-phosphate dehydrogenase). After incubating 

for 1 hour at 37°C, the reactions were terminated by the addition of 250 μl of cold 

methanol. Samples were vortexed and centrifuged for 15 minutes at 4000 rpm in 
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order to precipitate proteins. Supernatants were analyzed with the chromatographic 

conditions as described below. 
 
The time dependence of product formation was determined for the three substrates, 

each with one representative CYP102A1 mutant showing high levels of metabolite 

formation. For clozapine and acetaminophen, M11his was used, and for diclofenac, 

M01his was used. Incubations were performed as described above, with incubation 

times of 0, 15, 30, 45 and 60 minutes. 
 
To determine whether drug metabolism by the four mutants could be further 

increased by the addition of caffeine, as was described previously for P450 3A and 

for CYP102A1 R47L/F87V/L188Q with acetaminophen [9, 24], incubations were 

performed as described above in the presence of 10 mM caffeine. 

Analysis of metabolites by HPLC and LC-MS 

Metabolites and parent compounds were analysed by reversed phase 

chromatography using a C18-column (Phenomenex, Luna 5μ, 150 x 4.6 mm), which 

was eluted by a binary gradient, composed of solvent A (1% acetonitrile, 0.2% formic 

acid, 98.8% water) and solvent B (99% acetonitrile, 0.2% formic acid, 0.8% water). 

Total flow rate was 0.5 ml/min (in case of UV-detection) or 0.4 ml/min (in case of 

mass spectrometrical detection). The gradient was programmed as follows:   

1) 0 to 5 minutes: isocratic at 0% solvent B (100% solvent A) 

2)  5 to 30 minutes: linear increase from 0 to 100% solvent B 

3) 30 to 35 minutes: linear decrease from 100% to 0% solvent B 

4) 35 to 40 minutes: isocratic at 0% solvent B (100% solvent A). 

Metabolites were detected using a UV/VIS detector for quantification, and by MS for 

identification. For quantification of metabolites, detection was performed using a 

UV/VIS-detector set at 254 nm.  Standard curves of the substrates were used to 

estimate the concentrations of the metabolites, assuming that the extinction 

coefficients of the metabolites are equal to that of the corresponding substrates. The 

Shimadzu Class VP 4.3 software package was used to determine peak areas of the 

metabolites. Standard curves of the compounds were linear between 1 and 500 µM; 

limits of detection were estimated to be 0.5 µM (data not shown). Inter-experimental 

variation of the HPLC system was approximately 2-3%. 
 
For identification of metabolites, two different mass spectrometers were used for the 

analyses. A Finnigan LCQ Deca mass spectrometer was used with positive electron 

spray ionisation (ESI). N2 was used as sheath gas (60 psi) and auxiliary gas (10 psi), 
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the needle voltage was 5000 V and the heated capillary was at 150°C. To confirm 

the presence of very low-abundant metabolites, the more sensitive IT-TOF LC-MS 

instrument (Shimadzu) was used. In this case, electron spray ionisation (ESI) was 

also used in the positive mode. The interface voltage was 500 V, the nebulizer gas 

flow (N2) was 1.5 l/min and the heated block temperature was 200°C. The LC-MS 

Solution software package from Shimadzu was used to determine peak areas of the 

metabolites in the corresponding extracted ion chromatograms. Inter-experimental 

variation of the LC-MS systems was always below 5%. 

Results and discussion 

Biotransformation of clozapine by HLM, RLM and CYP102A1 mutants 

The CYP102A1 mutants were able to metabolize clozapine to three major GSH 

adducts (CG-1, CG-2 and CG-3; Figure 1-A; Table 2) and to four non GSH-

dependent metabolites (C-1, C-2, C-3 and C-4; Figure 1-A; Table 2). The CYP102A1 

mutants showed different metabolic profiles. Mutant M11 his had the highest overall 

activity and was the only mutant that formed C-4 (tr = 14.2). On the contrary, M02his, 

which showed the lowest overall activity, did not form CG-2 and C-1. 

 
Table 2. Metabolism of clozapine by CYP102A1 mutants. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Metabolites formed from clozapine by four mutants of CYP102A1. Metabolites were analyzed by HPLC 
with UV detection at 254 nm. tr is in minutes. Absence (-) of the metabolite is indicated. Product 
formation is expressed in nmol product/nmol enzyme/60 minutes, assuming that the extinction 
coefficients of the substrate and its metabolites are comparable. Values represent the mean ± standard 
deviation of triplicate experiments.  All GSH adducts are indicated in bold. 
 

 tr M01his M02his M05his M11his 

GSH-conjugates 
CG-1 16.0 22.0 ± 1.8 9.1 ± 0.1 59.6 ± 7.3 168.3 ± 8.4 
CG-2 15.8 9.0 ± 1.5 - 20.7 ± 4.0 53.4 ± 2.7 
CG-3 15.5 1.3 ± 0.5 0.7 ± 0.2 2.5 ± 0.1 6.0 ± 2.4 
Stable metabolites 

C-1 17.4 13.3 ± 2.4 - 44.7 ± 9.2 115.8 ± 7.9 

C-2 16.4 95.5 ± 14.5 7.5 ± 1.9 171.2 ± 20.3 465.2 ± 77.0 

C-3 15.7 7.9 ± 1.2 15.1 ± 2.6 10.1 ± 1.2 5.2 ± 1.1 

C-4 14.2 - - - 5.0 ± 1.2 
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Figure 1. Chromatograms of clozapine, diclofenac and acetaminophen metabolized by CYP102A1 
mutants. Black line: standard incubation. Grey line: incubation without GSH. Light grey line: incubation 
without NADPH (negative control). A: clozapine metabolized by mutant M05his. B: diclofenac 
metabolized by mutant M01his. C: acetaminophen metabolized by mutant M11his. GSH adducts are 
indicated in bold. 
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LC-MS analysis showed that CYP102A1 mutant M11his formed all the metabolites 

that were produced by RLM and HLM but at significantly higher levels (Table 3). Only 

one metabolite (C-5) was formed exclusively by M11his. Two GSH adducts with an 

m/z value of 316.6 [M+2H]2+, corresponding to clozapine coupled to GSH 

(Cloza+SG), were observed in the incubations performed with RLM (CG-1 and CG-3) 

and three adducts of this mass were found with HLM (CG-1, CG-3 and CG-4). M11his 

was 7-, 17- and 22-fold more active than HLM in producing metabolites CG-1, CG-3 

and CG-4 respectively (Table 3). Another GSH adduct, with an m/z value of 309.6 

[M+2H]2+, was also observed in the incubations performed with HLM (CG-2 in Table 

3) but was not produced by RLM. M11his showed to be 34-fold more active than HLM 

in producing this GSH adduct, that most likely corresponds to the N-demethylated 

GSH adduct of clozapine (Cloza-CH2+SG). These results are in agreement with 

previous data from literature where three major GSH adducts of clozapine were 

identified in incubations with RLM and HLM [14, 15, 25]. Possible structures for these 

GSH adducts are proposed in Figure 2.  

 
Table 3. Identification of the metabolites of clozapine. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Qualitative and quantitative comparison of the metabolites formed from clozapine by HLM, RLM and 
CYP102A1 mutant M11his. Results from duplicate experiments analyzed with the IT-TOF LC-MS 
instrument are shown in the table. tr is in minutes. Presence (+) and/or absence (-) of the metabolite is 
indicated. Activities of the different enzymes are presented as percentages (±  standard deviations of 
the differences) taking the incubation with HLM as reference (100%). m/z values corresponding to the 
singly-protonated molecule1 [M+H]+ and/or of the diprotonated molecule2 [M+2H]2+ are indicated and a 
possible metabolite structure is proposed. All GSH adducts are indicated in bold. 

Metabolites tr HLM RLM M11his m/z Proposed 
structure 

GSH-conjugates 
CG-1 16.2 100 ± 12 64 ± 3 722 ± 87 316.612 Cloza+SG 

CG-2 15.8 100 ± 10 - 3440 ± 338 309.592 Cloza-CH2+SG 

CG-3 15.7 100 ± 13 127 ±  13 1721 ± 220 316.612 Cloza+SG 

CG-4 15.4 100 ± 9 - 2191 ±  240 316.612 Cloza+SG 

Stable Metabolites 

C-1 17.7 100 ± 9 427 ±  56 286 ±  40 343.131 Cloza+O 

C-2 16.5 100 ± 10 181 ±  13 1257 ± 77 313.121 Cloza-CH2 

C-3 15.1 100 ± 9 55 ±  4 574 ±  48 301.121 Cloza-C2H2 

C-4 14.9 100 ± 11 50 ±  6 1685 ± 201 287.111 Cloza-C3H4 

C-5 17.6 - - + 3291 Cloza-CH2+O 
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In addition, several non-GSH metabolites were also observed in the incubations 

performed with RLM and HLM. The RLM and HLM both formed clozapine N-oxide 

(Cloza+O) and N-demethylated clozapine (Cloza-CH2) as major metabolites (C-1 and 

C-2; Table 3). They were identified by their m/z values (m/z 343 and 313; [M+H]+) as 

has been described previously in literature [14, 15]. Three minor peaks (tr 14.6, 15.8 

and 16.4; data not shown), also showing a chlorine isotope pattern and a m/z value 

of 343 [M+H]+, were observed in the RLM, HLM and M11his incubations when 

analyzed on the IT-TOF LC-MS instrument. These peaks were not initially detected 

by UV or by using the less-sensitive LCQ LC-MS instrument. Whether these 

metabolites (C-6, C-7 and C-8) correspond to the structures proposed in Figure 2 

remains to be established. Two other metabolites, C-3 and C-4 (m/z 301; Cloza-C2H2 

and m/z 287; Cloza-C3H4; [M+H]+; Table 3), were also formed by RLM and HLM. 

These chlorine-containing metabolites might correspond to the structures depicted in 

Figure 2, originating from partial degradation of the piperazine ring of clozapine as 

has been described in [26]. Eventually, the M11his metabolite C-5 might represent a 

N-demethylated metabolite of clozapine that is further hydroxylated (Cloza-CH2+O; 

m/z 329; [M+H]+; Table 3) as proposed in the biotransformation scheme of clozapine 

in Figure 2. In general, M11 his was found to be 3- to 17-fold more active than HLM for 

the production of these stable metabolites. 

 

 
 

 
 
Figure 2. Proposed biotransformation scheme of clozapine 
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Biotransformation of diclofenac by HLM, RLM and CYP102A1 mutants 

Diclofenac was metabolized by the CYP102A1 mutants to one non-GSH-dependent 

metabolite (D-1) and to ten different GSH adducts (Figure 1-B; Table 4). The 

activities of mutants M01his, M05his and M11his were similar, whereas M02 his showed 

a significantly lower activity. 
 
MS analysis shows that diclofenac is metabolized by the CYP102A1 mutants to 

hydroxylated diclofenac (Diclo+O) having an m/z of 312 (D-1; [M+H]+; Table 5). 

Mutant M11his was 4-fold more active than HLM in the formation of this metabolite 

and 5.5-fold more active than RLM. This hydroxylated metabolite of diclofenac was 

also formed by human P450 2C9, which according to literature corresponds to 4’-

hydroxydiclofenac [27] (data not shown). 5-hydroxydiclofenac, which has also been 

described in literature as a P450 3A4 metabolite [28, 29], was not observed in these 

incubations.  

 
 Table 4. Metabolism of diclofenac by CYP102A1 mutants. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Metabolites formed from diclofenac by four mutants of CYP102A1. Metabolites were analyzed by HPLC 
with UV detection at 254 nm. tr is in minutes. Absence (-) of the metabolite is indicated. Product 
formation is expressed in nmol product/nmol enzyme/60 minutes, assuming that the extinction 
coefficients of the substrate and its metabolites are comparable. Values represent the mean ± standard 
deviation of triplicate experiments. All GSH adducts are indicated in bold. 
 

 tr M0his M02his M05his M11his 

GSH-conjugates     
DG-1 20.9 48.5 ± 6.3 4.7 ± 1.5 51.8 ± 3.6 37.1 ± 11.6 
DG-2 20.2 41.8 ± 4.8 14.1 ± 4.1 58.7 ± 4.6 39.2 ± 2.9 
DG-3 20.1 86.2 ± 27.9 - 97.7 ± 9.0 115.3 ± 7.1 
DG-4 19.5 11.5 ± 4.5 1.9 ± 0.2 4.8 ± 1.3 1.4 ± 0.2 
DG-5 19.1 79.8 ± 6.0 10.1 ± 0.4 99.1 ± 5.9 82.3 ± 39.8 
DG-6 18.5 3.7 ± 0.9 - - - 

DG-7 18.4 25.2 ± 5.3 - 27.6 ± 7.7 34.6 ± 8.7 
DG-8 17.5 40.2 ± 13.2 - 50.6 ± 5.2 61.8 ± 9.7 
DG-9 17.2 20.6 ± 0.1 - 30.3 ± 3.2 22.2 ± 16.2 
DG-10 15.4 39.0 ± 5.5 34.7 ± 6.2 39.0 ± 6.5 32.5 ± 7.2 
Stable metabolites     

D-1 25.2 980.1 ± 148.5 137.6 ± 9.1 942.1 ± 43.2 1038.0 ± 53.8 
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Table 5. Identification of the metabolites of diclofenac.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Qualitative and quantitative comparison of the metabolites formed from diclofenac by HLM, RLM and 
CYP102A1 M11his. Results from duplicate experiments analyzed with the IT-TOF LC-MS instrument are 
show in the table. tr is in minutes. Presence (+), absence (-) and/or non-identified (n.i.) metabolites are 
indicated. The activities of the different enzymes are presented as percentages (± standard deviations of 
the differences) taking the incubation with HLM as reference (100%). m/z values corresponding to the 
protonated molecule1 [M+H]+ and/or of the diprotonated molecule2 [M+2H]2+ are indicated and a 
possible metabolite structure is proposed. All GSH adducts are indicated in bold. 
 

 

The GSH adducts DG-1 and DG-2 (tr = 20.9 and 20.2 min; Table 4) were formed by 

all four CYP102A1 mutants. According to MS analysis, DG-2 appeared to consist of 

two overlapping peaks of m/z 617 (DG-2a and DG-2b; [M+H]+; Table 5) 

corresponding to hydroxylated GSH adducts of diclofenac (Diclo+O+SG). DG-1 is 

also a GSH adduct with the same m/z 617 value. RLM also produced all three GSH 

adducts of m/z 617, whereas HLM only produced DG-2a and DG-2b (Table 5). DG-3 

was only formed by M01his, M05his and M11his (tr = 20.1; Table 4). This GSH adduct 

has an m/z value of 583 [M+H]+, corresponding to the hydroxylated GSH adduct of 

diclofenac where one chlorine atom is substituted (Diclo+O+SG-HCl; Table 5). 

Neither RLM nor HLM did produce this metabolite. Incubations performed with 

human P450 3A4 produced two GSH adducts of m/z 617 co-eluting with DG-1 and 

DG-2b. Incubations with P450 2C9 only showed one GSH adduct with an m/z value 

of 617 co-eluting with DG-2a (data not shown). In the literature, three and four GSH 

adducts have been described for diclofenac metabolism by RLM and HLM, 

Metabolites tr HLM RLM M11his m/z Proposed structure 

GSH-conjugates 
DG-1 19.6 - 100 ± 11 302 ± 41 617.081 Diclo+O+SG 

DG-2 a. 19.2 
b. 19.1 
Total 

+ 
+ 

100 ± 12 

+ 
+ 

530 ± 64 

+ 
+ 

6860 ± 823 

617.081 

617.081 
Diclo+O+SG 
Diclo+O+SG 

DG-3 19.0 - - + 583.131 Diclo+O+SG-HCl 

DG-4 n.i. n.i. n.i. n.i. n.i.  

DG-5 17.5 100 ± 10 326 ± 33 456 ± 41 461.59 2 Diclo+O+2SG 

DG-6 n.i. n.i. n.i. n.i. n.i.  

DG-7 16.9 100 ± 13 6.2 ± 0.8 243 ± 24 444.612 Diclo+O+2SG-HCl 

DG-8 16.3 100 ± 9 - 751 ±  80 427.622 Diclo+O+2SG–2HCl 

DG-9 n.i. n.i. n.i. n.i. n.i  

DG-10 n.i. n.i. n.i. n.i. n.i  

Stable Metabolites 

D-1 25.3 100 ± 9 74 ± 9 414 ± 48 312.021 Diclo+O 
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respectively, generally referred to as M1-M4 [16, 29, 30]. Three of these adducts 

have an m/z of 617 (M1, M2 and M3) and one an m/z of 583 (M4).  M1 and M3 have 

been described as P450 3A4 metabolites and therefore most likely correspond to 

DG-1 and DG-2b. DG-2a probably corresponds to the 4’-OH-3’-SG-diclofenac 

adduct, also referred to the P450 2C9 metabolite M2 [29]. DG-3 most likely 

corresponds to M4, as proposed in Figure 3. Mutant M11his was 13-fold and 69-fold 

more active than RLM and HLM for the production of DG-2a and DG-2b and 3-fold 

more active than RLM in producing DG-1 (Table 5). 
 
DG-4 and DG-5 (tr = 19.5 and 19.1 min; Table 4) were formed by all mutants. Only 

mutant M01his formed DG-6 (tr = 18.5 min; Table 4). DG-7 to DG-9 (tr = 18.4, 17.5 and 

17.2 min; Table 4) were formed by all mutants except M02 his, and DG-10 (tr = 15.4 

min; Table 4) was formed by all CYP102A1 mutants. For DG-5, an m/z value of 

461.6 [M+2H]2+ with a dichlorine isotope pattern was found, which corresponds to a 

double conjugated GSH adduct of diclofenac (Diclo+O+2SG; Table 5). For DG-7, an 

m/z value of 444.6 [M+2H]2+ with a monochlorine isotope pattern was found. For DG-

8, an m/z value of 427.6 [M+2H]2+ without chlorine isotope pattern was observed in 

the MS spectra. These masses correspond to double conjugated GSH adducts of 

diclofenac where one (DG-7; Diclo+O+2SG-HCl; Table 5) or two atoms of chlorine 

have been displaced (DG-8; Diclo+O+2SG-2HCl; Table 5). The masses of DG-4, 

DG-6, DG-9 and DG-10 could not be determined with certainty under the conditions 

used. 
 
The discovery of three double GSH adduct of diclofenac is interesting because it 

implicates secondary bioactivation of initially formed GSH-conjugates. Using the less 

sensitive LCQ LC-MS instrument, DG-5, DG-7 and DG-8 could only be found in the 

M11his incubations and were therefore initially considered to be exclusive CYP102A1 

metabolites. However, when measuring with the more sensitive IT-TOF LC-MS 

instrument, it could be demonstrated that DG-5, DG-7 and DG-8 were also present in 

the human and rat liver microsomes incubations (Table 5; Figure 3). Interestingly, Yu 

et al. [31] recently mentioned the presence of GSH adducts of diclofenac in 

incubations with HLM that correspond to the m/z values of DG-7 and DG-8 found in 

this study. Mutant M11his was able to generate DG-5, DG-7 and DG-8 at 5-, 2.5- and 

7.5-fold higher amounts than HLM, respectively. A biotransformation scheme of 

diclofenac is presented in Figure 4, proposing several possible structures for the 

metabolites detected in this study. 
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Figure 3. LC-MS analysis of the double GSH adducts of diclofenac. Incubations were analyzed with the 
IT-TOF LC-MS instrument and correspond to: (A) incubation with HLM without NADPH (negative 
control; 75 μl injection); (B) standard incubation with HLM (75 μl injection); (C) standard incubation with 
RLM (75 μl injection) and (D) standard incubation with CYP102A1 M11his (5 μl injection). Black line: 
Extracted ion chromatograms (EIC) of m/z 427.62 (DG-8); light grey line: EIC of m/z 444.61 (DG-7) and 
dark grey line: EIC of m/z 461.59 (DG-5). 
 

 
 
 
Figure 4. Proposed biotransformation scheme of diclofenac. 
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Biotransformation of acetaminophen by HLM, RLM and CYP102A1 mutants 

All CYP102A1 mutants were able to generate the GSH adduct of acetaminophen 

(Figure 1-C; Table 6). M11his showed the highest activity for the NAPQI-SG 

formation. Similar to what has been described previously [17], acetaminophen was 

also metabolized by HLM and RLM into NAPQI (Table 6). NAPQI-SG (m/z 457; 

[M+H]+) was formed with the highest specific activity by mutant M11his, which was 41-

fold more active than HLM and 53-fold more active than RLM for the formation of this 

GSH adduct. 
 
Table 6. Bioactivation of acetaminophen by CYP102A1 mutants and mammalian liver microsomes. 
 
 

 

 

 

 
 
 
Formation of glutathione conjugate of NAPQI (NAPQI-SG) was quantified by HPLC with UV detection at 
254 nm (tr 15.1 minutes). Product formation is expressed in nmol product/nmol enzyme/60 minutes, 
assuming that the extinction coefficients of the substrate and its metabolites are comparable. Values 
represent the mean ± standard deviation of triplicate experiments. Identity of NAPQI-SG was confirmed 
by LCQ Deca LC-MS instrument, showing a m/z value of 457.1 corresponding to the singly-protonated 
molecule [M+H]+.  
 

Time dependence of metabolite formation 

It is known that the rate of metabolite production by enzymes sometimes is strongly 

decreasing in time due to spontaneous enzyme inactivation, suicide inhibition 

(mechanism-based inhibition) or product inhibition. For example, mechanism-based 

inhibition was observed previously with rat P450 2C11 with diclofenac [7]. We 

previously demonstrated that several CYP102A1 mutants show non-linear time 

courses; after an initial fast phase lasting 0.5-2 minutes, the reaction continued at a 

lower activity [10]. Because the aim of the present study was to produce high levels 

of metabolites using CYP102A1, it was studied for how long metabolite production 

still continues. The product formation was linear from 15 to 60 minutes (data not 

shown).  

Heterotropic cooperativity: activation by caffeine 

In a previous study, we showed that acetaminophen metabolism by the CYP102A1 

triple mutant R47L/F87V/L188Q was activated up to 70-fold by the addition of 

Enzyme fraction NAPQI-SG formation 

M01his  150.0 ± 43.7 

M02his  38.0 ± 3.5 

M05his  417.0 ± 77.4 

M11his  904.5 ± 189.3 

HLM 21.77 ± 4.6 

RLM 17.1 ± 3.6 
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caffeine [9]. To determine whether this activation also occurs for the present 

CYP102A1 mutants, incubations with clozapine, diclofenac and acetaminophen were 

performed in the presence of 10 mM caffeine. Activation of acetaminophen 

metabolism was only observed with mutant M02his: this activation was approximately 

10-fold (Figure 5). For mutant M01his, 80% inhibition was observed in the presence of 

10 mM caffeine, whereas for mutant M05his and M11his, the presence of caffeine did 

not have any effect on the catalytic activity. For the other two substrates, no 

activation or inhibition was observed in the presence of caffeine (data not shown). 

The reason why the different mutants do not respond in the same way cannot yet be 

rationalised because the underlying mechanism of the heterotropic cooperativity 

remains to be established. Also, because the different mutants always differ in three 

or more amino acids it is not possible yet to known which of these modifications 

might have affected the heterotropic cooperativity. 
 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 5. Effect of caffeine on acetaminophen metabolism by CYP102A1 mutants. % Activity in the 
absence (white bars) and presence (black bars) of 10 mM caffeine. 

Conclusions 

The present study demonstrates the applicability of drug metabolising mutants of 

CYP102A1 for the biosynthesis of high amounts of toxicologically relevant reactive 

metabolites of drugs, using clozapine, diclofenac and acetaminophen as model 

compounds. For all of these three substrates, the CYP102A1 mutants were indeed 

capable to generate the relevant reactive metabolites which are formed by human 

and rat liver microsomes but at significantly higher (up to 70-fold) levels. Formation of 

high levels of multiple metabolites by these enzymes will strongly facilitate the 

optimalisation of analytical methods, structural identification and 
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pharmacological/toxicological characterisation of both major and minor drug 

metabolites formed by human P450s. The initial discovery of three novel GSH 

adducts of diclofenac in incubations of CYP102A1 mutants allowed us to 

demonstrate their presence in human incubations by using a more sensitive LC-MS 

system (Figure 3). Although quantitatively present at very low levels, it still cannot be 

ruled out that also minor reactive intermediates contribute to the mechanism leading 

to toxicity, for example by being very selective towards critical cellular target-

molecules.  
 
Recently, Madsen et al. [32] described an electrochemical method for the generation 

of reactive intermediates. This method showed to be successful in forming several 

GSH adducts formed by rat and human liver microsomes. However, it also showed 

limitations because not all relevant human and rat metabolites were produced. This 

can be explained by the fact that the regioselectivity of drug oxidation is often 

governed by the topology of the active site of P450s, rather than oxidation energies 

of the different positions.  Therefore, CYP102A1 mutants, which also can orient 

metabolism to energetically less favorable positions, may constitute a more generic 

system for the generation of high levels of drug metabolites.   
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Abstract 

Conjugation to glutathione (GSH) is an important protection mechanism against 

reactive electrophilic metabolites of drugs that are thought be involved in adverse 

drug reactions (ADRs). These conjugation reactions can be spontaneous or 

mediated by glutathione S-transferases (GSTs). Although previous clinical data 

suggest that GSTs could play a role in defining individual susceptibilities towards 

ADRs, only few in vitro studies have been performed to confirm these observations. 

The aim of this work was therefore to investigate if GSTs contribute to the 

conjugation of reactive intermediates of drugs with GSH. Five model compounds 

(acetaminophen, 3-hydroxyacetanilide, clozapine, diclofenac and carbamazepine) 

were incubated with rat liver microsomes and/or with the highly active bacterial P450 

BM3 mutant M11his; and the impact of the presence of rat GSTs on the GSH adduct 

levels was assessed by LC-MS. Although GSTs were found to have little effect on 

the amounts of GSH adducts for most drugs under study, they significantly increased 

the levels of the GSH adducts of carbamazepine. More specifically, GSTs catalyzed 

the GSH conjugation of the most reactive arene oxide intermediates of the drug. 

While further experiments with human GST isoforms are required, these results may 

support previous clinical observations suggesting that GST genetic polymorphisms 

could be a risk factor in carbamazepine-induced ADRs.  
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Introduction 

Drug metabolism mainly consists of the conversion of lipophilic drug molecules to 

hydrophilic metabolites that can be eliminated from the body. Cytochromes P450 

(P450s) are the phase I enzymes that are most frequently involved in this process. 

Functionalised metabolites can subsequently be conjugated to more polar groups by 

phase II enzymes, which further increase their solubility and excretion. Although 

these transformations are usually part of detoxification processes, P450s can also 

lead to the formation of reactive metabolites that can react with macromolecules in 

the body and cause toxicity. Covalent binding to DNA is usually related to 

mutagenicity and carcinogenicity; while the formation of proteins adducts is generally 

thought to be associated with several forms of adverse drug reactions (ADRs) [1, 2]. 
 
Conjugation to glutathione (GSH) is an important defence mechanism which protects 

the organism against toxic effects of reactive intermediates (RIs). This reaction can 

occur spontaneously and/or be catalyzed by the glutathione S-transferases (GSTs) 

[3, 4]. Although these enzymes have different activities depending on their specific 

class and/or sub-type, their main reaction is to catalyze the reaction of GSH with 

electrophilic intermediates in order to form stable GSH conjugates that can be 

eliminated from the body, mainly by processing to mercapturic acids [5]. 
 
Known substrates of GSTs include insecticides, herbicides, environmental pollutants, 

carcinogens, by-products of lipid peroxidation but also a wide range of drugs 

including cancer chemotherapeutic agents (e.g. adriamycin, cyclophosphamide, 

melphalan) [6-8]. Still little is known, however, about the role of GSTs in the 

detoxification of RIs of drugs involved in ADRs and in rare idiosyncratic drug 

reactions (IDRs). Clinical studies have recently demonstrated a significant 

prevalence of the combined GSTM1-T1 double-null genotype in patients suffering 

from tacrine and troglitazone-induced liver injury [9, 10]. Similar findings were 

obtained for other types of drugs (e.g. diclofenac, carbamazepine) [11, 12] 

suggesting that GST polymorphisms could be one of the factors determining inter-

individual differences in susceptibility to ADRs. 
 
Remarkably, as yet, only few in vitro studies have been conducted to confirm these 

clinical observations. Coles et al. previously showed that GSTs can catalyze the 

coupling of the reactive metabolite of acetaminophen (NAPQI) to GSH [13]. In the 

case of carbamazepine, GSTs were suggested to play a protective role by 
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decreasing the rate of irreversible protein binding of 14C-carbamazepine to mouse 

microsomal proteins [14].  
 
Since the role of GSTs in ADRs remains unclear, the main goal of this study was to 

evaluate if GSTs could improve the GSH trapping efficiency of RIs of drugs in in vitro 

enzymatic incubations. Incubations were performed with rat liver microsomes and/or 

with the highly active bacterial P450 BM3 mutant M11his [15]; and the effect of rat 

GSTs on GSH adduct levels was assessed by LC-MS. Acetaminophen, 3-

hydroxyacetanilide, clozapine, diclofenac and carbamazepine were chosen as model 

compounds since they are all known to be bioactivated by P450s to RIs; to give 

covalent binding to proteins [16-21] and/or have been previously associated with 

ADRs [22-25]. 

Experimental procedures 

Enzymes 

The P450 BM3 mutant M11his (M11his) was prepared and expressed as described 

previously [15]. Control rat liver microsomes (RLM) were prepared as described in 

[26]. Rat liver glutathione S-transferases (GSTs) were purified as follows. Rat liver 

cytosol (24 ml) was first dialyzed overnight against 2 liters of 10 mM KPi buffer (pH 

7.4). The dialyzed cytosol was centrifuged (13.000 rpm, 4°C, 10 minutes) and the 

supernatant was filtered using 0.45 μm Acrodisc filters. GSTs were subsequently 

isolated from the cytosolic fraction using pre-packed Glutathione-agarose columns (G 

3907 from Sigma). The columns were first equilibrated with 5 x 2.5 ml of 10 mM KPi 

buffer containing 150 mM NaCl (pH 7.4). Then, 7.5 ml of the cytosolic fraction was 

loaded onto the equilibrated columns under gravity flow. The flow-through was 

collected, applied a second time onto the columns and the loaded columns were 

allowed to stand for 1 hour. The columns were subsequently washed with 3 x 2.5 ml 

of 10 mM KPi buffer containing 150 mM NaCl (pH 7.4) and washing fractions were 

collected. Elution of bond GSTs took place with 8 x 2.5 ml of 50 mM Tris-HCl buffer 

pH 8.0 containing 10 mM of reduced glutathione. Collected fractions were checked 

for GST activity using the CDNB assay described below and the fractions showing 

activity were pooled to constitute the GST batch. GSH was subsequently removed 

from the GST batch by repeated washing with 50 mM Tris-HCl buffer (pH 8.0) in 

Vivaspin 20 filtration tubes at 4000 rpm (10.000 MWCO PES, Sartorius). A final GST 

protein concentration of 0.5 mg/ml was determined by the Bradford method using 

bovine serum albumin (BSA) as standard [27]. 
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GST enzymatic activities were determined using the standard CDNB assay as 

described in [28]. Briefly, 50 µl of 1-chloro-2,4-dinitrobenzene (CDNB; 10 mM in 

ethanol) was added to 50 µl of reduced glutathione (GSH; 10 mM in KPi buffer pH 

6.5) in a 3 ml cuvet containing 1 ml of 10 mM KPi buffer (pH 6.5). A 10 µl aliquot of a 

20 times diluted enzymatic fraction was added to the mixture, the cuvet was shaken 

and the absorbance was monitored at 340 nm for 2 minutes at room temperature. 

When using Δε = 9.6 mM-1cm-1, a specific activity of 28.7 µmol product/min/mg 

protein was found for the GST batch. 

Enzymatic incubations 

Incubations had a final volume of 250 μl and usually consisted of 100 mM KPi buffer 

pH 7.4, 1 mM of substrate and 5 mM of GSH (final concentrations). Stock solutions of 

100 mM were prepared for the different substrates. Acetaminophen (APAP) and 3-

hydroxyacetanilide (AMAP) were dissolved in H2O; clozapine and diclofenac in 

DMSO and carbamazepine in ethanol. Final organic modifier concentrations in the 

incubation mixtures were always below 1%. A final enzymatic concentration of 1 

mg/ml RLM and 250 nM of purified M11his were used in the incubations. Reactions 

were initiated by the addition of 2 mM NADPH (final concentration). The reactions 

were allowed to proceed for 60 minutes at 37°C for RLM and at 24°C for M11his. 

Incubations were subsequently terminated by the addition of 25 μl 10% HClO4 

(APAP, AMAP and clozapine) or 250 μl cold methanol (diclofenac and 

carbamazepine). Samples were centrifuged to remove precipitated protein (4000 

rpm, 15 minutes) and supernatants were analysed by LC-MS. Control incubations 

consisted of reactions performed without NADPH and/or without GSH. For positive 

identification of some of the possible GSH adducts of carbamazepine, incubations 

with 10,11-carbamazepine epoxide (CE; final concentration of 250 μM) were 

performed in 100 mM KPi buffer pH 7.4, for 60 minutes, at 37°C and with 5 mM of 

GSH (final concentration). Samples were subsequently analyzed by LC-MS. Control 

incubations were performed without GSH. 
 
To determine the effects of GSTs on the GSH adduct formation, incubations were 

performed like described above with and without GSTs (final protein concentration: 

94 μg/ml; final specific activity: 5.4 μmol prod/min/mg prot). To better discriminate 

enzymatic versus non-enzymatic reactions, experiments were performed with two 

different GSH concentrations: 1 mM and 5 mM (final concentrations). Since the Km 

of GSTs for GSH is approximately 100 μM [13], performing incubations with 1 mM 

GSH instead of 5 mM was expected to reduce non-enzymatic reactions five-fold 
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while not impacting GST-dependent reactions. This may assist the identification of 

GST-dependent catalytic effects on the levels of GSH adducts. Furthermore, 

experiments with ethacrynic acid (EA) were performed to evaluate whether GST 

effects could be inhibited. Enzymatic incubations were performed as described above 

with and without GSTs and different concentrations of EA were added to the mixture 

(0, 0.5 and 1 mM). High concentrations of EA were chosen as to ensure that all GST 

activity would be inhibited. All samples were treated like described above and 

analyzed by LC-MS.  

Analytical methods 

LC-MS analysis was performed using a LCQ Deca mass spectrometer instrument 

(Thermo Finnigan). Metabolites were separated by reversed chromatography using a 

C18 column (Phenomenex, Luna 5μ, 150 x 4.6 mm). The following gradient was 

used at a flow rate of 0.4 ml/min: from 0 to 5 minutes 0% solvent B, followed by an 

increase to 100% solvent B from 5 to 30 minutes, followed by a decrease to 0% 

solvent B from 30 to 35 minutes, and finally 0% solvent B from 35 to 40 minutes. 

Solvent A consisted of 1% acetonitrile, 98.8% H2O and 0.2% formic acid; solvent B 

consisted of 99% acetonitrile, 0.8% H2O and 0.2% formic acid. MS analysis was 

performed in the positive mode using electrospray ionisation (ESI). N2 was used as 

sheath gas (60 psi) and auxiliary gas (10 psi), the needle voltage was 5000 V and the 

heated capillary was at 150°C. The LC-MS Solution software package from 

Shimadzu was used to determine peak areas of the GSH adducts in the 

corresponding extracted ion chromatograms. Data analysis was performed using 

GraphPad Prism 4.0 and statistically significant differences were determined by 

Student t-test analysis.  

Results  

Bioactivation of acetaminophen 

Incubations performed with RLM produced one major GSH adduct (AG-1; tr 15.74 

min; Table 1) with a m/z of 457.1 [M+H]+ corresponding to NAPQI coupled to GSH. In 

addition, a minor GSH adduct, with a m/z of 473.1 [M+H]+, was also present in the 

incubation mixture (AG-2; tr 15.40 min). This adduct most likely originates from an 

ortho-quinone metabolite of APAP (Figure 1). When GSTs were added to the 

incubations, no significant changes were observed in the GSH adduct levels.  
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Table 1. GST effects on the GSH adducts of acetaminophen. 
 

 

LC-MS analysis of the GSH adducts of APAP produced by RLM and BM3 mutant M11his. Peak areas 
were determined in the corresponding extracted ion chromatograms. Areas of the GSH adducts in the 
incubations without GSTs were arbitrary set to 100 % and changes after addition of 94 μg/ml GSTs 
were determined (± standard deviation of the differences). tr is in minutes; m/z corresponds to the mass 
of the protonated molecule [M+H]+ and possible GSH adduct structures are proposed. Absence (-) of 
the GSH adduct is indicated in the table. 
 

 

The P450 BM3 mutant M11his metabolized APAP to the same major GSH adduct as 

RLM (AG-1; Table 1). This is in agreement with previous data obtained in our 

laboratory [15]. M11his also produced two minor GSH adducts: one additional GSH 

adduct of m/z of 457.1 [M+H]+  (AG-3; tr 15.42 min) and one GSH adduct of m/z of 

473.1 [M+H]+  (AG-4; tr 15.10 min). M11his did not produce GSH adduct AG-2 (Figure 

1). When incubated in presence of GSTs, no statistically significant changes were 

observed in the amounts of GSH adducts produced.  

 

 

 

 

 

 

 

 

 

 

 

tr m/z Structure RLM M11his GSH 
adducts    - GSTs + GSTs - GSTs + GSTs 
AG-1 15.74 457.1 APAP+SG 100 ± 2 86 ± 25 100 ± 2 137 ± 24 
AG-2 15.40 473.1 APAP+O+SG 100 ± 2 112 ± 20 - - 
AG-3 15.42 457.1 APAP+SG - - 100 ± 4 79 ± 18 
AG-4 15.10 473.1 APAP+O+SG - - 100 ± 2 133 ± 69 
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Figure 1. Scheme of the possible GSH adducts of APAP and AMAP.  
 
 

Bioactivation of 3-hydroxyacetanilide 

Incubations performed with AMAP and RLM produced four GSH adducts (Table 2). 

Three GSH adducts had a m/z of 473.1 [M+H]+ (AMG-1, AMG-2 and AMG-3; tr 14.64, 

15.40 and 15.64 min respectively) corresponding to ortho- and para-quinone 

metabolites of AMAP conjugated to GSH (Figure 1). One adduct had a m/z of 778.2 

[M+H]+ (AMG-4; tr 14.60; Table 2) corresponding to a doubly conjugated GSH adduct 

of AMAP. This metabolism pattern is in agreement with previous data from literature 

[29, 30]. By co-elution, we found that one of the GSH adducts of AMAP (AMG-2; 

Table 2) corresponds to one hydroxylated GSH adduct of APAP (AG-2; Table 1). 

Therefore, this GSH adduct must originate from the 3,4-ortho-catechol reactive 

metabolite of APAP and AMAP (Figure 1). Interestingly, levels of this GSH adduct 

were 20-fold higher in AMAP incubations compared to those performed with APAP 
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(data not shown). In general, GSTs did slightly decrease GSH adduct levels in RLM 

incubations but these changes were not statistically significant. 
 
Table 2. GST effects on the metabolism of 3-hydroxyacetanilide. 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

LC-MS analysis of the GSH adducts of AMAP produced by RLM and BM3 mutant M11his. Peak areas 
were determined in the corresponding extracted ion chromatograms. Areas of the GSH adducts in the 
incubations without GSTs were arbitrary set to 100 % and changes after addition of 94 μg/ml GSTs 
were determined (± standard deviation of the differences). tr is in minutes; m/z corresponds to the mass 
of the protonated molecule [M+H]+ and possible GSH adduct structures are proposed. Absence (-) of 
the GSH adduct is indicated in the table. 
 
 

AMAP was metabolized to three GSH adducts by M11his (Table 2). One GSH adduct 

corresponds to AMG-2 (tr 15.40 min), originating from the common RI of APAP and 

AMAP described above. The two other GSH adducts had a m/z of 778.2 [M+H]+ 

(AMG-4 and AMG-5; tr 14.60 and 14.87 min respectively) corresponding to doubly-

conjugated GSH adducts of AMAP. AMG-4 was also found in RLM incubations, 

whereas AMG-5 is an exclusive M11his-dependent GSH adduct (Figure 1). Again, 

GSTs did not significantly alter the levels of these GSH adducts.  

Bioactivation of clozapine 

RLM produced two GSH adducts having a m/z of 632.2 [M+H]+ corresponding to 

clozapine coupled to GSH (CG-1 and CG-2; tr 16.75 and 17.23 min; Table 3). 

Addition of GSTs did not significantly affect the GSH adduct levels. 

When clozapine was incubated with M11his, four major GSH adducts were produced 

(Table 3). Two were also formed by RLM (CG-1 and CG-2). The two additional 

adducts had a m/z of 618.2 [M+H]+ corresponding to N-demethylated clozapine 

coupled to GSH (CG-3 and CG-4; tr 16.30 and 17.01). This metabolic profile is 

consistent with that observed previously [15]. As with RLM, GSTs did not significantly 

influence GSH adduct levels in M11his incubations.  
 
 

tr m/z Structure RLM M11his GSH 
adducts    - GSTs + GSTs - GSTs + GSTs 

AMG-1 14.64 473.1 AMAP+O+SG 100 ± 4 92 ± 31 - - 

AMG-2 15.40 473.1 AMAP+O+SG 100 ± 2 86 ± 19 100 ± 4 81 ± 9 

AMG-3 15.64 473.1 AMAP+O+SG 100 ± 3 83 ± 17 - - 

AMG-4 14.60 778.2 AMAP+O+2xSG 100 ± 2 99 ± 23 100 ± 3 121 ± 35 

AMG-5 14.87 778.2 AMAP+O+2xSG - - 100 ± 2 89 ± 7 
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Table 3. GST effects on the metabolism of clozapine. 
 
 
 
 
 
 
 
 
 
 

LC-MS analysis of the GSH adducts of clozapine produced by RLM and BM3 mutant M11his. Peak areas 
were determined in the corresponding extracted ion chromatograms. Areas of the GSH adducts in the 
incubations without GSTs were arbitrary set to 100 % and changes after addition of 94 μg/ml GSTs 
were determined (± standard deviation of the differences). tr is in minutes; m/z corresponds to the mass 
of the protonated molecule [M+H]+ and possible GSH adduct structures are proposed. Absence (-) of 
the GSH adduct is indicated in the table. 
 
 

Bioactivation of diclofenac 

Three GSH adducts of diclofenac were produced by RLM (Table 4). Two adducts 

had a m/z 617.1 [M+H]+ corresponding to quinoneimine(s) of diclofenac coupled to 

GSH (DG-1 and DG-2; tr 20.18 and 20.78 min respectively). One minor GSH adduct 

had a m/z 583.1 [M+H]+ (DG-3; tr 20.22 min) and most likely correspond to a 

quinoneimine or epoxide intermediate of diclofenac where a chlorine atom has been 

substituted by GSH. No statistically significant changes in the GSH adduct levels 

were observed when GSTs were added to the incubation mixtures.  

M11his metabolized diclofenac to seven GSH adducts (Table 4). This metabolism 

pattern is in agreement with previous data obtained in our laboratory [15]. Briefly, 

M11his produced the same GSH adducts as RLM (DG-1, DG-2 and DG-3). The P450 

BM3 mutant also generated a third GSH adduct having a m/z 617.1 [M+H]+ (DG-4; tr 
20.32). Furthermore, three double GSH adducts of diclofenac were found in the 

M11his incubations (DG-5, DG-6 and DG-7; tr 18.74, 18.16 and 17.51 min 

respectively), corresponding to quinoneimine(s) of diclofenac, doubly-conjugated to 

GSH, where no (DG-5), one (DG-6) or two (DG-7) chlorine atoms have been 

displaced. Addition of GSTs to the incubations did not significantly change the GSH 

adduct levels observed.  

tr m/z Structure RLM M11his GSH 
adducts    - GSTs + GSTs - GSTs + GSTs 
CG-1 16.75 632.2 Cloza+SG 100± 5 118 ± 60 100± 2 104 ± 20 
CG-2 17.23 632.2 Cloza+SG 100± 2 101 ± 8 100± 1 107 ± 8 
CG-3 16.30 618.2 Cloza-CH2+SG - - 100± 3 87 ± 18 
CG-4 17.01 618.2 Cloza-CH2+SG - - 100± 2 113 ± 21 
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Table 4. GST effects on the metabolism of diclofenac.      
 
 

 

 

 

 

 

 
 

LC-MS analysis of the GSH adducts of diclofenac produced by RLM and BM3 mutant M11his. Peak 
areas were determined in the corresponding extracted ion chromatograms. Areas of the GSH adducts in 
the incubations without GSTs were arbitrary set to 100 % and changes after addition of 94 μg/ml GSTs 
were determined (± standard deviation of the differences). tr is in minutes; m/z corresponds to the mass 
of the protonated molecule [M+H]+ and possible GSH adduct structures are proposed. Absence (-) of 
the GSH adduct is indicated in the table. 
 
 

Bioactivation of carbamazepine 

Carbamazepine was metabolized to three GSH adducts of m/z 560.2 [M+H]+ by RLM 

(CAG-1, CAG-2 and CAG-3; tr 18.23, 17.50 and 16.95 min respectively; Table 5). 

These adducts most likely originate from epoxide intermediates of carbamazepine 

that have been coupled to GSH. This is in agreement with previous data from 

literature [19, 31]. Addition of GSTs to the incubation mixture did not affect the levels 

of CAG-1 but significantly increased the amounts of CAG-2 and CAG-3 formed (1.9- 

and 3.4- fold higher respectively; Table 5). 

In absence of GSTs, only two of the GSH adducts described above (CAG-1 and 

CAG-2; Table 5) were found in M11his incubations. But, interestingly, when GSTs 

were added to the incubations, a third GSH adduct was detected which most likely 

correspond to CAG-3 previously observed in the RLM incubations (Figure 2). 

Comparatively, amounts of CAG-1 and CAG-2 were not significantly affected by the 

addition of GSTs to the M11his incubations. 

tr m/z Structure RLM M11his GSH 
adducts    - GSTs + GSTs - GSTs + GSTs 

DG-1 20.18 617.1 Diclo+O+SG 100 ± 2 99 ± 9 100 ± 1 90 ± 9 

DG-2 20.78 617.1 Diclo+O+SG 100 ± 4 123 ± 11 100 ± 5 91 ± 21 

DG-3 20.22 583.1 Diclo+O+SG-HCl 100 ± 3 142 ± 40 100 ± 2 85 ± 28 

DG-4 20.32 617.1 Diclo+O+SG - - 100 ± 4 167 ± 55 

DG-5 18.74 922.1 Diclo+O+2xSG - - 100 ± 4 90 ± 39 

DG-6 18.16 888.1 Diclo+O+2xSG-HCl - - 100 ± 1 86 ± 27 

DG-7 17.51 854.1 Diclo+O+2xSG–2xHCl - - 100 ± 2 96 ± 24 
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Table 5. GST effects on the metabolism of carbamazepine. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LC-MS analysis of the GSH adducts of carbamazepine produced by RLM and BM3 mutant M11his. Peak 
areas were determined in the corresponding extracted ion chromatograms. Areas of the GSH adducts in 
the incubations without GSTs were arbitrary set to 100 % and changes after addition of 94 μg/ml GSTs 
were determined (± standard deviation of the differences). tr is in minutes; m/z corresponds to the mass 
of the protonated molecule [M+H]+ and possible GSH adduct structures are proposed. Absence (-) and 
presence (+) of the GSH adduct is indicated in the table. Statistically-significant changes are depicted 
as: * p-value < 0.05; ** p-value < 0.01 and # GSH adduct only formed in presence of GSTs. 
 
 

 

 
 
Figure 2. GSH adducts of carbamazepine. LC-MS analysis of the GSH adducts of carbamazepine in 
P450 BM3 mutant M11his incubations. Extracted Ion Chromatograms of m/z 560.2 are presented: (A) 
carbamazepine incubation performed without GSTs; (B) carbamazepine incubation performed with 94 
μg/ml GSTs; (C) carbamazepine incubation performed with 94 μg/ml GSTs and 1 mM of EA and (D) 
GSH adduct originating from CE. 
 
 

tr m/z Structure RLM M11his GSH 
adducts    - GSTs + GSTs - GSTs + GSTs 
CAG-1 18.23 560.2 Carb+O+2H+SG 100 ± 2 81 ± 9 100 ± 3 91 ± 5 

CAG-2 17.50 560.2 Carb+O+2H+SG 100 ± 5 191 ± 26 * 100 ± 2 98 ± 13 
CAG-3 16.95 560.2 Carb+O+2H+SG 100 ± 4 343 ± 40 ** - + # 
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Incubations with carbamazepine 10,11-epoxide (CE) were performed to identify 

some of the GSH adducts of carbamazepine. By co-elution, we found that the major 

CAG-1 adduct in carbamazepine incubations originates from CE (Figure 2). Previous 

data from literature described the formation of two GSH adduct diastereoisomers 

when reacting CE with GSH [32]. This discrepancy most likely reflects differences in 

chromatic systems and suggests that CAG-1 may actually consist of two GSH adduct 

diastereoisomers. Consequently, CAG-2 and CAG-3 must originate from arene 

oxides located on the side rings of carbamazepine (Figure 3). Although conjugation 

of CE to GSH occurred to some extent spontaneously, GSTs were also found to 

significantly catalyze this reaction (3.5- fold increase; Figure 4B).  

 

 

 
 
Figure 3.  GSH adducts of carbamazepine and GST effects with rat enzymes. 
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Ethacrynic acid (EA) significantly inhibited the observed GST effects. In M11his 

incubations, a concentration of 0.5 mM EA decreased CAG-3 levels by 80% whereas 

1 mM of EA totally inhibited the formation of this adduct (Figure 2 and Figure 4). 

CAG-1 and CAG-2 levels were not significantly affected by EA (Figure 4). The 

catalytic effect of GSTs in the formation of CAG-1 in CE incubations was also fully 

inhibited by EA (Figure 4). No evaluation could be performed in RLM incubations 

since EA appeared to inhibit the rat liver P450s at both concentrations (data not 

shown). 

 

 
Figure 4. GST and EA effects on the GSH adducts of carbamazepine: (A) in M11his carbamazepine 
incubations; (B) GSH adduct CAG-1 in incubations performed with CE. Incubations with GSH only 
(GSH; set arbitrary to 100%); with GSH and 94 μg/ml GSTs (GSH + GSTs); with GSH, 94 μg/ml GSTs 
and 0.5 mM EA (GSH + GSTs + EA 0.5); with GSH, 94 μg/ml GSTs and 1.0 mM EA (GSH + GSTs + EA 
1.0) and control incubation performed without GSH (No GSH) are depicted in the figures. 
 
 
M11his was found to be more active than RLM in producing CAG-1 and CAG-2 (10- 

and 1.7-fold higher, respectively; Figure 5). Interestingly, catalytic effects of GSTs 

were only observed for the minor GSH adducts (e.g. CAG-2 and CAG-3 in RLM 

incubations and CAG-3 in M11his incubations; Figure 5). The formation of the major 

CAG-1 GSH adduct was only catalyzed by GSTs in CE incubations. This apparent 

inconsistency may originate from the different concentrations and/or types of RIs 

present in both enzymatic systems. It is indeed likely that the high levels of the 10,11-
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epoxide intermediate present in CE incubations has triggered GSTs to catalyze its 

conjugation to GSH. However, in a more physiologically-relevant situation (e.g. 

carbamazepine incubations), GSTs appear to have a higher affinity for arene oxide-

type of intermediates than for CE.  

Finally, and as for the other compounds under study, varying the GSH concentration 

(1 mM or 5 mM; final concentrations) did not significantly change the GST effects 

observed in carbamazepine incubations (data not shown).  

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 5. GST effects on the GSH adducts of carbamazepine produced by RLM and P450 BM3 mutant 
M11his. Relative amounts of GSH adducts are presented in the figure (with standard deviations of the 
differences) in incubations performed with and without 94 μg/ml GSTs. Levels of GSH adducts are 
compared after setting arbitrary the amounts of CAG-1 produced by RLM without GSTs as reference 
(100%). Statistically-significant changes are depicted as: * p-value < 0.05; ** p-value < 0.01 and # GSH 
adduct only formed in presence of GSTs. 
 

Discussion 

Although previous clinical studies suggest that GSTs could be involved in the 

detoxification of reactive metabolites of drugs involved in adverse and idiosyncratic 

drug reactions, as yet few in vitro studies have been performed to confirm these 

observations. The aim of this study was therefore to investigate if GSTs can catalyze 

the coupling of RIs of drugs to GSH, and thereby increase GSH adduct levels in in 

vitro incubation mixtures. Five model compounds were chosen based on previous 

studies indicating bioactivation towards RIs, covalent binding to proteins and/or 

because they have been associated with ADRs.    
 
For most compounds under study, we found that the presence of rat GSTs had little 

effect on GSH adduct levels. Previous reports, however, showed that GSH 
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conjugation of the reactive metabolite of APAP (NAPQI) can be catalyzed by GSTs 

[13]. These discrepancies can be explained by the very different experimental 

conditions used in both studies. While Coles et al. monitored GST activities in a very 

short time-frame by stopped-flow kinetics using synthetic NAPQI, low GSH 

concentrations (0.1 mM) and low pH (6.5); we have investigated the role of GSTs in 

catalyzing GSH adduct formation in enzymatic incubations performed for a longer 

period of time, with physiologically-relevant pH value (pH 7.4) and GSH 

concentration (5 mM). In their discussion, Coles et al. finally concluded that at 

physiological concentrations, rapid non-enzymatic reaction of NAPQI with GSH 

would predominate [13]. This is in agreement with our observations. 
 
Interestingly, we found that GSTs catalyzed the GSH conjugation of arene oxide 

intermediates of carbamazepine (CAG-2 and CAG-3; Table 5 and Figure 3). 

Comparatively, levels of the major GSH adduct CAG-1, originating from the stable 

10,11-carbamazepine epoxide, were not affected by GSTs in carbamazepine 

incubations. Several reactive metabolites and GSH adducts of carbamazepine have 

been identified previously [19, 32-34] and GSTs were already suggested to play a 

protective role by decreasing covalent binding levels to mouse microsomal proteins 

in vivo [14]. Interestingly, Pirmohamed et al. proposed that arene oxides, more than 

the stable 10,11-carbamazepine epoxide, may be the chemical reactive metabolites 

responsible for carbamazepine-induced IDRs [34]. In view of this, our results may 

indicate that GSTs could play a significant protective role by catalyzing the 

conjugation of these reactive arene oxide intermediates with GSH. 
 
Consequently, this may also suggest that variations in GST activities, possibly from 

genetic polymorphisms, could have an impact on individual susceptibilities towards 

the drug. This may be in line with the observation that GST M1 null genotype was 

found to be a risk factor in carbamazepine-induced hepatotoxicity in humans [12]. 

One major limitation of our study, however, is the lack of human data and the 

resulting difficulties related to interpreting and extrapolating in vitro animal data to 

human clinical observations. It is indeed known that the relative amounts and 

activities of GST enzymes are species-dependent and may thus give rise to 

significant inter-species differences in susceptibility to toxic effects of xenobiotics [3]. 

In order to perform accurate human risk assessments, knowledge of the differences 

and similarities of the enzymes involved in bio(in)activation processes is very 

important. This was highlighted for example for aflatoxin B1, where significant species 



 Chapter 3 

 103

differences were found both in the bioactivation and in the detoxification pathways of 

the chemical [35]. 
 
In summary, the role of GSTs in catalyzing the coupling of RIs of drugs to GSH 

seems to be highly substrate-dependent and most likely depends on the type and/or 

levels of intermediates involved. Indeed, while GSTs significantly increased GSH 

adduct levels in carbamazepine incubations, no catalytic effects were observed in 

APAP, AMAP, clozapine or diclofenac incubations. Glutathione concentrations might 

have been too high to fully discriminate enzymatic versus non-enzymatic GSH 

conjugation reactions. Additionally, experiments with human enzymes and/or purified 

GST isoforms are required to further confirm clinical observations and to validate the 

potential impact of GST genetic polymorphisms in ADRs. More generally, it should be 

emphasized that in addition to mercapturic acids, many other thioether adducts 

derived from GSH-conjugates may be formed and excreted in urine (e.g. cysteine S-

conjugates, 3-mercaptopyruvic acid S-conjugates, 3-mercaptolactic acid S-

conjugates, methylthioether compounds, etc). The relative amounts of these products 

will depend on the specific activities of more than 15 enzymatic systems which may 

also play a role in detoxification and bioactivation mechanisms of xenobiotics [3].  
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Abstract 

Trimethoprim (TMP) is a widely used antibacterial agent that is usually considered as 

a safe drug. TMP has, however, been implicated in rare adverse drug reactions 

(ADRs) in humans. Bioactivation to a reactive iminoquinone methide intermediate 

has been proposed as a possible cause for the toxicity of the drug. However, little is 

known about the cytochromes P450 (P450s) involved in this bioactivation and in the 

metabolism of TMP in general. In this study, we have investigated the metabolism 

and bioactivation of TMP by human liver microsomes (HLM), rat liver microsomes 

(RLM), by recombinant human cytochromes P450, and by the bacterial P450 BM3 

mutant M11his. In addition to non GSH-dependent metabolites, five GSH adducts 

were identified in the HLM incubations. Next to two major GSH adducts probably 

originating from the iminoquinone methide intermediate described previously, three 

minor GSH adducts were also identified, indicating that other types of reactive 

intermediates are formed by HLM, such as ortho-quinones and para-quinone methide 

intermediates. The major GSH adducts were produced by P450 1A2 and P450 3A4, 

while the minor GSH adducts were mainly formed by P450 1A2, P450 3A4 and P450 

2D6. Although preliminary, these results might indicate that genetic polymorphisms in 

P450 enzymes could play a role in the onset of TMP-related ADRs in humans. 
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Introduction 

Trimethoprim (TMP) is a broad-spectrum antibacterial agent that is frequently used in 

combination with sulphonamides as the combined drug cotrimoxazole [1].  Although 

generally considered safe, cotrimoxazole has also been involved in rare but severe 

adverse drug reactions (ADRs) in humans [2-8]. Of the two components of 

cotrimoxazole, hypersensitivity reactions were thought to be related to the 

sulphonamide component due to its bioactivation to a reactive nitroso metabolite [7]. 

However, skin rashes (i.e. toxic epidermal necrolysis) and neutropenia reactions 

have also been reported when TMP is used alone [9-11]. Therefore, it was 

hypothesized that the combination of two drugs with intrinsic bioactivation potential 

might explain the increased risks in developing cotrimoxazole-induced ADRs. 
 
As summarized in Figure 1, it has been shown that TMP is biotransformed to several 

metabolites by human and rat enzymes. O-demethylation of TMP, yielding the 3’-OH-

TMP and 4’-OH-TMP metabolites, is the major metabolism route in rats and in 

humans [12-14]. O-demethylated metabolites can be further conjugated to glucuronic 

acid by phase II enzymes, yielding the corresponding glucuronides [12]. Minor 

metabolism pathways include N-oxidation of TMP yielding TMP-1-N-oxide (1-NO-

TMP) and TMP-3-N-oxide (3-NO-TMP). Hydroxylation of the methylene carbon of 

TMP to Cα-OH-TMP, with further oxidation to the carbonyl metabolite, has also been 

reported [12-15]. Next to the stable metabolites mentioned above, Lai et al. have 

shown that TMP can also be bioactivated by human and/or rat liver microsomes 

(HLM and/or RLM) to a reactive iminoquinone methide intermediate that can be 

trapped by N-acetyl cysteine (NAc) [16] (Figure 1). It was proposed that the formation 

of this reactive metabolite might be responsible for the TMP-induced ADRs observed 

in humans. 
 
So far, however, no information is available on the individual human cytochrome 

P450 enzymes (P450s) involved in this bioactivation pathway and in the oxidative 

metabolism of TMP in general. Inhibition studies with selective marker substrate 

reactions of specific human cytochrome P450 isoforms have only shown that TMP is 

a strong and relatively selective inhibitor of P450 2C8 [17]. In this study, we have 

therefore investigated the oxidative metabolism of TMP by HLM, RLM, recombinant 

human P450 enzymes, and the cytochrome P450 BM3 mutant M11his (M11his). The 

bacterial P450 BM3 mutant was previously shown to bioactivate several drugs to 

higher amounts of reactive intermediates than mammalian P450s, which facilitated 
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their identification and structural elucidation [18]. Experiments with recombinant 

human P450 enzymes were performed to identify the enzymes involved in the 

metabolism and/or bioactivation of TMP. Bioactivation of TMP to reactive metabolites 

was evaluated by detecting and characterizing the corresponding GSH adducts by 

LC-MS/MS analysis [19]. Incubations with rat liver glutathione S-transferases (GSTs) 

were performed to assess the effect of GSTs on GSH adduct levels. Ultimately, 

results from these experiments will be discussed in the perspective of TMP-induced 

ADRs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Scheme of the known human and rat metabolism of TMP. A scheme of the known metabolites 
of TMP originating from in vitro and/or in vivo experiments is presented in the figure. The proposed 
reactive intermediate of TMP is depicted in brackets and the corresponding NAc adducts are presented 
as described in ref [16]. 
 

Material and Methods 

Enzymes and plasmids 

Control RLM were prepared according to the standard protocol used in our laboratory 

[20]. The bacterial P450 BM3 mutant M11his (M11his) was prepared and purified as 

described in [18]. Pooled HLM were obtained from BD GentestTM (Cat. No.: 452161). 

Recombinant human cytochrome P450 enzymes P450 1A2, P450 2C9, P450 2D6 
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and P450 3A4 were prepared as described in [21]. Expression of human recombinant 

P450 2E1 was done as described in [22]. Recombinant human P450 2C8 and P450 

2C19 were purchased from BD Gentest (Cat. No. 456252 and No. 456259, 

respectively). Rat liver GSTs were isolated as described in Chapter 3. 

Enzymatic incubations with HLM, RLM, recombinant human P450s and P450 
BM3 mutant M11his 

Incubations had a final volume of 250 μl and consisted of 100 mM potassium 

phosphate buffer (pH 7.4), 500 μM TMP (in DMSO) and 5 mM GSH. Final DMSO 

concentrations in the incubations were always below 1%. A final protein 

concentration of 1 mg/ml HLM or RLM was used in the incubations. Incubations with 

recombinant human P450 enzymes (P450 1A2, P450 2C8, P450 2C9, P450 2C19, 

P450 2D6, P450 2E1 and P450 3A4) were performed with a final P450 concentration 

of 250 nM and incubations with the P450 BM3 mutant with 250 nM of purified M11his. 

Reactions were initiated by the addition of 2 mM NADP(H) and were incubated for 60 

minutes at 37°C for the HLM, RLM and recombinant P450s and at 24°C for M11his. 

To differentiate high- vs low-affinity enzymes, incubations with recombinant human 

P450s were also performed for 20 minutes at a final TMP concentration of 50 μM. To 

assess the effects of GSTs on GSH adduct levels, RLM and M11his incubations were 

performed as described above with and without GSTs (final protein concentration: 94 

μg/ml; final specific activity: 5.4 μmol prod/min/mg prot). Incubations were 

subsequently terminated with 250 μl cold methanol.  Samples were centrifuged to 

remove precipitated protein (4000 rpm, 15 minutes), and the supernatants were 

analysed by LC-MS/MS. Control incubations in absence of enzymes were performed 

to determine which peaks represent metabolites. To establish which of the 

metabolites are GSH adducts, control incubations in the absence of GSH were also 

performed. 
 
A large-scale incubation of trimethoprim with RLM was performed to determine 

amounts of TMP metabolites. Briefly, 100 μM TMP was incubated with 1 mg/ml RLM, 

5 mM GSH and 2 mM NADP(H) (final concentrations) in a total volume of 5 ml 100 

mM potassium phosphate buffer (pH 7.4). Incubations were performed at 37°C for 3 

hours and were subsequently stopped with 10 ml of cold methanol. Proteins were 

removed by centrifugation (15 minutes at 4000 rpm), and the supernatant was dried 

overnight under N2. The sample was reconstituted in 1.25 ml of 20% acetonitrile (in 

H2O) and analyzed by LC-UV/MS. On the basis of the assumption that the extinction 

coefficient of TMP and its metabolites are similar at 254 nm, amounts of metabolites 
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in the RLM incubation were assessed by determining peak areas in the UV 

chromatogram. Levels of metabolites present in the HLM incubation were 

subsequently extrapolated from the MS data. Amounts of metabolites (depicted in 

parentheses in Table 1) are expressed as percentages relative to the total amount of 

metabolites present in the incubation (100%).  

Analytical methods 

Metabolites were separated by reversed-phase liquid chromatography using a C18 

column from Phenomenex (Luna 5μ, 150 x 4.6 mm). The following gradient was used 

at a flow rate of 0.4 ml/min: from 0 to 5 minutes, isocratic at 0% solvent B; from 5 to 

30 minutes, linear increase from 0 to 100 % solvent B; from 30 to 35 minutes, linear 

decrease from 100 to 0 % solvent B and re-equilibration at 0 % solvent B from 35 to 

40 minutes. Solvent A consisted of 1% acetonitrile, 98.8% H2O and 0.2% formic acid; 

solvent B consisted of 98.8% acetonitrile, 1% H2O and 0.2% formic acid. Samples 

were analyzed on two LC-MS instruments. Metabolites were identified on the IT-TOF 

LC-UV/MS instrument (Shimadzu). Full MS analysis was performed with electrospray 

ionisation (ESI) in the positive mode. The interface voltage was 5 kV, the nebulizer 

gas flow (N2) was 1.5 l/min, and the heated block temperature was 200°C. The LC-

MS solution software package from Shimadzu was used to determine peak areas of 

the metabolites in the corresponding extracted ion chromatograms. Accurate mass 

data allowed us to propose structures on the metabolites detected in the incubation 

mixtures. MS/MS experiments were performed to further characterize the GSH 

adducts of TMP. Experiments were performed with an isolation width of 2.0, a 

collision energy of 25% and an ion accumulation time of 10 msec. UV detection was 

performed using a Shimadzu SPD20A UV detector set at 254 nm. Full MS analysis 

and MS/MS experiments were also performed on the LCQ Deca LC-MS instrument 

(Thermo Finnigan) in the positive mode using ESI. N2 was used as sheath gas (60 

psi) and auxiliary gas (10 psi), the needle voltage was 5 kV, and the heated capillary 

was at 150°C. MS/MS experiments were performed with an isolation width of 2.0, a 

collision energy of 25%, an activation energy of 0.25, and an activation time of 30 

msec. Injection volumes were 40 μl, and inter-experimental variation of the LC-MS 

systems was always below 5%. 
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Results and Discussion 

Biotransformation of trimethoprim by HLM 

TMP was first incubated with HLM to identify its main metabolites and 

biotransformation pathways. All incubations were analysed with the IT-TOF LC-MS 

instrument, allowing accurate mass data to be obtained (Table 1). The relative error 

of “measured” vs “calculated” m/z values for each metabolite and/or GSH adduct was 

always below 5 ppm and therefore supports the identity of the metabolites proposed 

in Table 1. 
 
HLM produced eleven metabolites of which five were dependent on the presence of 

GSH (Table 1). Two metabolites (TMP-1 and TMP-2; Table 1) with m/z 277.130 

[M+H]+ correspond to O-demethylated TMP. This is in agreement with previous data 

from literature [14] and, by analogy, we assumed that TMP-1 and TMP-2 most likely 

correspond to 3’-OH-TMP and 4’-OH-TMP, as depicted in Figure 1. Three 

metabolites with m/z 307.140 [M+H]+ correspond to oxygenated TMP (TMP-3, TMP-4 

and TMP-5; Table 1). Similarly, three oxygenated metabolites have been reported 

previously in humans [14, 15]. Accordingly, we postulated that TMP-3 and TMP-4 

correspond to the N-oxides and the minor TMP-5 metabolite to α-OH-TMP (Figure 1). 

HLM also produced a metabolite with m/z 263.115 [M+H]+ (TMP-6; Table 1). This m/z 

might correspond to double O-demethylated trimethoprim. Double O-demethylation 

can take place either on the 3’- and 4’- and/or on the 3’- and 5’- positions of TMP, 

yielding the structures proposed in Figure 2.  
 
In presence of GSH, five GSH-dependent metabolites were observed in the HLM 

incubations (Table 1). Two GSH adducts with m/z 596.213 [M+H]+ and/or m/z 

298.610 [M+2H]2+ indicate that TMP has been coupled to GSH (TMPG-1 and TMPG-

2; Table 1). MS/MS experiments were performed with the LCQ and IT-TOF LC-MS 

instruments to confirm and further characterize these GSH adducts. The 

fragmentation pattern of the TMPG-1 and TMPG-2 adducts was similar (Table 2). 

The fragments observed with the LCQ LC-MS system were as follows: m/z 596 

[M+H]+; m/z 578 [loss of H2O]; m/z 486 [loss of the pyrimidine ring of TMP]; m/z 467 

[loss of the glutamyl moiety of GSH]; m/z 357 [m/z 486 – glutamyl moiety of GSH] 

and m/z 289 [iminoquinone methide intermediate]. The major fragment in the MS/MS 

spectra (m/z 289) is the iminoquinone methide intermediate originating from the loss 

of the whole GSH moiety. On the IT-TOF LC-MS system, the major iminoquinone 
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methide fragment (m/z 289.130) and fragments originating for the peptide moiety of 

the GSH adducts were found (m/z 179.049 and m/z 130.049). This fragmentation 

pattern is consistent with that of two N-acetyl cysteine adducts previously described 

by Lai et al.; where the major fragment is the iminoquinone methide intermediate 

originating from the loss of the whole NAc moiety. Therefore, we postulate that 

TMPG-1 and TMPG-2 are adduct diastereoisomers originating from the reactive 

iminoquinone methide intermediate described in [16] and where the GSH moiety is 

attached on Cα of TMP (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Scheme of the proposed human metabolism of TMP. Scheme of the possible in vitro human 
metabolites of TMP. Metabolites and/or GSH adducts proposed in this study are highlighted in 
rectangles; while possible reactive metabolites of TMP are depicted in brackets. Human P450 isoforms 
involved in the metabolite formation are also indicated in the figure.  
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Table 2. Fragmentation pattern of the GSH adducts of TMP. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Characteristics of the electrospray product ion spectra of the GSH adducts of TMP obtained on the LCQ 
and IT-TOF LC-MS instruments. m/z corresponding to the protonated molecule1 [M+H]+; diprotonated 
molecule2 [M+2H]2+ and/or of the protonated fragments are presented. Non-detected adducts are also 
indicated (ND). When measured on the IT-TOF LC-MS instrument, relative errors (in ppm) of “calculated 
exact mass” versus “measured mass” are indicated. Elemental compositions and possible structures of 
the protonated molecules and/or fragments are shown in the table. 
 
 
 
 
 
 

GSH 
adducts 

m/z (di)protonated molecule and 
fragments 

Elemental 
composition 

Proposed structure 

 LCQ IT-TOF   

TMPG-1 596.11  C24H33N7O9S [M+H]+ 

  298.6122 (2.3 ppm) C24H33N7O9S [M+2H]2+ 

 577.9  C24H31N7O8S Loss H2O 

 486.3  C20H28N3O9S Loss pyrimidine ring of TMP 

 467.0  C19H26N6O6S Loss glutamyl moiety of GSH 

 357.2  C15H20N2O6S m/z 486 - glutamyl moiety of GSH 

 289.1 289.132 (5.5 ppm) C14H17N4O3 Loss GSH: iminoquinone methide 

  179.049 (2.8 ppm) C5H11N2O3S [cysteinylglycine+H]+ 

  130.049 (0.1 ppm) C5H8N1O3 [pyroglutamic acid+H]+ 

TMPG-2 596.11  C24H33N7O9S [M+H]+ 

  298.6132 (4.7 ppm) C24H33N7O9S [M+2H]2+ 

 578.0  C24H31N7O8S Loss H2O 

 486.0  C20H28N3O9S Loss pyrimidine ring of TMP 

 356.9  C15H20N2O6S m/z 486 - glutamyl moiety of GSH 

 289.1 289.130 (4.8 ppm) C14H17N4O3 Loss GSH: iminoquinone methide 

  179.048 (0.6 ppm) C5H11N2O3S [cysteinylglycine+H]+ 

  130.049 (0.8 ppm) C5H8N1O3 [pyroglutamic acid+H]+ 

TMPG-3 ND 568.1871 (8.1 ppm) C22H29N7O9S [M+H]+ 

  439.139 (1.8 ppm) C17H22N6O6S Loss glutamyl moiety of GSH 

TMPG-4 598.11 598.1881 (7 ppm) C23H31N7O10S [M+H]+ 

  299.5992 (4.3 ppm) C23H31N7O10S [M+2H]2+ 

 580.1  C23H29N7O9S Loss H2O 

 523.0  C21H26N6O8S Loss glycine moiety of GSH 

 469.1 469.149 (2.6 ppm) C18H24N6O7S Loss glutamyl moiety of GSH 

 325.0  C13H16N4O4S [TMP+O-CH2+SH]+ 

TMPG-5 ND 285.5832 (4.9 ppm) C21H27N7O10S [M+2H]2+ 

  130.051 (8.5 ppm) C5H8N1O3 [pyroglutamic acid+H]+ 

  179.048 (2.2 ppm) C5H11N2O3S [cysteinylglycine+H]+ 

TMPG-6 ND 285.5842 (0.4 ppm) C21H27N7O10S [M+2H]2+ 

  130.049 (1.5 ppm) C5H8N1O3 [pyroglutamic acid+H]+ 
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On the IT-TOF LC-MS system, one GSH adduct with m/z 284.595 [M+2H]2+ was 

observed in the HLM incubations (TMPG-3; Table 1). However, because of the low 

amounts of conjugates, TMPG-3 could not be detected on the LCQ LC-MS 

instrument, and the fragmentation pattern on the IT-TOF LC-MS instrument only 

showed the loss of the glutamyl moiety of GSH (m/z 439.139; Table 2). Accurate 

mass data of both the protonated molecule and fragment might indicate that TMP 

has been doubly O-demethylated and conjugated to GSH. Double O-demethylation 

of TMP may lead to a catechol metabolite (TMP-6) that can be activated to reactive 

ortho-quinone and para-quinone methide intermediates that can react with GSH and 

lead to GSH adduct TMPG-3 (Figure 2). 
 
Two GSH adducts with m/z 285.583 [M+2H]2+ were also identified in the HLM 

incubation (TMPG-5 and TMPG-6; Table 1). This m/z might correspond to 

oxygenated and triple O-demethylated TMP coupled to GSH. Levels of TMPG-5 and 

TMPG-6 were, however, too low to obtain representative MS/MS spectra with the 

LCQ LC-MS instrument. On the IT-TOF LC-MS instrument, only fragments 

originating from the peptide moiety of the adducts were observed (m/z 130.050 and 

m/z 179.048; Table 2). These adducts might derive from reactive ortho-quinone and 

para-quinone methide intermediates originating from multiple O-demethylation 

reactions of TMP (Figure 2). However, considering the multiple metabolic reactions 

needed to obtain these adducts, it is likely that TMPG-5 and TMPG-6 only represent 

in vitro experimental artefacts that would be of little relevance for in vivo situations. 

Biotransformation of trimethoprim by RLM and P450 BM3 mutant M11his 

RLM produced the same metabolites as HLM but at different levels (Table 1). The O-

demethylated metabolites TMP-1 and TMP-2 were produced at more than 3-fold 

higher levels compared to HLM. The N-oxidative metabolites of TMP (TMP-3 and 

TMP-4) were produced in approximately 2-fold higher levels compared to HLM while 

Cα-OH-TMP (TMP-5) was present in significantly lower amounts (5 times lower; 

Table 1). The double O-demethylated metabolite TMP-6 was produced in 1.8-fold 

higher levels compared to HLM. All GSH-dependent metabolites formed by HLM 

were also observed in the incubations with RLM, except for TMPG-5 which was not 

produced by the rat enzymes. Significantly higher amounts of TMPG-3 were 

produced by RLM (520 times higher; Table 1). TMPG-1 and TMPG-2 were formed in 

approximately 2-fold higher levels than HLM. In contrast, only small amounts of 

TMPG-6 were present in the RLM incubations (Table 1).  
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Recently, we have demonstrated that a mutant of the bacterial cytochrome P450 

BM3 enzyme (M11his) was able to convert drugs to similar metabolites as rat and 

human enzymes but at significantly higher levels [18]. To investigate whether M11his 

is also able to produce large amounts of TMP metabolites, TMP incubations with 

M11his were also performed. It was found that M11his was able to metabolize TMP to 

13 metabolites (Table 1). The amounts of metabolites produced, however, were in 

general only slightly higher than those observed in HLM incubations. The single O-

demethylated metabolites of TMP (TMP-1 and TMP-2) were produced in higher 

levels than HLM (factors of 1.8 and 4.6, respectively; Table 1). M11his also formed the 

two N-oxide metabolites (TMP-3 and TMP-4) but not the Cα-OH-TMP metabolite 

TMP-5. TMP-3 was present in higher levels (1.6 times higher than HLM), whereas 

TMP-4 was formed in significantly lower amounts by M11his. TMP-6 was produced in 

5-fold lower levels compared to HLM. Additionally, three novel metabolites were 

observed in the incubations with M11his. Two metabolites with m/z 323.135 [M+H]+ 

(TMP-7 and TMP-8; Table 1) most likely correspond to double oxygenated 

metabolites of TMP. The third novel metabolite with m/z 293.124 [M+H]+ might 

correspond to oxygenated and O-demethylated TMP (TMP-9; Table 1). 
 
Next to non-GSH-dependent metabolites, M11his also produced four of the five GSH 

adducts that were formed by HLM (Table 1). TMPG-1 and TMPG-2 were produced at 

2.2 and 1.5 times higher levels than HLM, respectively. TMPG-5 and TMPG-6 were 

formed in similar amounts as with HLM, while TMPG-3 was not found in the M11his 

incubations. The BM3 mutant also generated a unique GSH adduct with m/z 299.601 

[M+2H]2+ (TMPG-4; Table 1). Accurate mass measurements indicate that this adduct 

could correspond to oxygenated and O-demethylated TMP coupled to GSH. The 

fragmentation pattern observed with the LCQ LC-MS system is consistent with this 

structure: m/z 598 [M+H]+; m/z 580 [loss of H2O]; m/z 523 [loss of the glycine moiety 

of GSH]; m/z 469 [loss of the glutamyl moiety of GSH] and m/z 325 [TMP+O-

CH2+SH] (Table 2). On the IT-TOF LC-MS instrument, only one fragment was 

observed originating from the loss of the glutamyl moiety of the GSH adduct (m/z 

469.149; Table 2). This GSH adduct might originate from a reactive para-quinone 

methide intermediate of TMP, as described previously for TMPG-3, TMPG-5 and 

TMPG-6. 

Addition of GSTs to RLM and M11his incubations did not significantly alter GSH 

adduct levels (data not shown). 
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Quantification of TMP metabolites in microsomal incubations 

Because metabolite levels produced on analytical scale were too low to be detected 

by UV, a large-scale incubation of TMP with RLM was performed, and relative 

amounts of TMP metabolites were determined based on their UV absorbance at 254 

nm. When assuming that the extinction coefficient of the metabolites at this 

wavelength is comparable, it is estimated that about 15% of TMP is metabolized by 

RLM after 3 hours of incubation (Table 1). TMP-1 and TMP-2 were identified as 

major metabolites representing 23 and 59% of total TMP metabolites, respectively. 

This is in agreement with previous studies where O-demethylation of TMP was also 

shown to be the major oxidative pathway in rats [12, 13]. The oxygenated 

trimethoprim metabolites TMP-3 and TMP-4 represented 9 and 6% of the total 

amounts of metabolites. TMP-5, TMP-6, TMPG-1 and TMPG-2 are all minor 

metabolites roughly accounting for 3% of total metabolites. Levels of TMPG-3 and 

TMPG-6 could not be quantified because they are below the limit of detection by UV.  
 
When compared to RLM, HLM produce the same oxidative TMP metabolites at 

approximately the same percentages (Table 1). Only TMP-5 was found to be 

produced at significantly higher levels by HLM when compared to RLM, 6.5 vs 0.5% 

of total TMP metabolites. On the basis of our data, GSH adducts accounted for 

approximately 1.5% of total TMP metabolites. It can therefore be concluded that 

bioactivation and GSH adduct formation only represent a minor metabolism pathway 

of TMP in rats and in humans. 

Incubations with recombinant human P450s 

Incubations were performed with different recombinant human P450s to determine 

which P450 isoforms are involved in the oxidative metabolism of TMP. First, TMP 

was incubated at a final concentration of 500 μM for 60 minutes. Using these 

conditions, several P450s were able to produce the same metabolites as observed in 

the HLM incubations (Table 3). To discriminate between possible high-affinity vs low-

affinity enzymes, incubations were also performed at a final TMP concentration of 50 

μM, since this concentration was previously shown to be physiologically relevant [17]. 

Although at lower concentrations, the same metabolism pattern was observed.   
 
Consistently, it was found that all the P450 isoforms tested formed the major O-

demethylated metabolites (TMP-1 and TMP-2; Table 3). P450 2C19 and P450 2D6 

showed the highest activity in producing TMP-1, while P450 2D6 had the highest 

activity in generating TMP-2. P450 1A2 and P450 2E1 were mainly responsible for  
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the formation of TMP-3 and P450 1A2 for the production of TMP-4. None of the 

enzymes tested was able to generate TMP-5. P450 2D6 mainly produced the double 

O-demethylated metabolite TMP-6. Regarding GSH-dependent metabolites, P450 

1A2 and P450 3A4 appear to be the enzymes responsible for the production of 

TMPG-1 and TMPG-2 (Table 3). P450 3A4 also generated TMPG-5 and TMPG-6. 

Next to P450 1A2, P450 2D6 showed to be a major enzyme involved in the formation 

of TMPG-3 (Figure 2). 

Conclusions 

The aim of this study was to investigate the metabolism of TMP by different P450s 

and to determine the types of reactive intermediates formed by characterizing the 

corresponding GSH adducts. Consistently, we found that next to six stable 

metabolites, trimethoprim is metabolized to five GSH-dependent metabolites by HLM 

(Table 1 and Figure 2). The major GSH adducts (TMPG-1 and TMPG-2) most likely 

originate for the iminoquinoneimine intermediate of TMP previously described in [16]. 

Interestingly, the other GSH adducts (TMPG-3, TMPG-5 and TMPG-6) probably 

derive from other reactive metabolites such as ortho-quinones and para-quinone 

methide intermediates most likely originating from O-demethylation reactions of TMP. 

For instance, TMPG-3 might result from GSH conjugation of a reactive intermediate 

originating from oxidation of the novel double O-demethylated metabolite TMP-6 

(Figure 2). 
 
When considering the different expression levels of cytochromes P450 in human liver 

[23], it is likely that P450 3A4 will be the major enzyme involved in the generation of 

most stable TMP metabolites. P450 1A2 and P450 3A4 will mainly contribute to the 

formation of reactive intermediates of TMP (Table 3). Interestingly, P450 2D6 is also 

involved in the formation of both the TMP-6 and TMPG-3 metabolites (Table 3). As 

this enzyme is known to be polymorphic in humans [24], one can speculate that 

variations in P450 2D6 activities might alter levels of (reactive) metabolites of TMP, 

and thereby influence risks in developing ADRs [25]. 
 
Previous work has also highlighted inter-species differences in the metabolism of 

TMP towards non-GSH-dependent metabolites [14, 15]. This is in agreement with our 

observations. Rat enzymes were generally found to be more efficient than HLM in 

metabolising TMP, except for TMP-5 and TMPG-6 (Table 1). Noticeably, TMPG-3 

was formed in significantly higher levels by RLM compared to HLM (520-fold higher) 

and TMPG-5 was not produced by rat enzymes (Table 1).  
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This indicates that significant inter-species differences in the bioactivation of TMP are 

also taking place and suggests that rats might not constitute a representative model 

for risk assessment purposes in the case of TMP.  
 
In summary, we have shown that TMP is bioactivated by HLM to multiple reactive 

intermediates that might contribute to the observed ADRs in humans. While this 

represents a minor metabolism pathway, these reactions seem to partly rely on 

polymorphic enzymes. Although no clear relationship between genetic 

polymorphisms and the onset of ADRs has been shown until now [25, 26], this study 

suggests that variations in cytochrome P450 enzyme activities could be one factor 

amongst multiple others predisposing to TMP-induced ADRs. 
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Abstract 

Covalent binding of reactive electrophilic intermediates to proteins is considered to 

play an important role in the processes leading to adverse drug reactions and 

idiosyncratic drug reactions. Consequently, both for the discovery and the 

development of new drugs, there is a great interest in sensitive methodologies that 

enable the detection of covalent binding of drugs and drug candidates in vivo. In this 

work, we present a strategy for the generation and analysis of drug adducts to 

human serum albumin. Our methodology is based on the isolation of albumin from 

blood, its digestion to peptides by pronase E, and the sensitive detection of adducts 

to the characteristic cysteine-proline-phenylalanine (CPF) tripeptide by liquid 

chromatography/tandem mass spectrometry. We chose acetaminophen (APAP) as a 

model compound because this drug is known to induce covalent binding to proteins 

when bioactivated by cytochromes P450 to its reactive N-acetyl-p-

benzoquinoneimine metabolite. First, by microsomal incubations of acetaminophen in 

presence of CPF and/or intact albumin, in vitro reference adducts were generated in 

order to determine the mass spectrometric characteristics of the expected CPF 

adducts and to confirm their formation upon pronase E digestion of the alkylated 

protein. When applying this methodology to albumin isolated from blood of patients 

exposed to APAP, we were indeed able to detect the corresponding CPF adducts. 

Therefore, this strategy could be seen as a potential biomonitoring tool to detect in 

vivo reactive intermediates of drugs and drug candidates, e.g. in the preclinical and 

clinical development phase. 
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Introduction 

Although much effort has been made in the development of predictive animal models 

useful for the early assessment of toxicity of drugs and drug candidates, the 

prediction of drug toxicity in humans stays difficult. While some adverse drug 

reactions (ADRs) can be predicted from preclinical safety studies, others are 

idiosyncratic in nature and only show up after the drug has been introduced 

introduced on the market. These idiosyncratic types of drug reactions can lead to 

severe, in some cases fatal, toxicities in several organs, in particular the liver, skin 

and blood [1, 2]. 
 
Even though the underlying mechanisms of most ADRs are as yet poorly understood, 

formation of reactive metabolites is considered to be a major trigger in the cascade of 

events leading to these adverse events [3]. Drugs can be bioactivated both by phase 

I and by phase II enzymes to reactive electrophilic intermediates, which subsequently 

react with nucleophilic sites in macromolecules to form covalent adducts to proteins 

[4, 5]. Covalent binding to proteins with subsequent inactivation of enzymes and/or 

disruption of cellular signaling processes are events that are thought to be related to 

the onset of ADRs [5]. By serving as haptens, drug-protein adducts may also trigger 

the auto-immune reactions which are often observed in case of idiosyncratic drug 

reactions (IDRs) [6, 7].  
 
As reviewed by Caldwell and Zhou [8, 9], different methodologies are used for the 

detection of adducts resulting from the formation of reactive intermediates. Briefly, 

these methods involve in silico screening of potentially toxic motives in molecules, 

the use of small nucleophilic trapping agents followed by mass spectrometric 

analysis of adducts formed in vitro and mechanism-based inhibition of cytochrome 

P450. An estimation of the levels of total covalent binding to proteins, in vitro and/or 

in vivo, can eventually be obtained by using radio-labeled drugs in animal 

experiments. However, because extrapolation of animal data to evaluate potential 

risks in humans stays complicated [2, 10], there is still a need for sensitive and 

selective methods for the assessment of covalent binding to proteins in vivo in 

humans. In the present study, a recently developed liquid chromatography/tandem 

mass spectrometry (LC-MS/MS) methodology will be applied to monitor covalent 

binding of acetaminophen (APAP) to the blood protein albumin. 
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The concept of using blood protein adducts as biomarkers of human exposure to 

electrophilic compounds dates back to the 1970’s and was originally applied for the in 

vivo monitoring of occupational exposures to reactive, potentially genotoxic, 

compounds [11, 12]. Consistently, adducts to human serum albumin (HSA) have 

been found in populations exposed to several environmental contaminants [13-16]. 
 
The aim of the present study is to evaluate the applicability of a recently developed 

LC-MS/MS methodology for the in vivo biomonitoring of reactive drug metabolites to 

the blood protein albumin. This methodology, which has been applied successfully 

for the biomonitoring of exposure of humans to chemical warfare agents [17, 18], is 

based on the digestion of albumin by pronase E and subsequent selective detection 

of covalent adducts to the tripeptide cysteine34-proline-phenylalanine (CPF) by LC-

MS/MS. Cysteine34 is the only free thiol-group in HSA and is capable of reacting with 

electrophiles. In this work, we evaluated the applicability of this methodology for the 

monitoring of reactive drug metabolites using APAP as model compound. At 

therapeutic doses, APAP is primarily metabolized by phase II enzymes to stable 

glucuronic acid and sulfate conjugates. A small proportion of the drug is bioactivated 

by cytochromes P450 to a reactive N-acetyl-p-benzoquinoneimine (NAPQI) 

intermediate that under normal conditions is detoxified by conjugation to glutathione 

(GSH) [19-21]. When taken in overdoses, the high levels of NAPQI produced will 

deplete the GSH stores resulting in strongly increased covalent binding to liver 

proteins, oxidative stress and ultimately to severe hepatotoxicity [22].  
 
We propose a general strategy which consists of the biosynthesis of reference 

adducts to CPF and albumin to determine the mass spectrometric characteristics of 

the CPF-adducts and to determine whether pronase E treatment of alkylated albumin 

is able to generate the corresponding CPF-adducts (Figure 1). The analytical 

procedure was subsequently applied for the measurement of adducts in the blood of 

humans exposed to high doses of APAP. 
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Figure 1. Scheme of the strategy proposed for the generation and detection of drug adducts to HSA. 
 

Material and Methods 

Materials 

Pronase E (protease from Streptomyces griseus, Type XIV, 3.4.24.31), GSH 

(reduced glutathione, 98%) and NAc (N-acetyl-L-cysteine, 98%) were purchased 

from Sigma (Deisenhofen, Germany). NADPH-tetrasodium salt was obtained from 

AppliChem BioChemica (Darmstdadt, Germany). Amicon Ultra-4 (10-kDa molecular 

mass cutoff) centrifugal filters were purchased from Millipore (Bedford, USA). The 

HiTrapTM Blue HP affinity columns (1 ml; prepacked with blue Sepharose high 

performance, with Cibacron Blue F3G-A as the ligand) and the PD-10 columns 

(containing 10 ml of Sephadex G 25 material) were obtained from Amersham 

Biosciences (Uppsala, Sweden). The Acrodisc LC polyvinylidene difluoride filters 

(0.45 µm, 25 mm) were obtained from Waters Corporation, and the Strata-X columns 

(33 µm Polymeric Sorbent) were from Phenomenex. β-Naphthoflavone-induced rat 

liver microsomes (RLM) were prepared according to the standard protocol of our 

laboratory [23]. Control human blood was obtained from healthy volunteers, and 

blood samples from patients overdosed with APAP were provided to us by Dr. D. 
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Touw (Apotheek Haagse Ziekenhuizen in The Hague, The Netherlands). Blood 

sampling was performed using 3.5 or 7 ml vacuum containers without anticlot or gel. 

Blood samples were subsequently centrifuged at 3000g in order to separate plasma 

from erythrocytes. The obtained plasma was stored at -70°C until further analysis. 

Sampling for aspartate transaminase (AST) and alanine aminotransferase (ALT) 

analyses was generally performed using heparin gel tubes. Analysis was performed 

after a centrifugation step, within 30 minutes after sampling. Human plasma exposed 

to perdeuterated sulfur mustard was used as internal standard to control the 

digestion procedure and to quantify the peptide adducts, and was prepared as 

described in [24]. All other chemicals were of the highest grade and were obtained 

from standard providers.   

Instrumentation 

LC/electrospray (ES)-MS(/MS) analyses were conducted on a Q-TOF™ hybrid 

instrument (Micromass, Altrincham, UK) equipped with a standard Z-spray™ ES 

interface (Micromass) and an Alliance, type 2690 liquid chromatograph (Waters, 

Milford, MA). The chromatographic hardware for this system consisted of a pre-

column splitter (type Acurate; LC Packings, Amsterdam, The Netherlands), a six-port 

valve (Valco, Schenkon, Switzerland) with a 50 µl injection loop mounted, and a 

PepMap C18 column (15 cm x 1 mm i.d., 3-µm particles; LC Packings). A gradient of 

solvent A (H2O with 0.2% formic acid) and B (acetonitrile with 0.2% formic acid) was 

used to achieve separation, following: 100% A (at time 0 min, 0.1 ml/min flow) to 

100% A (at 5 min, 0.6 ml/min flow) to 30% A and 70% B (at 60 min, 0.6 ml/min flow). 

The flow delivered by the liquid chromatograph was split pre-column to allow a flow 

of approximately 40 µl/min through the column and into the ES-MS interface. The Q-

TOF was operated at a cone voltage of 20 to 30 V, using nitrogen as the nebulizer 

and desolvation gas (at a flow of 20 and 400 l/h, respectively). MS/MS product ion 

spectra were recorded using a collision energy between 20 and 30 eV, with argon as 

the collision gas (at an indicated pressure of 10-4 mBar).  

Standard tripeptide assay 

Adducts to HSA were analyzed using a slightly modified methodology that has been 

described previously [24]. Briefly, human blood was first centrifuged and the obtained 

plasma (500 µl) was diluted with 2 ml of buffer A (50 mM KH2PO4, pH 7.00). To 

control the procedure and to allow the quantification of the peptide adducts in the 

human serum samples, the samples were spiked with 50 µl of an internal standard 

consisting of plasma isolated from human blood exposed to 100 µM of perdeuterated 
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sulfur mustard gas. The pronase E digest of albumin alkylated with perdeuterated 

sulfur mustard gas is known to produce the characteristic d8-S-(2-

hydroxyethylthioethyl)-Cys-Pro-Phe (d8-HETE-CPF) adduct, as has been described 

in [24]. The samples were then filtered with 0.45 µm Acrodisc filters, and the albumin 

was subsequently isolated from the filtrate using HiTrapTM Blue HP affinity columns. 

These columns were firstly conditioned with 10 ml of buffer A. The whole sample 

(2.55 ml) was then applied on the columns and washed with 10 ml of buffer A. Elution 

took place with 3 ml of buffer B (50 mM KH2PO4 with 1.5M KCl). The HiTrap columns 

were regenerated by washing with 10 ml of buffer A. PD-10 columns were used to 

desalt the obtained albumin fractions. After equilibration of the PD-10 columns with 

25 ml of 50 mM NH4HCO3, the samples were applied on the columns (3 ml) and 

eluted with 3 ml of the same bicarbonate buffer. The digestion procedure of the 

desalted albumin solution with pronase E was as follows: 100 µl of a freshly prepared 

pronase E solution (10 mg/ml stock solution in aqueous 50 mM NH4HCO3) was 

added to 750 µl of the albumin fraction (in 50 mM NH4HCO3). After 2 hours of 

incubation at 37ºC, the mixture was passed through molecular mass cutoff filters (10 

kDa) under centrifugation at 2772 x g in order to remove the enzyme. Under these 

conditions, pronase E digestion of albumin adducts is optimized [17, 24]. The filtrate 

was subsequently analyzed by LC-MS/MS. If not analyzed immediately, all samples 

were stored at -20°C until analysis.  

Synthesis and purification of NAPQI-CPF adducts 

The reactive metabolite of APAP, NAPQI, was synthesized according to a previously 

described method [25]. Briefly, fresh silver oxide was prepared by adding a silver 

nitrate solution (170 mg in 10 ml H2O) to a solution of potassium hydroxide (100 mg 

in 18 ml H2O). The mixture was left for 15 minutes on ice in order to yield the highest 

amounts of the silver oxide precipitate. After filtration of the solution and three 

washing steps with acetone, the obtained silver oxide powder was added to a 

solution of APAP (10 mg in 10 ml of chloroform). This reaction mixture was stirred at 

room temperature for 1 hour in order to obtain 10 ml of a yellowish NAPQI solution 

(in chloroform). A portion of this NAPQI solution (2 ml) was filtered, evaporated to 

dryness by rotaevaporation at room temperature, and further taken-up in 10 µl of 

acetonitrile. This concentrated NAPQI solution was then reacted with 100 µl of 

synthetic CPF tripeptide solution (stock concentration 2.5 mM in 50 mM NH4HCO3) in 

a total volume of 1.5 ml of a 30% acetonitrile solution (in bicarbonate buffer). After 2 

hours of reaction at 37ºC, the sample was measured by LC-MS/MS. LC-MS/MS 

analysis of the reaction mixture showed the presence of a product having the 
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molecular mass of the expected NAPQI-CPF adduct (Figure 2). The product ion 

spectrum of this protonated molecule (m/z 515.18 [M+H]+) had characteristic 

fragments at m/z 497.18 ([M+H]+- H2O), m/z 350.11 (b2), m/z 322.13 (a2), m/z 263.16 

(y2’’), m/z 225.07 (a1), m/z 208.06 (a1-NH3), m/z 166.06 (y1’’), m/z 152.07 [APAP+H]+ 

and m/z 120.07 (immonium ion of phenylalanine).  

 
Figure 2. Electrospray product ion spectrum of the NAPQI-CPF adduct. The reference NAPQI-CPF 
adduct was obtained from the reaction of synthetic NAPQI with synthetic tripeptide CPF. The 
electrospray product ion spectrum of the adduct (m/z 515.18; [M+H]+) was obtained with a collision 
energy of 24 eV.    
 
 
To further characterize the NAPQI-CPF product and to enable quantification of 

NAPQI-CPF in patient samples, a large scale synthesis was performed. APAP (32 

mg) was oxidised to NAPQI in 75 ml chloroform, as described above, and stirred 

vigorously for 2 hours at room temperature with 25 mg CPF in 30 ml 100 mM 

potassium phosphate buffer (pH 7.4). The resulting water phase was isolated and 

washed three times with a mixture of chloroform/isopropanol (3:1 v/v) in order to 

remove excess NAPQI and lipophilic side products. The water phase was 

subsequently dried overnight by nitrogen stream. The residue was taken up in 1 ml of 

10% acetonitrile and applied to preparative HPLC to purify NAPQI-CPF-adducts. 
 
The preparative HPLC consisted of a Luna C18 column (250 x 10 mm; 5 µm 

particles) eluted at a flow-rate of 2 ml/min.  A gradient of solvent A (1% 

acetonitrile/0.2% formic acid/98.8% water) and B (99% acetonitrile/0.2% formic 
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acid/0.8% water) was used to achieve separation of analytes. The gradient used 

started at 15% B (0 minutes) and was followed by a linear increase to 25% B (50 

minutes). Peaks absorbing at 254 nm were collected and screened for presence of 

NAPQI-CPF by LC-MS.  Two peaks at 21.9 (minor, 5%) and 23.6 minutes (major, 

95%) were shown to contain NAPQI-CPF. The fractions containing purified NAPQI-

CPF were pooled, dried by nitrogen stream and taken up in 500 µl deuterium oxide. 

The 1H-NMR spectrum was recorded on a Bruker MSL 400 system operating at 

376.43 Hz.  The 1H-NMR-spectrum of the major NAPQI-CPF-isomer was consistent 

with a NAPQI-CPF adduct, although protons could not be assigned individually 

because of the complexicity and overlap of the 1H-NMR-signals. Because aromatic 

protons of the phenylalanine-residue interfere with the signals of the APAP-residue, 

the position of the thioether-bond could not be assigned.  1H-NMR-spectrum: 6.8-7.6 

ppm (aromatic protons; multiplet; 8H), 3.8-4.5 ppm (methine protons of 

phenylalanine, cysteine and proline; multiplet; 3H), 2.8-3.55 ppm (methylene protons 

of phenylalanine and cysteine; four methylene protons of proline; multiplet; 8H), 1.65-

2.3 ppm (two methylene protons of proline and acetyl protons of APAP; multiplet; 

5H). The concentration of the minor NAPQI-CPF-isomer was too low to obtain a good 
1H-NMR-spectrum.  
 
To calibrate the concentration of NAPQI-CPF-solution, difluoroacetic acid (final 

concentration 720 µM) was added to the solution of NAPQI-CPF and analysed by 1H-

NMR. Difluoroacetic acid was selected as internal standard because its signals 

(triplet at 5.82 ppm, 2JFH 51 Hz) do not interfere with the signals of NAPQI-CPF. By 

integrating the signals of aromatic protons of NAPQI-CPF ([8H]) and that of 

difluoroacetic acid ([1H]), the concentration of the NAPQI-CPF solution was 

estimated to be 650 µM. This solution was used for the quantification of NAPQI-CPF 

adducts formed by pronase E treatment of patient samples. 

Incubation of synthetic NAPQI in human plasma 

The synthetic NAPQI solution described above was used to expose human plasma to 

the reactive alkylating compound. In these experiments, 3 ml of the NAPQI solution 

(in chloroform) was evaporated to dryness by rotaevaporation at room temperature 

and further taken-up in 10 µl of acetonitrile. The concentrated NAPQI solution was 

then reacted with 2 ml of human plasma for 2 hours at 37ºC. Subsequently, 500 µl of 

that incubation mixture was diluted with 2 ml of buffer A and spiked with 50 µl of the 

internal standard. The sample was consistently passed through the Acrodisc filter 

and the albumin was isolated on the HiTrap column as described above. The albumin 
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fraction was then desalted on PD-10 columns and 750 µl of that filtrate were treated 

with pronase E for 2 hours at 37ºC. After a centrifugation step with the molecular 

mass cutoff filters, the filtrate was analyzed by LC-MS/MS. 

Microsomal incubations of APAP in presence of synthetic CPF 

Microsomal incubations of APAP and CPF had a final volume of 500 µl and were 

conducted at 37ºC in a heated shaking water bath. The incubation occurred in a 100 

mM KH2PO4 buffer (pH 7.4) and the mixture was composed as follows (in final 

concentrations): 1 mM of APAP, β-naphtoflavone-induced RLM (2 mg protein/ml), 

and 1 mM of the synthetic Cysteine–Proline-Phenylalanine (CPF) tripeptide solution. 

After 5 minutes of pre-incubation, the co-factor NADP(H) (final concentration 2 mM) 

was added to the mixture, and the samples were incubated for 1 hour at 37ºC. After 

the incubation time, the samples were placed on ice, and 200 µl of 2.00 M HClO4 

was added in order to stop the incubations and precipitate proteins. The samples 

were vortexed and kept on ice for 5 additional minutes. The tubes were subsequently 

centrifuged for 15 minutes at 4000 rpm and a 400-µl aliquot of the supernatant was 

neutralized by the addition of an equal volume of K2HPO4 1.00 M. The samples were 

vortexed, centrifuged again for 15 minutes at 4000 rpm, and the supernatant was 

analyzed by LC-MS/MS. An incubation performed without APAP was processed in 

parallel and served as control. 

Microsomal incubations of APAP in presence of human plasma 

Microsomal incubations of APAP in human plasma were performed similarly as 

described above. Briefly, 75 µl of APAP (20 mM stock in H2O) and 150 µl of RLM (10 

mg of protein/ml stock) were added to 500 µl of human plasma. After 5 minutes of 

pre-incubation at 37ºC, 150 µl of NADP(H) (10 mM stock in 100 mM KPi buffer, pH 

7.4) was added to the incubation mixture. The mixture was incubated for 1 hour at 

37ºC. After the incubation time, 2 ml of buffer A and 50 µl of the internal standard 

were added to the samples. The albumin isolation, pronase E digestion, and peptide 

filtration steps were performed similar to the procedure described for the exposure of 

human plasma to synthetic NAPQI. The samples were subsequently analyzed by LC-

MS/MS. Incubation performed without substrate served as control.  

Analysis of human serum samples 

Consistently, 500 µl of human serum of patients exposed to high levels of APAP was 

diluted with 2 ml of buffer A and the samples were spiked with 50 µl of the internal 

standard. The rest of the procedure was similar to that described earlier. Blood from 
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healthy volunteers, not being exposed to either APAP or NAc, was taken as control 

and processed in parallel. 
 
Initial measurements of the patient’s blood samples revealed a significant 

background signal interfering with the expected NAPQI-CPF adducts. Therefore, to 

increase the sensitivity in the albumin adduct detection, the protocol was slightly 

adapted by including a solid phase extraction step in the procedure. The human 

serum samples were analyzed with the modified protocol as follows. After isolation 

and desalting of albumin as described above, 300 µl of a fresh pronase E solution 

(10 mg/ml) was added to approximately 2 ml of the albumin solution. After 2 hours of 

incubation at 37ºC, the samples were centrifuged at 2772 x g to eliminate the excess 

of enzyme. The freshly digested samples were acidified with TFA (final concentration 

0.1% TFA) and Strata X columns were used for the solid phase extraction procedure. 

The columns were first activated with 10 ml of methanol and then equilibrated with 10 

ml of 100% H2O with 0.1% TFA. The samples were applied on the column and 

subsequently eluted with 2-ml fractions of 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 

100% acetonitrile solutions containing 0.1% TFA. These different fractions were 

collected, freeze-dried, taken-up in 120 µl of 100 % H2O with 0.2% formic acid and 

analyzed by LC-MS/MS. The NAPQI-CPF adducts were eluted by the 30% 

acetonitrile/0.1% TFA fraction.  
 
To quantify NAPQI-CPF-adducts formed by pronase E treatment of albumin, the 

albumin fractions isolated from the plasma samples were also spiked with 65 nmol of 

purified synthetical NAPQI-CPF (major isomer), prior to the treatment with pronase E.  

By measuring the increase in the ratio of the peak area of NAPQI-CPF to that of the 

internal standard (d8-HETE-CPF), the amount of NAPQI-CPF in the non-spiked 

albumin-fraction was estimated. 
 
To analyze small molecular weight adducts, the eluates obtained from the application 

of the serum samples on the HiTrap columns were collected, filtered with molecular 

mass cutoff filters (10 kDa) under centrifugation at 2772 x g and analyzed by LC-

MS/MS. 

Results 

Incubation of synthetic NAPQI with human plasma 

To assess whether NAPQI is also reactive towards the free cysteine34 residue of 

HSA and whether the pronase E digest of alkylated albumin is leading to the 
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formation of NAPQI-CPF, human plasma was incubated in vitro with freshly 

synthesized NAPQI. Full MS analysis was used to screen the fragments obtained 

after fragmentation of the selected molecular ion with an m/z of 515.2 [M+H]+. The 

reconstructed ion chromatogram of the summed ions corresponding to specific 

fragments of the synthetic adduct revealed the presence of two NAPQI-CPF adducts 

in the reaction mixture (Peak 1 and Peak 2 in Figure 3-A). Their product ion spectra 
were comparable to that of our reference adduct. Only slight differences in the 

fragmentation pattern of the two peaks were observed suggesting the formation of 

two regioisomeric NAPQI-CPF adducts (Figure 4). 

 

 
 
Figure 3. Analysis of NAPQI-CPF adducts ([M+H]+; m/z 515.2) generated in different in vitro systems. 
Ion chromatograms of summed ions: m/z 152.1, 208.1, 225.1, 322.1, 350.2 in (A) a pronase digest of 
alkylated HSA isolated from human plasma exposed to synthetic NAPQI, (B) an APAP microsomal 
incubation performed with synthetic CPF and (C) a pronase digest of alkylated HSA isolated from an 
APAP microsomal incubation performed in human plasma. 
 

Incubations of acetaminophen with rat liver microsomes 

Next to the chemical synthesis of the albumin and CPF-adducts of NAPQI, it was 

also investigated whether in vitro incubations of APAP in presence of albumin or CPF 

produced the same adducts. We therefore used β-Naphthoflavone-induced rat liver 

microsomes (RLM) to bioactivate APAP to NAPQI in a biological system. By 



  Chapter 5 

 139

performing incubations using synthetic CPF as trapping agent for NAPQI, two 

NAPQI-CPF adducts were found by LC-MS/MS analysis (Figure 3-B).  
 
When APAP was incubated with RLM in presence of human plasma, two NAPQI-

CPF adduct isomers were observed after pronase E digestion of the albumin fraction. 

The adducts had the same characteristic differences in their product ion spectra as 

observed in the products formed by synthetic NAPQI (Figure 3C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 4. Electrospray product ion spectra of two NAPQI-CPF adduct regioisomers ([M+H]+; m/z 515.2) 
with proposed structures: (A) NAPQI-CPF adduct corresponding to peak 1 in Figure 3 and (B) NAPQI-
CPF adduct corresponding to peak 2 in Figure 3. 
 
 
 

Analysis of human serum samples 

The developed methodology was applied to analyze blood of patients exposed to 

high levels of APAP. Three patients were selected with the characteristics presented 

in Table 1. Patient TOX 444 suffered from severe hepatotoxicity as indicated by 

increased plasma aspartate transaminase and alanine aminotransferase levels. The 

two other patients (TOX 438 and TOX 440) had normal plasma transaminase levels 

and were therefore considered to be in a nonhepatotoxic condition. 
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Table  1. Characteristics of the patients overdosed with acetaminophen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The table includes the ingested dose of APAP; the time after APAP intake; the blood concentration of 
APAP in time; whether the patient was treated with N-acetyl cysteine (NAc), and the levels of hepatic 
enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in time.  
 

 

Initially, the serum samples of these patients were analyzed with the standard 

tripeptide assay as described in [24]. However, by this assay no NAPQI-CPF adducts 

were observed in the sera of patients TOX 438 and TOX 440 as a result of 

background interference, whereas two weak NAPQI-CPF signals were found in the 

serum of patient TOX 444 (data not shown). By using the solid-phase extraction step 

in the procedure, it was found that the NAPQI-CPF peaks eluted in the 30% 

acetonitrile/0.1 % TFA fraction. The signal-to-noise ratio of the NAPQI-CPF signals 

was significantly increased using this clean-up step. Two NAPQI-CPF adducts were 

observed in the sera of patient TOX 444, and signals corresponding to the major 

NAPQI-CPF adduct were now also observed in the sera of patients TOX 438 and 

TOX 440. The product ion spectra of these adducts were identical to those obtained 

in our previous in vitro experiments. No NAPQI-CPF adducts were present in the 

control subjects (Figure 5). 
 
By spiking the isolated albumin fractions of patient TOX 444 with 65 nmol of synthetic 

NAPQI-CPF, before pronase E treatment, the amount of NAPQI-CPF in the pronase 

E digest was quantified. By comparing the peak areas of NAPQI-CPF in samples of 

patient TOX 444 with and without spiking with synthetic NAPQI-CPF, the amount of 

NAPQI-CPF in the unspiked sample was estimated to be 35 ± 15 pmol/ml serum. 

Based on the 10-fold lower peak areas in patient samples TOX 438 and 440 (Figure 

5), the levels of NAPQI-CPF in these serum samples are estimated to be 

approximately 3 to 4 pmol/ml serum. 

 

Patient APAP dose 
(g) 

Time after intake 
(h) 

[APAP] 
(mg/l) 

NAc 
treatment 

ALT (U/l) AST (U/l) 

TOX 438 12 5 130 Yes 11 12 

  23 4.5  n.d. n.d. 

TOX 440 10 2 150 No 16 30 

  4 92  n.d. n.d. 

TOX 444 40 16 12 Yes 373 3150 

  25 < 1  229 2282 

  31 < 1  194 1683 
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Figure 5. LC-MS/MS analysis of NAPQI-CPF adducts in human serum samples ([M+H]+; m/z 515.2). 
Ion chromatograms of summed ions: m/z 152.1, 208.1, 225.1, 322.2, 323.2, 351.2 in (A) the control 
subject, (B) patient TOX 438, (C) patient TOX 440 and (D) patient TOX 444. The analyses of the 23-, 4- 
and 25-h time point samples of patients TOX 438, 440, and 444 respectively, are shown in the figure.   
 

 

The eluates obtained during the albumin isolation step were also screened for the 

presence of other NAPQI-derived adducts. No GSH conjugates were observed in the 

human plasma samples.  However, very high amounts of NAPQI-cysteine (NAPQI-

Cys) and NAPQI-N-acetyl cysteine (NAPQI-NAc) adducts were found in the sera of 

these patients (Figure 6). Their specific fragmentation pattern confirmed the identity 

of these adducts of which the characteristics are presented in Table 2. 
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Figure 6. Analysis of NAPQI-NAc and NAPQI-Cys adducts in the human serum samples. LC-MS/MS 
analysis of (A) the NAPQI-Cys adduct ([M+H]+; m/z 271.1; ion chromatogram of summed ions: m/z 
140.0, 182.1) and (B) the NAPQI-NAc adduct ([M+H]+; m/z 313.1; ion chromatogram of summed ions: 
m/z 208.1, 271.1), with proposed structures, analyzed in the 4-h time point sample of patient TOX 440. 
 

 

 
Table 2. Characterization of the NAPQI-Cys and NAPQI-NAc adducts. 
 

 

 
 
 
 
 
 
 
 
 

 

Characteristics of the electrospray product ion spectra of the NAPQI-Cys and of the NAPQI-NAc 
adducts detected in the human serum samples. Product ion spectra’s were obtained with a collision 
energy of 15 eV. 
 

 

Adduct tr (min) Parent ion Fragments 
NAPQI-Cys 20.12 m/z 271.1 

[M+H]+ 
m/z 254.1 ([M+H]+-NH3); m/z 225.1 [F2]; m/z 208.1 
[F2-NH3]; m/z 182.1 [F1]; m/z 140.0 [F1-acetyl] 
 

NAPQI-NAc 26.02 m/z 313.1 
[M+H]+ 

m/z 271.1 [F1]; m/z 253.1 [F1-H2O]; m/z 225.1 [F1-
HCOOH]; m/z 208.1 [m/z 225.1-NH3]; m/z 182.1 
[F2]; m/z 166.1 [m/z 208.1-acetyl]; m/z 162 [F3]; 
m/z 140.1 [F2-acetyl] 
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Interestingly, another high signal was found in the pronase E digest of the isolated 

albumin fraction of patient TOX 444 suggesting that another albumin adduct is 

formed in vivo. The ion chromatogram of the protonated molecule (m/z 655.4; 

[M+H]+) is depicted in Figure 7A. The product ion spectrum of this ion showed 

characteristic signals at m/z 637.4 ([M+H]+ - H2O), m/z 527.3 (y3’’), m/z 490.3 (b3), 

m/z 393.2 (b2), m/z 375.2 (b2- H2O), m/z 347.2 (a2-H2O), m/z 263.2 (y2’’), m/z  230.1 

(b2-NAc), m/z 162.1 [NAc-H]+ and m/z 101.1 (a1). This fragmentation pattern is 

consistent with the Glutamine-CPF (QCPF) tetrapeptide, from which the cysteine34 

residue formed a mixed disulfide with N-acetyl cysteine (Figure 7B). This adduct was 

also found in the serum of patient TOX 438 but was absent in patient TOX 440. 

Because the formation of a tetrapeptide instead of the CPF tripeptide was surprising, 

we checked the enzymatic activity of pronase E by analyzing the internal standard 

that was systematically added to the serum samples. The expected d8-HETE-CPF 

tripeptide adduct was consistently found in the samples thereby confirming a correct 

activity of the protease (data not shown). The human samples were also screened for 

the possible formation of NAPQI-QCPF adducts but no signals corresponding to 

these adducts were observed suggesting a complete digestion towards NAPQI-CPF 

adducts and no missed cleavages. Eventually, the levels of the different adducts 

analyzed for each patient were found to be constant in time.  

Table 3 summarizes the different adducts identified in the human serum samples and 

gives a semi-quantitative overview of their relative concentrations.  

 
 
Table 3.  Overview of the adducts detected in the human serum samples. 
 

 

Levels of analytes are ranked as: very abundant (++++); abundant (+++); average (++); present (+); 
absent (-). Because levels are based on peak areas of summed ion chromatograms of each analyte, 
only levels from the same column should be compared.    
 

Patient APAP dose 
(g) 

NAc 
treatment 

NAPQI-CPF NAPQI-NAc NAPQI-Cys QCPF-NAc 

TOX 444 40 Yes ++ ++++ ++++ +++ 
TOX 440 10 No + ++++ ++++ - 
TOX 438 12 Yes + ++++ ++++ +++ 

Blank  0 No - - - - 
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Figure 7. Analysis of the QCPF-NAc adduct in the human serum samples. LC-MS/MS analysis of the 
QCPF-NAc adduct ([M+H]+; m/z 655.4) in a pronase digest of alkylated HSA isolated from the 25-h time 
point sample of patient TOX 444: (A) ion chromatogram of m/z 655.4 and (B) its product ion spectra with 
proposed structure. 
 
 



  Chapter 5 

 145

Discussion 

Predicting the potential of drugs and drug candidates to lead to adverse drug 

reactions in humans via electrophilic reactive intermediates is still a difficult and 

speculative task. Whereas the current way to assess this issue is usually to combine 

in vitro data on reactive intermediate formation with protein covalent binding studies 

in vivo in animals with radio-labeled drugs, extrapolation of these data to assess 

potential risks for humans remains complicated [2, 8]. In this study, we evaluated the 

use of albumin adducts as biomarkers of bioactivation of drugs to reactive 

metabolites in vivo in humans. An overall strategy for the generation and analysis of 

those adducts is proposed. The methodology used is based on LC-MS/MS analysis 

of covalent adducts to free cysteine34 residue of HSA by detecting an alkylated CPF 

tripeptide obtained after pronase E digestion of the protein. APAP was chosen as 

model compound to study this concept [22, 26].   
 
We have shown that microsomal incubations were able to generate the same 

albumin adducts as those obtained with synthetic NAPQI (Figure 3), indicating that 

the biosynthesis of reference adducts is possible. Therefore, this biosynthetic 

approach allows the development of sensitive and selective analytical methods for 

the detection of CPF adducts without the requirement for chemical synthesis of 

reference adducts. The NAPQI-CPF adducts observed had slightly different product 

ion spectra and consequently suggested the formation of two isomers. Based on 

literature, we assume that the major peak is most likely the 3’-NAPQI-S-CPF adduct 

because several studies have shown that conjugation of thiols to NAPQI 

predominantly takes place at the 3’-position of NAPQI [27-30]. As for the minor 

NAPQI-CPF adduct, two different products can be considered: a thioether ipso 

adduct and a 2’-NAPQI-S-CPF-adduct. Chen et al. [30] showed that the ipso-adduct 

was formed at slightly higher levels than the 2’-isomer, after reaction of NAPQI with 

GSH at pH 6. However, the ipso-adduct was shown to be highly unstable at lower 

pH, with a half live of 0.5 minutes at pH 4.  Because of the lengthy procedure, 

involving albumin isolation and pronase E digestion, and the fact that the solid phase 

extraction was performed at acid pH (~ pH 2), it seems unlikely that the minor 

NAPQI-CPF adduct will correspond to the ipso-adduct. Therefore, we propose that 

the minor NAPQI-CPF adduct corresponds to the 2’-regioisomer.  
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When applying the developed methodology to blood samples from patients exposed 

to high doses of APAP, the major NAPQI-CPF isomer was observed in all patients 

(Figure 5). The patient with severe hepatotoxicity, TOX 444, showed an 

approximately 10-fold higher level of NAPQI-CPF adduct when compared to the 

patients without hepatotoxicity. The minor NAPQI-CPF isomer could only be 

observed in the blood sample of patient TOX 444. To our best knowledge, this is the 

first time that two NAPQI-HSA adduct regioisomers have been observed in vivo in 

humans. The levels of NAPQI-CPF adduct present in the serum of patient 444 were 

estimated to be about 35 pmol/ml of serum. It has been reported previously, that 

significantly higher levels of NAPQI-protein adducts can be found in serum in patients 

showing severe hepatotoxicity in comparison with serum of patients without or with 

low hepatotoxicity [31, 32].  However, because a different methodology was used in 

these studies, measuring total NAPQI-Cys adducts after complete hydrolysis of 

whole serum, the levels of our NAPQI-CPF adducts were not compared quantitatively 

to the adduct levels reported previously. 
 
Besides the NAPQI-CPF adducts, very high levels of NAPQI-Cys and NAPQI-NAc 

adducts were found in the sera of all patients. These adducts probably originate 

either from the direct trapping of NAPQI by the antidote N-acetyl cysteine (NAc) 

and/or from the catabolism of corresponding GSH adducts [22, 33]. However, the fact 

that patient 440, who did not receive NAc, forms equal amounts of NAPQI-NAc 

suggests that the major amount may be derived from GSH adduct catabolism. The 

formation of the QCPF-NAc adduct can be explained by mixed disulfide formation 

between the cysteine thiol of HSA and NAc, as has been shown in vivo in the plasma 

of rats treated with NAc [34]. Because NAPQI is a strong oxidizing agent [20] and the 

formation of mixed disulfides is a known indicator of oxidation [35], the QCPF-NAc 

adduct could therefore be considered as a marker of oxidative stress. However, 

because human blood samples from patients exposed to NAc and not to APAP are 

not available, the precise impact of NAPQI on QCPF-NAc adduct formation could not 

be directly assessed.  
 
From the present results it is clear that, although the doses of acetaminophen were 

extremely high, the levels of NAPQI-HSA adducts in the human samples were 

unexpectedly low. One explanation may be the extensive mixed disulfide formation 

due to the oxidative properties of NAPQI that may have prevented the formation of 

NAPQI-CPF adducts by blocking the free cysteine34-thiol group of HSA. The fact that 

lower amounts of NAPQI-CPF adducts were observed in the blood of patient TOX 
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438, who ingested similar amounts of APAP than TOX 440 but was treated with NAc, 

might support this hypothesis. Another explanation is that alkylation is taking place to 

prealbumin in the liver and that the NAPQI-CPF adducts found in plasma result from 

the leakage of albumin adducts into the blood stream in cases of overt liver damage. 

This is consistent with the observation that much higher levels of NAPQI-CPF 

adducts were found in patient TOX 444, which showed high leakage of 

transaminases, in comparison to the adduct levels detected in patients TOX 438 and 

440. Figure 8 summarizes the proposed interaction between NAPQI and the various 

trapping reactions involved. 

 

 

 
 

 
Figure 8. General scheme proposing the different trapping reactions involved in the formation of the 
adducts detected in the human serum samples. 
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Previous methods that have been used in order to investigate covalent binding of 

APAP to proteins in vivo include several immunoassays [36-39] and the use of radio-

labeled APAP [19, 21, 28]. Still, these methods often lack the necessary sensitivity 

when concerning human serum samples [9]. More recently, a HPLC/electrochemical 

detection methodology was developed by Muldrew et al. [32]  to quantify covalent 

protein binding of APAP. The methodology involves the dialysis of serum protein 

samples, subsequent digestion with protease, and the measurement of the NAPQI-

Cys adducts formed. Although the sensitivity of the HPLC/electrochemical detection 

method was increased compared to the previously mentioned technologies, it 

remains a long and labor-intensive procedure. Comparatively, our LC-MS/MS 

methodology is quicker, sensitive, particularly selective and can provide precise 

structural information on the adducts formed to HSA as proven by the detection of 

two regioisomeric NAPQI adducts. This method also proved valuable to quantify the 

amounts of NAPQI-CPF adducts measured in the human serum samples. However, 

when the synthesis of the reference drug-CPF adduct is not possible, this 

methodology can already as such be applied for the retrospective and/or relative 

comparison of drug-albumin adduct levels between individuals. Eventually, the 

possibility of scanning for neutral losses corresponding to “non-drug related” 

fragments of drug-CPF adducts (e.g. the y2’’ fragment corresponding to the PF part 

of the drug-CPF adduct) would allow the detection of novel, yet uncharacterized, 

drug-protein adducts. 
 
In summary, we propose a generic strategy to assess the potential of drugs to be 

bioactivated to reactive electrophilic metabolites and to covalently bind to proteins in 

vivo (Figure 1). The strategy consists first in the biosynthesis of reference drug-

albumin adducts for method development purposes. This biosynthetic approach is of 

particular importance because the synthesis of reactive metabolites of drugs is 

generally not feasible. Second, the developed analytical methodology is applied in 

the “in vivo approach” where serum samples of patients exposed to the drug are 

analyzed for the presence of similar albumin adducts. Smaller adducts, such as N-

acetyl cysteine and cysteine adducts, can be measured as well hereby further 

confirming the bioactivation potential of the drug in vivo. While many adverse drug 

reactions seem not to be directly related to the concentration of the parent drug, it is 

likely that the onset of ADRs is related to the levels of reactive metabolites formed in 

vivo. Consequently, information on blood levels of “drug-protein adducts” will give an 

indication of the potential of a drug to be bioactivated to reactive electrophilic 

metabolites in vivo, and consequently on potential ADRs. Because of the fact that 
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HSA has a half-life of approximately 20 days, these drug-HSA adducts might 

accumulate in time. This could be of interest since IDRs usually have a delayed 

onset of occurrence and seem to take place essentially in patients taking a drug in 

relatively high doses, for a longer period of time. In this perspective, this strategy 

might also be seen as an in vivo dosimetry methodology to assess levels of covalent 

binding to proteins [40]. Consequently, this technology could constitute a potential 

biomonitoring tool that could improve the risk assessment of ADRs and IDRs of novel 

drugs and/or drug candidates. 
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Abstract 

A generic method for the detection of covalent adducts to the cysteine34 residue of 

human serum albumin (HSA) has been developed, based on an on-line combination 

of immunoaffinity chromatography for selective sample pre-treatment, solution phase 

digestion, liquid chromatography and tandem mass spectrometry. Selective anti-HSA 

antibodies immobilized on agarose were used for sample pre-concentration and 

purification of albumin from the chemically produced alkylated HSA. After elution, 

HSA and HSA adducts are mixed with pronase and directed to a reaction capillary 

kept at a digestion temperature of 70°C. The digestion products were trapped on-line 

on a C18 SPE cartridge. The peptides were separated on a reversed-phase column 

using a gradient of organic modifier and subsequently detected using tandem mass 

spectrometry. Modified albumin samples consisted of synthetically alkylated HSA by 

the reactive metabolite of acetaminophen, N-acetyl-p-benzoquinoneimine (NAPQI), 

and using the alkylating agent 1-chloro-2,4-dinitrobenzene (CDNB) as reference. The 

resulting mixture of alkylated vs non-modified albumin has been applied to the on-line 

system, and alkylation of HSA is revealed by the detection of the modified marker 

tetrapeptide Glutamine-Cysteine-Proline-Phenylalanine (QCPF) adducts NAPQI-

QCPF and CDNB-QCPF. Detection of alkylated species was enabled by the use of 

data comparison algorithms to distinguish between unmodified and modified HSA 

samples. The in-solution digestion proved to be a useful tool for enabling fast (less 

than 2 minutes) and reproducible on-line digestion of HSA. A detection limit of 1.5 

µmol/l of modified HSA could by obtained by applying 10 µl of NAPQI-HSA sample. 
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Introduction 

Covalent binding of reactive electrophilic metabolites of drugs to proteins has been 

suggested to be involved in the onset of serious adverse drug reactions (ADRs) and 

idiosyncratic drug reactions (IDRs) in humans [1]. Therefore, methods that can detect 

covalent adducts to proteins are of great interest for risk assessment purposes, e.g. 

during the development of novel drugs and/or drug candidates [2, 3]. Several 

methodologies exist for the quantitative and qualitative analysis of protein adducts 

[4]. Briefly, these methods consist first in the isolation of protein adducts with 

chromatographic and/or electrophoretic techniques (e.g. immunoaffinity 

chromatography, ion-exchange chromatography or HPLC), and the subsequent 

adduct analysis using immunological, radioactivity and/or mass spectrometry 

methodologies [5]. Although successful to some extent, these techniques usually 

remain labor-intensive and none of these answer the need for automated on-line 

isolation and detection of protein adducts.  
 
Recently, we have described a concept where human serum albumin (HSA) is used 

as an in vivo biomarker for bioactivation of drugs towards reactive intermediates and 

for covalent binding to proteins [6]. The methodology consists of the isolation of 

albumin from blood, its digestion with pronase and the LC-Tandem MS detection of 

alkylated and/or unalkylated peptides containing the free cysteine34 residue of HSA. 

This site is the only free cysteine residue of albumin and has already been shown to 

be alkylated by several electrophilic compounds [7-12].  
 
In the present paper we demonstrate the full automation of the mass spectrometric 

detection of covalent adducts to the cysteine34 residue of HSA, integrating several 

sample pre-treatment and separation steps. First, immunoaffinity chromatography 

(IAC) was performed for selective purification of albumin from the alkylated HSA 

samples using specific antibodies against human serum albumin. The modified and 

non-alkylated albumin was retained and concentrated by immobilized antibodies 

while matrix components (i.e. remains from the alkylation reaction) can be flushed to 

waste. Purified albumin was subsequently eluted using a low pH buffer and further 

digested using pronase which is known to form small peptides containing the 

cysteine34 residue of HSA [6]. In this way, adducts to cysteine34 could be monitored 

by LC-MS analysis on relatively small peptides. Pronase consists of a mixture of 

different enzymes, and cleaves in a relatively non-specific way compared to trypsin, 

chymotrypsin and pepsin. Recently, on-line digestion using immobilized enzyme 
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reactors (IMERs) has been reported in various research areas [13-16] and trypsin is 

most frequently applied for proteolysis. Developments and applications of IMERs 

immobilized with trypsin have been reviewed by Massolini et al. [17]. Using IMERs is 

a very elegant way to perform on-line digestion; the reactors are relatively stable and 

re-useable when used under suitable conditions. Although the first application of a 

pronase immobilized IMER has been shown recently by Temporini et al. [18], their 

applicability is limited by the ability to immobilize the proteolytic enzyme without 

affecting its activity. Furthermore, the validation and characterization of IMERs prior 

to application in quantitative protein bioanalysis is a delicate task. In the present 

paper, we report the use of an on-line, pre-column solution-phase digestion method 

that overcomes the need for immobilization. Recently, a comparable approach has 

been utilized in our group to perform in-flow digestion using pepsin for post-column 

digestion of protein mixtures [19]. We have integrated the solution-phase digestion 

module in an automated methodology that allows the detection of NAPQI-QCPF and 

CDNB-QCPF, i.e. two peptide-adducts formed after pronase digestions of HSA that 

previously was incubated with the chemically-produced reactive metabolite of 

acetaminophen (NAPQI) and with the direct alkylating agent CDNB (1-chloro-2,4-

dinitrobenzene).  

Material and Methods 

Reagents 

Sodium di-hydrogen phosphate, glycine hydrochloride, silver nitrate, human serum 

albumin, 1-chloro-2,4-dinitrobenzene, Tris base, Tris hydrochloride and pronase 

(protease type XIV from Streptomyces griseus, EC 3.4.24.31) were purchased from 

Sigma (Germany). Activity of the enzyme was 5.2 units per mg solid (units in amount 

of enzyme activity which will catalyze the transformation of 1 μmole of the substrate 

per minute under conditions given by the supplier). Disodium hydrogenphosphate 

was obtained from Fluka (Buchs, Switzerland) and sodium chloride and formic acid 

came from Riedel-de-Haën (Seelze, Germany). Acetonitrile, acetone, diethyl ether, 

chloroform, potassium chloride and hydrochloric acid (36-38%) were supplied by J.T. 

Baker (Deventer, The Netherlands). Water was purified by a Millipore (Bedford, MA, 

USA) Milli-Q unit. Sodium hydroxide was obtained from Merck (Darmstadt, 

Germany). A 2 liters stock of a 10-fold concentrated PBS buffer was made by 

dissolving 57.30 g of Na2HPO4·12H2O, 137.99 g of NaH2PO4, 175.30 g NaCl and 

4.03 g KCl in 2 liters of water. This stock was used to prepare the PBS by diluting 

100 ml of the concentrate with 900 ml of water. The resulting PBS buffer consists of 
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10 mM sodium phosphate, 150 mM sodium chloride and 3.4 mM potassium chloride. 

The pH was set to the required value with 8 M sodium hydroxide or hydrochloric acid.  

Synthesis of albumin adducts 

A general scheme of the synthesis of the reactive intermediate of acetaminophen 

(APAP), N-acetyl-p-benzoquinoneimine (NAPQI), and of the formation of NAPQI-

HSA adducts is depicted in Figure 1A. For the formation of NAPQI, fresh silver oxide 

was synthesized as follows [20]. While stirring, 50 ml of a 2 M sodium hydroxide 

solution was added to 12.5 ml of a 0.4 M silver nitrate solution. The reaction mixture 

was kept on ice and stirred for 30 minutes. Isolation of silver oxide was performed by 

filtration over a Büchner funnel and the product was subsequently washed with 60 ml 

water, 60 ml acetone and 60 ml diethyl ether. The freshly prepared silver oxide was 

added to 10 ml of a 6.6 mM acetaminophen solution in chloroform and purged with 

nitrogen. The glass vial was sealed and the solution was stirred for 1.5 hour at room 

temperature. After filtration of the mixture, 4 ml of the yellowish NAPQI solution was 

added drop wise under stirring to 5 ml of HSA (2.5 mg/ml) in PBS (pH 7.4). This 

mixture was stirred for 1 hour at room temperature. The layers were allowed to settle 

for 10 minutes and the water layer containing NAPQI-HSA was stored at -80°C until 

further analysis.  
 
As NAPQI can also react with other nucleophilic residues of HSA (e.g. lysines and 

histidines), the degree of alkylation of the free cysteine34 residue of NAPQI-HSA was 

assessed. Two HSA syntheses were performed in parallel as described above; one 

HSA solution (2.5 mg/ml) was reacted with 4 ml of NAPQI (in chloroform) and one 

HSA solution (2.5 mg/ml) with 4 ml of chloroform. After 1 hour of reaction, water 

layers were isolated and free thiols were determined using a modification of Ellman’s 

method [21]. Ellman reagent consisted in 10 mM DTNB in buffer 7.0 (100 mM 

NaH2PO4 containing 0.2 mM EDTA, adjusted to pH 7). Briefly, HSA samples were 

prepared in PBS (137 mM NaCl, 10.1 mM Na2HPO4, 1.76 mM KH2PO4 and 1 mM 

EDTA, adjusted to pH 7.4) by mixing 1000, 800, 600, 400, 200 and 0 μl of the HSA 

syntheses with PBS to a final volume of 1000 μl. Then, 200 μl of a strong buffer (100 

mM boric acid and 0.2 mM EDTA, adjusted to pH 8.2 with NaOH) and 20 μl of Ellman 

reagent were added to each HSA sample. The mixtures were immediately vortexed, 

incubated for 15 minutes at room temperature and the absorbance was read at 412 

nm (As) on a Pharmacin Biotech Ultrospec 2000 UV/Vis spectrophotometer. Control 

incubations consisted of incubations performed without HSA sample (Ap) and/or 
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without Ellman reagent (Aer). The amounts of free thiols in the samples were 

determined according to equation 1 [21]: 

Mol SH = 0.00122 L x (As-Ap-Aer) / (Δε412 x 1cm) (1) 

with Δε412 = 14150 M-1cm-1  

All measurements were performed in triplicate. 

It was found that both HSA (Abs = 0.0562 x [HSA] (in mg/ml)) and NAPQI-HSA 

samples (Abs = 0.0041 x [HSA] (in mg/ml)) gave a linear response in the dilution 

series described above (data not shown). Standard deviations were consistently 

below 1.5% absorbance units. From equation (1), the free thiol concentration 

measured in the HSA sample was determined to be 0.32 ± 0.002 mol SH/mol HSA, 

which is in agreement with previous data from literature [22]. The degree of alkylation 

of the cysteine34 residues of NAPQI-HSA was determined with the ratio of the slopes 

of HSA versus NAPQI-HSA. Consequently, it was found that NAPQI-HSA contained 

approximately 7.3% of free thiols compared to the HSA sample, which was set to 

100% as reference. This suggests that more than 90% of the cysteine34 residues of 

HSA have been alkylated by NAPQI and that the NAPQI-HSA synthesis can be 

considered as complete.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 1. Synthesis of HSA protein adducts. (A) Synthesis of NAPQI-HSA protein adduct: APAP is 
oxidized by silver oxide to the reactive NAPQI intermediate which can subsequently react with the free 
cysteine34 residue of HSA to from two possible adduct isomers. (B) Synthesis of CDNB-HSA protein 
adduct: CDNB reacts with the free cysteine34 residue of HSA to from the CDNB-HSA adduct.   
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The CDNB-HSA adduct was produced by reacting HSA with the direct alkylating 

agent 1-chloro-2,4-dinitrobenzene (CDNB). The reaction scheme is shown in Figure 

1B. Briefly, a total 80 µl of a 100 mM CDNB solution in methanol was added drop 

wise under continuous stirring to 1 ml of a 5 mg/ml solution of HSA in 100 mM Tris 

buffer (pH 8.0). The mixture was allowed to react for 4 hours at 40°C. The obtained 

yellowish solution was subsequently stored at -80°C until further analysis. 

Columns  

The immunoaffinity chromatography column was produced in-house (1.0 mm x 15 

mm I.D., peek material). Column frits were purchased from VICI AG international 

(peek alloyed with Teflon, PAT, 1/32” thick x 1/16” diameter, porosity 5 µm). 

Immunoaffinity material was used from the HSA removal kit purchased from 

Vivascience (Sartorius, Goettingen, Germany). This kit includes agarose slurry 

containing immobilized antibody fractions for specific removal of albumin from 

biological samples. The material (particle size, 45-185 µm) was used for on-line 

sample pre-treatment in this research. The column was filled with the anti-HSA 

agarose slurry using an in-house built packing device, which allows packing under 

low-pressure conditions. This packing device consisted of a column holder and a 

connector fitting with a common luer tip connection. Before packing, the column was 

closed on one end with a PAT frit. The column was packed with the slurry using a 1 

ml syringe and the excess of material was carefully removed. The column was closed 

using a second PAT frit, and subsequently placed into an in-house built column 

holder. The column was flushed with PBS (pH 7.4) for 20 minutes at a flow rate of 

0.040 ml/min. The SPE cartridge (C18, 5 µm particles, 2.0 mm x 4.0 mm I.D.), used 

for pre-concentration and desalination, and the analytical column (Luna C18 (2), 5 

µm particles, 2.0 x 150 mm I.D.) were both supplied by Phenomenex (Torrance, CA, 

USA).  

Apparatus 

IAC was performed with a binary pump (Agilent, Amstelveen, The Netherlands) in 

combination with a MUST multiport switch from Spark Holland (Emmen, The 

Netherlands) which was triggered using a contact closure of the same Agilent binary 

pump. Elution was done using a Gilson 302 (Middleton, WI, USA) pump and enzyme 

solution was delivered by a Knauer (Berlin, Germany) pump. Injection was done by a 

temperature controllable autoinjector from Agilent which was kept at 8°C. Continuous 

flow digestion was performed by using an in-house built tee-piece infusing both 

elution solution and pronase solution into a reaction capillary (PEEK, 
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polyetheretherketone) with an I.D. of 0.50 mm and an inner volume of 140 µl and 

was supplied by Bester BV (Amstelveen, The Netherlands). The reaction capillary 

was kept inside a column oven to control the digestion reaction temperature. Analysis 

of the reaction mixture was performed by switching the reaction capillary in-line with 

a SPE cartridge which was equilibrated by a second Agilent 1100 (Amstelveen, The 

Netherlands) micro flow pump. This pump also performed separation of the digest 

products including a gradient over an analytical column, which was switched in-line 

with the SPE column after desalination. Both the latter switching events were 

operated by two temperature controlled column switches from Agilent. All Agilent 

apparatus were controlled by Chemstation version 10.02, and analysis was done by 

an Agilent 1100 MSD VL-series ion-trap. Positive ESI LC-MS was performed in full-

spectrum acquisition mode in the range of m/z 200-1000. For identification purposes, 

tandem MS or MSn experiments were performed using the smart-frag option. The 

spray voltage was set at 4.5 kV with a drying temperature of 350°C, nitrogen drying 

gas flow at 8 l/min and nebulizer pressure at 40 psi. The maximum accumulation time 

was 100 ms and the ICC target was set to 30.000, two spectra were averaged. Data 

processing was performed using LC-MSD trap software version 5.2, build 382 or 

ACD/SpecManager software version 9.15. Extracted ion chromatograms were 

generated for relevant m/z values and the peaks were integrated. 

System set-up  

Off-line digestion procedure 

The pronase digestion of NAPQI-HSA was first evaluated by performing off-line batch 

experiments. The digestion products were analyzed and characterized by MS2 

experiments on the SPE-LC-MS system. This was done by addition of 10 µl of a 

pronase solution (1 mg/ml in PBS, pH 7.4) to a sample of 1000 µl containing 100 

µg/ml of NAPQI adducted albumin in PBS, pH 7.4. The mixture was immediately 

incubated at 37°C in a water bath and incubated for 8 hours. After this, 20 µl of the 

reacted sample was injected onto a SPE-LC-MS system consisting of a gradient 

pump, a conditioning pump and a switching valve. The sample was injected onto the 

SPE cartridge and desalinated for 5 minutes using the equilibration solution (99.3% 

water, 0.5% acetonitrile and 0.2% of formic acid). The analytical C18 column was 

switched in-line by switching the valve. A gradient was run from 0% of the 

equilibration solution up to 40% of the elution solution (99.3% acetonitrile, 0.5% water 

and 0.2% formic acid) within 20 minutes. After this, the column was flushed by 

applying 80% of this elution solution for 2 minutes. After the sample valve was 

switched back, both columns were reconditioned for the next run. The analytical 
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column was reconditioned by a Gilson 302 pump. The flow rate of both pumps was 

set to 0.2 ml/min, and total run-time including the reconditioning step was 35 minutes. 

Full scan mass spectrometric analysis was done using an m/z range between 100 

and 1000 unless mentioned otherwise. MS2 and MS3 experiments were performed 

with the isolation window set to 4.0 and product ions were scanned in a range 

between m/z values 100 and 750. 

Immunoaffinity chromatography procedure 

The capacity of the IAC column was estimated by a method which has been 

previously published [23]. A 1 mg/ml solution of HSA was made in PBS (pH 7.4) 

solution. Different amounts of protein were applied by injecting an increasing volume 

of this solution onto the column using an Agilent 1100 autoinjector. The IAC was 

operated at a flow rate of 0.040 ml/min using PBS (pH 7.4). After 5 minutes, the 

column was flushed with 0.400 ml of 0.15 M NaCl to flush matrix components to 

waste. The elution of the protein was performed for 10 minutes using 10 mM glycine-

HCl containing 150 mM NaCl (pH 2.7). The effluent was directed towards an Agilent 

1100 series UV/VIS spectrometer and detection was done by using UV detection at 

280 nm. The elution peak was integrated and the data were evaluated as reported in 

previous work. 

On-line system 

A detailed scheme of the entire on-line set-up is depicted in Figure 2 and a table with 

the detailed chromatographic conditions of the entire analytical process can be found 

in Table 1. 

 

 

 

 

 

 

 

 

 
 
 
Figure 2. Scheme of the on-line setup used for this research. Protein is injected onto immunoaffinity 
chromatography (IAC) column by pump 1 (P1). Pump 2 (P2) elutes the protein by switching valve 1 
(V1). Pump 3 (P3) adds protease in solution. The digested product is captured on a solid phase 
extraction (SPE) cartridge by switching valve 2 (V2). Pump 4 (P4) desalinates the trapped peptides and 
elutes the peptides over the liquid chromatography–mass spectrometry (LC-MS) system by switching 
valve 3 (V3). Pump 5 (P5) equilibrates the LC-MS system. 
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Table 1. Table with the detailed chromatographic conditions of the entire analytical process. 
 

 

 

 

 

 

 

 

The IAC column was operated by pump 1 (P1) at a flow rate of 0.040 ml/min. This 

column was conditioned using PBS (pH 7.4). Albumin samples were introduced by 

the injector and the sample was delivered by pump 1 (P1) using PBS (pH 7.4). After 

5 minutes, the column was flushed with 0.400 ml of a 0.15 M NaCl solution to remove 

matrix components to waste. After this, the protein was eluted from the column by 

switching valve 1 (V1) to pump 2 (P2) for 10 minutes with a solution of 10 mM 

glycine-HCl containing 150 mM of NaCl (pH 2.7). The protein fraction eluting 

between 17 and 21 minutes was delivered to the SPE cartridge via the reaction 

capillary. A UV chromatogram of the IAC procedure can be found in Figure 3. In the 

reaction capillary, the eluate from the IAC column was allowed to react with pronase 

dissolved in a PBS (pH 10.8) solution, delivered by pump 3 (P3, Figure 2) at a flow 

rate of 0.040 ml/min. Compatibility of the elution conditions using low pH with the on-

line solution phase digestion was achieved by neutralizing the elution fraction by 

mixing the effluents from the immunoaffinity chromatography column continuously 

with pronase solution in PBS at a pH of 10.8. The resulting pH will be between pH 6 

and 8, which is compatible with the pH optimum for the pronase activity. The 

digestion temperature was controlled by using the temperature controlled column 

switch, which also delivered the digested eluate from the IAC column to the SPE 

column by switching valve 2 (V2). When the protein was eluted, valve 1 (V1) was 

switched back and the IAC column was equilibrated for analysis of the next sample. 

When the digested protein effluent was delivered to the SPE cartridge via the 

reaction capillary, valve 2 (V2) was switched back and solvent delivered by gradient 

pump 4 (P4) desalinated the captured effluent for 3 minutes using a solvent 

consisting of 99.3% water, 0.5% acetonitrile and 0.2% of formic acid at a flow rate of 

0.2 ml/min. After desalination, valve 3 (V3) was switched and a gradient was run to 

50% within 16 minutes using a second solution consisting of 99.3% acetonitrile, 0.5% 

time (min) IAC action SPE action LC-MS action 
0-5 Sample application     
5-15 flushing     

15-25 elution     
18-23 elution capturing    
23-26   flushing   
26-42   Gradient Gradient 
42-44   Flushing Flushing 



  Chapter 6 

 163

water and 0.2% formic acid to separate the digest products from the originally 

captured protein. The columns were washed with 80% of the elution solution for 2 

minutes, and subsequently the analytical column was re-equilibrated by pump 5 (P5) 

after switching back valve 3 (V3) using 99.3% water, 0.5% acetonitrile and 0.2% 

formic acid. The total run-time was 44 minutes. During separation of the digest 

products and re-equilibration of the SPE cartridge, the next sample could already be 

applied onto the immunoaffinity column. Hereby, the overall run-time could be 

reduced to 25 minutes, in principle enabling a sample throughput of almost 60 

samples per day. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3. UV (280nm) monitoring of the immunoaffinity chromatography procedure. The elution peak 
(between dashed lines) is directed towards the on-line solution phase digestion procedure. 
 

On-line digestion procedure optimization 

For the evaluation of the continuous flow digestion procedure, protein was injected 

into the previously described system whereas the concentration of pronase in the 

delivered solution (P3, Figure 2) and the temperature of the reaction capillary were 

varied. Both the concentration of the protease as well as the thermal denaturation of 

albumin are important factors in protein digestion, as has been studied by Picó et al. 

[24]. The reaction time was kept constant at 1.75 minutes.  

Chromatogram evaluation 

Software assisted data comparison of chromatograms was done in the 

ACD/Specmanager software package as follows. The Agilent chemstation file (*.d) 

file was exported to netCDF file format (*.cdf). As a result, the mass spectral data are 

automatically converted to centroided mass spectra. The chromatograms were 
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imported to the software and the chromatograms were processed using the 

COMPARE algorithm. Data processing accuracy was set to 0.1, other settings were 

set to default. The program picks the differences between the chromatograms and 

highlights these in reconstructed extracted ion chromatograms. 

Results and Discussion 

The analytical system for the on-line detection of covalent adducts to human serum 

albumin comprises several pre-column steps, including immunoaffinity purification, 

solution phase on-line digestion, and C18 solid phase extraction with the subsequent 

determination of peptide adducts using liquid chromatography-mass spectrometry. 

During method development main attention was paid to achieve compatibility of the 

optimum conditions of the different steps.  

Identification of NAPQI-peptide adducts 

The pronase digestion of NAPQI-HSA was first studied by performing in-batch off-line 

digestion experiments. In principle, adduct formation by NAPQI results in a mass shift 

of 149.1 Dalton. Since NAPQI is known to be reactive towards the cysteine34 residue 

of HSA, the full scan MS chromatogram was screened for peptides containing that 

cysteine residue with an m/z value shifted by 149.1 Dalton. A series of peptides 

containing this cysteine34 residue has already been published [9]. The analyzed 

NAPQI-HSA and unmodified HSA digest sample traces were compared using 

ACD/SpecManager. Two peaks of m/z 643.3 corresponding to the m/z of NAPQI-

glutamine-cysteine-proline-phenylalanine (NAPQI-QCPF) were found in the NAPQI-

HSA sample and were not present in the unmodified HSA sample. Figure 4A shows 

an extracted ion chromatogram from a NAPQI-HSA digest at m/z 643.3. MS2 

experiments were subsequently performed on the ion at m/z 643.3 and the identity of 

the NAPQI-QCPF adducts could be confirmed (Figure 4B). Both compounds show 

almost identical product-ion mass spectra in MS2 and MS3 experiments. This 

suggests the formation of two NAPQI-QCPF isomers. The two adduct isomers may 

result from two different reactions of NAPQI with the cysteine34 group in HSA, either 

through electrophilic addition of thiolate to the carbonyl-carbon to yield a thio-hemi-

ketal intermediate or by nucleophilic addition to the imine-carbon via an ipso 

intermediate [25]. Both structures may fragment to a product ion with m/z 208 

forming the isomeric structures (1,4-benzothiazine and 1,4-benzooxathiine 

derivatives). Since it is not possible to distinguish between these isomeric structures 

in MS2 mode, further attempts were done to assign the resulting spectra. MS3 
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fragmentation of both ions with m/z 208 yield fragment ions with m/z 166, due to the 

loss of H2C=C=O from the acetyl group.  Although the results of the MS2 and MS3 

experiments support the theory of isomer formation, further experiments especially 

including NMR have to be performed to confirm this phenomenon.  

 

 
 
Figure 4. Analysis of NAPQI-HSA: (A) Reconstructed extracted ion chromatogram of the NAPQI-QCPF 
adducts ([M+H]+; m/z 643.3) in a pronase digest of NAPQI-HSA and (B) Tandem MS product ion 
spectra of m/z 643.3 of the first peak (upper) and of the second peak (lower). 
 
 

Immunoaffinity chromatography 

An UV chromatogram of the IAC procedure can be found in Figure 3. The effluent 

from the IAC column was continuously delivered via the in-solution digestion reaction 

capillary. There was no need to pre-select the protein fraction from the IAC 

procedure for digestion since the effluent (both matrix components and purified 

protein) is continuously mixed with fresh enzyme. The eluting albumin fraction from 

the IAC column (between dashed lines) has been heart-cut towards the SPE 

cartridge via the reaction capillary by switching valve 2 (V2) (Figure 2) for subsequent 
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separation and analysis. The capacity of the IAC column is an important issue for the 

sample purification step. By means of a binding capacity curve [23], it was found that 

the capacity (390 pmol or 26 µg HSA) of the IAC column (inner volume of 12 µl) is in 

accordance with the specifications given by the supplier (2 mg/ml). Although a fixed 

sample volume with increasing sample concentrations would be analytically more 

appropriate, the use of a varying sample volume has not been of concern in our 

previous project [23]. Therefore, this approach has been used for the estimation of 

column capacity. By this experiment, the application in an on-line format could be 

realized. If a higher column capacity is needed, other column dimensions might be 

considered, e.g. by increasing the I.D. from 1 mm to 3 mm, enhancing the total 

capacity about 10-fold for both modified and unmodified HSA. 
 
To assure that matrix components can be successfully removed at chosen 

conditions, a solution of Myoglobine has been injected and analyzed (data not 

shown). For this, 50 µl of a solution of PBS (pH 7.4) containing 1 mg/ml myoglobine 

has been injected onto the anti-HSA immunoaffinity column. Apart from the 

breakthrough of myoglobine from the anti-HSA immunoaffinity column, the elution 

profile did not differ from a blank (PBS, pH 7.4) injection. This indicates that proteins, 

which are not supposed to bind to the material, are successfully removed during the 

flushing process using 0.15 M NaCl.  
 
Another important aspect is the immunoaffinity of the immobilized antibodies towards 

modified proteins. In order to prove that modified HSA binds to the immobilized anti-

HSA antibodies, the following experiments were performed. First, a number of native 

(unmodified) peptides from HSA were identified using the complete on-line system 

(IAC, solution phase digestion, LC and MS). The mass spectrometer was set to full 

scan mode. 30 µl of a blank (PBS, pH 7.4) and HSA sample (0.1 mg/ml in PBS, pH 

7.4) were injected and the results were compared. Since pronase generates 

significant background signals, comparison was performed with help of the 

ACD/SpecManager as described in the “Materials and Methods” section. Using 

ACD/SpecManager we were able to search for specific differences between blank 

samples (i.e., without HSA) with a rather high background and samples containing 

low abundant HSA within this background. The m/z signals with the highest intensity 

(those which were not present in the blank chromatogram) were selected for further 

MS/MS experiments. From the most intense m/z values, two peptides could be easily 

identified as native HSA peptides, i.e. VLIAF and DEFKPL. No further attempts were 

done to identify other peptides. The peptide DEFKPL (m/z 748.4) is present in 
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modified as well as in the unmodified HSA and will therefore be used as marker for 

human serum albumin. The MS was subsequently set to the Selected Reaction 

Monitoring (SRM) mode and continuous MS/MS was done on precursors 643.3 and 

748.4, both with an isolation width of 4.0. After the analysis, an extracted ion 

chromatogram of the identified product ion traces of the modified peptide and the 

unmodified peptide were generated. 10 μl of a 1 mg/ml solution of modified HSA was 

injected on the system. After a sample of NAPQI modified HSA was analyzed, the 

sample was spiked in a 1:1 ratio with unmodified HSA (1 mg/ml in PBS; pH 7.4). 

From this mixture also 10 µl were injected and the same product ion traces were 

summed for a reconstructed chromatogram. The peaks of both experiments were 

integrated and the results are shown in Table 2. The first line represents only the 

modified protein and the second line the modified and unmodified protein mixed in a 

1:1 ratio. The same sample volume was injected. The area of the unmodified peptide 

marker is consistent with the area of the previously analyzed sample and the control 

sample since the same amount of peptide marker can be produced whereas the 

amount of modified peptide was reduced by 50% as half of the amount was injected 

compared to the first experiment. In the unmodified HSA sample, no NAPQI modified 

peptide could be found. From these results it can be concluded that NAPQI-HSA was 

not displaced from the immunoaffinity column by native HSA, since the area of the 

native HSA marker peptide remained the same whereas the peak area of the 

modified peptide was reduced by approximately 50%. This indicates that it is possible 

to extract both the modified and the unmodified HSA using the anti-HSA 

immunoaffinity support. Although this experiment indicates sufficient affinity for both 

protein species, a dilution series will have to be considered for biological samples 

containing an excess of non-modified albumin. This is important to assure full 

recovery of (very) low levels of modified albumin. 

 
Table 2. Relative intensities of marker peptides.  

 
 
 
 
 
 
 

 

Relative intensities of reconstructed extracted daughter ion peak areas of HSA and NAPQI-HSA 
peptides originating from samples consisting in modified HSA, of a 1:1 mixture of modified and 
unmodified HSA and of a control sample of unmodified HSA. 
 
 

Sample type 
 

Area m/z 748.4 
DEFKPL 

Area m/z 643.3 
NAPQI-QCPF 

Modified HSA 1510048 122595 
Modified + unmodified HSA 1:1 1409927 56220 
Unmodified HSA 1301998 Not detectable 
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Continuous flow digestion 

In previous work, Damsten et al. [6] described a method to analyze NAPQI adducts 

to albumin in human serum samples. Briefly, albumin from serum samples of patients 

exposed to high levels of acetaminophen was isolated and digested with pronase. 

The resulting mixture was analyzed by LC-MS/MS after removal of the enzyme. In 

the present study, albumin was isolated by immunoaffinity chromatography including 

an elution step using a low pH buffer. As previously published [23], it was found that 

the elution solution used (10 mM Glycine HCl and 0.15 M NaCl, pH 2.7) could be 

neutralized by mixing with PBS (pH 10.8) in a 1:1 ratio. Pronase was dissolved in this 

neutralizing buffer and mixed with the effluent from the immunoaffinity 

chromatography using the same flow rate. In this way, the neutralizing solution was 

applied and the protease could also be delivered using a single pump (P2, Figure 2). 

A schematic overview of this on-line system can be found in Figure 2. In the reaction 

capillary, the enzyme interacts with the eluted protein to form marker peptide(s) for 

NAPQI adducted albumin. The influence of the enzyme concentration was evaluated 

by varying the concentration of pronase between 0.1 and 2.0 mg/ml. Analysis was 

done using the completely on-line system. Extracted ion chromatograms of the MS2 

product ions of NAPQI-QCPF were constructed, the results being shown in Figure 5. 

The maximum amount of product ions was found at a concentration of 1.5 mg/ml of 

pronase. This concentration has been used for further analysis. It has to be kept in 

mind that the reaction concentration of pronase in the reaction capillary differs from 

the concentration in the buffered solution which was delivered by pump3 (P3, Figure 

2). Since the effluent from the IAC column is mixed with the pronase solution in a 1:1 

ratio, a dilution of 50% has to be taken into account. This means that a maximum 

amount of NAPQI-QCPF has been found at a pronase concentration in the reaction 

capillary of 0.8 mg/ml at given conditions. 
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Figure 5. Influence of the pronase concentration on the NAPQI-QCPF peptide formation (peak areas of 
reconstructed extracted ion chromatograms of m/z 643.3) during the in-solution digestion procedure.  

  

 

After this, the temperature of the reaction capillary (which was kept until this time at 

37°C) was varied between 8 and 80°C. The reaction was monitored in a similar way 

as described for the enzyme concentration optimization, the results being depicted in 

Figure 6. A maximum product formation was found at 70°C, probably caused by both 

a higher activity of pronase and the thermal denaturation of albumin [24]. Further 

optimization studies were performed at a reaction capillary temperature of 70°C. 

 

 
 
Figure 6. Influence of the solution phase digestion capillary temperature on the NAPQI-QCPF peptide 
formation (peak areas of reconstructed extracted ion chromatograms of m/z 643.3).  
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Since it can be expected that both the peptides from the protein and the protease 

itself are trapped on the C18 SPE column, we were interested to assess whether on-

column digestion significantly contributes to the digestion of the HSA adducts. In 

order to study the contribution of on-column digestion, the temperature of the 

reaction capillary was kept constant at 8°C in order to minimize the in-solution 

formation of products in the reaction capillary, while the SPE column temperature 

was raised to 70°C to enhance possible on-column digestion. No significant traces of 

NAPQI-QCPF could be found using these settings and it can therefore be concluded 

that on-column digestion does not contribute in a significant way to the digestion of 

HSA adducts.  
 
An estimation of the detection limit for NAPQI-QCPF was obtained by injection of a 

sample containing 0.1 mg/ml NAPQI-HSA into the complete on-line system using the 

optimized parameters. When 10 µl of a 1.5 µmol/l NAPQI-HSA solution were injected 

on the system, a signal-to-noise ratio was between 3 and 4 was obtained, resulting in 

an absolute detection limit of 15 pmol NAPQI adducted albumin via the cysteine34 

functionality. It should be kept in mind that the modification of the cysteine34 residue 

by NAPQI is not a specific one, and other amino acid residues might be alkylated in a 

similar way. However, specific attention was paid to modifications of the cysteine34 

residue in this work because this site has often been suggested as an attractive 

biomarker of exposure to electrophiles [8, 26]. 

CDNB adducted HSA 

Next to the detection NAPQI adducts to the cysteine34 residue of human serum 

albumin, we also investigated the possibility to detect other albumin adducts. As 1-

chloro-2,4-dinitrobenzene (CDNB) is known as an electrophilic and thiol-reactive 

compound, it was chosen for the synthesis of a different albumin adduct. The 

synthesized CDNB-HSA adduct was used to evaluate the general applicability of the 

system. The albumin was reacted with CDNB and the resulting mixture was injected 

onto the on-line analysis system. The reaction with CDNB results in a mass shift 

166.0 Dalton to the peptide QCPF resulting in an expected m/z ratio of 660.3. In 

Figure 7A, three peaks can be observed in the extracted ion trace with m/z 660.3. 

Next, a tandem MS experiment was performed in an attempt to identify these peaks 

(Figure 7B). The last peak was identified as the CDNB-QCPF peptide adduct. The 

product ion spectrum of this peak is presented in Figure 7B. The two other peaks 

(Figures 7C and 7D) were not identified in this work, since the product ions differ 

significantly from the fragments of the CDNB-QCPF peptide adduct. 
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Figure 7. Analysis of CDNB-HSA: (A) The total ion current chromatogram of a pronase digest of CDNB  
adducted HSA shown by the dashed trace; the reconstructed extracted ion chromatogram of m/z 660.3 
is shown by the solid trace (blow-up 3 fold); (B) Tandem MS product ion scan of m/z 660.3 (blow-up 6 
fold) at retention time 11.9 minutes; (C) Tandem MS product of m/z 660.3 at retention time 8.7 minutes; 
(D) Tandem MS product of m/z 660.3 at retention time 7.6 minutes. 
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Conclusions 

A fully automated, on-line approach for the detection of covalent adducts to the 

cysteine34 residue HSA has been developed. Human serum albumin adduct 

formation with the reactive metabolite of acetaminophen (NAPQI) could be detected 

by the analysis of the corresponding NAPQI-QCPF adduct by mass spectrometry. 

The applicability of the approach was confirmed by additional analysis of CDNB 

adducted HSA. This approach might therefore constitute a useful tool for the 

screening of covalent adducts to HSA in human samples without requiring time-

consuming manual sample handling. This work also confirmed that the cysteine34 

residue of HSA serves as a highly reactive site for covalent binding of reactive 

electrophilic compounds. This can be attributed to the fact that cysteine34 is the only 

freely available thiol-group present in intact albumin. An absolute amount of 15 pmol 

NAPQI-HSA could be analyzed when injecting 10 µl of a 1.5 µmol/l NAPQI adducted 

human serum albumin solution onto the on-line system. Immunoaffinity 

chromatography has been applied as a selective sample purification step and it could 

be shown that the presence of native (non-adducted) albumin did not hinder the 

specific interaction with the immobilized antibodies. Also, continuous solution phase 

digestion has been presented as a new approach to perform on-line digestion, 

thereby excluding the need for immobilization of enzymes as usually done with 

IMERs. Data analysis was supported by ACD/SpecManager and although a rather 

high background signal was observed, the identity of several peptides could be 

confirmed by mass spectrometric experiments.  
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Summary 

Although extensive research has been performed in the field, adverse drug reactions 

(ADRs) still constitute a major cause of failures in drug development programs and in 

drug therapy. In this regard, idiosyncratic adverse drug reactions are particularly 

challenging since they are usually unpredictable and occur only in a very minor part 

of the patients taking the specific drug. The precise underlying mechanisms are still 

unknown but it is believed that reactive drug metabolites and covalent binding to 

proteins (probably in combination with immune and/or inflammatory processes) play 

a role in the onset of idiosyncratic drug reactions (IDRs). 
 
The work described in this thesis mainly focused on biotransformation-related 

bioactivation mechanisms potentially involved in ADRs and concentrated on two 

main aspects. First, novel strategies and in vitro methodologies were developed for 

the generation and screening of reactive metabolites of drugs. This part aimed at the 

development of tools that would facilitate the detection and characterization of 

reactive metabolites of drugs early in the drug discovery phase. The second part of 

the thesis focused on the development of strategies for the screening of reactive 

metabolites in vivo in humans. The main goal was the development of biomarkers 

reflecting bioactivation of drugs towards reactive intermediates (RIs) that covalently 

bind to proteins in vivo.  
 
PART I of this thesis, i.e. Chapter 1, consists of a general introduction on ADRs with 

an emphasis on adverse drug reactions with an idiosyncratic nature. IDRs are rare 

but severe adverse events that can occur during drug therapy. Although the current 

mechanistic knowledge is limited, it is believed that bioactivation of drugs towards 

RIs that can subsequently react with proteins is required to trigger IDRs. One of the 

most important classes of enzymes involved in the bioactivation of drugs is the class 

of cytochromes P450 (P450s). P450s can generate several types of RIs (e.g. radicals 

and electrophiles) that can attack macromolecules in the body and lead to toxicity. 

The chemical reactivity of the intermediates, the efficiency of detoxification pathways 

(such as conjugation to glutathione) and individual susceptibility factors, amongst 

others, will ultimately define the toxic outcome. Examples of drugs causing IDRs and 

subject of study in this thesis are discussed in more detail in the second part of the 

introduction (e.g. acetaminophen, diclofenac, clozapine, carbamazepine, etc). 

Because RIs are playing an important role in IDRs, current strategies applied in drug 

discovery & development programs usually focus on the screening of reactive 

metabolites, the elucidation of novel bioactivation pathways and on the measurement 
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of covalent binding to proteins. Commonly used methodologies are discussed in the 

last part of Chapter 1 and were divided in two main categories, notably (i) “early 

phase” in vitro screening tools aiming at the evaluation of the potential of novel 

chemical identities to form RIs and (ii) “late phase” in vivo biomonitoring tools 

concentrating on protein adduct analysis and on the identification of the target 

proteins of RIs. Finally, the aim and the scope of this thesis are formulated. 
 
PART II of this thesis focuses on the development of novel in vitro methods for the 

generation, identification and characterization of reactive metabolites of drugs. The 

most commonly applied strategy for the in vitro screening of electrophilic RIs consists 

of trapping with small nucleophilic molecules such as glutathione (γ-Glu-Cys-Gly; 

GSH) and cyanide (CN). Drug-nucleophile adducts can subsequently be analyzed by 

analytical techniques such as liquid-chromatography (LC) and mass spectrometry 

(MS). A major difficulty in detecting and characterizing RIs, however, is their low 

abundance in often complex mixtures. This usually originates from low metabolic 

turnovers and the inherent chemical reactivity of the intermediates which react with 

multiple nucleophilic targets in the incubation mixtures. These factors result in low 

levels of trapped reactive metabolites and in sometimes problematic identification of 

novel RIs and bioactivation pathways.  
 
In Chapter 2, we have evaluated the use of bacterial P450 mutants as biocatalysts 

for the generation of high levels of RIs. Increasing the production of reactive 

metabolites of drugs would facilitate their identification and structural elucidation. 

Previous work has yielded several mutants of cytochrome P450 BM3 (CYP102) with 

high activities towards drugs and drug-like molecules by a combination of site-

directed and random mutagenesis of wild-type P450 BM3 [1]. In this thesis, we have 

investigated whether four of these P450 BM3 mutants (M01his, M02his, M05his and 

M11his) could produce high levels of RIs of acetaminophen, clozapine and diclofenac 

by analyzing their GSH adducts [2]. We generally found that the BM3 mutants were 

able to produce similar (reactive) metabolites as rat liver microsomes (RLM) and 

human liver microsomes (HLM), with activities up to 70-fold higher compared to the 

mammalian enzymes (Table 5, page 79). Additionally, three novel human-relevant 

GSH adducts of diclofenac were identified (Figure 3, page 81), indicating that the 

mutant P450 BM3’s can assist in the elucidation of novel bioactivation pathways of 

drugs and in the structural characterization of reactive metabolites involved.  
 
An important defense mechanism of organisms against reactive electrophilic 

metabolites of drugs is conjugation to the endogenous tripeptide GSH. The coupling 
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of reactive electrophiles to GSH can be spontaneous and/or mediated by glutathione 

S-transferases (GSTs). Previous clinical studies suggest that GSTs could play a role 

in the inter-individual susceptibility towards drugs. However, at present, still little is 

known about the role of GSTs in the detoxification of reactive metabolites of drugs 

involved in ADRs. In Chapter 3, we have investigated whether rat GSTs catalyze the 

conjugation of certain RIs of drugs with GSH, and consequently increase GSH 

adduct levels in incubations performed with RLM and/or with P450 BM3 mutant 

M11his. Generally, we found that GSTs had limited effects on the GSH adduct levels 

of acetaminophen, 3-hydroxyacetanilide, clozapine and diclofenac. Interestingly, 

GSTs significantly increased the amounts of GSH adducts in carbamazepine 

incubations (Figure 5, page 101). More specifically, they catalyzed the conjugation 

of the most reactive side-ring arene oxide intermediates of the drug to GSH. 

Variations in GST activities could therefore influence exposure to RIs and thereby 

trigger individual susceptibilities towards carbamazepine, as previously reported in 

clinical studies [3]. So, although adding GSTs to in vitro incubation mixtures may not 

increase GSH-conjugate levels to the same extent as observed with the P450 BM3 

mutants, it may give valuable insights in the role of RIs and GSTs in drug 

bio(in)activation pathways. 
 
In Chapter 4, the trapping tools developed in the two previous chapters were applied 

to study the metabolism and bioactivation of trimethoprim (TMP), a drug that has 

been involved in rare but serious ADRs in humans [4]. TMP was incubated with HLM, 

RLM, recombinant humans P450s and the bacterial P450 BM3 mutant M11his. We 

found that TMP is metabolized to several stable, non GSH-dependent, metabolites 

and to five GSH adducts by HLM (Table 1, page 115). With TMP, M11his was not 

significantly more active but produced similar metabolites as rat and human 

enzymes. Adding GSTs to the incubation mixtures did not change GSH adduct 

levels. Two major GSH adducts probably originate from an iminoquinone methide 

intermediate which has been described previously [5]. Interestingly, three novel GSH 

adducts, likely derived from other RIs (such as ortho-quinones and para-quinones), 

were formed upon O-demethylation of TMP (Figure 2, page 114). Human P450 1A2 

and P450 3A4 produced the major GSH adducts of TMP, while the minor GSH 

adducts were generated by P450 1A2, 3A4 and 2D6, the latter enzyme being 

polymorphic in humans (Table 3, page 120). In summary, our results show for the 

first time that TMP is bioactivated to more reactive metabolites than previously 

described and also that genetically polymorphic P450s could play a role in the onset 

of TMP-related ADRs in humans.  
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Next to in vitro screening approaches that can identify the potential of drugs and 

novel chemical entities (NCE’s) to generate electrophilic RIs, there is a great need for 

novel biomonitoring strategies that can detect reactive metabolites and covalent 

binding to proteins in vivo in humans. Many IDRs do not seem to be directly related 

to the concentration of the parent drug; however, it is more likely that they are related 

to levels of the reactive electrophilic metabolites. Additionally, IDRs are typically 

delayed reactions which may indicate that accumulation of RIs, or RI-related 

products such as protein adducts, could play a role in determining the onset of an 

adverse event. Since GSH adducts and their decomposition products (e.g. 

mercapturic acids) [6] only represent short-term exposure to electrophilic RIs, 

alternative biomarkers based on protein adduct analysis could be useful to monitor 

chronic exposure to reactive electrophiles in vivo in humans. The work described in 

PART III of this thesis is dealing with the latter aspects and aims at the development 

of novel biomonitoring tools and strategies to assess the potential of bioactivation of 

drugs towards electrophilic RIs and their covalent binding to proteins in vivo. These 

tools may improve risk assessments in the drug development phase.  
 
In Chapter 5, a novel strategy is proposed in which adducts to the free cysteine34 

residue of human serum albumin serve as biomarkers for reactive metabolites of 

drugs [7]. Our methodology consists of the isolation of albumin from blood, its 

digestion to peptides by pronase E, and the detection by LC-MS of drug adducts to a 

characteristic cysteine34-proline-phenylalanine (CPF) tripeptide. The overall strategy 

involves the in vitro generation of reference drug-CPF adducts allowing the 

optimization of the subsequent digestion and cleanup procedures as well as the “fine-

tuning” of the detection by MS. The same adducts are then measured in vivo, e.g. in 

blood of patients exposed to the drug (Figure 1, page 131). This strategy was 

developed and validated using acetaminophen as model compound. NAPQI-CPF 

adducts were successfully detected in serum samples of patients exposed to high 

levels of acetaminophen (Figure 5, page 141). High levels of cysteine (NAPQI-Cys) 

and N-acetyl cysteine (NAPQI-NAc) adducts, as well as oxidation products such as 

mixed disulfide adducts of N-acetyl cysteine with albumin (QCPF-NAc) were also 

observed, thereby providing novel mechanistic information on in vivo bio(in)activation 

pathways of acetaminophen. More generally, and because of its generic nature, the 

strategy of measuring protein alkylation can be considered a new biomonitoring tool 

for exposure assessment to RIs and to evaluate protein adduct formation in vivo. 

This new approach may prove useful during the pre-clinical and clinical development 

phases of novel drug candidates.   
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Although the previously described methodology was successful in detecting drug 

adducts to human serum albumin, the whole procedure remains relatively long and 

labor-intensive. In order to increase the throughput of sample analysis, a fully 

automated system for the detection of albumin adducts was developed in Chapter 6 
[8]. The system relies on several sample pre-treatment and separation steps 

including albumin isolation by immunoaffinity chromatography, in-solution digestion of 

albumin by pronase and on-line MS detection of the characteristic glutamine-proline-

cysteine-phenylalanine (QCPF) adducts (Figure 2, page 161). The system was 

validated by the detection of NAPQI-QCPF and CDNB-QCPF, two peptide adducts 

formed after pronase digestion of albumin previously incubated with the reactive 

metabolite of acetaminophen (NAPQI) and the direct alkylating agent 1-chloro-2,4-

dinitrobenzene (CDNB). Using this fully-automated system, the entire process (from 

sample application to QCPF-adduct analysis by LC-MS) was decreased from several 

hours to 44 minutes. 

Conclusions and Perspectives 

The development of novel drugs is a challenging task. It has been estimated that on 

average from ~104 compounds tested, only 1 will eventually reach the market [9]. 

Considering the high costs related to bring a compound onto the market (~ $800 

million to $1 billion), the fact that only 1 out of 3 drugs reaching the market is 

profitable and the pressure of producing drugs that are nearly absolutely safe, there 

is a huge need of selecting the “right” drug-candidate molecule as early as possible 

in the drug discovery and development process [9]. Currently, the main reasons for 

drug attrition is lack of efficacy in humans and preclinical toxicology [10]. For the 

latter it is now well established that preclinical tools used in the safety evaluation of 

novel drug-candidates only poorly predict human ADRs. This is especially true for 

IDRs that are usually only detected in a very late stage, once the drug is launched on 

the market. 
 
At current, predicting the potential of new chemical entities to generate IDRs is still 

not possible because of the lack of reliable pre-clinical models. However, the 

formation of reactive metabolites and protein covalent binding are both perceived as 

significant risk factors. Consequently, a pragmatic approach is usually taken, mainly 

relying on (i) the screening of reactive metabolites, (ii) the measurement of protein 

covalent binding levels in vitro and/or in vivo, (iii) the identification of relevant 

bioactivation pathways and (iv) rational structural modifications of hot-spots for 
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bioactivation thereby eliminating or minimizing the formation of reactive metabolites 

and/or protein covalent binding [11, 12]. The work described in this thesis focuses on 

the development of novel tools that could assist these processes. Briefly, the tools 

were divided in two categories: (i) “early-phase” in vitro screening tools for reactive 

metabolites and (ii) “late-phase” biomonitoring strategies to detect RIs in vivo in 

humans.  
 

In vitro tools for the generation and detection of reactive metabolites 

Measuring the potential of novel drug candidates to be bioactivated to reactive 

metabolites early in the drug discovery phase is usually performed by in vitro trapping 

and identification experiments using small nucleophilic molecules such as GSH, CN 

and analogues (Tables 7-9, pages 39-41). Although there has been major progress 

both in the design of trapping agents and in the sensitivity of analytical techniques, it 

remains challenging to detect and characterize low levels of RIs. In this thesis, two 

new strategies were evaluated: (i) increasing the levels of RIs of drugs by using 

highly active metabolic enzymes and (ii) enzymatic catalysis of the conjugation of 

reactive drug metabolites with GSH (Figure 1). 

 

 
 
 
 
Figure 1. “Early-phase” in vitro screening tools for reactive metabolites: (I) Scheme of classical trapping 
experiments typically performed in drug discovery programs and (II) new concepts developed in this 
thesis. RLM: rat liver microsomes; HLM: human liver microsomes; P450s: cytochromes P450; RIs: 
reactive intermediates; BM3: P450 BM3 mutants; GSTs: glutathione S-transferases. 
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We have demonstrated in Chapter 2 that the P450 BM3 mutants were successful in 

producing significantly higher amounts of rat- and human-like metabolites for several 

drugs. Overall, this work demonstrates that mutant bacterial enzymes with high 

catalytic activities can be used as biocatalysts to assist the identification of reactive 

metabolites of drugs and, importantly, the elucidation of novel bioactivation pathways 

(as demonstrated for diclofenac). It remains to be established whether the P450 BM3 

mutants would be successful in generating sufficiently high amounts of drug 

metabolites (especially the minor ones) allowing the isolation of mg amounts of pure 

reactive metabolites for their full structural elucidation by Nuclear Magnetic 

Resonance (NMR). Improvements of analytical techniques (such as LC-NMR) and 

the use of bioreactors allowing the up-scaling of incubations will most likely help to 

overcome possible technical limitations. In parallel, the development of P450 BM3 

mutants with even higher catalytic activities (e.g. random and/or site-directed 

mutagenesis) may be helpful.  
 
Another approach is to increase the trapping efficiency of RIs by improving the GSH-

conjugation by GSTs. In Chapter 3, we have evaluated whether rat GSTs could play 

this role in in vitro enzymatic incubations. Although the effect of GSTs on GSH 

adduct levels was generally limited, GSTs significantly increased the levels of minor 

GSH adducts of carbamazepine thereby providing a proof-of-concept. Further 

experiments with human GSTs and isolated GST isoforms should however be 

performed to assess the exact impact of GSTs on trapping RIs and to better 

characterize their role in detoxifying reactive metabolites of drugs involved in ADRs. 

The latter should also provide important additional information on the role that GST 

genetic polymorphisms could play in predisposing individuals to ADRs, as was 

suggested for carbamazepine [3].    
 

Protein adducts as biomarkers for reactive intermediates 

One major limitation of using in vitro tools to assess risks of ADRs, is that a 

bioactivation potential in vitro will not per se predict accurately types and amounts of 

reactive metabolites in vivo, when all biological processes are present (e.g. 

bioavailability, transport, bio(in)activation…) [11, 13]. Therefore, during the safety 

evaluation of new drug candidates, one has to predict or measure their occurrence 

and effects in vivo in humans. Currently, few methodologies exist for the 

biomonitoring of reactive metabolites. GSH adducts are typically reflecting short term 

exposure to RIs due to their rapid processing into mercapturic acids and their 

subsequent elimination from the body [6, 14]. In contrast, protein adducts have a 
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longer half-life and are more likely to reflect chronic exposure to RIs; a situation 

which is more relevant to assess risks of ADRs [15]. A major challenge, however, in 

measuring protein adducts in vivo is the low stoichiometry between modified versus 

non-modified proteins, which is mainly due to a “dilution effect” originating from the 

conversion of drugs to multiple metabolites that moreover may react at multiple 

nucleophilic sites on multiple macromolecular targets [16]. As a consequence, protein 

adduct levels in vivo are typically very low making their detection and protein target 

identification particularly challenging (especially when the use of radio-labeled tracers 

is not possible, as is the case in humans) [17]. 
 
Previous work has demonstrated that protein adducts can be used as biomarkers 

reflecting human occupational exposure to reactive potentially mutagenic chemicals 

[18-20]. In Chapter 5, we evaluated for the first time an analogous strategy in which 

albumin adducts were chosen as biomarkers reflecting in vivo bioactivation of drugs 

to reactive metabolites involved in ADRs. A generic strategy was developed, where 

acetaminophen-albumin adducts are first generated in vitro for method & 

development purposes, and where the same adducts are subsequently analyzed in 

the serum of patients exposed to the drug. Additional biomarkers, representative of 

short-term exposure to RIs and possibly of oxidative stress, were also identified 

(Figure 2). 
 
Our rational to choose albumin as model protein to detect RIs in vivo was firstly 

because it is the most abundant protein in human blood plasma (~ 30 mg/ml). 

Secondly, the half-life of albumin is 20 days which indicates that albumin adducts 

could accumulate in time and thereby represent chronic exposure of the organism to 

reactive metabolites. High adduct levels and alkylation efficiencies were also 

expected since prealbumin is synthesized in the liver, where the bioactivation of most 

drugs takes place. Although these factors would suggest that albumin constitutes a 

good model protein to trap and detect RIs in vivo, we found the albumin adduct levels 

to be surprisingly low considering the high doses of acetaminophen ingested by the 

patients in our study. This may, however, be partly explained by alternative reactions 

of NAPQI, such as protein- and non-protein thiol oxidations.  

 



Chapter 7 

186 

 
Figure 2. “Late-phase” in vivo biomonitoring tools for reactive metabolites: (I) scheme of classical in vivo 
experiments including the measurement of covalent binding levels in animals with radio-labeled drug 
analogues and the measurement of mercapturic acid adducts in vivo in humans and (II) scheme of the 
strategy described in this thesis. *: Radio-labeled; RIs: reactive intermediates; GSH: glutathione. 
 
 
An alternative model protein for biomonitoring RIs might be GSTs. GSTs are present 

in high amounts in the cell (~ 10% of total cellular proteins), and straightforward 

methods exist for their isolation from complex mixtures and for the measurement of 

catalytic activities by functional assays. Moreover, GST adducts of several drugs 

have already been detected in vivo in animals [21, 22]. More recently, Jenkins et al. 

proposed GST Pi as model protein to characterize reactive metabolites of drugs [23]. 

Interestingly, this work combined the detection of GST adducts with functional assays 

determining the effect of covalent binding on GST activities. The need of highly 

sensitive analytical instruments to identify GST adducts was however stressed and it 

remains therefore to be established whether such tools would be sensitive enough to 

be applied to human in vivo samples. In addition, some studies have challenged the 

concept that covalent binding to GSTs, and subsequent inactivation of the enzyme, 

would be responsible for IDRs. For instance, considering the low levels of in vivo 

alkylation of GSTA1 and GSTA2 in rats, Koen et al. suggested that the main 

consequence of GST alkylation may not be inhibition of the enzyme but more likely 

the induction of down-stream pathways that may lead to cell death [16]. 
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Protein alkylation sites and functional effects 

Overall, several main questions related to the understanding of the biological 

consequences of protein adduction remain open. Obviously, without a better 

understanding on the impact of specific protein alkylation patterns and their role in 

the onset of ADRs or IDRs, little progress can be made in this field [17]. The case of 

acetaminophen and 3-hydroxyacetanilide is once again illustrative. While the 

hepatotoxic acetaminophen preferentially alkylates liver mitochondrial proteins, the 

nonhepatotoxic regioisomer mainly binds to cytosolic and endoplasmic reticulum 

protein targets [24]. Since total covalent binding levels of both compounds are 

similar, the selectivity in protein alkylation must determine the toxic outcome [25, 26]. 

As described in the “Hard-Soft” theory (Figure 4, page 28), the type, chemical 

characteristics and intrinsic properties of the RIs are likely to determine the 

macromolecular targets, and ultimately the toxicity. More work is therefore needed to 

rationalize the selectivity in protein alkylation and possibly to establish dose-response 

relationships. In this perspective, the development of novel tools (e.g. proteomics and 

genomics) has allowed a wider range of protein targets of reactive metabolites to be 

identified and drug-induced gene expression changes to be highlighted [26-30]. 

Databases gathering all current information on protein targets of drug metabolites are 

also starting to be established [31, 32]. It is therefore believed that “biomarkers” 

reflecting protein alkylation profiles and gene expression changes will be identified 

and related to specific toxic outcomes [26]. Of special current interest is the induction 

of sensatory networks by electrophilic compounds (e.g. the Keap-1/Nrf2/ARE 

complex, GSTs, thioredoxin and the nuclear factor kB) which are systems that 

respond to electrophiles and may trigger cell death, stress responses and/or stress 

adaptation [25, 26]. Selectivity of alkylation of those proteins may determine cell 

recovery versus cell death [33]. 
  
In summary, the occurrence of IDRs is still poorly understood.  A pragmatic approach 

in drug R&D programs is to consider reactive metabolites as an undesirable feature 

of novel drug candidates, and consequently, major efforts will have to be made to 

eliminate or decrease this type of bioactivation of novel chemical entities [11]. 

Methods aiming at optimizing the identification and characterization processes of 

reactive metabolites, such as those described in this thesis, may help in better 

assessing the bioactivation potential of novel drug candidates. However, not all RIs 

are generating IDRs or ADRs and this constitutes a major bottleneck in performing 

adequate risk assessments. A better understanding of the links between specific 
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protein adduction and associated toxicity and/or biological function alterations is 

essential. Only then can predictions be done about the potential impact of drug 

alkylation on specific toxic outcomes. In this context, it is important to realize that not 

all protein alkylation is bad per se, some may even be protective [34]. In any case, 

the development of biomarkers, indicating qualitatively (and preferably also 

quantitatively) drug-related protein alkylation profiles and/or genetic expression 

changes in relation to specific types of toxicities, will prove valuable for safety 

assessment purposes. This thesis has contributed significantly to the development of 

novel and useful strategies and tools for these purposes. 
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List of Abbreviations 

 
 

ADR  adverse drug reaction 
ALT alanine aminotransferase 
AMAP   3-hydroxyacetanilide 
APAP  acetaminophen    
ARE antioxidant response element 
ARE/ERE antioxidant response element/electrophile response element 
AST  aspartate aminotransferase 
AU arbitrary units 
CDNB 1-chloro-2,4-dinitrobenzene 
CE carbamazepine 10,11-epoxide 
Cloz clozapine 
CN cyanide 
CPF cysteine-proline-phenylalanine 
Cys cysteine 
Diclo diclofenac 
EA ethacrynic acid 
ECD electrochemical detection 
EH epoxide hydrolase 
FLD fluorescence detection 
GSH glutathione (reduced) 
GSSG glutathione (oxidized) 
GST   glutathione S-transferase 
H/D exchange hydrogen/deuterium exchange 
HLM   human liver microsomes 
HPLC high performance liquid chromatography 
HSA human serum albumin 
IDR idiosyncratic drug reaction 
KPi potassium phosphate 
LC-MS liquid chromatography-mass spectrometry 
M11his  cytochrome P450 BM3 mutant M11his 
MPO myeloperoxidase 
MS mass spectrometry 
MS/MS tandem mass spectrometry 
NAc  N-acetyl cysteine 
NAPQI N-acetyl-p-benzoquinoneimine 
NK (T) natural killer (T) cells 
NMR nuclear magnetic resonance 
Nrf2 transcription factor Nrf2 
P450 BM3, CYP102A1  cytochrome P450 BM3 
P450, CYP cytochrome P450 
QCPF glutamine-cysteine-proline-phenylalanine 
RI reactive intermediate 
RLM  rat liver microsomes 
ST sulfotransferase 
TMP  trimethoprim 
tr retention time 
UGT UDP-Glucuronosyltransferase 
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Nederlandse Samenvatting 

De ontwikkeling van geneesmiddelen is een uitdagende taak. Geschat wordt dat van 

de 10.000 geteste stoffen uiteindelijk slechts gemiddeld 1 stof de markt bereikt als 

geneesmiddel. Het op de markt brengen van een geneesmiddel brengt hoge kosten 

met zich mee (800 miljoen tot 1 miljard USD) en slechts 1 op de 3 geneesmiddelen 

die uiteindelijk de markt bereiken is winstgevend. Bovenal is het zeer belangrijk dat 

de geneesmiddelen die ontwikkeld worden volledig veilig zijn. Deze omstandigheden 

maken dat het uitermate belangrijk is om zo vroeg mogelijk het “juiste” 

kandidaatsgeneesmiddel molecuul te selecteren in het proces om een nieuw 

geneesmiddel verder te ontwikkelen. Momenteel zijn het feit dat de ontwikkelde 

stoffen niet werken in de mens en bijkomende toxicologische effecten vertonen, de 

belangrijkste oorzaken dat geneesmiddelen uiteindelijk de markt niet bereiken. Het is 

inmiddels duidelijk bewezen dat preklinische testen die gebruikt worden in het begin 

van het ontwikkelingsproces om nieuwe kandidaatsgeneesmiddelen te vinden 

ongewenste reacties (adverse drug reactions; ADRs), welke veroorzaakt zijn door 

het geneesmiddel, slecht kunnen voorspellen. Dit geldt in the bijzonder voor het 

optreden van idiosyncratische geneesmiddelreacties (idiosyncratic drug reactions; 

IDRs). Deze zijn zeer zeldzaam en de onvoorspelbare ongewenste bijwerkingen 

worden normaliter pas waargenomen in een heel laat stadium van het geneesmiddel 

ontwikkelingsproces. Veel vaker worden deze ongewenste reacties pas 

waargenomen nadat het geneesmiddel al op de markt gebracht is. Behalve het feit 

dat dit zorgt voor gezondheidsrisico’s voor de patiënten, zijn de economische 

gevolgen van het terug trekken van een geneesmiddel van de markt gigantisch. 
 
Zoals beschreven is in Hoofdstuk 1 (PART I) van dit proefschrift, is er zeer veel 

onderzoek verricht op het gebied van ongewenste bijwerkingen, maar is het 

onderliggende mechanisme van optreden van deze ADRs uiteindelijk nog steeds 

onbekend. Het is echter wel duidelijk geworden dat geneesmiddel metabolisme, de 

vorming van reactieve metabolieten en covalente binding aan eiwitten, een rol speelt 

bij het optreden van deze vorm van toxiciteit. Normaliter wordt een geneesmiddel in 

het lichaam gemetaboliseerd tot een beter wateroplosbare metaboliet welke 

eenvoudiger kan worden uitgescheiden door het lichaam. Belangrijke enzymen die 

een rol spelen in dit proces zijn de cytochroom P450s (P450s). Hoewel metabolisme 

over het algemeen beschouwd wordt als een mechanisme van detoxificatie, kan het 

soms voorkomen dat door middel van metabolisme een reactieve metaboliet 

gevormd wordt die covalent kan binden aan macromoleculen (zoals bijvoorbeeld 
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eiwitten en DNA) in het lichaam, wat kan leiden tot toxiciteit. Het lichaam beschikt 

over beschermingsmechanismen tegen reactieve intermediairen, zoals bijvoorbeeld 

de spontane conjugatie met het endogene peptide glutathione (GSH), een reactie 

welke ook gekatalyseerd kan worden door glutathion S-transferase enzymen (GSTs). 

Het onderzoek dat  beschreven wordt in dit proefschrift focust zich op deze 

bio(in)activatiemechasnimen and probeert een beter inzicht te verschaffen hoe 

geneesmiddelen kunnen worden geactiveerd tot reactieve metabolieten en 

uiteindelijk voor ongewenste bijwerkingen kunnen veroorzaken bij mensen. 
 
Twee hoofdaspecten zijn onderzocht in dit proefschrift. Het onderzoek dat is 

beschreven in het tweede gedeelte (PART II) van dit proefschrift, richt zich op het 

ontwikkelen van nieuwe methodes en strategieën die kunnen helpen bij het 

detecteren en karakteriseren van reactieve metabolieten van geneesmiddelen vroeg 

in het ontwikkelingsproces. De mogelijkheid dat een nieuw geneesmiddel kan 

worden gebioactiveerd tot een reactieve metaboliet wordt vaak gemeten met behulp 

van in vitro ‘trapping’ experimenten. In deze experimenten wordt GSH gebruikt om de 

reactie intermediairen te vangen (trappen) en de GSH adducten die daarbij gevormd 

worden, kunnen vervolgens worden gedetecteerd en gekarakteriseerd met behulp 

van diverse analytische technieken. Het blijft echter een uitdaging om lage 

concentraties van GSH adducten te kunnen meten. Gedurende dit onderzoek zijn 

twee nieuwe strategieën geëvalueerd om dit proces te vergemakkelijken. In 

Hoofdstuk 2, hebben we aangetoond dat bacteriële cytochroom P450 BM3 

mutanten succesvol gebruikt kunnen worden om significant hogere hoeveelheden te 

maken van reactieve metabolieten van geneesmiddelen. Deze gevormde 

metabolieten zijn identiek aan de metabolieten welke gevormd worden in humane en 

rat in vitro systemen. Hiermee is aangetoond dat bacteriële enzymen met een hoge 

katalytische activiteit gebruikt worden als biokatalysatoren om te assisteren in de 

identificatie van reactieve metabolieten van geneesmiddelen en, nog belangrijker, het 

achterhalen van nieuwe bioactivatie routes (zoals is aangetoond voor diclofenac). 

Een andere strategie, welke is geëvalueerd in Hoofdstuk 3, is om GSH adduct 

concentraties te verhogen door GSTs te gebruiken om de conjugatie van reactieve 

metabolieten met GSH te katalyseren. Alhoewel het toevoegen van GSTs aan in vitro 

incubaties de gevormde GSH conjugaat concentraties niet verhoogde tot het zelfde 

level als eerder werd waargenomen met de BM3 mutanten, verhoogde het wel de 

hoeveelheden gevormde GSH adducten van het geneesmiddel carbamazepine wat 

leidde tot waardevolle inzichten in de rol van GSTs in bio(in)activatie routes van dit 

geneesmiddel. In Hoofdstuk 4 zijn de twee methodes, welke beschreven zijn in de 
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voorgaande twee hoofdstukken, gebruikt om het metabolisme en de bioinactivatie 

van het geneesmiddel trimethoprim (TMP) te onderzoeken. Dit geneesmiddel zorgt 

voor zeldzame, maar ernstige ongewenste bijwerkingen (ADRs) in mensen. We 

hebben aangetoond dat TMP wordt gebioactiveerd tot meer reactieve metabolieten 

dan beschreven wordt in de literatuur en dat genetisch polymorphe P450s een rol 

kunnen spelen in het optreden van TMP-gerelateerd ADRs in mensen.  
 
Een grote beperking van in vitro systemen om het risico van het optreden van ADRs 

in te schatten, is het feit dat de in vitro situatie niet altijd gebruikt kan worden om in 

vivo, wanneer alle biologische processen (zoals bijvoorbeeld de biologische 

beschikbaarheid, het transport, de bio(in)activatie...) een rol spelen, het type 

reactieve metabolieten en de gevormde hoeveelheden daarvan nauwkeurig te 

voorspellen. Daarom is het belangrijk om, tijdens het evalueren van de veiligheid van 

nieuwe kandidaatsgeneesmiddelen, de vorming en effecten van reactieve 

metabolieten in mensen te voorspellen of te meten. Het werk beschreven in PART III 
van dit proefschrift, gaat over deze aspecten en betreft de ontwikkeling van nieuwe 

methodes en strategieën om in te schatten wat de kans is dat een geneesmiddel 

wordt gemetaboliseerd tot een reactieve metaboliet en de covalente binding van 

deze metabolieten in vivo. Eerder uitgevoerde wetenschappelijke studies hebben 

aangetoond dat eiwit adducten kunnen worden gebruikt als biomarkers om aan te 

tonen dat mensen zijn blootgesteld aan reactieve en mogelijk mutagene chemische 

stoffen tijdens arbeid. In Hoofdstuk 5, hebben we voor de eerste keer een 

soortgelijke strategie geëvalueerd waarbij we adducten van albumine hebben 

gekozen als biomarkers voor in vivo bioactivering van geneesmiddelen tot reactieve 

metabolieten welke een rol spelen in het optreden van ongewenste bijwerkingen 

(ADRs). Een algemene strategie was ontwikkeld, waarbij eerst acetaminofen-

albumine adducten zijn gevormd met behulp van in vitro technieken voor methode 

ontwikkelingsdoeleinden, en waarbij vervolgens de analyse methode is gebruikt om 

dezelfde adducten te detecteren in het bloed van patienten die zijn blootgesteld aan 

hetzelfde geneesmiddel. Extra biomarkers, die representatief zijn voor korte termijn 

blootstelling aan reactieve metabolieten en mogelijk oxidatieve stress, werden ook 

geïdentificeerd. De ontwikkeling van een volledig geautomatiseerd systeem om 

albumine adducten te meten om meer samples te kunnen meten, is beschreven in 

Hoofdstuk 6. Deze methodes kunnen zodoende gebruikt worden om de 

risicoschatting in het ontwikkelen van geneesmiddelen te verbeteren. 
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In conclusie, en zoals besproken in PART IV, het optreden van idiosyncratische 

ongewenste bijwerkingen van geneesmiddelen is nog steeds slecht verklaard. Een 

pragmatische strategie in ontwikkelingsprogramma’s is om alle reactieve 

metabolieten te beschouwen als een ongewenste eigenschap van nieuwe 

kandidaatsgeneesmiddelen. Dit betekent dat grote inspanningen moeten worden 

geleverd om de bioactivering van deze nieuwe chemische entiteiten te elimineren of 

te verminderen. Methodes die bedoeld zijn voor de identificatie en karakterisering 

van deze reactieve metabolieten, zoals beschreven in dit proefschrift, kunnen helpen 

om een betere risicoschatting te maken voor nieuwe kandidaatsgeneesmiddelen. 

Echter, het is zeer belangrijk om op te merken dat het vormen van reactieve 

metabolieten of het covalent binden daarvan aan eiwitten niet altijd leidt tot IDRs of 

ADRs en dat dit zorgt voor een knelpunt in het uitvoeren van een adequate 

risicoschatting. Het verkrijgen van een beter inzicht in het verband tussen eiwit 

adduct vorming en de geassocieerde toxiciteit en/of verandering in biologische 

functie is daarom essentieel. Alleen dan kunnen voorspellingen worden gemaakt met 

betrekking tot de potentiële impact van geneesmiddelalkylering op specifieke 

toxische effecten. De ontwikkeling van biomarkers, die kwalitatief (en bij voorkeur 

ook kwantitatief) geneesmiddelgerelateerde eiwitalkyleringsprofielen en/of 

genetische expressie veranderingen kunnen relateren aan specifieke types van 

toxiciteit, zullen waardevol zijn bij het maken van risicoschattingen. Dit proefschrift 

heeft significant bijgedragen aan het ontwikkelen van nieuwe strategieën en 

methodes om deze doelstelling te bewerkstelligen.  

 



  Curriculum Vitae 

 199

Curriculum Vitae 

Micaela Damsten is Finnish of nationality and was born in Neuilly-sur-Seine on the 

31st August 1977. In 1995, she graduated from the College Saint-Michel in Brussels. 

In 2001, she obtained the title of “Licencié en Sciences Biomédicales, orientation 

Toxicologie” at Catholic University of Leuven (UCL) in Brussels. She conducted her 

Master’s thesis project in the Industrial Toxicology and Occupational Medicine unit of 

the Faculty of Medicine, under the supervision of prof. A. Bernard and dr. C. 

Hermans. The research consisted of the non-invasive assessment of the integrity of 

the lung epithelial barrier in populations chronically exposed to metropolitan air 

pollution. 
 
She then started a Master in the division of Molecular Toxicology of the Leiden 

Amsterdam Center for Drug Research (LACDR), at the Department of Chemistry and 

Pharmaceutical Sciences of the Vrije Universiteit in Amsterdam. She obtained the 

degree of “Master of Science in Pharmaceutical Sciences” in 2003. Her Master’s 

thesis project consisted of investigating the metabolism and estrogenicity of di-

halogenated biphenyls, under the supervision of prof.dr. N. P. E. Vermeulen and     

dr. J. N. M. Commandeur. In September 2003, she initiated her PhD project in the 

same department of the Vrije Universiteit. 
 
She started working as toxicologist at Ashland B.V., a global chemical company, in 

February 2008. Her main tasks were to perform risk assessments on chemicals and 

prepare the company for the new EU regulation REACH (Registration, Evaluation, 

Authorisation & Restriction of Chemicals). Since February 2009, she is working as 

Scientific Policy Officer in the Directorate General for Health and Consumers (DG 

SANCO) at the European Commission in Brussels. Her main tasks include the 

assessment of issues related to consumer’s health and safety, develop and 

implement policy initiatives, monitor policy developments in the area of consumer 

health and safety and ensure that consumer health and safety concerns are taken 

into account in other policies. She also provides support and scientific advice to core 

Unit and broader Directorate activities related to chemicals, risk assessments and 

other scientific matters.   



 

 

 

 



  List of Publications 

 201

List of Publications 
 

Damsten MC, de Vlieger JS, Niessen WM, Irth H, Vermeulen NP, Commandeur JN; 

Trimethoprim: novel reactive intermediates and bioactivation pathways by 

cytochrome P450s; Chem Res Toxicol. 2008 Nov; 21(11): 2181-7. 
 
Damsten MC*, van Vugt-Lussenburg BM*, Zeldenthuis T, de Vlieger JS, 

Commandeur JN, Vermeulen NP; Application of drug metabolising mutants of 

cytochrome P450 BM3 (CYP102A1) as biocatalysts for the generation of reactive 

metabolites; Chem Biol Interact. 2008 Jan 10; 171(1): 96-107.  
 
Hoos JS*, Damsten MC*, de Vlieger JS, Commandeur JN, Vermeulen NP, Niessen 

WM, Lingeman H, Irth H; Automated detection of covalent adducts to human serum 

albumin by immunoaffinity chromatography, on-line solution phase digestion and 

liquid chromatography-mass spectrometry; J Chromatogr B Analyt Technol Biomed 

Life Sci. 2007 Nov 15; 859(2):147-56. 
 
Damsten MC, Commandeur JN, Fidder A, Hulst AG, Touw D, Noort D, Vermeulen 

NP; Liquid chromatography/tandem mass spectrometry detection of covalent binding 

of acetaminophen to human serum albumin; Drug Metab Dispos. 2007 Aug; 35(8): 

1408-17. 

 

 

 

van Vugt-Lussenburg BM, Damsten MC, Maasdijk DM, Vermeulen NP, 

Commandeur JN; Heterotropic and homotropic cooperativity by a drug-metabolising 

mutant of cytochrome P450 BM3; Biochem Biophys Res Commun. 2006 Aug 

4;346(3):810-8. 
 
van Lipzig MM, Commandeur JN, de Kanter FJ, Damsten MC, Vermeulen NP, Maat 

E, Groot EJ, Brouwer A, Kester MH, Visser TJ, Meerman JH; Bioactivation of 

dibrominated biphenyls by cytochrome P450 activity to metabolites with estrogenic 

activity and estrogen sulfotransferase inhibition capacity; Chem Res Toxicol. 2005 

Nov; 18(11): 1691-700. 

 

 
* Both authors contributed equally to this work. 



 

 

 
 



  Acknowledgements 

 203

Acknowledgements 

Ca y est! It’s finally done. And therefore, I wish to thank all those who contributed to 

this work. In particular I wish to express my gratitude to Nico and Jan. Nico: thanks 

for being my promotor and for accepting me in your group since the very beginning, 

when first starting as a Master’s student in MolTox. Jan: thank you for being my co-

promotor; for your sharp comments and valuable input on the work. Furthermore, I 

wish to extend my gratitude to the members of the Reading Committee for the review 

of this thesis. I’d also like to thank all former colleagues at MolTox: Peter, Jeroen K., 

Chris D., Marola, Aldo, Anton, Robert, Barbara, Ed, Jeroen L., Jolanda, Eva, 

Bernardo, Jozef, Chris O., Chris V. and of course all the courageous students as well 

who took up the challenge to work alongside me! My special warm thanks go to 

Regina: my room-mate & plantain expert; Sebas: for the nice moments spent 

together; Jelle: thanks for the 4 pm cookie-breaks, for always being willing to help 

and for acting as my paranimf; and of to course to Laura: for your assistance with the 

finalization of this PhD. 

I probably spent as much time at the 3rd floor as at MolTox, so my gratitude goes of 

course to all the ACAS colleagues. My sincere thanks go out to Hubertus Irth for 

letting me measure on great mass spectrometers; Wilfried Niessen: thank you for 

your inspiring expertise in analyzing mass spectra’s; Johannes & Jon: for the nice 

research we did together and the excellent coffee breaks; Ben & Marek: for all your 

help with the LCQ, IT-TOF, etc, etc… I must admit, I will truly never forget all the time 

spent in that room measuring (and fighting) with the machines! 

The “albumin-work” would not have been possible without TNO and my deep 

gratitude goes also to all colleagues involved: Daan Noort: thanks for letting me work 

in your group; Alex: for showing me all the tricks in protein digestion; Debora and 

especially Albert: many, many thanks for your skills with the Q-TOF and for your 

enthusiasm in measuring the CPF adducts; Annemieke for your aid in the lab. 

Daan Touw: thanks for providing us with the valuable human serum samples; Jan 

Bolscher & Kamran Nazmi: for learning me synthesizing peptides; Frans for your 

assistance with the NMR’s and all FAR colleagues (so many to mention here) but in 

particular: Dennis, Obbe, Martijn and Janneke: thanks for always being present at the 

VU borrels! 

Nalan, Harry, Halil, Hilmi, Hande, Anna, Pau, Anu, Erik, Paola, Remko, David, Atilla, 

Sylvia, Robert, Stephane, Max, Merel, Marije, Julie… who enriched my PhD life 

outside the lab: thanks for being that great company, for the dinners, drinks, parties, 

trips, movings (!), etc, etc… 



Acknowledgements 

 204

Most of all, I would like to thank my family and all the friends that have been present 

since the very start of this “PhD experience”. In particular: les M&Ms: Maria, Mery et 

Maite, les filles, merci pour les meetings de crise; Annika, Tineke, Pati, Fabi, 

Vanessa, Nadia, Nerea, Joce, Mylene, Erik and Wendy: Thank you all for always 

being that motivated; Toffe: thanks for being my paranimf; and papa et maman: thank 

you so much for your never-ending support in all projects I undertake. Last but not 

least, Giovanni: thanks a million times for being there, for your patience, help and 

support during the finalization of this thesis.   

 

 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 



   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
« La recherche n’avancerait-elle pas plus vite... 

    Si au lieu de recruter des chercheurs, on engageait des trouveurs? » 

Le Chat 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


