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Abstract 
 
In this paper, we present a review of various computational experiments – and consequent results – 
concerning Neural Network (NN) models developed for regional employment forecasting. NNs are 
widely used in several fields because of their flexible specification structure. Their utilization in 
studying/predicting economic variables, such as employment or migration, is justified by the ability 
of NNs of learning from data, in other words, of finding functional relationships – by means of data 
– among the economic variables under analysis. 
A series of NN experiments is presented in the paper. Using two data sets on German NUTS 3 
districts (326 and 113 labour market districts in the former West and East Germany, respectively), 
the results emerging from the implementation of various NN models – in order to forecast 
variations in full-time employment – are provided and discussed. In our approach, single forecasts 
are computed by the models for each distinct district. Different specifications of the NN models are 
first tested in terms of: (a) explanatory variables; and (b) NN structures. The average statistical 
results of simulated out-of-sample forecasts on different periods are summarized and commented 
on. 
In addition to variable and structure specification, the choice of NN learning parameters and 
internal functions is also critical to the success of NNs. Comprehensive testing of these parameters 
is, however, limited in the literature. A sensitivity analysis is therefore carried out and discussed, in 
order to evaluate different combinations of NN parameters. The paper concludes with 
methodological and empirical remarks, as well as with suggestions for future research. 
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1  Introduction 
 
Forecasting in economics has been on a rising edge over the years, because of the increased need, in 
particular by policy-making agencies, for optimal policy intervention and stimuli. In particular, 
because of the ongoing shift towards tailor-made region-specific policies, meso-economic (sectoral 
or regional) forecasts are in great demand. On the other hand, new problems tend to arise in 
conjunction with new forecasting tasks, such as: (a) the imbalance between the increased number of 
regions to forecast for and the time span of the observations available; and (b) the complex 
dynamics and economic interdependencies influencing economic performance, which are often 
difficult to measure and which create difficult specification issues in inferential statistics. 

A non-conventional and increasingly popular approach to economic forecasting that may 
overcome some of the above problems is offered by the family of mathematical methods of ‘neural 
networks’ (NNs). NNs are optimization algorithms, which have the capacity to learn functional 
relationships from the data and replicate them for out-of-sample forecasting. This characteristic 
makes them a flexible statistical tool for the solution of complex socio-economic problems. Labour 
market developments are a good example of such complex forecasting issues, as there are many 
forces at work (demand-supply, sectoral, geographic, institutional) which may lead to complex 
evolutionary patterns that cannot be handled by standard linear modelling approaches. In addition to 
having a non-linear nature, NNs do not require a priori modelling hypotheses, which are sometimes 
difficult to formulate, in particular when the implications of the variables concerned are not fully 
known, or when insufficient insight into the forces at work exists. 

While NNs have several advantages, they also have drawbacks, such as the limited behavioural-
theoretical interpretation of their results. However, interpretation issues are, in our case, less 
opportune, because our focus is on forecasting. Another caveat in the use of NNs is that they have 
been shown to be sensitive to the choice of the parameters implemented within the algorithms used 
(see, for example, Hagan et al. 1996). 

The non-explicit behavioural foundation of the NN models in economic theory – which precludes 
a straightforward theoretically-based specification analysis of models – leads to the need to explore 
different – sometimes complementary – model specifications in an NN context so as to test the 
robustness of forecasting results. The objective of the present paper is to investigate the sensitivity 
of NN models – developed for regional employment forecasts – to different model specifications 
and to changing parameter values, with the final aim being to maximize the forecasting potential of 
the models under consideration. We use German regional employment variables as a case study, 
and develop and estimate a set of NN models by utilizing different inputs. 

The paper is structured as follows: Section 2 provides a very brief pedagogical description of the 
working of NNs. Section 3 illustrates the implementation of a set of NNs models developed for 
regional employment forecasting. Section 4 presents a sensitivity analysis, which was carried out in 
order to test different combinations of learning parameters and internal functional forms. Section 5 
reviews, on the basis of the sensitivity analysis findings, a set of NN models, and presents an 
evaluation and comparative discussion of their statistical performance. Finally, Section 6 draws 
methodological and empirical conclusions, as well as suggestions for future research. 
 
 
2  Neural Networks 
 
NNs are often referred to as a ‘black box’ approach. Though they are regarded as such in particular 
in social sciences, because of their no-theory modelling characteristics, NNs are not an obscure tool. 
The internal functions that process the information inputs, as well as the algorithms that determine 
the direction and the degree of interaction of the factors, can be clearly explained formally and 
mathematically. On top of it, they can be proven to be consistent with standard goodness-of-fit 
conditions (see, for example, Schintler and Olurotimi 1998). 
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NNs (Rosenblatt 1958; Werbos 1974) are optimization tools that – originally – aimed to replicate 
the simultaneous information processing and data-driven learning seen in biological networks. A 
generic NN can be defined as a multilevel system of computation units (or neurons), which are 
distributed in interlinked layers. The computation units can either refer to the input variables (which 
are contained in the first layer) or to the output variables (in the last layer), or be used for 
intermediate calculation (if present, in the hidden layers). A NN with no hidden layers is called a 1-
layer structure, as the output layer is usually not counted, since it does not take part in the data 
computation. Accordingly, a NN with one hidden layer has a 2-layer structure, and so on. In 
feedforward NNs, every unit is connected to all units in the successive layer, and connections only 
go in one direction – forward (other types of NNs, such as recurrent NNs, are not considered here). 

Without loss of generality, in the univariate case, the output of the generic processing unit ui,n is 
obtained as follows: 
 
 ( ) ( )( ), 1 1φ ,i n n nu f− −= = ℑu u  (1) 
 
where { }1 1, 1 , 1,...,n n k nu u− − −=u  is the preceding layer of units, and the transfer function φ  can be 
decomposed into two separate functions: the activation function ,ℑ  and the integrator function f. 
The former computes the units’ output, and is usually a (logistic) sigmoid (see Subsection 4.3) 
while the latter aggregates the information processed by the units of the preceding layer (in 
Equation (1), un–1) connected to unit un. This is often done by means of a weighed sum of the type 

, 1 , 1 , 1( ) .i n n ij n j nj
v f w u− − −= =∑u  The weights wij,n–1 used in the integrator function are recursively 

computed during the ‘training’ of the NN, guaranteeing the ‘learning’ process. They have an 
essential role, as the ‘knowledge’ generated by the NN is contained in the set of weights computed. 
Clearly, these weights have to be computed. 

The backpropagation algorithm (BPA) (Rumelhart and McClelland 1986) is the algorithm most 
commonly used for the computation of the above weights. Learning from examples of inputs and 
outputs provided by the analyst, the NN identifies the relationships underlying the data. Such a class 
of NN models is usually called supervised NNs (unsupervised NNs are not discussed here). The 
learning process of the NN is given by the comparison between the output generated from Equation 
(1) in the output layer and the correct output. The obtained error is propagated backward through 
the network until the input layer, and the process is repeated, with consequent re-adjustments of the 
weights,1 until a stopping condition is satisfied (for more details on the BPA, we refer to Rumelhart 
and McClelland 1986). 

Although the process described does not require actions from the analyst, NNs are not completely 
autonomous. BPA networks tend to fall into local minima or to overfit the data (Zhang et al. 1998). 
Overfitting can happen when an excessive number of iterations is carried out, a situation that can be 
detected by observing a deterioration in the statistical error of the NN. A number of techniques can 
then be used to deal with this potential drawback, the most common being early stopping. In early 
stopping, the training of the network is stopped once the statistical error computed at each iteration 
reaches a slow convergence or increases. NNs were also shown to be sensitive to changes in the 
values of the learning parameters internal to the BPA, as well as to the activation function used 
(Klimasauskas 1991; Hagan et al. 1996). These aspects are discussed in Section 4. First, Section 3 
will describe the implementation of NN models for regional employment forecasting, and the 
statistical results obtained for different model specifications. 
 
 

                                                 
1  The starting set of weights is usually randomly defined, so to generate a large error in the first iteration and facilitate 

the convergence of the algorithm (Cooper 1999). 
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3  Neural Networks for Forecasting Regional Employment 
 
The basic working of general NNs described in the preceding section has now to be fine-tuned to 
the use for regional employment forecasting. The variable we want to predict is the growth rate of 
fulltime employment in 439 NUTS-3 districts in Germany. We focus on forecasting biannual 
growth rates, that is, 2 years ahead ( , 2).t t +  We use panel data for the periods 1987–2004 and 
1993–2004, for West and East Germany, respectively.2 The nature of the data used is indeed the 
most important aspect of our experiments. Differently from conventional panel models (see, for 
example, Baltagi 2001), a standard NN does not include temporal correlation. Still, identifying time 
information in the models is critical in order to recognize time-specific shocks and, in the case of 
Germany, the continuing effects of the reunification. Therefore, the main problem faced in 
developing our models is: How can NNs recognize and treat the time correlation in the data? We 
choose to introduce time in our models by employing a time variable that identifies – by means of a 
text (string) variable – the years concerned. This approach is made possible by rescaling the text 
variable, that is, each year is associated with a numerical value within the (0,1) interval, therefore 
identifying a year specific intercept. An alternative but similar approach, based on the use of yearly 
dummy variables, was proven less preferable (see Patuelli et al. 2006; 2007). In addition to time, the 
main covariates employed in all models proposed later in the paper are the growth rates observed in 
fulltime employment, for the period ( 2, ).t t−  We subdivide the employees in nine sectors, ranging 
from primary goods to services. 

Starting from this baseline model (hereforth, Model B), in Section 5, five additional models are 
tested, which are obtained when more covariates are considered: 

 
- Model BD uses a 9-point index of the level of urbanization and agglomeration of the 

districts (see Böltgen and Irmen 1997). This index aims to account for the different 
economic trends of urbanized, agglomerated and rural areas; 

- Model BW has, as an additional variable, information on average regional daily wages of 
fulltime workers. The wage variable aims to capture the well known relationship between 
labour supply/demand and wages; 

- Model BSS uses the competitive effect components computed by means of shift-share 
analysis (SSA) (Dunn 1960) for the nine economic sectors concerned. These components 
express the competitiveness – in terms of employment growth rates – of each region in each 
sector, compared with sectoral trends at the national level; 

- Model BSSN uses competitive effect components, similarly to Model BSS, but computed 
according to the spatial shift-share approach, as described in Nazara and Hewings (2004). In 
spatial shift-share, the employment performance of regions is not compared to national 
performance, but to the one of neighbours,3 so to capture spatial/economic correlation; 

- Model BSSR uses modified competitive effects. These effects were computed by 
multiplying the components used in Model BSS by the respective regression coefficients 
obtained by means of (simplified) shift-share regressions carried out, for each year of data, 
as in Patuelli et al. (2006). The new effects ought to be a fine-tuning of the ones used in 
Model BSS. 

                                                 
2  The data (on fulltime employment and average daily wages) used in our experiments have been provided by the 

German Institute for Employment Research (Institut für Arbeitsmarkt und Berufsforfschung, IAB). As these data are 
directly collected at single-firm level, they are expected to have low and non-systematic measurement errors. The 
employment data refer, for each year, to the second quarter (full quarterly data were not available for the 
experiments). 

3  In the spatial shift-share approach, we define as neighbours the three districts that provide the most commuters to 
each district. Neighbours beyond the former boundary between West and East Germany are not considered. The 
commuting data have been provided by Franz-Josef Bade (University of Dortmund, Germany), whom the authors 
greatly acknowledge. 
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The above models are estimated separately, for both West and East Germany, because of the 

different time span of the data (1987–2004 and 1993–2004, respectively). Several structures are 
tested for each model: (a) a 1-layer structure; (b) 2-layer structures with 5, 10, and 15 hidden units; 
and (c) a 3-layer structure with 5 hidden units in both hidden layers.4 All NN models are validated 
on the years 1999 and 2000 for West Germany, and on the year 2000 for East Germany (because of 
the shorter data span). One of the above structures is chosen for each model, according to mean 
squared error (MSE) and mean absolute error (MAPE) values. Overfitting is avoided by means of 
early stopping of the training. 

Once validated, the NN models are applied to more recent data (from 1999–2001 to 2002–04), 
obtaining, for each 2-year period, simulated out-of-sample forecasts. In Table 1, we present the 
average (pooled) statistical error found for the four periods.  

The choice of the covariates to use is not the only relevant part of the process of developing an 
NN model. Because of the local minima search characteristic, NNs are known to have volatile 
performance, and a tendency to overfitting. The next section discusses the selection of appropriate 
NN parameters, by means of a sensitivity analysis. 
 
 
4  Sensitivity Analysis 
 
4.1  Preface 
 
This section is concerned with describing – and testing – the main parameters and functions that are 
used internally to NNs. It is relevant to deal with concepts such as learning rate or activation 
function, since they greatly influence the performance of NNs models (see, for example, Hagan et 
al. 1996). In our case, the objective is to find the optimal combination of parameters in order to 
increase the forecasting potential of our models. 

Sensitivity analyses of NN learning parameters or activation functions have been previously 
carried out (see, for example, in the case of neural spatial interaction models, Gopal and Fischer 
1996). Srinivasan et al. (1994) experimented with different activation functions (symmetrical and 
non-simmetrical) and learning parameters, in the context of electrical load forecasting. However, no 
detailed results are presented emerging from their analysis. Gorr et al. (1994) used a grid search 
procedure for choosing learning rate values (jointly to the number of iterations), but did not test the 
suitability of alternative activation functions, as well as Sharda and Patil (1992). Generally, more 
attention is focussed on the choice of NN learning parameters, rather than on the choice of the 
activation function. 

The sensitivity analysis illustrated in the following sections aims to evaluate the use of both 
different combinations of learning parameters (Section 4.2), and of varying activation functions 
(Section 4.3), so to provide a more complete overview of NN setting issues. 

 

                                                 
4  There is no agreement in the literature on how to select the number of hidden units contained in the hidden layers. 

Tang and Fishwick (1993) suggest that the number of hidden units in a NN has an effect on its forecasting 
performance, but this effect does not seem to be significant (Zhang et al. 1998). Others suggest that a number of 
hidden units equal to the number of input units (in a 2-layer framework) would provide improved results 
(Chakraborty et al. 1992; Sharda and Patil 1992; Tang and Fishwick 1993). It is generally recommended to 
experiment, for each empirical application, with different NN configurations – proceeding ‘at jumps’ – so as to find 
heuristically the NN that fits best one’s needs. This approach was followed in our experiments. 
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4.2  Learning Rate and Momentum 
 
4.2.1  Description 
The backpropagation algorithm (BPA) (see Section 2) can be seen as a gradient steepest descent 
method, an optimization method based on the search for local minima of functions (Zhang et al. 
1998; see also Weisstein 2006). In order to use a gradient descent algorithm, a step size – that is, a 
scaling parameter – is necessary. In NNs, this is called ‘learning rate’ (LR), which, jointly with the 
momentum parameter, is crucial in determining the NN learning curve, in terms of potential, 
stability and computing time. Different combinations of the values given to the two parameters can 
generate significantly different results. Simply said, a NN’s LR determines the magnitude of the 
correction that is applied, during the learning phase, when adjusting the weights of the computation 
units. On the other side, the momentum defines how lasting the corrections applied will be, that is, 
for how many iterations they will survive. 

Learning rates assume positive values, which range from 0 to 1. On the one hand, large values 
imply a quick learning of the network. On the other hand, values that are too large may cause the 
NN to be unstable, therefore nullifying the learning carried out at previous iterations. Generally, 
unstable behaviour can be avoided for LR values smaller than 0.25. The drawback of using such 
small LR values is the longer computing time required for training. 

The tricky nature of the LR parameter calls for empirical testing. In fact, the BPA is known to 
suffer from slow convergence, inefficiency and lack of robustness (Zhang et al. 1998). Furthermore, 
it can be very sensitive to the choice of the LR. Ideally, one should experiment with different values 
of LR, in order to find the most suitable one for the data at hand. Gorr et al. (1994) propose to use a 
search grid in order to test different LR values. Although more automated optimization procedures 
can be used in this regard (we refer, for example, for the discussion of adaptive LR to Section 
4.2.3), a more conservative approach may be to manually adjust the LR values, starting from low 
values, which can be increased if the learning process is low. 

The performance of the BPA can be improved by including an additional parameter, viz. 
momentum. The momentum parameter determines the lifespan of the corrections made to the NN 
weights during the training process. Its aim is to allow for greater values of the LR, therefore 
fastening convergence, while reducing the fluctuations of the BPA. The momentum parameter 
assumes values greater than (or equal to) 0, but smaller than 1.5 On the one hand, momentum values 
that are close to 1 will increase the influence that previous corrections to the weights have on the 
current corrections. On the other hand, a NN with a momentum close to 0 will mainly (or ‘only’, in 
the case of 0) rely on the current corrective term, at each stage of the training. For example, a 
momentum value set at 0.5 means that 50 per cent of the weight adjustment, at each stage, will be 
on the basis of the current error, while the remaining 50 per cent will be due to the adjustment 
applied in the previous iteration. As a result, any weight adjustment will have a continuing effect, 
following an exponential decay. 

The ‘smoothing out’ effect of this process is the main benefit of the momentum parameter, since 
it prevents outliers from forcing learning in an undesirable direction. By using a momentum, weight 
changes in the training of the NN are channelled in the same direction of the preceding iteration. 
This is particularly true when higher momentum values are used. In such a case, high momentum 
tends to accelerate convergence, giving it, as in the word, ‘momentum’ (Hagan et al. 1996). 
Alternatively, lower momentum values may be suitable for data which are more regular or 
smoother, or when the functional relationships to be learned are relatively simple. Generally, 
experimenting with different values of momentum might be necessary, as in the case of LR, in order 

                                                 
5  The momentum parameter cannot exactly assume the value 1. The reason for this caveat is easily shown by an 

example. If the momentum was set at 1, 100 per cent of the previous error adjustment would be used at each stage of 
the training. Because no previous adjustments are present at the very first training iteration, the first weight 
adjustment would be 0. But the same adjustment (0) would be repeated at each iteration, since the current error is not 
considered, resulting in no training whatsoever. 
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to find the appropriate value for the problem at hand, unless more sophisticated methods are 
employed in order to determine the right momentum value (see, for example, Yu et al. 1995). These 
methods can also be linked to the use of adaptive LRs. 

 
4.2.2  Sensitivity Analysis 
When testing for values of LR and momentum, an exhaustive search of the (0, 1) interval for both 
parameters, including all their possible combinations, would be rather time-consuming. Sharda and 
Patil (1992) suggest a simpler strategy, based on the use of three values (0.1, 0.5, 0.9) for each 
parameter. The resulting nine combinations can be tested separately, with no excessive computation 
efforts, while covering most of the spectrum of possible values. 

The same approach is followed in our experiments. The sensitivity of the NN models to different 
LR and momentum values is tested for the above nine combinations of values, using always a 
sigmoid (logistic) activation function. We choose for testing the baseline model presented in 
Section 3 (Model B), because of its simple application and stable performance seen in previous 
experiments. For all combinations of LR and momentum, and for West and East models, the ideal 
training time is identified by means of early stopping (see Section 2). Table 1 shows the pooled 
MSE and MAPE obtained for the years 2001, 2002, 2003, and 2004. The computation of the pooled 
error increases the reliability of our statistical findings, by averaging out the stochastic variability of 
the models’ single-period application. 

 
Table 1 – Sensitivity analysis for learning rate and momentum: Model B, West and East Germany, 
years 2001–04 
West Germany  
MSE (/1000)    MAPE    

Learning rate 
Momentum 

0.1 0.5 0.9 Learning rate 
Momentum 

0.1 0.5 0.9 

0.1 10242.45 (6) 9481.17 (3) 10072.73 (5) 0.1 3.72 (4) 3.65 (2) 3.79 (6)
0.5 9226.85 (1) 9575.08 (4) 9478.07 (2) 0.5 3.59 (1) 3.73 (5) 3.70 (3)
0.9 12161.96 (9) 10962.08 (7) 11839.88 (8) 0.9 4.04 (8) 3.83 (7) 4.11 (9)
East Germany 
MSE (/1000)  MAPE  

Learning rate 
Momentum 

0.1 0.5 0.9 Learning rate 
Momentum 

0.1 0.5 0.9 

0.1 2391.72 (1) 3609.21 (8) 3786.61 (9) 0.1 3.46 (4) 3.44 (3) 3.46 (5)
0.5 3248.86 (6) 3026.33 (4) 2891.25 (2) 0.5 3.43 (2) 3.72 (7) 3.73 (8)
0.9 2938.76 (3) 3206.21 (5) 3305.50 (7) 0.9 3.42 (1) 3.86 (9) 3.70 (6)
Note: The ranking of the NN models is shown in brackets. 
 

In Table 1, the stochastic variability that is inherent to NNs generates different degrees of 
statistical performance for the West and East German NN models, and for the two error indicators 
used. However, combinations of low LR and medium momentum (0.1, 0.5) seem to provide lower 
statistical error.  

Our finding is that a low LR, matched with a medium-range momentum, leads to better 
performance for the case of regional employment forecasts. A NN employing such parameters is 
expected to show a potentially slower convergence (indeed, a high number of iterations is needed 
for NN training), but at the same time to experience more stable learning behaviour between 
iterations. The medium value for the momentum parameter (0.5) allows for a lasting effect of the 
learning obtained at each step. 

Our results can be compared with the ones by Tang et al. (1991), who found that low LR (and 
higher momentum) values are adequate for use with complex data (while higher LRs are 
appropriate for simpler data). Whether or not our findings match these considerations relies on 
whether our data should be considered ‘complex’. Generally, Tang and Fishwick (1993) state that, 
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for each series of data, a set of NN parameters can be found which performs significantly better 
than the rest. This consideration stresses once again the crucial role played by the learning 
parameters in the performance of NNs. The inconsistent results in the literature regarding the search 
of ideal values of the learning parameters (see, for example, Chakraborty et al. 1992; Sharda and 
Patil 1992) are blamed by Zhang et al. (1998) to the minimum search inefficiencies of the BPA. 

 
4.2.3  Adaptive learning rate 
 
We pointed out in Section 3 that the BPA has flaws, that is, it can have slow convergence (if any) 
(Kuan and Hornik 1991) and, most importantly, can get trapped in local minima. Several techniques 
have been developed in order to solve the problem of slow convergence of the BPA. The BPA is 
also sensitive to the initial conditions chosen, and can show oscillations in the computation units’ 
output (Sarkar 1995). While the momentum parameter can be seen as – and mostly is – a regulator 
of the oscillation and local minima problems in the BPA (and involving the LR parameter), its value 
is chosen a priori, and is therefore not tied to the actual progress of the NN iterations.  

In order to overcome these limitations, the use of adaptive learning rate (ALR) has been proposed. In the 
bold driver method (Vogl et al. 1988), the LR – as defined in Section 4.2.1 – is augmented by a 
factor ρ when the error computed at iteration n is greater than the one previously found at iteration n 
– 1. Otherwise, the LR is diminished by a factor σ when the error decreases.6 A further step in the 
application of ALR techniques is the implementation of NNs that have multiple ALRs. In the self-
adaptive backpropagation (SAB) method, each weight can have its own LR, which is computed as 
the partial derivative of the learning error estimator. The method is based on the idea that the same 
LR may not be appropriate for all the weights of the NN. Moreover, in the SuperSAB method, it is 
suggested that the ρ and σ factors that modify the multiple LRs should be also different in value, 
and that the decrease in the LR caused by the σ factor should be greater (see Jacobs 1988; 
Tollenaere 1990). Tollenaere suggests that the SuperSAB algorithm considerably speeds up 
learning. 

The ALR approaches listed above provide a somehow faster learning for NNs. On the other hand, 
Park et al. (2000) advise that these methods can not completely avoid the algorithm from stalling in 
slow convergence plateaus. This is because this class of methods uses the same search direction that 
is used in the conventional BPA. Consequently, we want to test if an ALR approach can provide 
improved statistical performance in comparison with the one of the NNs with fixed LR. We 
consider two NN models, based on Model B, for the years 2001–04: the first model employs a LR 
of 0.1, while the second model uses an ALR. Both models have a momentum of 0.5, as found in 
Section 4.2.2). Again, a sigmoid activation function is used in both models. 

With regard to the implementation of the ALR used, this is implemented as follows: 
 

- The LR is modified at this training iteration. The extent of its recalculation is based on the 
error computed at the previous iteration; 

- If the error decreases as a result of the last iteration, the LR drops proportionally to the error 
decrease. If the error increases, the LR also increases proportionally. 

- The training of the NN models ends once the stopping condition is satisfied. 
 
Our first question is if the ALR algorithm provides, in our case, a faster convergence, which 

requires us to observe the evolution of the training error. When plotting the error against the number 

                                                 
6  The momentum parameter can also be modified: that is, forced to 0 when the error increases, and brought back to its 

value in the opposite case (Hagan et al. 1996). In addition, Yu et al. (1995) propose a dynamically adaptive method 
for the optimization of the LR, which employs derivative information. Alternatively, Plagianakos (1999) suggests an 
acceptability criterion for the modification of the LR, based on the previous M computed errors. This approach 
appears to speed up convergence of the NNs and to make them more robust against oscillations. 
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of training epochs, the NNs with an ALR seem to reach a stable training error (converge) faster than 
the ones with fixed LR (Figure 1). This ‘informal’ result is consistent with the literature. 
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Figure 1 – Training error (RMS) evolution over 400 iterations, for West and East German NN 
models: West Germany, fixed LR (a), ALR (b); East Germany, fixed LR (c), ALR (d) 
 

The subsequent question is, therefore, if the algorithm can improve the statistical performance of 
the models. Table 2 reports the error obtained in the simulated out-of-sample forecasts for the 
conventional fixed LR models, as well as of the ALR models, and shows a similar statistical 
performance for the fixed and adaptive LR models compared. This result is found for both data sets, 
in particular for East Germany; the differences in the statistical error can be considered of limited 
relevance, when compared with the variability shown in the LR/momentum and activation function 
analyses. 

 
Table 2 – Sensitivity analysis for adaptive learning rate: Model B, West and East Germany, years 
2001–04 
 West Germany East Germany 
 MSE (/1000) MAPE MSE (/1000) MAPE 
Fixed LR (0.1) 9226.85 (1) 3.59 (1) 3248.86 (2) 3.43 (1)
Adaptive LR 9670.04 (2) 3.75 (2) 3229.53 (1) 3.45 (2)
Note: The ranking of the NN models is shown between brackets. 

 
However, to gain inferential evidence regarding the performance of our competing specifications, 

the models can be further compared by using a forecast equality non-parametric test, the sign test 
(ST) (Lehmann 1998). The ST is based on the following idea: if two models, Model 1 and Model 2, 
are equally accurate, the number of forecasts of Model 2 which have a bigger error than Model 1 
are expected to be 50 per cent of the total number of forecasts obtained. Consequently, Model 1 will 
be considered superior to Model 2 if Model 2 has higher forecasting errors in more than 50 per cent 
of the cases. The ST statistic is computed as: 
 

 2ST ,1
2

NC

N

−
=  (2) 
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where C is the number of times Model 2 shows higher errors than Model 1, and N is the number of 
forecasts carried out (in our case, the number of districts concerned times the number of years 
forecasted). The ST statistic follows a normal distribution N(0, 1), while the null hypothesis H0 is of 
equality of the forecasting models. 

We combine the error obtained for the four years of simulated out-of-sample forecasts, 2001, 
2002, 2003, and 2004, obtaining 1304 forecasting errors for West Germany, and 452 for East 
Germany. Comparing the ALR models (Model 1) to the fixed-LR models (Model 2), we obtain ST 
statistic values of –7.26 and –3.48 for the West and the East, respectively, suggesting that the fixed-
LR NN models should be preferred to the ALR NN models. 

On the basis of the analyses carried out in this section, we can conclude that, in our forecasting 
experiments, ALR does not provide relevant approximation advantages, if only faster convergence 
of the algorithm, consistently with the literature. However, it should be pointed out that such a 
result may be greatly relevant when computational issues arise. 

 
4.3  Activation Function 
 
4.3.1  Description 
The greater benefit of using NNs is their nonlinear behaviour, which allows them to approximate 
nearly every type of function. Nonlinearities are introduced in NNs by means of the activation 
function. Ideally, any differentiable function can be used as an activation function. Practically, only 
a few nonlinear functions are usually considered for NNs, that is: 
 
- sigmoid (logistic) functions; 
- augmented ratio functions; 
- Gaussian functions; and 
- hyperbolic (tangent) functions. 
 

As a special case, we also consider: 
 
- linear functions, 
 
the use of which is sometimes suggested in NNs (see below). The sigmoid function is, anyway, the 
most widely used activation function. It is a smooth function, which returns nearly proportional 
outputs for intermediate values, while smoothing out values at the extremes of the spectrum. The 
augmented ratio function and the hyperbolic function are mostly similar to the sigmoid function, 
but, in the augmented ratio function, small values are rounded to 0, while the hyperbolic function is 
negatively oriented, tending to force extreme values of the distribution to either 1 or –1. The 
Gaussian function forces small values to 1, and extreme values to 0. The augmented ratio function 
looks like an inverted Gaussian function. Differently from the functions described above, a linear 
function proportionally rescales the values within the (0, 1) interval. 

While any of the described functions can be implemented in NNs, there is no clear rule on how to 
select the most appropriate activation function. Some heuristic rules have been proposed in the 
literature in order to select a suitable function, such as in Klimasauskas (1991). The author suggests 
the use of sigmoid functions for classification problems (for example, with binary outputs), and of 
hyperbolic functions for forecasting problems, that is, when learning about deviations from the 
average is involved. A different function can ideally be used for each computational unit in the NN 
(for example, both linear and sigmoid functions, as in Wong 1991). While the usual NN models 
found in the literature employ the same activation function for all units, examples can also be found 
of NNs in which a different function is selected for the output units. Sigmoid functions are mostly 
used in the input and hidden layers, while there is no agreement on what activation function should 
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be employed for the output units. In this latter regard, Zhang et al. (1998) and Rumelhart et al. 
(1995) suggest the use of linear functions. Zhang et al. cite a set of studies following the same 
procedure (see, for example, Srinivasan et al. 1994; Kuan and Liu 1995), which, according to the 
authors, provide no clear results on whether linear or nonlinear activation functions should be 
preferred for the implementation in the output units. As an additional caveat, it is outlined that NNs 
with linear output units are not able to approximate data with trends (Cottrell et al. 1995). This last 
aspect is less relevant in our case, as the NN models developed here employ growth rates. 

 
4.3.2  Sensitivity Analysis 
A sensitivity analysis of the performance of NNs with different activation functions would ideally 
require a full exploration of the possibilities available, and also of the mixed approaches discussed 
above. In this paper, we are limited to testing NNs employing the same activation function for all 
layers of units.7 

The activation functions that are tested here are: (1) sigmoid; (2) augmented ratio; (3) Gaussian; 
(4) hyperbolic; and (5) linear, as outlined in the previous section. While the linear function is 
normally used in the output layer only (see preceding section), our experiments intend to test its 
implementation in a whole NN. All models are based on the baseline model discussed above 
(Model B, see Section 3), employ the choice of learning parameters (a LR of 0.1 and a momentum 
of 0.5) seen above in Section 4.1.2, and are carried out for the years 2001, 2002, 2003, and 2004. 
Table 3 presents the results obtained for both West and East German models. Statistical error is 
computed as MSE and MAPE. 

 
Table 3 – Sensitivity analysis for activation functions: Model B, West and East Germany, years 
2001–04 
West Germany Sigmoid Aug. Ratio Gaussian Hyperbolic Linear 
MSE (/1000) 9226.85 (1) 9297.49 (2) 10131.27 (4) 9945.25 (3) 12307.48 (5)
MAPE 3.59 (1) 3.68 (3) 3.71 (4) 3.66 (2) 4.07 (5)
East Germany Sigmoid Aug. Ratio Gaussian Hyperbolic Linear 
MSE (/1000) 3248.86 (3) 3678.93 (5) 2653.34 (2) 3315.57 (4) 2505.84 (1)
MAPE 3.43 (3) 3.44 (4) 3.41 (1) 3.42 (2) 3.73 (5)
Note: The ranking of the NN models is shown between brackets. 

 
The statistical results shown in Table 3 generally confirm, in particular for the West German NN 

models, the results found in the literature: the NNs models employing a sigmoid activation function 
show stable and good statistical performance. This finding follows in the line of the general 
consensus on the use of the sigmoid function, and confirms our initial choice of activation function 
(see Section 3). More generally, the performance of all the nonlinear functions – for the West and 
the East – appears to be rather homogeneous in terms of MAPE. With regard to the NN models for 
East Germany, we note that the linear activation function appears to provide the best statistical 
result when the MSE is considered (while its results for West Germany are not satisfactory). This 
finding suggests a possible tendency towards linearity of the East German data. 

While the full reasons leading to the differences in the performance of the linear function should 
be further investigated, in order to better grasp the relationship between data complexity and the 
ideal (linear or nonlinear) approximation function to use, we again use the sign test (ST) in order to 
find a winning model with regard to East Germany. We test the equality between the NN model 
employing a Gaussian activation function and the baseline sigmoid NN model. The ST statistic of –
3.76 suggests that the baseline model, based on a Sigmoid function, is preferable. 

In summary, on the basis of our results, we might suggest that the sigmoid activation function 
should be used. However, more in-depth explorations should be carried out in the light of the mixed 
results of the linear activation function, and in the framework of alternative multi-function NN 
                                                 
7  The software used for our experiments does not allow to select multiple simultaneous functions. 



 12

specifications. Finally, the statistical results of the sensitivity analysis carried out above call for 
further testing, in particular to verify how different model specifications (in terms of input 
variables) may lead to varying performance once the NN settings selected in this section are in 
place. This analysis is provided in the next section. 

 
 

5  Evaluation of Different Neural Network Model Specifications  
 
In the light of the findings of the sensitivity analysis carried out above, which allow us to select a 
set of learning parameters and an activation function, we want to evaluate the statistical 
performance of different NN model specifications exploiting the findings of Section 4. Table 4 
presents the statistical results computed, for the six NN models presented earlier on in Section 3, for 
the usual four forecasting periods: 2001, 2002, 2003, and 2004. The LR and momentum parameter 
values used are 0.1 and 0.5, respectively, while a sigmoid activation function is employed. 
 
Table 4 – Pooled statistical error of the NN models; West and East Germany, years 2001–04 
West MSE (/1000) MAPE East MSE (/1000) MAPE 
Model B 27474.58 (3) 5.67 (3) Model B 3248.86 (2) 3.43 (5)
Model BD 25983.19 (2) 5.10 (2) Model BD 2543.62 (1) 3.01 (2)
Model BSS 29384.08 (4) 5.85 (4) Model BSS 13633.35 (6) 2.86 (1)
Model BSSN 41228.08 (5) 7.18 (5) Model BSSN 8080.81 (3) 3.63 (6)
Model BSSR 55694.54 (6) 7.78 (6) Model BSSR 8676.52 (5) 3.31 (4)
Model BW 12749.12 (1) 4.29 (1) Model BW 8659.66 (4) 3.19 (3)
Note: The ranking of the NN models is shown in brackets. 
 

The statistical results shown in Table 4 can be read as follows: for West Germany, (a) the 
inclusion of information on the district classification (Model BD) and wages (Model BW) appears 
to improve the forecasting potential of the NN models, as the baseline Model B follows closely, 
while (b) the shift-share-enhanced models (SS-models) do not lead to better statistical performance; 
for East Germany, our results seem more unclear: (c) Model BD minimizes the MSE indicator, 
while Model BSS does the same for MAPE (but has rather high MSE!). Consequently, Model BD 
appears to minimize the effect of squared large forecasting errors in the MSE formula. On the other 
hand, Model BSS minimizes the average percentage error. 

In order to cope with the contrasting statistical evidence of Table 4, we again resort to the use of 
forecast equality tests, viz. the sign test (ST). With regard to the NN models developed for West 
Germany, we test whether Model BW (employing as an additional input the variation of average 
daily wages) outperforms our baseline model (Model B). The normally-distributed test statistic 
obtained for is –26.42, showing that the Model BW, while minimizing the average error (both 
squared and percentage), is outperformed by the baseline model for most forecasts. With regard to 
the NN models of East Germany, we test whether Model BD, which has both low MSE and MAPE, 
outperforms the baseline model. The test statistic result (2.26) suggests, with a 95 per cent 
confidence level, that indeed Model BD is preferable to the baseline (outperforming the baseline in 
250 of 452 total cases). 

Overall, our results suggest that the baseline model (Model B) and the district-type model (Model 
BD) are most suitable for our research problem, given the learning parameters and activation 
function chosen during the sensitivity analysis. With regard to the interpretation of these findings, 
attention should be focused – with the due caution – on the use of the socio-economic covariates. It 
is interesting to note that the use of variables such as wages and urbanization level does not 
unequivocally improve the results, suggesting a overall – but logical – predominance of the 
autoregressive effects in the determination of employment growth rates. Similarly, the inclusion of 
shift-share components (conventional, spatial, and regression shift-share) appears to increase the 
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computational complexity of the models (nine new variables are included, as many as the sectors 
considered), without increasing the forecasting reliability of the NN models. This result confirms 
the problem of finding out which region-specific information is relevant for a specific case. 

Finally, we should point out that the parameters chosen for our NN models might not fit all model 
specifications, since they were tested specifically on Model B only. In other words, more 
investigation is needed with regard to the influence of the new parameters on NN models 
employing more or less rich data. It could be argued that, in order to improve the performance of 
alternative models, such as Model BSS (which is richer in information), specific sensitivity analyses 
should be carried out, which might lead to different conclusions. Nonetheless, our analysis offers an 
overview of the possible steps to be taken in this direction. 

 
 

6  Conclusions 
 
In this paper we presented a sensitivity analysis of the performance of NN models developed for 
regional employment forecasting. Because of the regional focus, the NN models developed here 
employ panel data, rather than time series. Our experiments focused on two aspects of NNs. In the 
first phase of the experiments, we carried out a sensitivity analysis, starting from a baseline model, 
investigating the effect of varying learning parameters and functional forms on the NN models’ 
forecasting performance. In doing so, we tested all different NN settings by simulating out-of-
sample forecasts for four time periods. In the second phase, we implemented five additional models 
utilizing different inputs, and we evaluated their statistical performance in the light of the sensitivity 
analysis findings, and for the same time periods. 

The sensitivity analysis carried out concerned the investigation of different NN parameters, and 
their influence on the forecasting performance of our NN models. Our analyses show that, for the 
basic case of Model B, low learning rate (LR) values and medium momentum values tend to 
improve the forecasts of our models. On the other hand, the tests carried out on adaptive learning 
rate (ALR) suggest that no forecasting benefit would be gained from the use of adaptive parameters, 
except for a quicker training of the NNs. Finally, our analysis found that the sigmoid (logistic) 
function conventionally used in NN models is appropriate for the forecasting problem concerned, 
although the results obtained for the linear activation function suggest that it might be suitable for 
the case of East Germany (where the employment trends appear to be less complex). This result 
calls for much needed testing on the linearity of the employment data, in particular for East 
Germany. 

As a last undertaking, we evaluated, on the basis of the findings of the sensitivity analysis, a set of 
five additional NN models, which introduced further input variables, ranging from an indicator of 
urbanization/agglomeration to shift-share analysis (SSA) components of various derivation, to 
regional wages variation. We observed varying levels of statistical error, for both the West and East 
Germany models. We finally identified two preferred model specifications, viz. Model B for West 
Germany, and Model BD for East Germany. While the baseline model (on which the sensitivity 
analysis was carried out) is most suitable for the West, the introduction of an indicator variable 
identifying varying levels of urbanization and agglomeration appears to significantly improve the 
forecasting power of the NN models for the East. With regard to the NN models employing SSA-
inspired variables, no significant gain was obtained, likely because of different levels of 
computational complexity and richness of information, which might require new targeted sensitivity 
analyses in order for them to be fully exploited. 

The analyses illustrated in the present paper can be expanded by carrying out further research in 
several directions. From an empirical viewpoint, a longer data span (for example, by obtaining 
newer data) would allow us to increase the number of testing years and, consequently, the reliability 
of the average (pooled) statistical results. The development of further NN models, utilizing new 
variables (such as unemployment or migration) is also desirable. Additionally, the sensitivity 
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analysis carried out in Section 4 would benefit from being extended to more model specifications. 
Finally, the contrasting evidence of the statistical indicators used in the evaluation of the forecasting 
performance, and the results of the sign tests (ST) should be investigated further, in particular in 
relation to the analyst’s specific objectives, whether these are minimizing the number of outliers in 
the models’ errors, maximizing the number of forecasts showing the right sign, or other particular 
targets. 

From a methodological point of view, it might be desirable to test out more elaborate NN models, 
such as time-delay NNs (Waibel et al. 1989), or multi-function NNs. In particular, the testing of 
linear functions integrated within NNs, as discussed in Section 4.3, should be a main objective. 
Also, a more in-depth analysis of the spatial interactions among districts might help understanding 
better the regional phenomena. The incorporation, in Model BSSN, of information on the 
(employment) performance of the ‘neighbours’ was a first step in this direction. In this framework, 
the potential of methods such as spatial filtering (Griffith 2003) for developing spatial/regional 
variables should also be considered. 
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