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Chapter 1: General Introduction  
 

To pick up a cup of coffee and drink from it, we need to know the cup’s 

shape, size, weight, roughness and flexibility of its material. We also need 

to know the distances our arm has to travel and the orientation our hand 

needs to be in for grabbing the cup, lifting it, and bringing it to our mouth. 

We estimate such attributes on the basis of information that our sensory 

organs receive. Even when restricting to a single sensory system, like the 

visual system, one can think of various instances in which the brain can use 

more than one source of information, from hereon referred to as cue, in 

order to estimate an attribute of an object. For example, we can estimate the 

distance of an object based on monocular cues such as size, height and 

texture density, but we can also exploit the difference in the object’s 

projection in the two eyes, that is, the binocular disparity.  

 

Optimal Cue Combination 

Several studies have found that people combine such cues in a statistically 

optimal fashion (Ernst & Banks, 2002; Hillis et al., 2004; Hogervorst & 

Brenner, 2004; Jacobs, 1999; Knill & Saunders, 2003; Landy et al., 1995; 

Muller et al., 2007; Oruc et al., 2003; van Beers et al., 1999). That is, 

subjects have been found to sum the estimates of different cues with weights 

that reflect their reliability in the current context as captured in the 

following equation: 

 

P = wici
i

      (1.1) 

 

In equation 1, P represents our percept or representation of the attribute 

(which in the remainder of this thesis I will refer to as the combined 

estimate), wi is the weight given to cue i and ci is the estimate of cue i. For 

cues that are unbiased but contain independent Gaussian noise, a 

combination will be statically optimal if the weight (wi) given to cue i 

depends on its precision to estimate the attribute ( i ): 

 

wi =
i
2

i
2

i

      (1.2) 
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The lower the variability in a cue’s estimate, the higher its weight in the 

combined estimate. This reliability of a cue, and hence its weight is thus 

thought to be primarily determined by its variability. This variability can 

either be the extent in which the cue’s estimate varies over time, or the 

degree in which members of the same neuronal pool agree on the final 

estimate (the degree of noise in the pool, as suggested in Ma et al, 2006). 

Either way, the benefit of statistically optimal weighted averaging is that the 

combined estimate will be more precise than that of each of the individual 

cues. 

 

Cue combination for slant 

In my thesis, I studied different issues concerning how people combine cues 

for estimating slant. The slant of an object is its orientation in relation to the 

horizontal plane. Information about slant is available from monocular cues 

such as size, shape and texture density. That is, in the images projected onto 

the retina, the parts of the object that are further away will be smaller than 

the parts that are closer by. Their exact shape depends on the object’s 

orientation, e.g., a circle’s projection will be more elliptical if it is slanted 

towards or away from the viewer’s body. The density of a texture increases 

gradually with distance. The depth information that is provided by binocular 

disparity will also give information about slant. Disparities will be bigger 

for parts that are closer by than for parts that are further away. By 

combining monocular and binocular disparities using statistically optimal 

linear weighted averaging (as described in Equation 1.1), one can obtain an 

estimate of slant that is more reliable than that of each individual cue. If 

only monocular cues and binocular disparities are used to estimate slant, we 

can express the weight given to the binocular disparities as 1 minus the 

weight given to the monocular cues. Equation 1.1 can then be rewritten as: 

 

sc = wmsm + (1 wm )sb     (1.3) 

 

In Equation 1.3, Sc represents the combined estimate of slant, sm represents 

the slant estimate provided by the monocular cues and sb represents the slant 

estimate provided by the binocular disparities. Several studies have indeed 

found evidence that slant estimates from monocular and binocular cues are 

optimally combined under constant conditions (Hillis et al., 2004; Knill & 

Saunders, 2003; Muller et al., 2007). 

 

Scope of this thesis 

I investigated two issues in optimal cue combination. In Chapters 2 and 3, I 

explored how the timing of different cues affects their combination into one 
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optimal estimate, in perception (Chapter 2) and perception & action 

(Chapter 3). In Chapter 4, I studied whether the weight of a cue is indeed 

solely determined by its variability, even if subjects perceive its estimate to 

be incorrect. In Chapter 5, I studied how stereoblind people can perceive 

motion in depth from a difference in motion between the eyes. 

 

Chapters 2 and 3: Timing 

FMRI Studies have found that shape from monocular cues such as contour, 

shading and perspective activate the lateral and ventral occipital cortex 

(LOC) (Kourtzi & Kanwisher, 2000). Topographical representations of 

shape from binocular disparity have been found in MT/V5, LO-1 and LO-2 

within area KO, also the ventral (LOC) visual areas, and areas V3 and hV4 

(Bridge & Parker, 2007; Chandrasekaran et al., 2007). Though shape from 

monocular cues and disparity seem to share at least one area in their 

processing (LOC), their independent processing stages might result in 

differently timed estimates (as shown for other independently processed 

cues that are related to the same stimulus by Schmolesky et al., 1998). Such 

timing differences might not be important when we only use one of the 

cues, but when we combine them in one estimate, single-cue estimates that 

are associated with different times might erroneously be integrated. This 

might be especially harmful when we have to respond fast and cannot wait 

for new information to become available, as when adapting our ongoing 

motion to new information about the planned end position of our movement. 

 In Chapters 2 and 3, I investigated how latency differences between 

cues affect their combination in one estimate, in both perception and action. 

I introduced artificial timing differences between the moments monocular 

and binocular cues indicated a changed slant and studied how this affected 

subjects’ detection and discrimination of slant changes (Chapter 2) and fast 

manual responses (Chapter 3). Are timing differences between slant cues 

simply ignored when we combine them in one estimate or do we somehow 

compensate for asynchrony? 

 

Chapter 4: Precision and bias 

The perceptual information that we use to plan and control action not only 

needs to be precise, but also needs to be correct. In the real world some cues 

might not give a correct estimate for the attribute in question, as for example 

we are looking at a distorted reflection of an object, instead of the object 

itself. Combining such cues using Equations 1.1 and 1.2 will result in 

combined estimates that will be precise, but not correct. Does the brain, 

when it knows that some cues are biased, really only take the precision of 

these cues’ estimates into account? 



 12

 Several studies have found that subjects increase the weight of a cue 

that is consistent with (haptic or auditory) feedback and decrease the weight 

of a cue that is not (Atkins et al., 2001; Ernst et al., 2000; Jacobs & Fine, 

1999). In all of these studies, the physical precision of the cues was not 

manipulated; only the cues’ perceived bias varied from session to session. 

This suggests the perceived correctness of a cue might also influence its 

weight in the combination rule. 

 However, the physical precision of a cue might not be the same as 

its perceived precision, as the perceived precision is not only influenced by 

the incoming sensory information but also by the person’s expectations 

about the world. For example, in a study by Knill (2007), subjects changed 

the weights that they gave to foreshortening and binocular disparity when 

large conflicts between the cues indicated that the as circles perceived 

stimuli might need to be reinterpreted as being ellipses. Knill argued that a 

broadening of shape expectations led to a decrease in judged reliability and 

thus the weight that was given to shape related cues. In Knill’s study, the 

change in weights took place slowly as subjects got more experience with 

the conflict. In the feedback studies (Atkins et al., 2001; Ernst et al., 2000; 

Jacobs & Fine, 1999) the change in weights was also slow. Might the 

change in weights found in these studies not be related to a change in the 

judged correctness of the cues, but to a change in their judged precision? All 

these studies used a cue conflict paradigm to measure the weights that were 

given to the different cues. When generating such conflicts, the shape of the 

stimulus on the screen gets slightly distorted when compared to its shape on 

non-conflict trials. A decrease in the judged precision of shape related cues 

might therefore not be unthinkable, although this does not explain the 

decrease in the weight given binocular disparity when this cue is indicated 

to be incorrect (since binocular disparity can be independently determined 

from monocular shape). In Chapter 4, I therefore investigated whether the 

change in weights that is seen in response to feedback about the correctness 

of the cues, results from a change in their perceived precision or from a 

change in their perceived correctness. In this last case, not only the 

variability of a cue influences its weight, but also its bias. This cannot be 

accommodated by current optimal cue combination theory. 

 

Chapter 5: Motion in depth  

Chapter 5 stands rather apart from the rest of the thesis. The topic of this 

study arose by accidental discovery when I was performing control 

experiments for Chapter 3. JS is stereoblind as a consequence of the eye 

patch treatment that he received to treat amblyopia in his childhood. He 

participated in many of my experiments to check for monocular artifacts 
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that could be used to respond instead of my manipulations of binocular 

disparity. Surprisingly, in the experiment described in Chapter 3, he could 

respond to the changes in binocular disparity. When he performed the 

experiment monocularly, his responses were eliminated. This indicates that 

JS can use some sort of difference in motion between the two eyes to 

determine the range of slants in which the surface is likely to be in at the 

end of its movement. 

 Several studies have found that subjects with normal binocular 

vision, as well as subjects with strabismus (who have low stereo-acuity), 

can use interocular velocity differences (IOVDs)  to judge motion in depth 

(Brooks & Stone, 2006; Fernandez & Farell, 2006; Kitaoji & Toyama, 

1987; Maeda et al., 1999; Rokers et al., 2008). The fact that people with 

low stereo-acuity can use this cue suggests that the pairing of velocities 

between the eyes for calculation of this cue might not be based on position. 

Therefore, JS might use IOVDs to determine the direction in which the 

surface was moving in Chapter 3. In Chapter 5, I explored whether three 

stereoblind subjects can use IOVDs to perceive motion in depth, and if so, 

on the basis of what information they correspond the motion between the 

two eyes for calculation of this cue. 
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Chapter 2: 

Temporal Aspects of Cue Combination 
 

Abstract 

The human brain processes different kinds of information (or cues) 

independently with different neural latencies. How does the brain deal with 

these differences in neural latency when it combines cues into one estimate? 

To find out, we introduced artificial asynchronies between the moments that 

monocular and binocular cues indicated that the slant of a surface had 

suddenly changed. Subjects had to detect changes in slant, or to indicate 

their direction. We found that the cues were combined to improve 

performance even when the artificial asynchrony between them was about 

100 ms. We conclude that neural latency differences of tens of milliseconds 

between cues are irrelevant because of the low temporal resolution of neural 

processing. 

 

Introduction 

People use various kinds of information to make sense of the visual input 

from the external world. For example, they estimate the slant or orientation 

of a surface from texture gradients, motion parallax, retinal shape, binocular 

disparity, and so on. The brain is believed to process various kinds of 

information (cues) in different visual pathways in the brain, with neural 

latencies that can differ by tens of milliseconds (Schmolesky et al., 1998). 

After such independent processing, the brain combines different cues for the 

same property into a single estimate that is more reliable than any of the 

estimates based on the individual cues (weighted averaging; Ernst & Banks, 

2002; Hillis et al., 2004; Jacobs, 1999; Knill & Saunders, 2003; Landy et 

al., 1995; van Beers et al., 1999). The contribution of each cue to this 

estimate is thought to primarily be determined by its reliability, but it could 

also be influenced by other factors such as the likelihood of the value 

indicated by the estimate occurring, the consistency between different cues, 

or the correlation between the errors of the two cues (Hogervorst & 

Brenner, 2004; Knill & Saunders, 2003; Landy et al., 1995; Oruc et al., 

2003). 

 Differences in neural latency between cues about unrelated 

attributes (such as colour and motion) may be responsible for the large 

systematic errors that subjects make when trying to synchronise changes 

within such cues (Arnold & Clifford, 2002; Aymoz & Viviani, 2004; 

Moutoussis & Zeki, 1997a, 1997b; Nishida & Johnston, 2002; Viviani & 

Aymoz, 2001; Wu et al., 2004; Zeki & Moutoussis, 1997). But differences 
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in neural latency need not only occur for cues that provide information 

about unrelated attributes. Cues that describe the same property or attribute 

of a stimulus are also likely to have different neural latencies (Greenwald et 

al., 2005). Do these timing differences lead to systematic errors when such 

cues are combined, or are there special mechanisms in the brain for 

preventing this? 

 Aymoz and Viviani (2004) found that people tend to make smaller 

systematic errors in synchronizing changes in color and movement when the 

changes were the consequence of another person’s actions. They speculated 

that the action of the other person activated a specialized system that re-

establishes synchrony within the brain by compensating for the neural delay 

between the cues. Bartels and Zeki (2006) showed that people were better at 

synchronizing cues that describe the same attribute than at synchronizing 

cues that describe different attributes. So there might be special mechanisms 

for dealing with timing differences between cues that are normally 

combined, such as cues for the same property. 

 Several cross-modal studies suggest that precise synchrony of 

different cues might be irrelevant due to the relatively low temporal 

resolution of neural processing. Munhall et al. (1996) showed that the 

McGurk-effect  is robust for lags of up to 180 ms. Shams et al. (2002) found 

that subjects perceive a single visual flash as two flashes when it is 

accompanied by two auditory beeps. Similarly, auditory sequences of beeps 

have been found to modulate the tactile perception of sequences of taps 

(Bresciani et al., 2005). These effects persisted even when the flashes, beeps 

and taps were separated by more than 100 ms. So delays of up to 100 ms 

seem to be tolerated when integrating cues across modalities. Is this also the 

case for cues for the same attribute within a single modality? In particular, 

can the benefits of combining cues (e.g. through weighted averaging) be 

obtained without precise temporal synchrony? 

 

Experiment 1 
 

We conducted an experiment in which we explored the sensitivity of cue 

combination for asynchronies between binocular and monocular slant cues. 

Subjects had to detect changes in the slant of a plane. The orientation of the 

plane was evident from binocular disparity and from monocular 

information. The binocular cue could vary independently of the monocular 

cue, so that either one cue or both cues could indicate a change in slant.  

When both cues indicated a change, the timing of the change could differ 

for the two cues, thus creating different artificial cue asynchronies. We 
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studied how subjects’ detection of the changes in slant varied as a 

consequence of the asynchrony between the cues. To determine whether 

subjects were really combining the cues for detecting the change, we 

compared their performance when both cues changed, with the performance 

predicted by probability summation on the basis of their performance when 

only the binocular or only the monocular cue changed (Hillis et al., 2002; 

Poom, 2002; Wuerger et al., 2003). 

 

Methods 

Subjects 

Six subjects participated in the experiment, three female and three male. 

One subject was an author; the other five were volunteers who were naïve 

about the purpose of the experiment.  All subjects had normal binocular 

vision; their stereo acuity was better than 60 arc seconds (tested with 

RandotTM plates).  

 

Apparatus and stimuli 

A Silicon Graphics Onyx Reality Engine was used to present the stimuli on 

a CRT monitor (120 Hz; horizontal size: 39.2 cm, 815 pixels; vertical size: 

29.3 cm, 611 pixels; spatial resolution refined with anti-aliasing techniques). 

The subject sat 40 cm from the monitor, resting his/her head on a chin rest. 

The subject was wearing liquid crystal shutter spectacles that successively 

blocked each eye in synchrony with the refresh rate of the monitor (120 Hz), 

so that different images were shown to the left and right eye in rapid 

alternation. A new image was presented to each eye every 16.7 ms (60 Hz). 

The individual’s inter-ocular distance was taken into account when creating 

the image presented to each eye. As a result, both the subject's ocular 

convergence and the retinal images were appropriate for the stimulus at the 

simulated distance. 

 

Stimuli 

The stimuli were designed so that monocular and binocular information 

about changes in slant could be manipulated independently. The stimulus 

was a simulated red ring within which 10 dots were randomly distributed. 

The ring had an outer radius of 70 mm, and a width of 10.5 mm. The dots 

had a diameter of 5 pixels. The dots were added to increase the strength of 

the binocular disparity cue. There were so few dots within the ring that the 

contribution of their distribution to the monocular estimate of slant was 

probably negligible. Every 16.7 ms the ring changed its position to a new 

random position within 20 mm of the centre of the simulated surface (which 

coincided with the centre of the screen). At the same time, new random 
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positions were chosen for the dots. This prevented subjects from detecting 

slant changes on the basis of any motion in the image. The ring and dots 

were presented to the left eye first and then to the right eye, before being 

replaced by a similar ring and dots at a slightly different position. Subjects 

perceived this stimulus as several rings that jittered on a plane. The slant of 

this plane was defined by the binocular disparities, the shape of the ring, and 

the distribution of the dots.  

 Since the ring’s shape and dots’ distribution always indicated the 

same slant, we will refer to them together as a monocular cue. In order to 

change the slant indicated by the monocular and binocular cues 

independently, we determined how a surface with a slant defined by the 

monocular cue would look for a single (cyclopean) eye, and then rendered 

images for the two eyes that on average provide this retinal image, while 

having the binocular slant that we wanted (Knill, 1998; Landy et al., 1995). 

 Most of the time, the binocular and monocular cues both suggested 

that the slant of the plane in which the rings seemed to jitter was 10° (base 

slant), with a positive angle meaning that the top was further away than the 

bottom. The slant could increase abruptly by 5°, 10°, 15°, 20° or 25°, 

meaning that the top always tilted further away. These slant changes could 

occur in the binocular cue alone, in the monocular cue alone, or in both 

cues. When both cues changed their slant, they could do this 

simultaneously, or asynchronously with one of 8 different timings: the 

change in the binocular disparity cue could occur 400, 200, 100 or 50 ms 

before or after the change in the monocular cue. The next slant change 

occurred between 4 and 6 s after the slant had returned to its baseline value 

for both cues. The plane regained its base slant gradually within 400 ms; it 

returned slowly so that the subjects would not perceive this as a second 

change (see Figure 1.1). 

 

Procedure 

Subjects saw a set of rings jittering on a plane that occasionally changed its 

slant. They had to respond to any change in slant by pressing the right 

mouse button. No feedback was given. In total there were 55 conditions. For 

each of the 5 amplitudes of slant change there were 9 two-cue conditions 

with various asynchronies (including the 0 ms asynchrony) and two single-

cue conditions. Subjects performed 20 trials per condition, so 1100 trials in 

total, distributed over several sessions.  The slant change for each trial was 

randomly selected from these 55 conditions. 
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Figure 1.1. Schematic representation of one of the conditions of experiment 1 in which both 

cues change by 25°, with a 100 ms delay between the changes. Each frame on the screen is 

represented by two symbols: one indicating the value of the monocular cue (the upward 

pointing triangles) and another indicating the value of the binocular cue (the downward 

pointing triangles). 

 
Data Analysis 

We considered subjects to have detected the change if they responded 

between 150 ms after the first cue changed and 1 s after the last cue changed 

(response interval). We determined the fraction of slant changes detected for 

each cue asynchrony.  If the binocular and monocular cues are processed 

completely independently of one another, and independently give rise to 

responses within the allocated time, the asynchrony between them should be 

irrelevant, and the probability of detecting a slant change when both cues 

change (Pboth) is the chance of not missing the slant change in both cues, 

which can be calculated on the basis of the subject’s performance for the 

single-cue conditions (Pbinocular and Pmonocular): 

 

Pboth = 1 (1 Pbinocular )(1 Pmonocular )   (2.1) 

 

If we find that performance for a particular two-cue condition is better than 

predicted by probability summation (Pboth in Equation 2.1), we can conclude 

that subjects detected the corresponding slant changes better than was to be 

expected on the basis of simply having two chances to react. Such better 

performance would imply that the cues must have been combined in a 

clever manner that makes identifying changes in slant more reliable. If such 

better performance is found, then a comparison of the different cue 

asynchronies will reveal the temporal sensitivity of the underlying cue 

combination. 

 For each cue asynchrony and amplitude, we used a paired t-test to 

examine whether performance was better than predicted by probability 

summation (Equation 2.1). We also tested with a paired t-test per cue 

asynchrony whether performance was poorer for the asynchronous than for 
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the synchronous two-cue condition. Using t-tests in this manner is a 

conservative way of determining whether performance differs between the 

conditions, because the benefit that we can expect from cue combination 

depends on the relative resolution of the two cues, which is likely to differ 

between subjects. If we find that performance on the two-cue conditions is 

systematically better than predicted by probability summation and depends 

on the timing difference between the cues, we will have a strong indication 

that subjects combined the two cues into one estimate of the change in slant. 

Differences between the asynchronies will then reveal the temporal 

resolution of combining the cues. 

 We estimated uncertainty bounds (standard error of the mean of the 

binomial distribution) for each condition and subject from the observed 

fraction of slant changes detected (P) and the number of samples in each 

condition (N = 20) : 

 

SEM =
P(1- P)

N
     (2.2) 

 

These values were averaged across subjects and conditions to give a single 

estimate of the within-subjects standard error for each amplitude of change 

in angle. 

 

Results 

Our subjects’ average performance is displayed in Figure 2.2. On average, 

subjects detected changes in the binocular single cue condition better than 

changes in the monocular single cue condition (compare the upward and 

downward triangles in each panel). Subjects responded to between 39 and 

56% of the changes in the binocular cue, and to between 8 and 55% of the 

changes in the monocular cue. For slant changes in both cues, only detection 

of 20º slant changes with an asynchrony of +50 ms between the cues was 

significantly better than predicted by probability summation (t (5) = 3.08, p 

< .05). Even if there is no benefit from cue combination, one would expect 

more than one out of 45 comparisons to appear to be significant at the 5% 

level.  

 For the small changes in slant (amplitudes of 5° and 10°) 

performance seemed to be systematically worse than predicted by 

probability summation. For the larger changes in slant (15°, 20° and 25°) a 

broad performance peak around the smaller cue asynchronies was apparent. 

The 20° slant changes with an asynchrony of -400 ms between the cues and 

the 25° slant changes with either a +100 or a +400 ms asynchrony between 
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the cues were significantly less likely to be detected than synchronous slant 

changes of the same amplitude (t (5) > -2.02, p < 0.05). Three significant 

comparisons out of forty is only one more than one would expect by chance 

alone. 
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Figure 2. Average performance in Experiment 1. Each panel gives the results for one of the 

five different amplitudes of change. Positive values of the asynchrony indicate that the 

monocular cue changed after the binocular cue. The data for changes in a single cue are 

plotted at an asynchrony of zero. The error bar at the bottom left of each graph is an 

estimate of the within subjects standard error for the two-cue performance (averaged across 

asynchronies). A * indicates significantly better performance than predicted by probability 

summation. A # indicates significantly worse performance than for the 0 ms asynchrony. 

 

Discussion 

Performance was significantly better than probability summation for only 

one amplitude-asynchrony condition. Performance often even appeared to 

be worse than predicted by Equation 2.1. A possible reason for this might be 

that Equation 2.1 does not consider false positives: correct responses that 

are independent of the actual change. In our analysis we assumed that all 

responses that people made resulted from them really detecting the change. 

However, subjects sometimes seemed to misinterpret the jitter in the ring as 

a change in slant. We know that such false positive responses occurred 

because we regularly observed responses long (>2 s) after the change had 

occurred. Presumably, such responses also occur when a change has taken 
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place but was not detected. Since people are likely to make as many false 

positive responses in the two-cue conditions as in each single-cue condition, 

Equation 2.1 will overestimate the predicted performance for the two-cue 

conditions because it incorporates the false positive responses twice: once in 

Pbinocular and once in Pmonocular. The conditions with larger asynchronies may 

contain slightly more false positives than the synchronous conditions 

because of their longer response intervals. Moreover, people are more likely 

to respond when they do not detect the target, because once they have 

detected it there will temporarily be no need to respond, so the number of 

false positives is likely to depend on the subject’s performance. We 

therefore propose that the predictions in Figure 2.2 lie higher than they 

should, as a result of ignoring false positive responses in Equation 2.1. This 

would explain why performance was no better than predicted by probability 

summation despite the apparent peak at small cue asynchronies for the 

larger amplitudes of slant change. 

 

Experiment 2 
 

If our impression that there is a peak in performance for small cue 

asynchronies is correct, the peak’s width suggests that an asynchrony 

between the cues of up to 100 ms hardly influences the benefit that is 

obtained from combining the cues. However, this proposal rests on the 

assumption that we overestimated two-cue performance in experiment 1 as a 

consequence of not accounting for false positives. In our second experiment 

we therefore asked subjects to perform a task that allowed us to determine 

the number of false positives that they make. They now had to indicate the 

direction of any slant change that they saw. Since subjects could respond 

both incorrectly and correctly when not responding to an actual change in 

slant, the term “false positives” no longer adequately describes such 

responses. We will refer to these responses as “guesses” from now on. If 

subjects guess, about half of their guesses will be correct and half of them 

will be incorrect. The number of guesses is therefore twice the number of 

errors in indicating the direction of the change. By removing subjects’ 

guesses from their responses before applying Equation 2.1, we can calculate 

predictions for probability summation in which guesses are considered.  

 

Methods 

Subjects 

The same six subjects participated in the second experiment. 

 

Apparatus, Stimuli and Procedure 
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We used the same set-up as in the previous experiment, but made a few 

changes to the stimuli and procedure. In the previous experiment, our 

subjects detected changes in binocular disparity more easily than changes in 

the monocular cue. We therefore used a larger base slant (25º relative to 

frontal) to increase the reliability of the monocular cue (Knill, 1998). The 

change in slant always had an amplitude of 20º, but it could be in either 

direction. The combination of a 25º base slant and a ± 20º change ensured 

that the surface never crossed the fronto-parallel plane, which is important 

because doing so could make the changes in the monocular cue ambiguous, 

or at least less clear. As in the previous experiment, slant changes could 

occur in binocular disparity, in the monocular cue, or in both, with time 

intervals ranging up to 400 ms. Subjects were instructed to indicate the 

direction of any slant changes that they detected. They pressed the left 

mouse button for slant changes “backwards” and the right mouse button for 

slant changes “forwards” (with the direction referring to the movement of 

the top of the surface). 

 

Data Analysis 

Since choice reaction times are known to be longer than simple 

reaction times, we gave subjects slightly more time to respond. We 

determined the fraction of detected slant changes (both incorrect and 

correct responses) within an interval starting from 150 ms after the 

change in the first cue up to 1.2 s after the change in the last cue 

(when only one cue changed it was both the first and the last). We 

assume that the responses that the subjects make consist of a number 

of real detections and a number of guesses (including responses to 

changes other than the simulated slant changes). Since these guesses 

are as likely to be correct as incorrect, we assume that the number of 

guesses is twice the number of incorrect responses. Equation 2.1 only 

applies to the number of slant changes that subjects detected, not to 

their guesses. So before we use this equation to predict two-cue 

performance, the fraction of guessed responses has to be removed 

from all the P values. The fraction of changes that were detected (Pd) 

can be estimated from the total fraction of trials in which the subject 

responded (Pr) and the fraction in which the subject responded 

incorrectly (Pe): 

 
Pd  =  Pr  –  2Pe       (2.3) 
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Equation 2.3 holds independently for each condition, so substituting 

Pd for the P’s in Equation 2.1 gives: 

 
Prboth

-  2Peboth
=  1 -  (1 -  (Prmonocular

-  2Pemonocular
)) (1 -  (Prbinocular

-  2Pebinocular
)) (2.4) 

 

Equation 2.4 can be used to take guesses into account when predicting the 

fraction of responses for presentations with two cues ( Prboth ) on the basis of 

single-cue performance ( Prmonocular and Prbinocular ). 

For each of the 9 two-cue conditions we used paired t-tests to examine 

whether the observed two-cue performance was significantly better than the 

value predicted on the basis of Equation 2.4. We also used 8 paired t-tests to 

examine whether performance for each asynchrony was poorer than that for 

the synchronous slant changes. 

 

Results 

 

F
ra

ct
io

n 
of

 s
la

nt
 c

ha
ng

es
 c

or
re

ct
ly

 d
et

ec
te

d

-400 -200 0 200 400

�

�
�

�

��
� �

�

* * * *

# #

Binocular cue only
Monocular cue only

Probability summation
Both cues

#

1.0

0.8

0.6

0

0.2

0.4

Asynchrony between the cues (ms)  
Figure 3. Average performance in Experiment 2. A * indicates significantly better 

performance than predicted by probability summation. A # indicates significantly worse 

performance than for the 0 ms asynchrony. Other details as in Figure 2. 

 
We first determined the fraction of incorrect responses (Pe) for each subject 

and each condition. An analysis of variance on Pe with Condition and 

Subject as factors revealed that Pe did not differ significantly between the 

different conditions (F (10) = .784, p = .644). Since it is important to get a 

reliable estimate of Pe, and the number of guesses is quite modest, we 
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determined a single value for each subject and used this value for Peboth , 

Pemonocular , and Pebinocular  in Equation 2.3. 

 Figure 3 shows the average fraction of slant changes that was 

detected. Subjects responded to 65.6% of the forward slant changes and 

78.7% of the backward slant changes. For four of the nine asynchronies (-

200, -50, 0, 50 ms), the paired t-tests revealed that performance was better 

than predicted by equation 3 (t (5) > 2.038, p < .05). Performance for the –

400, +200 and +400 ms cue asynchronies was significantly poorer than for 

the synchronous condition (t (5) > 2.276, p < .05). 

 

Discussion 

For asynchronies up to about 100 ms, performance with both cues was 

clearly better than predicted on the basis of probability summation. 

Probability summation did reliably predict performance for the largest cue 

asynchronies (±400 ms), confirming that our analysis now addresses all 

major issues, because as the asynchrony is increased the cues must at some 

moment become independent. So the findings of experiment 2 support the 

suggestion from experiment 1 that subjects combine the two cues even 

when there are small timing differences between them. Additionally, there 

appears to be a shift in the optimal delay toward negative asynchronies, 

which is consistent with binocular slant cues being processed faster than 

monocular slant cues (Greenwald et al., 2005). As already mentioned, cross-

modal cue combination is known to persist with asynchronies of slightly 

more than 100 ms (Munhall et al., 1996; Shams et al., 2002). The similar 

tolerance of asynchronies in the present study shows that in this respect cues 

for the same property (slant) within a single modality (vision) are not treated 

in a special manner.  

 

Experiment 3 
 

In the third experiment we examined the validity of two assumptions that 

we made when interpreting the data of experiments 1 and 2. The first is that 

the lack of change in one cue does not influence the detection of a slant 

change in the other cue. The second is that binocular disparities and retinal 

shape do not interact before providing estimates of slant. Further 

assumptions are discussed in the general discussion. 

 

Cue conflict in single-cue conditions 

In the single cue conditions, one cue remained in base slant while the other 

changed its slant, thus creating a cue conflict during the slant change. Our 
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analysis was based on the assumption that for these conditions, the detection 

of a slant change in one cue was not affected by the unchanging slant of the 

other cue. Based on this assumption we concluded from the findings of 

experiment 2 that detection of slant changes is better than predicted by 

probability summation when the two cues change in close temporal 

proximity. In the third experiment we compared performance in a 

replication of the single-cue conditions of experiment 2 with performance in 

two new single-cue conditions in which the slant conflict during the slant 

change was reduced. If performance in the new conditions turns out to be 

better than in the original conditions, we would have to consider the 

possibility that performance in the previous experiments was not better 

when changes in two cues were combined, but worse when one cue 

indicated that there was no change. 

 

Independency of processing 

Up till now, we have assumed that the two cues are processed 

independently, before the brain combines them into one estimate of slant. 

Tittle and Braunstein (1993) suggested that this assumption might not hold  

for all cues within the visual system. For shape judgments from binocular 

disparity and motion parallax, they found that the presence of motion in a 

stereo display helped solve the binocular-correspondence problem, so that 

motion helped establish the binocular estimate of shape as well as providing 

an independent estimate of shape. Adams & Mamassian (2004) showed that 

texture information can also modulate shape from disparity in a way that is 

inconsistent with simple linear cue combination. 

 We investigated whether the cues in our experiment interacted 

before they each supplied an independent estimate of slant with the help of 

two new two-cue conditions. In the first, the two cues signaled a slant 

change on alternate pairs of frames in rapid sequence (a pair of frames 

means one frame per eye). In the second, the two cues signaled the change 

simultaneously once every two pairs of frames (see Figure 2.4). In both 

cases each cue alternates rapidly between the new slant and the base slant, 

but in the asynchronous condition the two cues are always in conflict, 

whereas in the synchronous condition the cues always agree. If the cues do 

not interact before providing estimates of slant (and the cue combination 

process is not very sensitive to the precise timing of the estimates, as we 

have already seen) then performance in the two conditions should be the 

same. If we find better performance when the two cues change 

simultaneously we would have evidence that the cues interact before they 

each generate an estimate of slant. 
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Methods 

Subjects 

Nine subjects participated in this experiment: five female and four male. Six 

of the subjects had also participated in the former two experiments. All 

subjects had normal binocular vision; their stereo acuity was better than 60 

arc seconds (tested with Randot
TM

 plates). 

 

Apparatus, Stimuli and Procedure 

The same set-up was used as in the former two experiments. We repeated 

the single-cue conditions from the second experiment for our modified 

procedure (see below), and added four new conditions. In a new monocular 

single-cue condition, the change in the monocular cue was only presented to 

one of the eyes (by simply not drawing the images for the other eye) so that 

there was no conflicting binocular disparity cue. In a new binocular single-

cue condition, only the dots that were previously used to fill the ring were 

visible. Omitting the ring practically eliminated the monocular cue, so that 

the conflict was very much reduced, while leaving the binocular cue largely 

intact. 

 We introduced two additional conditions: an asynchronous and a 

synchronous two-cue condition. In the asynchronous condition, the slant 

changes were specified by both cues in rapid sequence. That is, in one pair 

of frames the monocular cue specifies base slant while the binocular cue 

indicates a changed slant, while in the next pair of frames the monocular cue 

indicates a changed slant and the binocular cue specifies base slant. In the 

synchronous two-cue condition, both cues specify a changed slant 

simultaneously once every two pairs of frames (see Figure 2.4), both 

specifying the base slant during the other pair of frames.  

 As in experiment 2, the base slant of the surface was 25°, and the 

ring could change its slant by ±20°. To simplify the analysis, we changed 

our paradigm to a Forced Choice procedure. Our subjects had to indicate the 

direction of the slant change after an auditory signal indicated that a slant 

change had occurred. 

 

Data Analysis 

Due to the simplified procedure we could just compare the proportion of 

correct responses between the different conditions. We used one-sided Chi-

square tests to examine whether there were more correct responses in the 

new binocular single-cue condition than in the original binocular single-cue 

condition, more in the new monocular single-cue condition than in the 

original monocular single-cue condition, and more in the synchronous than 

in the asynchronous two-cue condition. 
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Figure 4. Schematic representation of the synchronous (A) and the asynchronous (B) two-cue 

conditions of Experiment 3. Both panels show a 20° slant change from a 25° base slant. In 

the synchronous condition the cues are never in conflict, whereas in the asynchronous 

condition they are in conflict whenever the surface is not at the base slant. 
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Figure 5. Average performance in Experiment 3. Error bars show 95% confidence intervals 

across subjects. 

 
Our subjects’ average performance is displayed in Figure 2.5. None of the 3 

Chi-Square tests showed significant improvements. The average 

performance in the new single-cue conditions even seems to be worse than 

in the corresponding original single-cue conditions. 
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Discussion 

Reducing the cue conflict in the single-cue conditions did not improve 

performance. It even decreased the number of correct responses that 

subjects made, especially in the monocular single-cue condition. This is 

probably because presenting the slant change to only one of the eyes 

doubled the interval between the frames in which it was present. Similarly, 

removing the ring in the new binocular single-cue condition reduced the 

amount of binocular information, as well as practically eliminating the 

monocular information. Thus subjects had slightly less of the relevant 

information available in the new single-cue conditions than in the original 

single-cue (and two-cue) conditions of experiment 1 and 2. This questions 

the validity of our control experiment to some extent, but it is clear that the 

benefits of not having a cue that does not change (while the other does) do 

not outweigh the costs of reducing the amount of information in the new 

single cue conditions. Thus the lack of slant change in one of the cues 

cannot have much effect on how readily a change in the other cue is 

detected. Subjects’ performance in the new asynchronous condition was no 

worse than in the new synchronous condition. This finding indicates that 

there was no interaction between the cues before each provided an estimate 

of the slant change. From experiment 3 we can conclude that there is no 

need to reconsider our interpretation of experiment 2. 

 
General Discussion 

In the present study we examined how the detection of changes in surface 

slant was affected by artificial delays between binocular and monocular 

cues. We found a benefit for detecting two-cue slant changes beyond that 

predicted by probability summation, even when the two cues changed at 

moments that differed by tens of milliseconds. This implies that neural 

latency differences between visual cues will seldom be an issue for the brain 

when it combines cues into one estimate. Apparently, either the processing 

of the cues themselves or their combination into one estimate has quite a 

poor temporal resolution. However, this conclusion rests on one final 

assumption that needs to be discussed. 

 We assumed throughout the study that the cues are used 

independently to detect changes in slant, and that if there is evidence from 

more than one cue that the slant of the surface in which the ring jittered 

changed, this evidence is combined to obtain a more reliable estimate of the 

change. Only considering information about changes in slant seems 

reasonable to us because the visual system is generally most sensitive to 

transients. However, there are alternative ways to combine the information 
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provided by the two cues. Evidence for a change in one cue might be 

combined with evidence for no change in the other cue when the cues do not 

change simultaneously (for evidence against this option see experiment 3). 

It is also possible that the cues are continuously combined to give a single 

estimate of slant, and subjects detect changes in this combined estimate. 

Finally, subjects might only notice a difference between the changed 

combined estimate of slant and the baseline value. Would any of these three 

alternatives influence our conclusion that the temporal resolution of 

processing and combining changes in visual slant cues is poor? 

 If evidence for a change in one cue is combined with evidence for a 

lack of change from the other cue, the first of these two changes would be 

equivalent to a change in a single cue. When the second cue changes, the 

value of the first cue is different than in the single-cue conditions, but the 

change of the cue in question is identical to the change of that cue alone. 

The fact that the first cue is slowly changing back to its original baseline 

value might even slightly decrease the probability of detecting the change, 

because it is in the opposite direction than the change that is to be detected. 

So according to the first alternative there is no reason to expect performance 

to be any better than predicted by probability summation. Our finding of an 

increased probability of detecting the slant changes when the two cues 

changed within tens of milliseconds of each other can only be consistent 

with this alternative if the changes are considered to overlap in time. 

experiment 3 provides additional evidence against this alternative. 

 The second alternative is that subjects detect changes in a combined 

estimate of slant. If so, asynchronous slant changes would be equivalent to 

two smaller slant changes. The first change is identical to a change in a 

single cue. However, the second change is not because it starts from a 

different perceived slant. It is not evident that this should make the changes 

easier to detect, because the change within the single relevant cue is exactly 

equivalent, even if the perceived initial and final slants of the second change 

are different. Moreover, if the perceived slant at the time of the second 

change influences performance, why should detection improve in a similar 

manner both when the perceived slant is higher than the baseline value of 

10º in experiment 1, and when it is sometimes higher and sometimes lower 

than 25º in experiment 2? Again, the simplest explanation would be that the 

large range of asynchronies for which performance is better than probability 

summation arises because the temporal resolution of the processing 

underlying the judgment of slant is so low that the two changes merge into 

one larger slant change. 

 The third alternative is that subjects do not respond to transients 

(changes in the perceived slant) at all, but sometimes notice that the slant is 
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no longer at the baseline value. Since each cue’s slant changed back 

gradually, the combined value would also change gradually, which could 

explain why subjects’ performance was quite insensitive to timing 

differences between changes in the two cues without having to rely on a 

poor temporal resolution of visual processing or cue combination. We do 

not find this very likely because the visual system is generally most 

sensitive to transients, the task was to detect slant changes, and none of the 

subjects ever reported seeing two changes in rapid sequence. However, our 

findings do not rule out this possibility. In particular, performance for 

approximately synchronous changes in both cues is not evidently or 

systematically different from performance for twice the amplitude of the 

change in a single cue (see Figure 2.2). Thus if subjects detect the change by 

noticing that the slant is no longer at baseline, rather than noticing the 

change itself, we cannot be certain from our study that the processes 

involved have a low temporal resolution. However, such a mechanism 

would make timing differences between cues much less relevant an issue, 

because a temporal error of tens of milliseconds only introduces large 

differences between cues at moments at which the image suddenly changes, 

such as when one makes saccades or when there are quickly moving 

objects. Thus asynchronies might be tolerated because they are only present 

for short periods of time. 

We conclude that timing differences between cues are unlikely to be an 

important issue in human slant perception. Probably the temporal resolution 

of the processing of individual cues is so low that differences in timing can 

be ignored when combining cues. In daily life, external events will always 

cause cues to change in synchrony, so differences in timing between visual 

cues within the brain only arise from differences in neural processing time. 

Since the reported differences in visual processing time (Schmolesky et al., 

1998) are modest when compared with the low temporal resolution that we 

find for cue combination, it is unlikely that these differences in processing 

time have much influence on our perceptual judgments or need to be 

compensated for. 
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Chapter 3: 

Slant cues are processed with different latencies for the 

online control of movement 
 

Abstract 

For the online control of movement it is important to respond fast. The 

extent to which cues are effective in guiding our actions might therefore 

depend on how quickly they provide new information. We compared the 

latency to alter a movement when monocular and binocular cues indicated 

that the surface slant had changed. We found that subjects adjusted their 

movement in response to three types of information: information about the 

new slant from the monocular image, information about the new slant from 

binocular disparity, and information about the change in slant from the 

change in the monocular image. Responses to changes in the monocular 

image were approximately 40 ms faster than responses to a new slant 

estimate from binocular disparity, and about 90 ms faster than responses to 

a new slant estimate from the monocular image. Considering these delays, 

adjustments of ongoing movements to changes in slant will usually be 

initiated by changes in the monocular image. The response will later be 

refined on the basis of combined binocular and monocular estimates of 

slant. 

 

Introduction 

When we want to place an object on a surface, we need to estimate the 

surface’s slant to make sure that the object has about the same orientation as 

the surface before making contact. Information about this orientation is 

available from binocular disparity and from the monocular images. The 

information in the monocular images includes cues such as the shape of the 

surface’s projection on the retina, changes in texture density across the 

retina, and motion parallax. Different slant cues are likely to be processed at 

different rates, and so may provide information about changes at different 

latencies. Previous research suggested that differences in latency are 

ignored, so that cues with shorter latencies influence the combined estimate 

earlier (Van Mierlo et al., 2007).  

 One way to examine how people use visual information to guide 

their action is by examining how they respond to perturbations of such 

information during their movement (Brenner & Smeets, 1997; Goodale et 

al., 1986; Saunders & Knill, 2003; Veerman et al., 2008). Different studies 

have reported different latency differences between monocular and 

binocular cues. In a study in which subjects had to respond to perturbations 
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in surface slant (Greenwald et al., 2005), slant estimates based on binocular 

disparity appeared to influence corrections earlier than slant estimates based 

on monocular cues, so the authors concluded that binocular disparity was 

processed more quickly. This finding is surprising, because Allison & 

Howard (2000b) found that perceived slant shifted from being dominated by 

perspective to being dominated by disparity as exposure time to a test 

stimulus increased. Moreover, Brenner and Smeets (2006) found that 

subjects corrected movements faster in response to a jump in target depth 

when the jump was visible as a change in the height in the visual field than 

when the jump was only visible as a change in binocular disparity. 

 Whereas Allison & Howard’s (2000b) and Brenner & Smeets’ 

(2006) findings suggest that monocular cues are processed more quickly for 

estimating slant and distance, Greenwald et al.’s (2005) findings suggest 

that binocular disparity is processed more quickly for estimating slant 

changes. The reason for this discrepancy is not clear because the three 

studies differed considerably in various aspects. For example, Greenwald et 

al. showed alternating white and black frames for 167 ms before presenting 

the changed slant, in order to mask the slant change. Allison & Howard and 

Brenner & Smeets did not mask the perturbations. Furthermore, in 

Greenwald et al.’s study subjects moved a real object so that the visual 

information matched the proprioceptive information. In Brenner and 

Smeets’ study the visual position did not match the position that was felt, 

since subjects moved a cursor with a mouse. Moreover, in Brenner & 

Smeets’ study the perturbation was a change in position, whereas in 

Greenwald et al.’s it was a change in slant. Such differences make it 

impossible to tell which aspect is responsible for the different conclusions 

as to whether binocular information is processed faster or more slowly than 

monocular information. 

 In this study, we investigated whether latency differences between 

responses to changes in binocular disparity and changes in the monocular 

image are visible in the online control of movement. As in Greenwald et al. 

(2005), subjects placed a cylinder on a surface of which the slant could 

change right after movement onset. Either the binocular disparities or the 

monocular images or both could indicate the change in slant. We 

determined how subjects altered the orientation of their hand in response to 

such a slant change. We blanked the screen before the slant changed on half 

of the trials to determine whether seeing the change allows one to respond 

faster. On such trials subjects could respond to the new slant but not to the 

transient. 

 

Methods 
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Subjects 

Eight subjects (three male, five female) participated in the experiment. Five 

subjects were naïve with respect to the purpose of the experiment. All 

subjects had normal or corrected-to-normal vision, with a stereo acuity 

below 1 arcmin (tested with RandotTM plates).  

 

Apparatus 

Subjects sat behind a surface (45 cm by 45 cm) that was centered 60 cm in 

front of the midpoint of their body and 40 cm below their eye-level. This 

surface could be rotated around a transversal axis with the help of a 

computer-controlled motor (see Figure 3.1). They held a cylinder with a 

height of 6 cm and a diameter of 9.5 cm in their right hand. At the subjects’ 

right side, 26 cm from their midsagittal plane, 60 cm in front of them, and 

18 cm below eye-level, there was a second surface with a 2mm deep 

indentation in the shape of the base of the cylinder. Subjects had to place the 

cylinder within this indentation at the start of each trial. 

Subjects did not see the real surface, starting position or cylinder. They saw 

a virtual surface, starting position and cylinder. The three-dimensional 

virtual environment was created by presenting different images to the left 

and right eyes using a combination of two CRTs and mirrors (see Figure 

3.1). The mirrors were semi-silvered with occluders attached behind them. 

We matched the virtual and real environments by removing the occluders 

and monocularly aligning the corners of a rectangle on the screen (as 

reflected by the mirror) with the 3D positions of four markers on a 

calibration rectangle that was placed above the real surface (as seen through 

the mirror) for that purpose. Using a 3D virtual environment enabled us to 

dynamically and independently manipulate the virtual surface’s slant as 

specified by binocular disparity and by the monocular images. 
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Figure 3.1: Schematic representation of the set-up (not to scale). 
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 Throughout the experiment we recorded the 3D positions of three 

Infra-red Emitting diodes (IREDs) that were attached to the cylinder using 

an Optotrak 3020 system (Northern Digital, Inc.), so that we could generate 

images of the cylinder while the subject was moving it. Since motion 

parallax as a result of small head movements has been found to contribute to 

slant perception (Louw et al., 2007), we determined the positions of the eyes 

relative to a bite-board before the experiment and recorded the position of 

the bite-board using the Optotrak system during the experiment. The bite-

board was not attached to anything, so subjects were free to move their 

head. We continually adjusted the images to the positions of the subject’s 

eyes so that the slant indicated by motion parallax was consistent with the 

slant indicated by static information from the monocular images. Note that 

this refers to the 3D position of the subjects’ eyes in space. The direction of 

gaze was neither monitored nor instructed. 

 The positions of the IREDs were sampled with a frequency of 250 

Hz. Based on the coordinates of the IREDs on the cylinder and bite-board, a 

PC calculated the current position of the cylinder and eyes and sent these 

coordinates to two Apple G5’s that each rendered an image of the cylinder 

and virtual surface for one of the eyes on a CRT monitor (1096 * 686 pixels, 

47.3 by 30.0 cm). The new images were created with the frequency of the 

refresh rates of the two CRT monitors (160 Hz). Thus we generated images 

that were appropriate for the actual position of the eyes and hand at each 

moment in time. The delay between a cylinder movement and the visual 

feedback was about 20 ms. 

 

Stimuli 

A small pink virtual sphere indicated the starting position. The virtual 

surface was a square with sides of 10 cm and was visible as a red and grey 

checkerboard of 4 by 4 squares. The virtual object was a cylinder with 14 

white and black stripes and a green top and bottom. It had the same 

dimensions as the real cylinder. The shapes of the projections of the squares 

of the checkerboard on the screens provided monocular information about 

surface slant. The differences between the computer images for the two eyes 

provided binocular information about surface slant (binocular disparity). 

Both information sources were also available for the cylinder. 
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Figure 3.2: Impression of the subject’s view during the experiment. From left to right, the 

virtual surface, the cylinder and the starting point. 

 

Procedure 

Each trial began by the computer positioning the real surface in the 

orientation that the virtual surface would have at the end of the trial. This 

happened in 3 to 4 movements to prevent subjects from deducing the final 

orientation on the basis of the sound from the motor that positioned the real 

surface. Subsequently, the virtual surface and the virtual cylinder were 

presented. The virtual surface was slanted by 5° from the horizontal plane 

(positive angles indicate that the side of the virtual surface furthest from the 

subject’s body is higher than the side nearest to the subject’s body). 

Subjects had to move the cylinder to the starting position and, after hearing 

a beep, to accurately place the cylinder on the virtual surface. The beep was 

presented 500–800 ms after subjects placed the cylinder at the starting 

position. We regarded the moment that the cylinder had traveled 20 mm 

from the start position (in any direction) the moment the subject reacted. If 

subjects reacted before the beep or within 100 ms after presentation of the 

beep, the movement was considered to have started too early. The trial was 

then stopped and presented again. 

 When subjects reacted, the slant of the virtual surface could change 

to either -5° or +15°. The binocular disparities could change at the same 

time as the monocular images (as they normally would) or only one of the 

two cues could change at that moment. If only one cue changed, the other 

did so 150 ms later to ensure that both the binocular disparities and the 

monocular images indicated the same slant at the end of the trial. This final 

slant was always consistent with the slant of the real surface that subjects 

felt at contact. When the two cues were in conflict for 150 ms, one cue 

always still indicated +5° while the other indicated a changed slant (either -

5° or +15°).  
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 On half of the trials the surface disappeared at the onset of the beep 

and only reappeared again at the moment of the first slant change, which 

meant that no surface was visible for about 620 ms. As a result, subject 

could not see the change on these trials (i.e. they could not see the transient 

for the first slant change). Figure 3.3 summarizes the 14 conditions. Each 

condition was presented at least 25 times to each subject. 
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Figure 3.3: The six pairs of conditions in which the slant changed (conditions 1-6) and the 

two conditions in which it did not (conditions 7 and 8). The virtual surface always had a 

slant of 5° at the beginning of the trial. Black lines represent the slant indicated by binocular 

disparity. Red lines represent the slant indicated by the monocular images. Just after 

movement onset, the slant of the virtual surface could change by -10° (a) or +10° (b). This 

change was either in the monocular information (pairs 1 and 4), the binocular information 

(pairs 2 and 5), or both (pairs 3 and 6). If only one changed, the second changed 150 ms 

later. On half of the trials the image was blanked from the auditory ‘go’ signal to the first 

slant change (conditions 4–6 and 8; gap not drawn to scale). 

 

Data Analysis 

We used the orientation of the base of the cylinder in relation to the 

horizontal plane as our measure of cylinder orientation. This orientation was 

determined from the position data provided by the three IREDs on the 

cylinder. When one or more of these IREDs were missing, we interpolated 

their positions from the positions on the frames before and after the frame 

with the missing markers. We rejected a trial if it had more than 10 frames 

with missing markers in the period after the first slant change and before 
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making contact with the surface, or if the movement time was more than 1.5 

s. 

 We determined the cylinder’s angular velocity by fitting a 2nd order 

polynomial to the orientations of the cylinder during a 5-frame period 

centered on each frame, and determining the derivative of this polynomial at 

that frame (Biegstraaten et al., 2003). We synchronized the trials at the 

moment of the (first) slant change. For each subject, condition, and frame 

after the slant change, we then averaged the angular velocities and 

determined the corresponding standard errors. 

 Since we found no indication that the sign of the slant change 

influences the latency of responses to a cue (see Figure 3.4), we analyzed 

the difference in angular velocity between conditions that have the same 

timing of the slant changes but a different direction of slant change (e.g. 

conditions 1a and 1b in Figure 3.3), rather than comparing each with the 

unperturbed conditions (7 and 8). We determined the onset of the response 

to the first slant change in three steps. First we searched from the moment of 

the slant change to find the first frame in which the angular velocities for the 

two directions of slant change differed by more than 2 standard errors (in 

this difference). Then we determined the maximal difference in angular 

velocity during the subsequent 100 ms and searched back from the frame at 

which this maximum occurred to find the frames at which the difference 

was 25% and 75% of the maximum. We considered the intersection of the 

line through these points with a line representing zero velocity difference to 

be the onset of the response (Veerman et al., 2008). We compared the onsets 

in the six conditions using a repeated-measures ANOVA and Fisher’s PLSD 

( =0.05). 

 Although subjects obviously also responded to the second slant 

change in conditions in which a second change occurred 150 ms later than 

the first, we did not analyze such responses. Such an analysis would be 

quite complicated, because by then subjects are already responding to the 

first change. The purpose of the second change was only to ensure that the 

feedback at the end of the trial felt correct. The 150 ms interval was long 

enough to ensure that we did not inadvertently consider responses to the 

second change to be late responses to the first. 

 

Results 

On average, 56 of the 545 trials per subject were rejected because they 

contained too many frames with missing markers or because the movement 

time exceeded 1.5 s. Individual subjects’ mean reaction times varied 

between 490 and 900 ms. Mean movement times, the time from reaction to 
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the moment the cylinder made contact with the surface, ranged from 500 to 

900 ms.  

 Figure 3.4 shows the mean angular velocity of the cylinder over 

time. Zero on the time (horizontal) axis represents the moment that the slant 

(first) changed. The data confirm that responses in the two directions are 

similar (see the symmetry with respect to the unperturbed conditions 7 and 

8). There are clear differences between the onsets and shapes of the 

responses in the different conditions. To get a better view of these 

differences, we determined the difference between the mean responses in 

the pairs of conditions that only differ in the sign of the slant change (Figure 

3.5). When the transient is present, subjects respond faster to the changes in 

the monocular images than to the change in binocular disparity. When there 

is no transient, subjects respond faster to a change in binocular disparity. 

When the monocular images and the binocular disparity change together, 

subjects responded as fast as they did to the fastest cue.  

 When we compare the responses in which the transient was present 

with responses in which it was not (Figure 3.5), we see that responses to 

changes in disparity are not affected by removing the transient, but 

responses to changes in the monocular images are. The responses to changes 

in the monocular images also appear to initially be weaker when the 

transient was present, but we cannot be sure of this because more variability 

in latency could also account for the less abrupt change in the average 

angular velocity.  

 Even when responding to the monocular images without the 

transients (condition 4), subjects responded fast enough to be sure that they 

were not responding to the change in binocular disparity that occurred 150 

ms later. It took subjects about 200 ms to respond to a change in binocular 

disparity. The responses to a change in the monocular images when the 

screen had been blanked occurred well before 200 ms after the second 

change (350 ms after the first change). Thus subjects responded to the 

changes in the monocular images as well as to the changed monocular 

images.  

 These findings show that subjects can use (at least) three types of 

information to adjust ongoing movements. In order of increasing latency: 

the changes in the monocular images, the new information about slant from 

binocular disparity and the new information about slant from the monocular 

images. 
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Figure 3.4: Mean velocity of the cylinder’s rotation. Time zero represents the moment that 

the first cue changed (except in conditions 7 and 8 where it is the time that it would have 

changed). In condition pairs 1 and 4 the monocular images changed first. In condition pairs 

2 and 5 binocular disparity changed first. In each pair of conditions the amplitude of the 

change was either -10º (a) or +10º (b). The shading indicates the standard error between 

subjects. 
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Figure 3.5: Mean difference in angular velocity between conditions that have the same 

timing but a different sign of the slant change. The shading indicates the standard error 

between subjects. 
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Figure 3.6: Comparing conditions in which the (first) slant change was visible (transient) 

and conditions in which it was not (no transient). Other details as in Figure 3.5. 
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 To investigate whether the differences that we see in Figures 3.5 

and 3.6 are consistent across subjects, we determined the onsets of the 

responses for each subject (Table 3.1). The averages of these response 

latencies are shown in Figure 3.7. The data in Table 3.1 and Figure 3.7 

suggest that subjects can respond to three sources of information: the 

changes in the monocular images (condition pairs 1 and 3), the new slant 

from binocular disparity (2, 5 and 6) and the new slant from the monocular 

images (4). The ANOVA on the onsets of the responses revealed a 

significant main effect of Condition (p < 0.01). Fisher PLSD tests confirmed 

the division into the three groups indicated by the rectangles in Figure 3.7. 

The onsets never differed significantly between members of the same group, 

and always differed significantly between members of different groups. 

 
            Pair 

Subject 1 2 3 4 5 

 

6  

1 0.15 0.15 0.14 0.26 0.21 0.21 

2 0.17 0.21 0.16 0.20 0.20 0.17 

3 0.17 0.20 0.18 0.20 0.22 0.19 

4 0.15 0.20 0.20 0.29 0.30 0.19 

5 0.19 0.23 0.16 0.30 0.24 0.22 

6 0.18 0.21 0.17 0.30 0.16 0.18 

7 0.15 0.20 0.17 0.23 0.18 0.19 

8 0.17 0.23 0.17 0.27 0.22 0.22 

Table 3.1:  Estimated latency for each pair of conditions (see Figure 3) for each subject (in 

seconds). 
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Figure 3.7: Average onset of the response for each pair of conditions (as listed in Figure 3). 

The blue dotted rectangle indicates responses based on changes in the monocular images. 

The blue solid rectangle indicates responses based on a new estimate of slant from the 

monocular images. The red rectangle indicates responses based on a new estimate of slant 

from binocular disparity. 
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Discussion 

Subjects alter the orientation of their hand to match the changing surface 

slant during their movement. When an object changes orientation its 

projection on the retina changes. In our virtual environment, the retinal 

projections of the squares of the checkerboard surface become more 

trapezoidal when the far side of the checkerboard moves downwards, 

because the lateral images sizes and separations decrease for the parts of the 

surface that move further away and increase for those that move closer. Our 

data suggests that subjects respond to these changes in each eye’s image, as 

well as to a changed image in each of the eyes. 

Response latency depends on saliency (Veerman et al., 2008). However, 

blanking the screen did not simply increase the latency by reducing the 

salience of all changes in slant because responses to changes in binocular 

disparity were not affected by blanking the screen (see figure 6). Thus 

blanking the screen specifically influenced responses to changes in the 

monocular image. 

 Subjects responded 40 ms faster to changes in the monocular 

images than to new information about slant from binocular disparity, and 90 

ms faster to changes in the monocular images than to a new slant from the 

monocular images. When more than one source of information changed at 

the same time, the latency of the response was that of the fastest source.  

 For a change in binocular disparity, the onset and the slope of 

subjects’ responses were almost identical in the conditions with and without 

a visible transient, indicating that in both conditions subjects responded to 

the same kind of information. This suggests that subjects do not respond 

directly to the changes in binocular disparity, but only to the new disparities. 

This not necessarily mean that such changes are not detected, because they 

may simply be detected with a longer latency than the disparities 

themselves. 

 The latency differences that we find can explain the differences 

between the studies mentioned in the introduction. The jumps in distance in 

Brenner & Smeets’ study (2006) and the temporal modulation and step 

changes in Allison and Howard’s study (2000b) were clearly visible, so 

subjects could readily respond to changes in the monocular images. The 

perturbations in Greenwald et al.’s study (2005) were masked by a set of 

frames alternating between black and white for 167 ms, so responses were 

probably based on a changed estimate of slant. We found that responses to a 

new slant from binocular disparity were faster than responses to a new slant 

from the monocular images when the transient was not visible, but that 

responses to changes in the monocular images were even faster (when they 

were visible). 
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 In our study we intentionally chose natural conditions, such as an 

approximately horizontal surface in front of and below the subjects’ eyes. 

We compared changes of the same magnitude for all cues. Under such 

conditions we find that a change in the monocular images is processed faster 

than a new binocular slant and that a new binocular slant is processed faster 

than a new slant from the monocular images. Perhaps conditions can be 

found in which the order of the latencies is different, but we believe that our 

findings are representative of many natural circumstances. 

 Responses to changes in the monocular images appeared not only to 

be quicker, but also stronger than responses to a new slant (the slope of the 

pink curve versus the slope of the blue curve in the left plot of Figure 3.6). 

A possible explanation for this is that people respond to the motion in the 

retinal image by initiating a strong response in the direction of the change 

(before knowing when and where the change will end), whereas a new slant 

only initiates a response that is proportional to the change in slant (and the 

weight given to the source of information involved). In other words, 

subjects may initially match the way they rotate their hand to the motion of 

the surface, and then adjust the end orientation of the ongoing response to 

the new slant estimates. This combination of responding to a derivative and 

to a combined slant estimate would nicely integrate optimal accuracy with 

fast responses. However, this poses a challenge to optimal cue combination 

theory, because the changes in the monocular images are temporary signals, 

so they cannot simply be averaged with other information to get a better 

estimate of slant. Thus, whenever the observer is moving relative to a 

surface, the whole dynamics of the interaction will have to be considered to 

predict how slant information is used.  
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Chapter 4: 

Reliability is more than precision: 

Fast adaptation of slant cues’ weights based on their 

‘correctness’ 
 

Abstract 

According to optimal cue combination, when two visual cues provide 

information about the same attribute, their estimates are averaged with 

weights that are inversely proportional to their variance. As a result, the 

precision of the combined judgment is maximized. If so, the weights should 

be independent of whether or not the cues give correct information. To test 

this, we asked subjects to put a cylinder on a slanted surface. Surface slant 

was defined by monocular and binocular cues that indicated different slants 

on most of the trials. Haptic feedback was initially consistent with either the 

monocular cues or binocular disparity, and then changed to match the other 

cue. Subjects almost immediately increased the weights of cues that 

matched the feedback. This quick change in weights indicates that the 

correctness of the cues is considered, not only their precision. 

 

Introduction 

We estimate the orientation of objects relative to our body on the basis of 

retinal cues such as texture density, image deformation and binocular 

disparity. Estimates from all of these cues are believed to be combined in a 

statistically optimal fashion, meaning that the variance of the combined 

estimate is minimized (Adams & Mamassian, 2004; Ernst & Banks, 2002; 

Hillis et al., 2004; Jacobs, 1999; Knill, 1998; Knill & Saunders, 2003; 

Landy et al., 1995; Muller et al., 2007; Oruc et al., 2003; van Beers et al., 

1999). Such optimal cue combination consists of weighted averaging, with 

weights that are inversely proportional to the uncertainty or variance in the 

value of the cue (Landy et al., 1995; van Beers et al., 1999; Yuille & 

Bülthoff, 1996). When we refer to optimal cue combination in the 

remainder of the paper we mean optimal according to this definition. 

 Knowledge about the uncertainty associated with a cue could be 

based on prior experience. However, because the variance in the estimate of 

a cue depends on many factors (e.g. slant, distance, texture) all these factors 

would have to be considered. A simpler method would be to estimate the 

cue’s precision from the precision of the coding. Less precise information is 

likely to activate a broader range of cells; i.e. to stimulate cells that are 

sensitive to a wider range of possible values of the property that is 

estimated. The precision of a cue’s estimate can therefore be determined 
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from the spread of activity within neuronal populations that are sensitive to 

that cue. Irrespective of whether the weight given to a cue when combined 

with other cues is based on such instantaneous neuronal tuning or on prior 

experience, whether or not the estimate is veridical (correct) is irrelevant.  

 Several studies indicate that the cues’ variances do not fully 

determine their weights. Ernst et al. (2000) found that subjects decreased the 

weight that they gave to either binocular disparity or texture when making 

slant judgments based on a combination of the two if the value of that cue 

did not match the felt slant of a surface during a training phase in which 

they moved a cube up and down across the surface. Similar results have 

been obtained for combinations of cues for size and shape (Atkins et al., 

2001; Jacobs & Fine, 1999). These studies indicate that subjects can learn 

that one cue is less accurate than others from haptic or auditory feedback, 

and can use this information to adapt the weights given to the cues 

accordingly. Since in all these cases the precision of the cues remained 

constant, such reweighting seems to be inconsistent with the notion of 

optimal combination only depending on precision.  

 However, Knill (2007) found that cues’ weights could change in a 

similar manner without haptic or auditory feedback. In his study there was 

also no change in the physical precision of the visual information presented 

to the subjects. People need to make assumptions in order to use certain 

cues. One such assumption is that elliptical images on our retinas are 

projections of slanted circles in the real world. Knill proposed that people 

change their assumptions to conform to experience within a given context, 

so that the judged precision of a cue’s estimate, and hence its weight, is 

influenced by experience that is inconsistent with that in daily life. In 

Knill’s experiment subjects were exposed to many non-circular elliptical 

shapes. They later relied less on foreshortening and more on binocular 

disparity when tested in a similar context. The change in weights developed 

gradually (over days) with experience. Knill argued that being less biased 

towards perceiving the shapes as being circular made subjects consider a 

broader range of slants for a given retinal shape, resulting in the 

foreshortening cue having a lower precision and therefore being given less 

weight.  

 In the present study we investigated the time course of the changes 

in the weight given to monocular cues and binocular disparity when haptic 

feedback indicates that one of them is biased. We were interested in the time 

course because this might give insight into the mechanism by which the 

weights change. In the previous studies in which weights given to 

complementary cues were influenced by haptic or auditory feedback (Atkins 

et al., 2001; Ernst et al., 2000; Jacobs & Fine, 1999), the authors assumed 
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that many trials were needed to change the weights, and the experiments 

were designed accordingly. Since in daily life inconsistencies between 

complementary cues are presumably primarily due to random variability in 

the individual estimates, it makes sense for the changes in the weights to be 

slow, because there is no point adjusting the weights to random variability. 

Moreover to be able to quickly change the weights in accordance with the 

feedback, one must also have access to the individual cues’ estimates, not 

only access to the combined estimate. A change in weights based on 

information about likely shapes within a certain context (Knill, 2007) is also 

necessarily slow. We therefore decided to examine whether the changes in 

weights in response to the feedback are really slow, and if so how slow. 

 Subjects sat in a 3D virtual environment in which we could 

independently manipulate surface slant from monocular and binocular cues. 

They had to put a cylinder on the center of a virtual surface. Monocular and 

binocular cues either indicated the same slant or slants that differed by 20º. 

A real table was rotated to match the slant of one of the cues, so that at the 

end of their movement the subjects received feedback from the felt slant of 

the table that was consistent with the slant indicated by one of the cues. 

Previous studies were divided into separate learning and testing stages 

(Atkins et al., 2001; Ernst et al., 2000; Jacobs & Fine, 1999; Knill, 2007). 

Because we were interested in the time course of the change in weights, we 

devised a paradigm in which we could examine how the weights changed 

within a block of learning trials instead of using separate test and learning 

stages. We introduced a switch in feedback during a session. Subjects first 

performed a short block in which the table had the same slant as one of the 

cues, and then a long block in which the table had the same slant as the 

other cue. We calculated the weight of the monocular cue over groups of 

trials within each block to determine the time course and the direction of the 

change in weight. 

 

Method 

Subjects 

Nine experienced subjects (four male, five female) participated in the 

experiment, including two of the authors. All subjects had normal or 

corrected-to-normal vision, with a stereo acuity better than 60 arc seconds 

(tested with Randot StereoFlyTM). 

 

Apparatus 

Subjects sat behind a surface (45 cm by 45 cm), centered 60 cm in front of 

their chest and 40 cm below their eye-level. They held a cylinder with a 

height of 6 cm and a diameter of 9.5 cm in their right hand. At the subjects’ 
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right side, 26 cm from their sagittal plane, 60 cm in front of them and 18 cm 

below eye-level, there was a second surface with a 2mm deep indentation in 

the shape of the base of the cylinder. Subjects had to place the cylinder 

within this indentation at the start of each trial. Subjects did not see the real 

surface, starting position or cylinder, but only a virtual surface, starting 

position and cylinder. 

 The three-dimensional (3D) virtual environment was created by 

presenting different images to the left and right eyes using a combination of 

two CRTs and mirrors (see Figure 4.1). The mirrors were semi-silvered with 

two occluders attached behind them. We matched the virtual and real 

environments by removing the occluders and monocularly aligning the 

corners of a rectangle on the screen (as reflected by the mirror) with the 

positions of four markers on a calibration rectangle that was above the table 

(as seen through the mirror). By using a virtual environment we could 

dynamically manipulate the slant of the virtual surface independently for 

monocular and binocular cues (as explained below). 

 We recorded the 3D positions of three Infra-red Emitting diodes 

(IREDs) that were attached to the cylinder with an Optotrak 3020 system 

(Northern Digital, Inc.). The positions were recorded throughout the 

experiment, so that we could generate images of the cylinder while the 

subject was moving it. Motion parallax as a result of small head movements 

has been found to contribute to slant perception (Louw et al., 2007). We 

therefore determined the positions of the subjects’ eyes throughout the 

experiment so that the appropriate motion parallax was present in our 

stimuli. To enable us to do so, subjects were fitted with a bite-board with 3 

IREDs. The bite-board did not restrain the subjects because it was only 

attached to the head. We determined the positions of the eyes relative to the 

bite-board before the experiment started and recorded the bite-board’s 

position during the experiment. In this manner, we could continually adjust 

the images to the position of the subject’s eyes without restraining the head. 

 Based on the coordinates of the IREDs on the cylinder and bite-

board (sampled at a frequency of 250 Hz), a PC calculated the current 

position of the cylinder and eyes and sent these coordinates to two Apple 

G5’s that each rendered an image of the cylinder and virtual surface for one 

of the eyes on a CRT monitor (1096 x 686 pixels, 47.3 x 30.0 cm). The new 

images were created with the frequency of the refresh rates of the two CRT 

monitors (160 Hz). Thus we generated images that were appropriate for the 

actual position of the eyes and hand at each moment in time. The delay 

between a cylinder movement and the visual feedback was about 20 ms. 
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Figure 4.1: Schematic representation of the set-up (not to scale) 

 

Stimuli 

A small pink virtual sphere indicated the starting position. The virtual 

surface was a square with sides of 10 cm. It had a red and grey 

checkerboard pattern of 4 by 4 squares. The virtual cylinder had 14 white 

and black stripes along its main axis and a green top and bottom. It had the 

same dimensions as the real cylinder. The shapes of the projections of the 

squares of the checkerboard on the screens provided monocular information 

about surface slant. Motion parallax was always consistent with this slant. 

The differences between the computer images for the two eyes provided 

binocular information about surface slant (binocular disparity). All sources 

of information were also available for the cylinder. 

 Each cue specified a slant of either -5º or +15º for the virtual 

surface. Positive values indicate that the side of the checkerboard that is 

farthest from the subject’s body is higher than the nearest side. The 

monocular and binocular cues either indicated the same slant (non-conflict 

trials) or different slants (conflict trials). In order to render different slants 

for the two cues, we determined how a square surface with a slant defined 

by the monocular cues would look for a single (cyclopean) eye, and then 

rendered images for the two eyes that (on average) provide this retinal 

image, while having the binocular slant that we wanted (Knill, 1998; Landy 

et al., 1995; Van Mierlo et al., 2007). This is equivalent to a simulation of a 

deformable non-conflict trapezoid with a slant as specified by binocular 

disparity. 
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Figure 4.2: Impression of the subject’s view during the experiment, with from left to right the 

virtual surface, cylinder and starting point. 

 

Procedure 

Before each trial the computer positioned the table at an orientation of either 

+5° or -15° from the horizontal plane. The positioning happened in 3 to 4 

movements to prevent subjects from deducing the slant of the table from the 

sound that the motor made when positioning the table in the correct 

orientation. Subsequently, the virtual surface, the starting point and the 

virtual cylinder were presented. 

 Subjects started a trial by positioning the cylinder at the starting 

position. A beep was presented 500 – 800 ms after they did so.  This was the 

signal that they should move the cylinder to the center of the virtual 

checkerboard. They were asked to do so as accurately as possible in one 

single continuous movement. If subjects responded before the beep, or 

within 100 ms after presentation of the beep, the movement was considered 

to have started too early. The trial was then stopped and the subject had to 

start again. The table was rotated to match the slant of one or both of the 

cues, so it gave feedback about the correctness of the end orientation of the 

subjects’ hand and thus about the accuracy of the visual information that 

was used to make the movement.  

 In Ernst et al. (2000) the weights given to texture and disparity 

differed more between the two pretest blocks than between the pretest and 

posttest of a conflict block. To minimize such idiosyncratic behavior, we 

introduced the change in the feedback during the session itself. The change 

took place after 30 trials. We studied how subjects changed the weights in 

the remaining 102 trials. We repeated the experiment twice. In session A, 

the felt slant matched that of binocular disparity in the first 30 trials, and 

that of the monocular cues in the 102 trials that followed. In session B, the 

felt slant matched that of the monocular cues in the first 30 trials and that of 

binocular disparity in the remaining 102 trials. The order of the two sessions 

was counterbalanced across subjects and the sessions were performed on 

different days. For each experiment, the first 30 trials contained 20 conflict 
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and 10 non-conflict trials. The remaining 102 trials contained 68 conflict 

and 34 non-conflict trials. The four combinations of slants (two conflict and 

two non-conflict combinations) were presented in random order.  

 

Data Analysis 

Our main variable was how much the slant indicated by each cue 

contributed to the perceived slant of the virtual surface. As a measure for 

perceived slant we took the orientation of the cylinder just before it made 

contact with the table, which we will refer to as its end orientation. 

 We determined the cylinder’s orientation in the direction of the 

perceived slant of the virtual surface: the slant of the base of the cylinder 

relative to the horizontal plane. This slant was determined for each frame of 

each trial from the position data of the three IREDs on the cylinder. If data 

from one of the IREDs was missing, we interpolated its position from those 

on the previous and next frames. We rejected a trial if it had more than 10 

frames with missing markers.  

 As the end orientation of the cylinder we took its slant when it was 

1.5 cm from where it stood still on the checkerboard surface. This moment 

was determined on the basis of the position of one of the three IREDs on the 

cylinder. We searched for a 100-frame period during which the position of 

this IRED varied less than 0.075 mm between frames. We then determined 

on which frame the IRED was 1.5 cm from the position at standstill. The 

orientation on this frame was taken as the end orientation of the cylinder. 

Figure 4.3 shows an example of this procedure for one trial. 
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Figure 4.3: Data of one trial illustrating the procedure that we used to determine the end 

orientation of the cylinder. In this trial both cues indicated a +15 degree slant. The 

continuous line shows the angle of the cylinder. The dotted line shows the distance from the 

starting position. The black crosses show the distance and orientation of the cylinder at the 

moment it came to a standstill on the table. The red circles show these values when the 

cylinder was 1.5 cm from this position. The red circle on the continuous line indicates the 

end orientation. 



 50

 As a compromise between the temporal resolution that we wanted 

to achieve and the need to average across trials to remove unsystematic 

variability in the movement (see continuous line in Figure 4.3), we divided 

each session into ten groups of trials and averaged the trials of the same 

condition within each group of trials. The short block was divided into 2 

groups. The long block was divided into 8 groups. We also calculated the 

standard errors of the mean end orientation for each group of trials. After 

rejecting trials with too many missing markers (see above), at least 8 

conflict trials and 4 non-conflict trials remained in each group. 

 We determined the weight of the monocular cues (wm) in 

determining the end orientation of the cylinder for each subject and each 

group of trials with the help of the equation for cue combination by 

weighted averaging: 

 

sc = wmsm + (1 wm )sb      (4.1) 

 

which can be rewritten as: 

 

wm =
sc sb
sm sb

      (4.2) 

 

In Equations 4.1 and 4.2, sc is the end orientation of the cylinder in one of 

the conflict conditions. The slants indicated by the individual cues (sm and 

sb) are mean end orientations of the cylinder on non-conflict trials. Sm is the 

mean end orientation of the cylinder in the non-conflict trials in which the 

two cues indicated the same slant as the monocular cues in the conflict 

condition. Sb is the mean end orientation of the cylinder in the non-conflict 

trials in which the two cues indicated the same slant as binocular disparity 

in the conflict condition. By using sm and sb rather than the true slants we 

account for issues such as the fact that we determine the angle some time 

before the cylinder reaches the surface.  

 We also calculated the standard error for the weight given to the 

monocular cues ( SEwm ) using Equation 4.3:  

 

SEwm
wm

2
=

SEc
2
+ SEb

2

sc sb

2

+
SEm

2
+ SEb

2

sm sb

2

 (4.3) 
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in which SEc, SEb and SEm represent the standard errors in the settings in the 

same trials as for Equations 4.1 and 4.2. 

 For each subject and each group of trials, we averaged the values of 

wm and SEwm  across the two types of conflict trials (binocular disparity 

indicating a slant of +15° and the monocular cues -5°; binocular disparity 

indicating a slant of -5° and the monocular cues +15°). 

 Since we found considerable differences between the calculated 

values of SEwm for different subjects, we averaged wm across subjects using 

weights that were proportional to the subject’s precision. For each group of 

trials, we multiplied each subject’s values of wm by the value of iw described 

by Equation 4.4 (where i SEwm  is the value of SEwm  for that individual 

subject) and then summed these values across subjects. We determined the 

combined SEwm  using the same weights. 

 

iw =
1

i SEwm
2 1

i SEwm
2

i=1

9
    (4.4) 

 

 In the calculations above we averaged the non-conflict conditions 

across the entire experiment to obtain sb and sm. To check whether this was 

valid we examined the end orientations of the different non-conflict 

conditions for the ten groups of trials. If subjects respond to the feedback by 

relying less on the current visual information, the end orientation seen on 

the non-conflict conditions will change during the course of the experiment. 

They may for instance start relying more on the slant felt on previous trials 

when they notice that their percepts are inaccurate, especially if they cannot 

determine why this is the case. We determined the end orientations in the 

non-conflict conditions for each subject and each group of trials. We then 

summed these values across subjects with weights that reflect subjects’ 

precision in the non-conflict condition. 

 

Results 

Figure 4.4 shows the end orientations of the cylinder in the different non-

conflict conditions. The slant was stable throughout the experiment, 

suggesting that over trials subjects relied on the visual information in the 

same way.  
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Figure 4.4: The mean slant seen just before the cylinder made contact with the table on the 

different non-conflict conditions in which the monocular cues and binocular disparity 

indicated the same slant. The grey region represents the short block of each session. In this 

block, the feedback differed from that in the remaining trials. In this and all subsequent 

graphs the error bars show standard errors of the mean. 

 

 Figure 4.5 shows the mean weight that subjects gave to the 

monocular cues for each group of trials. The solid line represents the weight 

given to the monocular cues in the session in which the haptic feedback 

initially matched the slant of binocular disparity (open circles on grey 

background) and then matched the slant of the monocular cues (solid circles 

on white background). The dashed line represents the same weight in the 

session in which the feedback first matched the slant of the monocular cues 

(solid circles on grey background) and then matched the slant of binocular 

disparity (white circles on white background). After the change in feedback, 

the weight that subjects gave to the monocular cues changed in accordance 

with the feedback. It did so within a few trials (remember that each group of 

trials only contains about 8 conflict trials). Subjects increased the weight 

given to the monocular cues when it matched the feedback and decreased it 

when it did not. 

 To determine whether this pattern of findings is consistent across 

subjects, we determined the weight that each subject gave to monocular 

cues during the last 6 groups of trials of each session. We plotted the 

difference between the weights for the two kinds of feedback (averaged 
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across groups 5-10) in Figure 4.6a. The differences in weight are in the 

direction that is supported by the feedback for all subjects. 

 For trials in which the monocular and binocular cues indicated 

conflicting slants, the simulated shape of the virtual surface was a slanted 

trapezoid. For trials in which the two cues had the same slant the simulated 

shape was a slanted square. To see whether subjects quickly adjusted the 

weights given to the slant cues to the shape seen on the previous trial 

(similarly to the slow changes found by Knill, 2007), we determined the 

average weight that subjects gave the monocular cues in the last six groups 

of trials of the two feedback sessions for conflict trials that were preceded 

by either a non-conflict trial (black bars in Figure 4.6b) or a conflict trial 

(white bars). If subjects had more confidence that the surface was square 

after seeing a square surface (in a non-conflict trial) than after seeing a non-

square surface (in a conflict trial), subjects would have decreased the weight 

of the monocular cues after each conflict trial and increased its weight after 

each non-conflict trial, so the black bars would be higher than the white bars 

in Figure 4.6b. This is clearly not the case. 
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Figure 4.5: Mean weight given to monocular cues in each group of trials. Each group 

consists of at least 8 conflict and 4 non-conflict trials. 
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Figure 4.6: A. The difference between the weight given to monocular cues when the feedback 

was consistent with the monocular cues and when it was not. All subjects adjusted the 

weights in accordance with the feedback. B. Mean weight given to monocular cues on 

conflict trials that were preceded by either non-conflict trials (black bars) or conflict trials 

(white bars), averaged across subjects. 

 

Discussion 

Subjects changed the weight that they gave to monocular cues in accordance 

with the slant that they felt from the table at the end of their movement. If 

the slant of the monocular cues matched the felt slant in previous trials, they 

gave the monocular cues more weight than if the slant of the monocular 

cues did not match the felt slant. We thus reproduced the findings of Ernst 

et al. (2000). 

 Ernst et al. (2000), Knill (2007), Jacobs & Fine (1999) and Atkins 

et al. (2001) all exposed their subjects to many learning trials before judging 

whether the weights had changed, because they expected the weights to 

change slowly. In this study we show that the weights given to slant cues 

can change within just a few trials. The time constant of the change in 

weights is in line with that found by Smeets et al. (2006) for weights of 

proprioceptive and visual information after withdrawal of visual feedback 

about the position of the hand.  

 Such a fast change in weights is unlikely to result from changes in 

subjects’ expectations about the shapes of objects in the world, or even 

within the current context. Moreover, if subjects were quickly changing 

their expectations about whether or not objects were likely to have been 

squares, we would expect large differences between the weights just after a 

conflict (non-square shape) or non-conflict (square shape) trial. We found 

no difference in weight between trials that were preceded by non-conflict 

trials or conflict trials. Considering how quickly subjects responded to the 

change in haptic feedback, it is also evident that no elaborate learning 

mechanisms are involved. We can therefore conclude that a change in 

judged precision alone cannot explain the change in weights. 
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 Furthermore, the non-conflict data that is presented in Figure 4.4 

shows that it is unlikely that the change in weights was brought about by a 

recalibration of the cues. If subjects changed their interpretation of the 

values of the individual cues after the change in feedback (as when rescaling 

the cue) there is no reason to expect them not to do this in the non-conflict 

trials. So in case of a recalibration, a gradual change in the end orientation 

should also be seen on the non-conflict trials. No such change was seen, 

indicating that subjects’ interpretation of the cues remained constant 

throughout the experiment.  

 Finally, Figure 4.4 shows that the change in weights is not caused 

by a change in response bias and Figure 4.7 shows that although there were 

only two possible end orientations of the table, the distributions of responses 

are unimodal, so subjects were not simply switching between the slants that 

they had previously felt. 

 So subjects do not only consider the cues’ precision when assigning 

weights, but also whether the values are likely to be correct. This is in 

conflict with many current theories that state that the brain integrates 

different sources of information about the same attribute in a statistically 

optimal manner (as defined in the introduction). Even assuming that optimal 

cue combination only takes place when the discrepancies between the cues 

are not very large (Landy et al., 1995; Muller et al., 2007, 2008; van Ee et 

al., 2003) does not explain the change in weights in response to feedback 

about the correctness of the cues. 

 The extremely fast changes in weights that we found suggests that 

the values of the individual cues are not lost by combining them into one 

estimate. Access to the information from the individual cues would be very 

convenient if subjects are to quickly discover systematic biases and change 

the weights accordingly, because if subjects would only have access to the 

combined percept they would not know which cue’s estimate was ‘wrong’. 

Thus apparently we do not only have access to an optimally weighted 

average of the cues. Although optimal weighted averaging describes 

performance in many experiments extremely well, our findings can only be 

explained if people can judge whether or not the values of individual cues 

are correct and consider this, next to the value’s precision, when combining 

different cues into one estimate.  
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Figure 4.7: Histograms of the cylinder’s end orientation for the four conflict conditions. 



 57

Chapter 5: 

Motion in depth from interocular differences in relative 

direction of motion 
 

Abstract 

When studying manual responses to changes in slant we found that a 

stereoblind subject responded to changes in binocular disparity. To find out 

how this was possible we asked three stereoblind subjects to judge the 

direction in which a horizontal transparent virtual cylinder was rotating. The 

stereoblind subjects performed better binocularly than monocularly. In 

contrast to the controls, the stereoblind subjects were also better when the 

dots defining the cylinder were different for the two eyes. Next, we 

examined the influence of various perturbations on how they judged the 

direction of rotation from motion differences between the eyes. Although all 

perturbations influenced the subjects’ performance, performance only 

dropped to the monocular level when the cylinder expanded and contracted 

along its axis as it rotated. We conclude that stereoblind subjects use 

interocular differences in relative direction of motion to judge motion in 

depth, and do so without matching individual points in the two eyes.  

 

Introduction 

If small children display a tendency towards amblyopia, their good eye is 

usually patched to stimulate the development of the other eye. Long periods 

of patching, however, may result in abnormal development of binocular 

vision (McKee et al., 2003). Indeed, one of the authors of this study (JS) 

received such eye patch treatment during childhood. He shows no detectable 

binocular vision when tested with the Randot StereoFlyTM or with various 

kinds of random dot stereograms. JS participated in many previous 

experiments about binocular vision to check for monocular artifacts. There, 

JS was unable to align two lines in depth (Brenner & Smeets, 2000), relied 

completely on the monocular cues when matching the slant of a surface for 

which monocular and binocular cues indicated different slants (Muller et al., 

2007), and failed to adjust his ongoing movement when a target jumped 

binocularly in depth (Brenner & Smeets, 2006). These findings confirmed 

that JS is completely unable to use binocular disparities to judge distance or 

slant. By contrast, in a recent study in which we investigated subjects’ 

online correction of ongoing movement in response to changes in surface 

slant (Van Mierlo et al., submitted), JS did respond to changes in binocular 

disparity (Figure 5.1). Why could he do that? 
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 When (part of) an object is moving towards you, you can tell that 

this is the case from the changing vergence that is required to keep your 

eyes on it, from its changing disparity relative to other static objects and of 

course from monocular cues such as changing image size (expansion). 

There is also some evidence that subjects with normal binocular vision use 

interocular velocity differences (differences between motion of the object’s 

images on the two retinas) to determine the direction and speed of motion in 

depth (Brooks & Stone, 2006; but see Cumming & Parker, 1994; Rokers et 

al., 2008). A special characteristic of this binocular cue is that it does not 

necessarily require one to precisely identify matching points in the two eyes.  

The use of a cue that does not require point-by-point correspondence 

between the eyes is supported by findings that some strabismus patients 

with low stereo-acuity could also determine the direction of motion in depth 

in dynamic displays findings (Kitaoji & Toyama, 1987; Maeda et al., 1999). 

 In the present study, we show that JS and two other stereoblind 

subjects use such interocular velocity differences to judge the direction of 

motion in depth. We specifically argue that they use interocular differences 

in the relative direction of motion to do so. 
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Figure 5.1: JS’ response to change in the binocular disparity defined slant of a surface on 

which he was placing an object. Average velocity of rotation of the object that is being 

placed (with the standard error across trials). Positive values indicate rotation in the 

direction of the change in surface slant. 

 

Experiment 1 

Previous studies have suggested that estimates of the speed of motion in 

depth combine motion signals with estimates of displacement (Brenner et 

al., 1996). To circumvent any influence of displacement, we presented 

subjects with a transparent virtual cylinder that was defined by randomly 

distributed limited lifetime dots.  The cylinder rotated around its horizontal 

axis (a screenshot of the stimulus is provided in Figure 5.2). Subjects had to 

indicate whether dots on the near side were moving upwards or downwards. 

In order to avoid cue conflicts we used veridical perspective projection. As 
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a consequence, the direction of the rotation could not only be estimated 

from changing disparity and interocular velocity differences, but also from 

monocular motion signals. To dissociate between these three cues, we 

compared performance when the dots were correlated in the two eyes (as 

they normally are), with performance when the dots had different random 

positions for one eye than for the other, and with performance when the 

cylinder was only presented to one eye. Removing the correlation between 

dots in the two eyes interferes with changing disparity as a cue to motion in 

depth and removes the static depth information from relative disparities, but 

it does not necessarily disrupt the use of interocular velocity differences.  

 

Methods 

Subjects 

We tested three stereoblind subjects (stereo-acuity below the range of the 

StereoFlyTM test) and seven subjects with normal binocular vision (stereo-

acuity better than 80 arcseconds). All three stereoblind subjects had been 

patched during childhood. The treatment was successful in as far as they 

reported normal acuity for both eyes.  

 

Apparatus 

The stimuli were presented on a CRT monitor (1096  686 pixels, 47.3  

30.0 cm). Subjects sat 70 cm from the monitor, wearing liquid crystal 

shutter spectacles that successively blocked each eye in synchrony with the 

refresh rate of the monitor (160 Hz), so that different images could be 

shown to the left and right eye in rapid alternation. A new image was 

presented to each eye every 12.5 ms (80 Hz). The subject’s interocular 

distance was taken into account when creating the images. We simulated the 

cylinder at screen distance (70 cm), so that not only the ocular convergence 

required to fixate the cylinder and the retinal images were appropriate, but 

also the accommodation.  

 

Stimuli 

The cylinder was defined by 275 red limited lifetime dots. It had a diameter 

of 8 cm (6.5°) and extended horizontally across the entire screen (24°). The 

dots always had a diameter of 4 pixels, so that the near and the far side of 

the cylinder could not be recognized on the basis of dot size. On each trial 

the cylinder rotated at 20º/s for 2 s and then disappeared. During the 2 s, the 

dots were asynchronously replaced every 250 ms. New dot positions were 

chosen at random on the cylinder’s surface. 

 There were four conditions in experiment 1: static, correlated, 

monocular, and uncorrelated. In the static condition, the cylinder did not 
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rotate. The simulated positions of the dots defining the cylinder were the 

same for the two eyes. We placed a target dot with twice the diameter of the 

normal dots (8 pixels) at a random position on a horizontal line through the 

most distant or nearest part of the cylinder (within 10 cm of the screen 

center). In the other three conditions the cylinder did rotate. For the 

correlated condition, the simulated position of each dot was the same for 

both eyes. For the monocular condition, the image for one of the eyes was 

black. For the uncorrelated condition, we used twice as many dots, but 

showed each dot to only one eye.  

 

Procedure 

For the correlated, uncorrelated and monocular conditions, subjects had to 

indicate in which direction the dots were moving on the near half of the 

cylinder. They pressed the upward arrow key if they thought that the dots 

moved upwards, and the downward arrow key if they thought that the dots 

moved downward. No feedback was given, to avoid that subjects might 

learn to use one of the cues better, which might result them either ignoring 

or downsizing the importance of the other cues. The conditions were tested 

in separate blocks of trials. Within each block, subjects were presented 

hundred trials per direction of movement, in random order. In the 

monocular condition subjects used their preferred eye. 

 For the static condition, subjects had to indicate whether the larger 

dot was on the near or far side. If they thought that the target dot was 

located on the front of the cylinder, they pressed the downward arrow key. 

If they thought that it was located on the back of the cylinder they pressed 

the upward arrow key. There were hundred trials in which the dot was 

located on the front of the cylinder, and hundred trials in which the dot was 

located at the back of the cylinder. No feedback was given. 

 

 
Figure 5.2: One frame (monocular) of the transparent virtual cylinder. 
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Results 

In the static cylinder condition, all three stereoblind subjects performed at 

chance level, confirming that they could not use disparity to judge the depth 

of the dots (Figure 2.3). All control subjects performed at almost 100% 

correct in this condition, as we would expect considering the disparity. 

 There was a lot of variability in how subjects performed in the 

monocular condition. This was both so for the stereoblind subjects and for 

the controls. Some subjects performed well above chance level whereas 

others did not. On average, both stereoblind and control subjects scored 

higher than chance level in the monocular condition (Figure 2.4). 

 The stereoblind subjects performed much better in the uncorrelated 

condition than in the monocular condition. The control subjects performed 

at the same level in the two conditions. 

 In the correlated condition, the control subjects’ performance was 

almost perfect (much better than in the uncorrelated condition). For the 

stereoblind subjects, the correlation between the two eyes’ images made no 

difference. 
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Figure 2.3: Individual subjects’ performance. Error bars represent 95% confidence intervals 

of the mean. 
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Figure 2.4: Average performance of the 3 stereoblind subjects and of the 7 control subjects. 

Error bars represent the 95% confidence intervals (between subjects). 
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Discussion 

We can conclude from these findings that the stereoblind subjects use some 

kind of binocular information that does not require matching points in the 

two eyes to discriminate between the directions of rotation. 

 Several subjects performed well above chance level in the 

monocular condition, indicating that they were able to use the monocular 

information in our stimulus. A disadvantage of good performance in the 

monocular condition is that improvements from binocular information 

cannot be very large. This is the case for the data of stereoblind subject 

TvW and control subject DG. Despite being able to perform well on the 

basis of monocular information, so that having binocular information makes 

little difference, the overall pattern in their data is similar to that of the other 

subjects. 

 Note that although completely ambiguous monocular stimuli can be 

made (using orthogonal projection), this is incompatible with providing 

exactly the same information to the eye in the other conditions. An 

advantage of using correct perspective projection is that we need not worry 

as much about cue conflicts. However, having uncorrelated positions of the 

dots in the two eyes’ images introduces a conflict between the shape that is 

defined by the random disparities and the (cylindrical) shape that is defined 

by the motion cues. That the control subjects did not perform better in the 

uncorrelated condition than in the monocular condition may seem to 

indicate that they are less adept at using the difference in motion between 

the eyes than the stereoblind subjects. However, it might also be due to an 

inability to ignore the random disparities that distort their shape perception. 

Thus the stereoblind subjects may simply perform better in the uncorrelated 

condition because they have no conflict with disparity. Similar conflicts 

may explain why Cumming & Parker (1994) found no evidence that people 

could use interocular velocity differences to judge motion in depth. In their 

study interocular velocity differences were in conflict with monocular cues 

to motion in depth (in particular expansion). 

 The stereoblind subjects’ binocular performance is not affected by 

whether or not the images in the two eyes are correlated. The fact that our 

cylinders were transparent implies that subjects cannot determine the 

direction of the rotation by averaging velocities in particular parts of the 

visual field and then comparing these averages across the two eyes. The 

motion of the dots on the front and back plane would then cancel each other. 

Thus the dots must be grouped before their motion in the two eyes can be 

compared. The control subjects can do this on the basis of depth information 

from disparity or on the basis of whether the points were moving upwards 
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or downwards (as suggested by Brooks & Stone, 2006). The stereoblind 

subjects only have the latter option.  

 In order to get an idea of what exact attribute of the dots’ motion the 

stereoblind subjects use to perform our task, we conducted a second 

experiment in which we perturbed various aspects of the motion.   

 

Experiment 2 

It is unclear what information the stereoblind subjects used to discriminate 

between the directions of rotation of the cylinder. They might have been 

comparing the dots’ directions, speeds or accelerations within 

corresponding parts of the retinas. We perturbed different aspects of the 

motion and studied how this affected the stereoblind subjects’ performance. 

In detail, we disrupted the dots’ paths by translating the cylinder as a whole 

along its horizontal axis as it rotated around that axis. Doing so makes it 

impossible to use local motion to determine the direction of the cylinder’s 

rotation. Secondly, we perturbed the dots’ relative paths by stretching and 

compressing the rotating cylinder along its horizontal axis. This not only 

makes it impossible to use local motion to determine the direction of the 

rotation, but it also affects the direction of motion of each dot differently, so 

that the dots’ relative motion changes. Finally, we let the cylinder rotate at 

variable rates that changed asynchronously in the two eyes. This disrupts the 

pattern of acceleration of all dots within each eye as well as any comparison 

of velocities between the eyes. 

 The translation and expansion could either be in the same direction 

in the two eyes (synchronous conditions), or in opposite directions 

(asynchronous conditions). The former leaves the relative motion in the two 

eyes (but not necessarily that between the points in each eye) intact, 

whereas the latter disrupts the relationship between the motion 

(asynchronous translation) or even the relative motion (asynchronous 

expansion) in the two eyes. 

 For all perturbations, we also examined the influence on monocular 

performance. The images for the two eyes were always uncorrelated. We 

only tested the stereoblind subjects. 

 

Methods 

We used the same virtual cylinder as in Experiment 1. For the translation 

conditions, the rotating cylinder oscillated sinusoidally (140º/s) along its 

horizontal axis with a peak amplitude of 0.5 cm. For the expansion 

conditions the cylinder expanded and contracted to 110% and 90% of its 

original size at the same rate. For the synchronous conditions, the 

translation or expansion was in phase for the two eyes. For the 
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asynchronous conditions, the translation or expansion was in anti-phase for 

the two eyes. In the perturbed speeds condition, the speed at which the 

cylinder rotated oscillated sinusoidally between 15º/s and 25º/s. This 

oscillation was shifted by a quarter phase between the two eyes, so that the 

velocities did not match (but the paths were not perturbed). The new 

conditions are illustrated in Figure 5.5. The conditions were tested in 

separate blocks and compared to performance in Experiment 1. 

 

 
Figure 5.5: Schematic description of the perturbations in Experiment 2. Arrows show how 

dots at four positions on the cylinder move when the near side of the cylinder moves 

downwards. Two of the positions are aligned horizontally with the left eye and two with the 

right eye. Solid arrows show motion on the near side of the cylinder and dashed arrows show 

motion on the far side. The unperturbed condition of the first experiment is shown at the top 

for comparison. In all panels the (identical) initial condition is shown in black. If the 

cylinder’s position or size changes, the position and size some time later is shown in grey. 

For clarity, the rotation of the cylinder is exaggerated, only the first quarter cycle of the 

perturbation is shown, and motion is shown for dots at the same positions in both eyes. 

Actual details of the perturbations are presented in the text. 

 

Results 

Monocular performance was generally slightly worse when the cylinder 

moved or expanded laterally, than it was without such perturbations (see 

Figure 5.6). The fact that even expansion did not reduce monocular 

performance to chance indicates that subjects must be able to pick up quite 

subtle complex patterns of relative motion because expansion changes the 

motion signals differently for different dots. 

 A more important finding is that for translation and varying speeds, 

performance with two eyes was better than with one. This was even so, 

though perhaps less so, when the translation was in anti-phase for the two 
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eyes. Only adding expansion reduced binocular performance to the same 

level as monocular performance. 
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Figure 5.6: Individual and average performance of the three stereoblind subjects in 

Experiment 2. The three leftmost (green) bars of each set show performance in Experiment 1 

for comparison. 

 

Discussion 

The stereoblind subjects’ use of binocular information relies on something 

that is disrupted by changing the dots’ relative paths (i.e. affecting 

individual dots’ paths differently) in each eye, but not (or less so) by 

changing the dots’ overall paths or their velocities along those paths, even if 

such changes differed between the eyes. 

 The reasonably good performance of the stereoblind subjects in our 

asynchronous translation condition (about 70% correct) is inconsistent with 

the idea of interocular velocity differences as described in Brooks & Stone 

(2006), Rokers et al. (2008) and Fernandez & Farell (2006). In this 

condition, points at corresponding positions in the two eyes always moved 

in opposite directions. According to the mechanisms proposed by Brooks & 

Stone (2006), Rokers et al. (2008) and Fernandez & Farell (2006), subjects 

should have perceived all dots to either be moving towards them or away 

from them, and thus not have been able to determine in which direction the 

cylinder is rotating. Given the subjects’ reasonably good performance in this 

condition, this is clearly not the case. 

  Adding horizontal expansion to the rotating cylinder changes the 

relative direction of motion of each dot differently. This perturbation 

resulted in a drop in performance to the level achieved with one eye. This 

suggests that the stereoblind subjects use interocular differences in relative 

direction of motion to judge motion in depth, in a similar way that subjects 

with normal binocular vision use changes in relative disparity. 

 

General Discussion 



 66

We found that all three stereoblind subjects due to eye patch treatment for 

amblyopia can use binocular information to determine the direction in 

which a transparent virtual cylinder is rotating. We suggest that they use 

differences between the eyes in the relative direction of motion of 

corresponding parts of the stimulus to do so. Having established that 

subjects do not simply rely on the dots’ paths (because they can cope with 

translation), or velocity profiles (because they can cope with varying 

speeds), and since the local increase in distance between points that are 

approaching (expansion) is a monocular cue, we conclude that the binocular 

information that is used in our stimulus is the difference between the 

relative direction of retinal motion of points on the front and back of the 

cylinder in the two eyes. In our cylinder, these surfaces are part of the same 

object, but normally stereoblind subjects presumably use other (static) 

objects as references, comparing the direction of motion relative to such 

references in the two eyes. When a surface’s slant changes (as in the study 

mentioned in the Introduction), however, the comparison may also be 

between parts of a single object. 

 That is, stereoblind subjects do not simply use interocular velocity 

differences, but rather interocular differences in relative direction of motion 

to judge the direction of motion in depth. 
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Chapter 6: Summary and Discussion 
 

Chapter 2 and 3 

Do timing differences between cues affect their combination in one 

estimate? 

Different cues for the same attribute have been found to be processed 

independently from one another in different parts of the brain (Schmolesky 

et al., 1998). This independence of processing might result in timing 

differences between the cues’ estimates if one cue takes longer to process 

than another. How does the brain handle such timing differences when 

integrating different cues? I examined this in Chapter 2. 

 In a virtual environment, subjects saw a virtual ring whose slant was 

indicated by either monocular cues, binocular disparity, or both. The ring 

jittered in one plane and the slant of this plane could change. Subjects were 

instructed to respond whenever they saw such a slant change (experiment 

1), or, (if perceiving a slant change,) to indicate in what direction the ring 

changed slant (experiment 2). I introduced artificial timing differences 

between the changes in the two cues of up to 400 ms and studied how this 

affected subjects’ performance. If the temporal asynchrony between the 

cues was smaller than about 100 ms, then subjects performed better with 

both cues available than expected by probability summation of their 

performances with only the individual cues. Larger asynchronies resulted in 

a decrease in performance to the level of probability summation. The 

findings suggest that the temporal resolution of neural processing will be so 

poor that any possible latency differences between the cues, which are 

expected to be in the order of tens of milliseconds, are likely to not be 

picked up and will thus probably be ignored when the cues are integrated 

into a single estimate of slant. 

 For the online control of movement it is important to respond 

quickly. If timing differences between cues are ignored, the extent to which 

cues will be effective in guiding our actions will depend on how fast they 

provide new information. If cues are always integrated, one may 

hypothesize that fast responses are usually initiated based on the 

information that is provided by the fastest cue. I tested this in Chapter 3. 

Whilst sitting in a virtual environment, subjects were instructed to put a 

cylinder on surface. The slant of this surface was specified by monocular 

cues, such as shape and texture of the surface, and its binocular disparity. A 

computer-controlled, real table was rotated to agree with the virtual surface. 

Immediately after movement onset, the virtual surface could change slant 

and subjects had to correct their movement so that the cylinder was in the 

proper angle before making contact with the table. Monocular cues and 
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binocular disparity indicated the change at the same time or with a 150 ms 

timing difference. The slant change itself could be masked by a blank image 

during the time in which the virtual surface moved from one slant to 

another. As expected, subjects adjusted their movement to accommodate the 

changed surface slant. The onset of their correction depended on whether 

monocular or binocular cues changed first. Responses were fastest when the 

monocular cues changed first and the change was not masked. Masking the 

slant change delayed the subjects’ responses for changes in which the 

monocular cues changed first, but not for changes in which binocular 

disparity changed first. This suggests that subjects could use three distinct 

types of information to base their response upon: the new slant as indicated 

by the static monocular images, the new slant as indicated by the disparity 

between the two eyes’ two images and the slant change (the transient) in the 

monocular images. Responses to the change in the monocular images were 

approximately 40 ms faster than responses to a new binocular slant, and 

about 90 ms faster than responses to a new monocular slant. So the planning 

and control of fast responses are indeed based on the information provided 

by the fastest cue. In view of the delays that we measured, the adjustments 

of ongoing movement to changes in orientation will usually be initiated by 

the change in the monocular images of the stimulus. As such a change might 

not be informative about the surface slant itself (making it difficult to 

calculate in which position the movement needs to end) and is only 

available for a brief period of time, it is likely that later parts of the response 

might also be based on the new binocular and monocular slant estimates that 

become available during the movement. 

 Chapter 3 shows that latency differences between cues are visible in 

subjects’ online control of movement. This strongly suggests that any 

timing differences between cues are indeed ignored. It thus confirms the 

interpretation of the data in Chapter 2. Additionally, Chapter 3 also gives an 

explanation for the asymmetry in performance seen over the different cue 

asynchronies in Chapter 2. The jitter of the ring in Chapter 2 would have 

masked slant information from the change in the monocular images. As 

information about a new binocular slant seems to be processed 50 ms faster 

than information from a new monocular slant, the actual difference in neural 

latency between the cues will be smaller for negative than for the same 

positive asynchronies (remember that asynchrony was expressed as the 

monocular cues changing x s after binocular disparity), explaining why 

subjects benefit longer from cue combination for negative than for positive 

asynchronies. 

 

Chapter 4: 
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Is the precision of a cue the sole determinant of its weight? 

As discussed in the Introduction of this thesis, an integration of cues can be 

considered optimal if it maximizes the precision of the combined estimate. 

This can be achieved if the estimates of the individual cues are summed 

linearly with weights that reflect their precision; the less variable the 

estimate, the higher its weight in the combined estimate. Previous studies 

found that subjects increase the weight of a cue if auditory or haptic 

feedback indicates that its estimate is correct, and decrease the weight if it is 

indicated to be incorrect (Atkins et al., 2001; Ernst et al., 2000; Jacobs & 

Fine, 1999). In these studies, however, the physical precision of the 

different cues was not manipulated. This suggests that the change in weights 

was brought about by the change in the perceived accuracy (“correctness”) 

of the cues, which would be a violation of optimal cue combination theory. 

 Interestingly, Knill (2007) found that subjects change the weights 

that they give to different cues if they have evidence that one of the priors 

that they normally use to interpret (one of) the cues is incorrect. He found 

that when subjects became aware of a heightened occurrence of ellipses 

versus circles in a context, as evident from large conflicts between 

stereoscopic cues and foreshortening, subjects decreased the weight that 

they gave to foreshortening and increased the weight that they gave to 

disparity. He argued that the conflict between the cues caused subjects to 

interpret the shape of the stimulus as being more ambiguous, and this 

broadening of shape expectations decreased the precision of foreshortening. 

This decreased precision of foreshortening triggered the change in weights. 

 Could the change in weights that was found in the feedback studies 

(Atkins et al., 2001; Ernst et al., 2000; Jacobs & Fine, 1999) be related to a 

change in the judged precision of the cues? All these studies used conflicts 

between the cues to study the weights that subjects gave to each of the cues. 

This might have made subjects’ interpretations about shape more 

ambiguous. If so, the change in weights should be slow (subjects first have 

to accumulate evidence that the shape is ambiguous) and independent from 

the feedback (thus always in favor of cues that do not depend on shape). In 

Ernst et al. (2000), the weight given to binocular disparity decreased when 

the feedback indicated that its estimate was wrong. If the change in weights 

was solely due to a change in shape expectations, disparity should always 

have been given more weight, regardless of the feedback. So it is likely that 

a change in people’s shape expectations cannot fully explain the change in 

weights seen in these studies. 

 In Chapter 4, I tested whether the change in weights seen in 

feedback experiments is related to a change in the perceived precision or in 

the perceived correctness of the cues. Subjects were asked to put a cylinder 
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on a slanted virtual surface. Surface slant was again defined by monocular 

cues and binocular disparity. On most trials, the two cues indicated 

conflicting slants. A real table (the one that was also used in Chapter 3) was 

rotated to match the slant of one of the cues. So at the end of their 

movement subjects received feedback about the correctness of each cue. On 

trials in which the two cues were in conflict, the shape of the virtual surface 

was a deformed trapezoid. On trials in which the two cues indicated the 

same slant, the surface’s shape was square. If subjects noticed this 

difference and changed their shape expectations accordingly, the weight 

given to the monocular cues should decrease even when the feedback 

indicated that this cue was correct. The change in weights that was seen in 

response to a change in shape prior in Knill’s study was slow. To test 

whether the change in weights in response to feedback studies might be 

caused by a change in the perceived precision of the shape cues (as subjects 

might start to notice the different shape of the surface on the conflict trials), 

I measured the time course of the change in weights and its dependence on 

the shape of the surface on former trials. To avoid interference of variables 

other than the feedback of the table (such as random variations in weights 

between blocks on different days), I introduced the switch in the feedback 

within the same session. Subjects first performed a small set of trials, in 

which the table indicated the same slant as one of the cues, and then a larger 

set of trials in which the table indicated the same slant as the other cue.  

 Subjects quickly gave more weight to the cue that was consistent 

with the feedback of the table. This change in weights occurred within just 

12 trials and was clearly different for the two types of feedback. Its fast rate 

and its dependence on feedback suggests that it is unlikely that the change 

in weights resulted from a change in shape expectations. However, the 

difference in the shape of the stimulus between conflict and non-conflict 

trials might have been more ‘obvious’ in my experiment than in Knill’s 

(2007), which might have increased the rate of the change in weights. To 

investigate this possibility, I tested whether the mean weight given to the 

monocular cues on the last 72 trials of the long block was different for trials 

that were preceded by conflict trials than for trials that were preceded by 

non-conflict trials. There was no difference, suggesting that the change in 

weights is not due to a change in subjects’ shape expectations. Might 

subject have recalibrated the cues in response to the feedback? That is, did 

the feedback stimulate them to reinterpret the values of the cues. This would 

also manifest itself as a change in the weights in our analysis. However, 

recalibration should have affected responses on the non-conflict trials as 

well. The responses on the non-conflict trials were constant throughout the 

experiment, making it unlikely that recalibration caused change in weights. 
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Might the change in weights be related to a change in response strategy? 

Subjects might take the correctness of their percepts as felt on previous 

trials into account when perceiving the slant in new trials. For example, at 

the start of the experiment their percept of slant might have felt right, but 

after the change in feedback, they might have deduced that something had 

changed because their percepts were now clearly wrong. One obvious 

solution would be to simply go with the slant opposite to the slant that they 

are currently seeing (this is possible in our experiment because we have 

only two slants). If subjects used such a strategy, their responses over the 

entire experiment should be bimodally distributed. However, subjects’ 

responses on the conflict trials were clearly unimodal in distribution. So the 

change in weight cannot be explained by a change in response strategy. 

 The fact that subject quickly change the weights that they give to 

binocular and monocular cues in response to changes in their perceived bias, 

without a change in the percepts on non-conflict trials, suggests that optimal 

cue combination theory needs to be extended to include subjects’ judgments 

of a cue’s correctness as a determinant of its weight. Thus Equation 2 of the 

Introduction needs to be altered to include a term in which the (past) 

deviation of a cue’s value from that of other cues is captured. Additionally, 

the fast time constant of the change in weights suggests that subjects might 

have access to the estimates of the individual cues. When they notice from 

the felt slant at the end of their movement that their percept was wrong, a 

fast recovery as seen in our study can be accomplished by simply comparing 

the values of the individual cues to discover which one deviates and is thus 

likely to be wrong. 

 People can learn to use prior information to enhance their 

performance based on the likelihood that a situation occurs. For example, 

Körding & Wolpert (2004) found that subjects could learn to consider a 

probability distribution of likely positions when pointing towards positions 

in space, and more importantly, that subjects relied more on this prior when 

their sensory input was uncertain. In my experiment, the likelihood of 

encountering the two slants was equal in either cue. So the probability of the 

surface being in a certain slant did not change after the change in feedback. 

As a consequence, any influence of a slant prior on the combined estimate 

should have remained constant throughout the experiment. 

 I did manipulate the likelihood that one of the cues was correct. 

Subjects might have translated this into a ‘correctness’ prior that influences 

the perceived precision of the cue that indicated the same slant as the 

feedback, in a similar way as the shape prior in Knill’s study (2007) 

influenced the perceived precision of foreshortening. Note that for such a 

posthoc evaluation to work, subjects need to know what cue indicated what 



 72

value after their combination into one estimate. The change in weights then 

results from a change in this ‘correctness’ prior after the change in 

feedback. I think it is unlikely that this is the case because development of 

such a prior should have affected the end orientations in the non-conflict 

trials as well, as subjects should not have been able to distinguish between 

non-conflict and conflict trials. Since the estimates of the individual cues are 

likely to be biased, a small difference in the end orientation should be seen 

for non-conflict trials in which the feedback indicated that binocular 

disparity was correct and non-conflict trials in which the feedback indicated 

that the monocular cues were correct. Such a difference is not apparent; the 

lines seem to lie on top of each other. 

 One worrying possibility is that subjects can distinguish between 

conflict and non-conflict trials, and developed different priors for them. 

However, this would not only weaken the findings of the current 

experiment, but also that of other studies that used the cue conflict paradigm 

to study optimal cue combination. This paradigm calculates the weights of 

biased cues in conflict situations using subjects’ responses in non-conflict 

situations. This calculation is based on the premise that a cue’s perceived 

precision is not affected by the conflict. It might be that this assumption is 

wrong, and subjects are able to distinguish between conflict and non-

conflict trials. If so, they then can develop priors independently for these 

two sorts of trials. If the correctness prior then influences the perceived 

precision of the cue differently for conflict and non-conflict trials, any 

calculations that are based on measurements in non-conflict situations will 

clearly be wrong. Not only in our study, but also in other studies in which 

feedback or influence of some sort of prior on the combined estimate might 

be expected. 

 

 

Chapter 5: 

What information do stereoblind subjects use to determine direction of 

motion in depth? 

Surprisingly, when a stereoblind subject JS performed the experiment 

described in Chapter 3, he could adequately adapt his ongoing movement to 

changes in binocularly defined slant. Performing the experiment 

monocularly led to a failure to react, indicating that his responses were 

really based on binocular information. Interestingly, JS could respond when 

the movement of the virtual surface (from one slant to the next) was visible 

but not when it was masked. This suggests that JS used some sort of 

difference between the motion of the surface in the two eyes to determine in 

what direction the surface was moving. What can this binocular information 
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be? Previous studies have shown that besides changing disparity and 

monocular motion signals, normally stereo sighted subjects can also use 

interocular velocity differences (IOVDs) to judge motion in depth (Brooks 

& Stone, 2006; Rokers et al., 2008). The difference in the direction and 

speed of motions of the same stimulus between the two eyes is then used to 

estimate direction and speed of the stimulus moving in depth. Strabismus 

patients suffering from low stereo-acuity have been reported to be able to 

use this cue, too (Kitaoji & Toyama, 1987; Meada., 1999), suggesting that 

point-to-point correspondence between the eyes is not necessary for use of 

this cue. 

 In Chapter 5 of my thesis, I studied what exact binocular 

information three stereoblind subjects can use to judge rotational motion in 

depth. I presented JS, 2 other stereoblind subjects (HdK and TvW) and 

seven control subjects with normal binocular vision with a transparent 

virtual cylinder that rotated around its horizontal axis. The cylinder was 

defined by random dots that moved coherently towards or from their body 

for periods of 250 ms. Subjects were asked to indicate the direction of its 

rotation. The images of the cylinder that were presented to the two eyes 

were either correlated (taking the subjects’ interocular distance into 

account) or uncorrelated (dots at a random different position for one eye 

than for the other). Uncorrelating the two eyes’ images is expected to 

degrade information from changing disparity, but not necessarily 

information from interocular velocity differences, since for this last cue 

point-to-point correspondence in the two eyes might not be required. I used 

a perspective rather than an orthographic projection of the cylinder, so that 

in addition to changing disparity and interocular velocity differences, 

subjects could also use monocular motion signals to determine the direction 

of the rotation. I measured both monocular and binocular performance in the 

correlated condition and used subjects’ monocular performance as a 

baseline to compare all their other performances to. The stereoblind 

performed better binocularly than monocularly, but more interestingly, they 

performed with uncorrelated images as well as with correlated images. 

While the control subjects all scored almost 100% in the correlated 

condition, none of them was able to perform better than their monocular 

performance in the uncorrelated condition. These findings suggest that the 

stereoblind subjects indeed use some difference in motion between the eyes 

to determine the direction of motion in depth. By contrast, the healthy 

controls do not seem to be able to extract this information. 

 In a second experiment, I isolated what exact difference in motion 

between the two eyes the three stereoblind subjects used to determine the 

direction of the rotation. I perturbed the motion of the dots in several ways 
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and studied how this affected subjects’ uncorrelated performance. In one 

condition, I added horizontal translation to the rotating cylinder. In another 

condition, I added horizontal expansion, making the cylinder 10% wider or 

narrower over time. Adding translation perturbs the relative direction of 

each dot on the cylinder’s surface in a coherent way, whereas adding 

expansion perturbs the motion of each dot differently. The added movement 

could be in the same direction for the two eyes (synchronous) or in different 

directions (asynchronous). Finally, I perturbed the speed with which the 

cylinder rotated in the two eyes, so that the cylinder moved with a different 

speed in one eye than in the other. Adding translation or perturbing the 

speed of the cylinder lowered the stereoblinds’ performance, but binocular 

performance was still better then monocular performance and performance 

in the synchronous translation condition was better than in the asynchronous 

translation condition. Put differently, in the translation and perturbed speeds 

conditions, the binocular information that they were using was still present, 

although less reliable. Adding expansion to the rotating cylinder lowered 

performance. More importantly, binocular performance was not better than 

monocular performance and there was no difference between synchronous 

and asynchronous performance. Thus, adding expansion to the cylinder 

disrupted the binocular information that the three stereoblind subjects used 

to determine the direction of the rotation. This suggests that they used the 

difference in relative direction of motion between the two eyes of the 

corresponding sets of points on one side of the cylinder to judge the 

direction in which it was rotating. 

 Why could the stereoblind subjects use such interocular differences 

in the relative direction of motion to determine the direction in which the 

cylinder was rotating in the uncorrelated condition, but subjects with normal 

binocular vision could not? The controls might simply not use this cue 

because information from changing disparity and monocular motion signals 

will normally be sufficiently reliable. That is, information from IOVDs 

might receive relatively less weight because subjects might judge the 

estimates of the monocular motion signals and changing disparity to be far 

more reliable. Another possibility is that changing disparity and interocular 

differences in motion share processing in people with normal binocular 

vision. For example, changing disparity might be used to determine 

corresponding motion in the two eyes for calculation of IOVDs. As 

changing disparity gives unreliable depth estimates in the uncorrelated 

condition (the random different positioning of dots in the left and right eye 

is likely to result in a high number of mismatches), the calculation of 

interocular differences in motion will be based on a faulty comparison of 

velocities between the eyes and thus be unreliable. The stereoblind subjects 
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do not have access to information from changing disparity and thus have to 

use another source of information in order to determine which velocities 

correspond in the two eyes. For our stimuli, they use the relative 2-D 

direction of the motion for this purpose. So although the stereoblind subjects 

are not able to generate a classical stereo depth map based on disparity, they 

can use disparity for calculation of motion in depth.  

 

General Conclusion and Discussion 

Chapter 2 showed that artificially induced timing differences between slant 

cues of smaller than 100 ms do not significantly affect the quality of the 

combined estimate. Chapter 3 showed that latency differences between slant 

cues are visible in the online control of movement. The findings strongly 

suggest that the small latency differences between slant cues are simply 

ignored when the brain integrates them in one estimate of slant. As a 

consequence, in a dynamic context the combined estimate will evolve over 

time, initially reflecting information from only the fastest processed cue, but 

later changing as cues with a longer latency gradually gain influence. 

 Chapter 4 showed that subjects can quickly change the weight that 

they give to a cue in response to changed feedback about its correctness, 

without there being a change in its perceived precision. The change in 

weight could not be explained by a recalibration of the cues in response to 

the change in feedback or by a change in response strategy. This suggests 

that not only the variability of a cue, but also its systematic bias, can 

influence the weight that it receives in the combinational rule. The fast time 

constant of the change in weights suggests that next to the precision of each 

cue, subject might also have access to its value, so that they can quickly 

compare the estimates of the individual cues to discover which estimate is 

biased and change its cue’s weight accordingly.  

 Chapter 5 showed that stereoblind subjects can use interocular 

velocity differences (IOVDs) to determine the direction of motion in depth. 

Uncorrelating the two eyes’ images of a transparent rotating cylinder 

decreased performance to chance level or to monocular performance for 

subjects with normal binocular vision, but did not decrease performance of 

stereoblind subjects. These findings suggest that whereas subjects with 

normal stereovision cannot ignore erroneous estimates from changing 

disparity (indicating that their use of IOVDs is based on a point-to-point 

correspondence between the eyes, or they simply give very low weight to 

this IOVDs in the presence of other motion-in-depth cues), stereoblind 

subjects are not hindered by changing disparity and can reliably use the 

differences in motion between the eyes to deduce the direction of the 

rotation. Interestingly, the stereoblind subjects’ performance fell back to 
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chance level or to monocular performance when expansion was added to the 

rotational movement. So for calculation of motion in depth, they can 

correspond velocities between the eyes based on similar relative direction of 

movement.  

 How do the findings of the different chapters relate to each other?  

The fact that we find in Chapter 5 that stereoblind subjects can use disparity 

to calculate motion in depth but not a static stereo depth map (displaying 3D 

position), and in Chapter 3 that subjects with normal binocular vision can 

use both the motion and the new static position of the virtual surface to get 

an indication of its new slant, suggests that motion and position are 

processed separately by the brain when calculating depth.  

 In Chapter 3, subjects’ responses to a change in binocularly defined 

slant were unaffected when the motion of the surface was masked. I 

concluded that this was because subjects only responded to binocular slant, 

i.e. the new slant that was indicated by the relative disparities after the 

surface had stopped moving, and not to the changing disparity of the surface 

during the period in which it moved from one slant to the next. In Chapter 5, 

however, some of these subjects could readily discriminated between 

directions of a continuously rotating virtual cylinder. Why did the subjects 

in Chapter 3 not use the changing disparity to alter their movements? An 

explanation could be that changing disparity has a longer latency than static 

disparity, maybe because changing disparity is simply the change in static 

disparities over time. But then, why is the change in the monocular images 

faster than monocularly defined slant? For the stimulus used in Chapter 3, 

subjects do not only have access to the change in monocularly defined slant 

over time, but also to estimates about the direction in which the surface is 

changing from the expansion and contraction of texture elements on the top 

and bottom of the surface. The change in the monocular image that subjects 

were responding to could simply have been this expansion and contraction 

on the top and bottom of the surface, which might be processed faster than 

changes in monocular defined slant. 

  

 I would like to conclude with the notion that the most important 

thing that I learned from the experiments that I discussed in this thesis is 

that we need to consider the whole dynamics of a context in detail, as well 

as the dynamics of the mechanisms in the brain that reconstruct this context 

for subsequent action, before we can evaluate whether people make 

statistically optimal use of all available information. 
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Samenvatting en Conclusie 
 

Cue combinatie voor het inschatten van helling in perceptie en actie 

 

Introductie 

Om een beker op kunnen pakken hebben we verschillende soorten 

informatie nodig. Om te zorgen dat onze arm en hand de juiste afstand 

overbruggen en in de juiste oriëntatie eindigen is het belangrijk dat we de 

3D posities van deze lichaamsdelen en de beker weten. Deze posities 

kunnen we visueel inschatten aan de hand van verschillende monoculaire 

informatiebronnen die aanwezig zijn in het 2D retinale beeld, zoals de 

grootte, vorm en relatieve positie van de projectie van het object. De 

projectie van de beker op de retina zal kleiner zijn en hoger in het totale 

beeld staan als de beker verder weg staat. De vorm van de projectie hangt af 

van de oriëntatie van de beker. De grootte van de textuurelementen en de 

gradiënt is wederom afhankelijk van de exacte oriëntatie en afstand van het 

object. Naast dit soort monoculaire informatie kunnen we ook diepte 

informatie halen uit het verschil in beeld tussen de twee ogen. Omdat de 

twee ogen niet op dezelfde positie in het hoofd zitten zal de projectie van 

licht in het enige oog anders zijn dan in het andere oog. Dit verschil, de 

binoculaire dispariteit, is groter wanneer een object dichtbij ons lichaam 

staat dan wanneer het verder weg staat, en dispariteit geeft dus ook diepte 

informatie. 

 Verschillende onderzoeken hebben gevonden dat mensen eerst de 

monoculaire and binoculaire informatie afzonderlijk van elkaar verwerken 

in aparte gedeelten van de hersenen, en daarna hun inschattingen van diepte 

optimaal integreren. De combinatie wordt optimaal genoemd omdat het 

brein rekening houdt met de hoeveelheid ruis of variabiliteit in ieder soort 

informatie. Informatie met veel ruis krijgt weinig gewicht, informatie met 

weinig ruis krijgt veel gewicht in de gecombineerde inschatting van diepte. 

 

Timing 

Zoals eerder gezegd, wordt de monoculaire en binoculaire informatie eerst 

apart verwerkt. Doordat de ene informatie misschien iets meer tijd nodig 

heeft om verwerkt te worden dan de andere, kunnen er tijdsverschillen 

tussen eenzelfde gebeurtenis in de twee soorten informatie ontstaan. In 

Hoofdstuk 2 en 3 heb ik onderzocht hoe tijdsverschillen tussen 

gebeurtenissen in monoculaire and binoculaire informatie van invloed zijn 

op hun combinatie in één inschatting van diepte. In Hoofdstuk 2, 

presenteerde ik proefpersonen met een in zijn eigen vlak rond bewegende 

ring, die zo nu en dan van hoek veranderde. De helling van de ring kon 
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ingeschat worden aan de hand van de vorm van de ring en de textuur 

gradiënt van puntjes in de ring, en aan de hand van het verschil in beeld 

tussen de twee ogen. Proefpersonen moesten reageren zo gauw ze de ring 

van hoek zagen veranderen (Experiment 1) of aangeven in welke richting de 

hoek was veranderd (Experiment 2). De hoekverandering kon eerst in de 

binoculaire informatie gebeuren of eerst in de monoculaire informatie of in 

beide soorten informatie tegelijkertijd. In de asynchrone condities varieerde 

de tijd tussen de verandering in de monoculaire informatie en de 

verandering in de binoculaire informatie tussen 5 tot 400 milliseconden en 

of de monoculaire informatie kon eerst veranderen of de binoculaire 

informatie. Proefpersonen konden het best de hoekveranderingen 

detecteren, of tussen hoekveranderingen discrimineren, wanneer de 

binoculaire en monoculaire informatie tegelijkertijd veranderden. Voor de 

asynchrone veranderingen bleef de presentatie van de proefpersonen 

maximaal tot het timingsverschil op liep tot ongeveer 100 ms, waarna 

prestatie zakte naar de prestatie die de proefpersonen hadden met een 

verandering in mar één van de 2 soorten informatie (en de ander niet 

veranderde). De resultaten van dit experiment suggereren dat 

tijdsverschillen tussen binoculaire en monoculaire informatie van minder 

dan 100 ms geen invloed zullen hebben op de kwaliteit van de 

gecombineerde inschatting. 

 Als ze geen invloed hebben op de gecombineerde inschatting, wat 

gebeurt er dan met de kleine kleine tijdsverschillen? Worden ze genegeerd 

tijdens de integratie, of worden ze op een of andere manier gecompenseerd? 

Ik heb dit onderzocht in Hoofdstuk 3. Proefpersonen zaten in een virtuele 

omgeving waar ze een object op een oppervlak moesten zetten. Dit 

oppervlak kon van hoek veranderen tijdens hun beweging, en ze moesten 

daarop reageren door de eind oriëntatie van hun hand aan te passen. De 

verandering in hoek kon eerst in de binoculaire informatie, eerst in de 

monoculaire informatie, of in beide soorten informatie tegelijkertijd 

gebeuren. In reactie op de verandering in hoek, corrigeerden proefpersonen 

hun beweging en de start van deze correctie was afhankelijk van welke 

informatie er eerst veranderde. Correcties waren 90 ms sneller wanneer de 

monoculaire informatie eerst veranderde dan wanneer de binoculaire 

informatie eerst veranderde. Als we de verandering in monoculaire 

informatie maskeerden zodat de beweging van het oppervlak niet te zien 

was, reageerden mensen 50 ms later. Toen we de verandering in de 

binoculaire informatie maskeerden, reageerde mensen even snel als zonder 

deze maskering. Wanneer beide cues tegelijkertijd veranderden was de 

correctie even snel als die met de snelste cue. Het feit dat we verschillen in 

de start van correcties kunnen meten als we de timing van de verandering in 
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de cues manipuleren suggereert dat de verschillen in verwerkingstijd niet 

gecompenseerd worden voor de integratie. Bovendien impliceert de data dat 

mensen in de monoculaire informatie zowel de verandering in oriëntatie (de 

transiënt) als de veranderde oriëntatie kunnen gebruiken om de helling in te 

schatten, maar alleen de veranderde oriëntatie in binoculaire informatie.  

 

Precisie versus Bias 

Als het brein een precies maar incorrect signaal combineert met een ruizig 

maar correct signaal, dan zal volgens de huidige theorie van optimale cue 

combinatie de precieze maar incorrecte informatie meer gewicht krijgen in 

de gecombineerde inschatting dan de ruizige correcte informatie. Dit zou 

zeer nadelig zijn voor interactie met het object. 

 In Hoofdstuk 4 heb ik onderzocht of het brein inderdaad werkelijk 

op deze wijze omgaat met de ingeschatte correctheid van informatie 

wanneer het twee signalen integreert in één inschatting van oriëntatie. 

Proefpersonen zaten wederom in een virtuele omgeving waarin ze object op 

een oppervlak moesten zetten. De helling van dit oppervlak kon worden 

afgeleid uit binoculaire and monoculair informatie, welke onafhankelijk van 

elkaar konden worden gemanipuleerd. De monoculaire and binoculaire 

informatie gaven allebei dezelfde oriëntatie aan, of conflicterende 

oriëntaties. Het virtuele oppervlak stond op dezelfde afstand als een echte 

tafel. Deze tafel kon roteren om zijn horizontal as, en werd in dezelfde 

oriëntatie gedraaid als aangegeven werd door of de monoculaire informatie 

of de binoculaire informatie, zodat proefpersonen aan het eind van hun 

beweging voelden of hun inschatting goed was of niet. De tafel gaf de eerste 

20 trials de oriëntatie van de ene soort informatie en dan voor 100 trials de 

oriëntatie van de andere soort informatie aan. Dus de aangegeven 

accuraatheid van de monoculaire en binoculaire informatie veranderde na 

een korte tijd  

 Hoe reageren de proefpersonen hier op? Als alleen de precisie van 

belang is voor het gewicht van de informatie in de gecombineerde 

inschatting, dan zou de verandering in feedback geen invloed moeten 

hebben op de inschatting (aangezien we alleen de ingeschatte correctheid 

van de informatie manipuleren, niet de ruis). Als de correctheid van de 

informatie wel van invloed is op het gewicht van de informatie in de 

gecombineerde inschatting, dan zou hun inschatting van de hoek moeten 

veranderen na de verandering in feedback. De proefpersonen schatte de 

hoek van het oppervlak na de feedback verandering anders in. Dit was 

zichtbaar als een verandering van de eind oriëntatie van hun hand na de 

verandering feedback. Dit gebeurde alleen op trials waar de monoculaire en 

binoculaire informatie in conflict waren, niet als ze niet in conflict waren. 
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Dit betekent dat de verandering in de proefpersoon’s inschatting te wijten 

was aan een verandering in het gewicht, niet aan een herinterpretatie van de 

informatie (want dan zou de inschatting op non-conflict trials ook veranderd 

moeten zijn). Er was geen verschil in de eind oriëntatie van de hand tussen 

trials die waren vooraf gegaan door conflict trials en trials die vooraf waren 

gegaan door non-conflict trials (de vorm van de virtuele tafel was iets 

anders in de conflict trials, wat voor verwarring had kunnen zorgen). Dus de 

ervaren precisie (ruis) van de monoculaire en binoculaire informatie was 

constant. Tenslotte, waren de eind oriëntaties unimodaal verdeeld voor alle 

conflicten. Als de verandering in feedback een verandering in response bias 

had veroorzaakt dan hadden we bimodale distributies moeten zien. De 

resultaten en controles van dit experiment suggereren dat het brein wel 

degelijk rekening houdt met de correctheid van de verschillende soorten 

informatie wanneer het ze integreert in één inschatting. Het zal incorrecte 

informatie minder gewicht geven dan correcte informatie, ook al is er geen 

verschil in precisie. 

 

Beweging in diepte 

Niet iedereen kan dispariteit gebruiken om diepte in te schatten. Er zijn 

mensen die nooit geleerd hebben om te twee ogen te corresponderen omdat 

de retinale beelden te veel verschilden (bijvoorbeeld om dat er ooit wat mis 

met een van de twee ogen). Jeroen Smeets, mijn promotor, is door 

(behandeling van) een lui oog stereoblind, dat wil zeggen, hij kan niet 

identificeren welke positie in het linkeroog bij welke positie in het 

rechteroog hoort (gegeven dat ze hetzelfde object voorstellen). Hierdoor kan 

hij niet dispariteit gebruiken om diepte in te schatten. 

 Jeroen heeft in het verleden vaak meegedaan aan mijn proeven om 

te controleren of dat er tijdens mijn manipulaties van binoculaire dispariteit 

geen monoculaire artefacten aanwezig zijn die proefpersonen kunnen 

gebruiken in plaats van de door mij gemanipuleerde binoculaire informatie. 

Zeer verontrustend in eerste instantie, vond ik dat Jeroen adequaat kon 

reageren op de manipulatie in binoculaire dispariteit in Hoofdstuk 3. Echter, 

wanneer hij het experiment met één oog dicht uitvoerde, of wanneer we de 

beweging van de tafel (van de ene naar de andere helling) maskeerden, 

verdween zijn reactie. Dit suggereert dat hij niet een monoculair artefact 

gebruikte om te reageren, maar daadwerkelijk de dispariteiten die aanwezig 

zijn tijdens de beweging van het virtueel oppervlak van de ene naar de 

andere hoek. In Hoofdstuk 5 heb ik onderzocht wat deze binoculaire 

informatie is, of andere stereoblinde mensen deze informatie ook kunnen 

gebruiken en op welke manier JS en eventueel andere stereoblinde 
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proefpersonen achterhalen welke objecten in het linkeroog ze moeten 

vergelijken met welke objecten in het rechteroog. 

 Voorgaand onderzoek heeft laten zien dat bij beweging in diepte 

mensen niet alleen verandering in dispariteit en verandering in monoculaire 

cues (zoals in grootte en vorm) kunnen gebruiken, maar ook het verschil in 

de bewegingen tussen de projecties van de objecten in de twee ogen. 

Bovendien zijn er aanwijzingen dat niet alleen mensen met normaal 

binoculair zicht dit kunnen, maar ook mensen met stereo anomalie of 

stereoblindheid. In Hoofdstuk 5, heb ik uitgezocht of stereoblinde 

proefpersonen inderdaad het verschil in beweging tussen de ogen kunnen 

gebruiken om veranderingen van oriëntatie te beoordelen, en zo ja, op basis 

van welke informatie zij dan de snelheden in de twee ogen corresponderen. 

 Drie stereoblinde proefpersonen en 7 controle proefpersonen met 

normaal binoculair zicht zagen een horizontaal transparante cilinder die in 2 

mogelijke richtingen om zijn horizontale as kon roteren. De proefpersonen 

moesten aangeven of de cilinder naar hun toe draaide of van hun af. De 

transparante cilinder was gedefinieerd door kleine rode puntjes die voor 

korte tijd (250 ms) over het lichaam van de cilinder bewogen en dan 

ververst werden op een willekeurig andere locatie op de cilinder. Om 

gebruik van interoculaire verschillen in beweging onafhankelijk van 

binoculaire dispariteit te kunnen bestuderen, presenteerde ik een cilinder die 

door willekeurig andere puntjes werd gedefinieerd aan het enige oog dan 

aan het andere oog (dus de beelden van de cilinder waren ongecorreleerd). 

Dit interfereert met correspondentie voor binoculaire dispariteit maar niet 

perse met correspondentie voor interoculaire verschillen in beweging. 

Daarnaast meette ik ook prestatie met gecorreleerde beelden van de cilinder 

(het beeld voor het rechteroog was x mm verschoven ten opzichte van het 

beeld voor het linker oog, x afhankelijk van de afstand tussen de 

proefpersoon zijn ogen) en prestatie met één oog dicht (monoculair). 

 Een aantal van de stereoblinde en controle proefpersonen konden de 

richting van de rotatie bepalen aan de hand van kleine monoculaire 

bewegingssignalen in de stimulus. Ze rapporteerden dat ze de beweging van 

de puntjes volgden en dan aan de hand van de kromming van hun paden 

achterhaalden in welke richting de puntjes op de voorkant bewogen. Met 

gecorreleerde beelden presteerden de controle proefpersonen bijna 100% 

goed, maar met ongecorreleerde beelden presteerden ze op kansniveau of op 

hetzelfde niveau als hun monoculaire prestatie. De stereoblinde 

proefpersonen presteerden net zo goed met gecorreleerde als 

ongecorreleerde beelden: allebei rond 70% goed. Belangrijker, hun 

binoculaire prestatie was beter dan hun monoculaire prestatie. Deze 

resultaten suggereren dat de stereoblinde proefpersonen inderdaad 
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bewegingsverschillen tussen de ogen kunnen gebruiken om de richting van 

beweging in diepte in te schatten. 

 In een tweede experiment onderzocht ik op basis van welke 

informatie de stereoblinde proefpersonen bewegingen in de twee ogen 

corresponderen. De drie stereoblinden zagen weer ongecorreleerde beelden 

van de cilinder. In één conditie roteerde de cilinder niet alleen, maar maakte 

hij ook een translatie naar links of een translatie naar rechts. De translatie 

was in dezelfde richting in beide ogen of in tegenovergestelde richting. In 

een andere conditie bewoog de cilinder in het ene oog met een andere 

snelheid dan in het andere oog. In een laatste conditie roteerde de cilinder 

niet alleen, maar expandeerde of contracteerde hij tegelijkertijd (wederom in 

dezelfde richting of in tegenovergestelde richting in de twee ogen). 

Toevoeging van een translatie of het manipuleren van de snelheden in de 

twee ogen verlaagde de ongecorreleerde prestatie van de stereoblinde 

proefpersonen, maar de prestatie was nog steeds hoger dan hun monoculaire 

prestatie of kansniveau. Dit betekent dat de binoculaire 

bewegingsinformatie nog steeds aanwezig was, alhoewel ik het de 

stereoblinde proefpersonen wel moeilijker had gemaakt om deze informatie 

te gebruiken. Toevoeging van expansie daarentegen verlaagde hun prestatie 

naar kansniveau of naar hun monoculaire prestatie, zowel voor expansie in 

dezelfde richting in de twee ogen als voor expansie in tegenovergestelde 

richting. Dit suggereert dat als we de verandering in richting voor ieder 

puntje in de twee ogen op andere wijze manipuleren, de stereoblinde 

proefpersonen de snelheden in de twee ogen niet meer kunnen 

corresponderen. Dus de stereoblinde proefpersonen gebruiken het 

interoculaire verschil in de relatieve richting van de beweging om de 

beweging in diepte in te schatten. Ze omzeilen zo hun ‘niet optimale’ 

correspondentie op basis van positie die normaliter wordt gebruikt voor het 

bepalen van binoculaire dispariteit. 

 

Algemene conclusie 

Ik heb laten zien dat verschillen in verwerkingstijd tussen monoculaire en 

binoculaire informatie niet van invloed zijn op hun combinatie in één 

inschatting en gewoon genegeerd worden tijdens hun integratie. Dit 

betekent dat in een dynamische omgeving, diepte inschattingen 

aanvankelijk gedomineerd zullen worden door monoculaire informatie en de 

invloed van binoculaire dispariteit pas later toeneemt. Daarnaast heb ik laten 

zien dat niet alleen de precisie van monoculaire en binoculaire informatie 

van invloed is op hun gewicht in de inschatting, maar ook hun correctheid. 

Wanneer proefpersonen denken dat één van de twee soorten informatie niet 

klopt, verminderen ze het gewicht van deze informatie in de volgende 
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combinaties. Dit gebeurt binnen enkele trials, wat impliceert dat de 

individuele informatiebronnen ook nog na hun integratie beschikbaar 

blijven voor verdere evaluatie van de kwaliteit van de gecombineerde 

inschatting. Tenslotte heb ik met behulp van stereoblinde proefpersonen 

laten zien dat het brein interoculaire verschillen in beweging afzonderlijk 

van verschillen in positie kan gebruiken om verplaatsing in diepte in te 

schatten. De correspondentie van de twee ogen is dan gebaseerd op een 

karakteristiek van de beweging zelf, de relatieve richting, in plaats van op 

positie. 
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Dankwoord 

 
Als eerste wil ik mijn moeder bedanken. Mam, ik ben je heel erg dankbaar 

dat je mij zoveel helpt, en dat je zelfs de eerste maanden mee bent gegaan 

naar Birmingham zodat voor Findlay de overgang naar de nieuwe crèche 

makkelijker is verlopen en ik mij volledig kon concentreren op mijn nieuwe 

baan. Zonder jou was dit proefschrift niet tot stand gekomen. 

 

Dan wil ik natuurlijk mijn man, Rory, en mijn zoontje Findlay bedanken. 

Rory, zonder jouw steun en interesse in mijn werk was ik niet gekomen 

waar ik nu ben. Findlay, je verlicht mijn leven, en blijft een inspiratiebron 

voor nieuwe onderzoeksvragen. 

 

Ook mijn schoonouders Ton en Felicity wil ik bedanken. Jullie hebben vaak 

ingesprongen toen Findlay ziek was en niet naar de creche kon, of wanneer 

Rory op veldwerk was. Dank je wel. 

 

Eli en Jeroen, ik waardeer het ontzettend dat jullie altijd aanwezig waren, 

nooit te weinig tijd hadden om iets uit te leggen, of om met mij ergens in 

discussie over te gaan. Ik heb in de 4 jaar bij jullie ongelofelijk veel nuttige 

vaardigheden geleerd voor het verrichten van onderzoek. De flexibiliteit die 

jullie getoond hebben tijdens mijn zwangerschap, de geboorte en de eerste 

maanden met Findlay heb ik als zeer prettig ervaren. Ook de opvoedkundige 

adviezen waren zeer welkom! Ik hoop dat we in de toekomst veel blijven 

samenwerken. 

 

Mijn collega’s uit Amsterdam en Rotterdam; Hanneke, Chris, Krista, 

Marianne, Denise, Rob, Stefan, Jeroen, Bernadette, Femke en Willemijn. 

Dank jullie wel voor de gezellige thee & lunchpauzes, conferenties, 

workshops en summerschools. Een van de belangrijkste dingen aan werk is 

toch dat er leuke collega’s zijn, en jullie hebben mijn tijd in Rotterdam en 

Amsterdam dan ook zeer opgevrolijkt.  

 

Mijn broertje Willem en zusje Cecilia; bedankt voor de kritische vragen 

over het nut van mijn onderzoek.  

 

Ten slotte wil ik mijn vrienden, Pauline, Sander, Anton, Nicolien, Jan-

Willem, Annelies, Marc, Lenneke, Joost, Gerben, Iris, Pieter, Eefje, Thijs, 

Linda, Maurits, Menneke, Janneke, Arnold (en ieder ander die ik vergeten 

ben) bedanken voor de af en toe broodnodige afleiding van de wetenschap. 
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that, I moved to Zoetermeer, where I went to primary (‘the Elzenhoek’) and 

secondary school (Alfrink College). 

 

In 1997, I started studying Pharmacy at the University of Utrecht. After 

almost two years, I decided that this field was not for me. I wanted to more 

know about the brain workings of people, not more about drugs. In 1999, I 

switched over to Psychology, where I got interested in Neuropsychology 

and related fields. In 2004, I graduated on a study of cross-modal (auditory-

tactile) attention in which I used ERPs to localize and compare auditory, 

tactile and cross-modal processing between blind and normally sighted 

subjects. 

 

In April 2004, I started my PhD with Eli Brenner and Jeroen Smeets. The 

topic was ‘The binding problem in perception and action’ and they 

specifically intended me to study ‘the effects of asynchrony’. We stuck to 

that for 2 experiments and then went on to explore more interesting issues in 

cue combination for slant and beyond.  

 

Since January 2009, I work as a postdoc in Andrew Welchman’s Binocular 

Vision lab at the School of Psychology of the University of Birmingham. I 

am currently investigating how the binocularly determined depth of specular 

highlights influence people’s percepts of the underlying object’s shape. 

 

In my spare time, I play and cuddle with my 2-year old son Findlay, have 

meaningful conversations (among other things) with my husband Rory, and 

explore the vast space of the UK with friends or family.  
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