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Abstract 
Quadratic optimization for asset portfolios often leads to error maximization, with optimizers 
zooming in on large errors in the predicted inputs, that is, expected returns and risks. The 
consequence in most cases is a poor real-time performance. In this paper we show how to 
improve real-time performance of the popular equity momentum strategy with robust 
optimization in an empirical application involving 1500-2500 US stocks over the period 
1963-2006. We also show that popular procedures like Bayes-Stein estimated expected 
returns, shrinking the covariance matrix and adding weight constraints fail in such a practical 
case. 
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1. Introduction 
 
Markowitz’ portfolio theory implies that investors should carefully choose stock portfolio 
weights to optimally balance return and risk, resulting in a quadratic programming problem. 
In practice portfolio optimization is often known as error maximization. Reason is that 
standard portfolio optimization magnifies the errors in the return and risk input. Several 
solutions are proposed in the literature to address this problem. First, predicted inputs 
(expected return and risk) can be modified to reduce the impact of potential errors. Examples 
are the Bayes-Stein estimator to improve upon the sample mean (Stein, 1955) and using a 
weighted average of two covariance matrices (Ledoit and Wolf, 2003; 2004). Second, 
Jaganathan and Ma (2003) show the merits of imposing weight constraints. Third, Michaud 
(1998) introduced portfolio re-sampling. Fourth, robust portfolio optimization (Goldfarb and 
Iyengar, 2003) explicitly deals with the issue of estimation errors in the inputs. 
 
A major drawback in the literature is that for expected returns often long-term historical 
averages are used, which have little explanatory power for future returns. Hence any solution 
that shrinks these poor expected return estimates would almost always look good. In this 
study we do consider a useful input for expected returns, known as momentum. The equity 
price momentum strategy introduced by Jegadeesh and Titman (1993) buys the top 10% 
(winners) and sells the bottom 10% (losers) of the past 6 months, resulting in an equally 
weighted zero-investment portfolio. For US stocks the returns to this zero-investment strategy 
averaged 6.5% per annum from 1926 to 2005. Its simplicity and its success is one of the most 
intriguing and as of yet unexplained anomalies that violate the efficient market hypothesis. 
We note that this result is achieved with a very simple portfolio construction rule that ignores 
risk. Martens and Van Oord (2008) show, for instance, that through time the momentum 
strategy has significant time-varying risk exposures to the well-known Fama and French 
(1993) risk-factors, i.e. market, size and value-growth. Still, as DeMiguel et al. (2007) show, 
defeating the equally weighted strategy is quite a difficult task. 
 
Another challenging feature of the momentum strategy is the sheer size of the universe. Most 
existing studies focus on relatively small universes, whereas here we have 1500 to 2500 
stocks to choose from each month. This provides more opportunities for error maximization 
and hence poses an interesting challenge. Furthermore the momentum strategy is a zero-
investment strategy, with a long and short portfolio of equal size. We will show that in this 
setting robust optimization effectively chooses a different risk-return trade-off whereas the 
Bayes-Stein estimator also does not affect the optimal holdings and thus does not manage to 
reduce error maximization. 
 
In this study we try to improve upon the simple long-short momentum portfolio using 
quadratic optimization. To do so we need to overcome error maximization in the setting of a 
large universe and a zero-investment portfolio. We start with the raw momentum signals, 
measured by the past 6-month return. Next we address the mapping of the raw signals into 
expected returns, the estimation of the covariance matrix, and finding the optimal portfolio 
weights. We do so both by considering Bayesian shrinkage estimates of the parameters 
needed for the expected returns and covariance matrix, and by applying useful weight 
constraints. Doing this with a known useful return input is a good test of the adequacy of 
different techniques aimed at avoiding error maximization. Both the top-bottom 10% strategy 
and standard quadratic programming without input modification are benchmarks with a good 
performance and hence tough to beat, in contrast to benchmarks used by existing studies. In 
the process we also show the added value of portfolio optimization over heuristic rules 
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provided one can properly deal with uncertainty in the input. This is done for real-world data 
with practical relevance as opposed to a controlled simulation environment. Finally we 
explain all the difficulties we had to overcome and the solutions we came up with to create a 
convex quadratic optimization problem for this practical case. 
 
The outline of this paper is as follows: Section 2 describes our methodology and in particular 
how to apply popular robustification techniques to large long-short portfolios, Section 3 
describes the data and the performance of the standard momentum strategy, Section 4 
discusses the results of all suggested portfolio robustifications and Section 5 concludes and 
provides suggestions for further research towards robust optimization techniques. 
 
 
2. Methodology 
 
2.1 Objective function and weight constraints 
Our benchmark is the standard momentum strategy. In this strategy at the end of each month 
t–1 all stocks are ranked based on their return over the 6-month period from t–7 to t–2. 
Subsequently the strategy invests 100% in the top decile (the past winners) and finances this 
by shorting the bottom decile (the past losers). Next, the month t–1 is skipped because in the 
literature (see e.g. Jegadeesh and Titman, 1995) it is found that losers outperform winners in 
this month. The long and short portfolios are equally weighted. 
 
Here we also want to construct a portfolio that is 100% long and 100% short. In our case, 
however, we want to employ quadratic optimization to optimize the trade-off between risk 
and return. In particular we have the following objective function: 
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Each month t we can choose from N stocks. Here ht are the N holdings (stock weights) we 
need to choose, ft is the (Nx1) vector of expected returns for each stock, λ is the risk-
averseness parameter which measures the trade-off between portfolio return and portfolio 
variance, and Vt is the (NxN) expected co-variance matrix. The two weight restrictions are 
imposed to make sure we get a zero investment portfolio by going 100% long and 100% short 
like the standard momentum strategy. Without this constraint mean-variance might simply 
apply leverage to the standard momentum strategy to achieve higher returns, whilst not 
increasing the Sharpe ratio (the ratio of return and risk).  
 
Optimization problem is not convex 
The problem with equation (1) is that it is a non-convex problem due to the final restriction. 
Leaving out this restriction and afterwards scaling the weights of the resulting optimal 
portfolio to satisfy the 100% long and 100% short restriction makes λ redundant: there is just 
one ex-ante maximum Sharpe ratio portfolio. We do, however, want to steer the optimizer 
away from just a single portfolio, as the ex-ante maximum Sharpe-ratio portfolio is also the 
portfolio that is most likely to maximize the errors in both the expected returns and the 
covariance matrix.  
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Introducing two new vectors: longs and shorts 
A solution to the problem that the objective function in (1) is not convex is to introduce two 
new (Nx1) vectors, one for the long positions (l), and one for the short positions (s), such that 
l + s = h. For each of the two vectors it can be imposed that the sum of its elements adds up to 
one, hence imposing 100% long and 100% short. There is, however, a catch. The solution is 
still the same ex-ante maximum Sharpe ratio portfolio, because the 100% long and 100% 
short restriction can be circumvented easily: For the final solution simply put the same 
additional weights in l and s, which cancel out and hence have no effect on the Sharpe ratio, 
but do make it satisfy the constraints.  
 
Another weight constraint 
To counter the aforementioned problem of opposing weights in the same stock in the ‘long’ 
and the ‘short’ weight vectors we impose the constraint that a stock can have only long 
weights if its expected return is in the top 50%, and only short weights if its expected return is 
in the bottom 50% of the expected return for the coming month. It is in this setting that we 
really target a 100% long and 100% portfolio, and have a convex optimization problem. 
Furthermore we also avoid extreme long and short weights in stocks that are similarly 
attractive in terms of expected return, simply to off-set risks. Hence this also helps to reduce 
error maximization. 
 
2.2 Expected returns 
As mentioned before a unique feature of this paper is that we use well-known useful 
information regarding expected or predicted returns. Most studies that focus on avoiding error 
maximization use long-term averages that have little predictive power. In our case the starting 
point for expected returns is the sum of the past 6 months of returns, respecting a skip month, 
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where rt,n is the return on stock n in month t. 
 
Using equation (2) will lead to a large dispersion in expected stock returns, resulting in the 
risk of error maximization as the optimizer may put a lot of weight in the stocks with the 
highest and lowest expected returns. A popular approach to get more robust predictions of the 
expected returns is Stein's (1955) estimation procedure for means as proposed by Jorion 
(1986) for portfolio optimization. Jorion (1986) states that the expected returns are given by 
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where ι is a vector of ones and ∑-1 has to be replaced by the inverse of the sample covariance 
matrix. This raises the first problem: the sample covariance matrix does not have an inverse if 
the number of assets N is too large in comparison to the return history T. The Bayes-Stein 
estimator of expected returns fBS is a combination of the sample mean (in this case computed 
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following (2)) and the expected return of the mean-variance combination fMV. For a larger 
weight w the expected returns for the different stocks become closer to each other; less 
dispersion in the expected returns results in portfolios closer to the minimum variance 
portfolio. In this momentum implementation T is smaller than in general holds for historical 
averages. Therefore the momentum signals f in (2) are shrunk more towards the minimum 
variance expected return fMV than historical averages. We argue that this is an unfavorable 
result, since we use the momentum signals just because it has more information on future 
expected returns then long-term historical averages. Most importantly, because we have a 
zero-investment problem, the expected return of the portfolio is not affected by the fMV term. 
Hence this leaves dividing all expected returns by the same number, which is equivalent to 
changing the risk-averseness parameter in equation (1). Hence for our problem the Bayes-
Stein estimator does not help at all to reduce error maximization. 
 
We have, however, implemented four pragmatic robustifications of the expected returns in 
equation (2). In all these cases we impose that large groups of stocks have the same expected 
returns, reducing the danger of error maximization. First, we use the average return of the 
momentum deciles over the entire sample period although we know we are using future 
information in that case. Second, we use a feasible variant by using the average return of the 
momentum deciles with an expanding window from the start of the sample period to the 
current month. Third, we weight the feasible variant with the raw expected returns in (2) as 
we expect that the group averages do not profit from all information available in the raw 
expected returns. Finally we use the averages over 20 buckets (vigintiles) instead of over 10 
buckets (deciles) for both the feasible and infeasible variant. 
 
The expected returns are all standardized before they are used in the optimizer for a good 
comparison for equal risk-aversions over methods with different expected returns. The 
location (cross-sectional average) of the expected returns ft does not affect the optimal 
holdings for long-short portfolios, while changing the scaling (cross-sectional standard 
deviation) of the expected returns is equivalent to changing the risk-aversion in (1). 
 
2.3 Covariance matrix 
Jaganathan and Ma (2003) and Fan et al. (2008), among others, show that structural models 
lead to more robust covariance matrices. Furthermore, we have 1500 to 2500 US stocks in our 
dataset, hence the sample covariance matrix is not even positive definite if we look back using 
the popular choice of 60 months. Finally, Martens and Van Oord (2008) show that through 
time the momentum strategy has significant time-varying risk exposures to the well-known 
Fama and French (1993) risk factors, i.e. market, size and value-growth. We therefore use the 
following 3-factor model for the stock returns: 
 

nttntnMtnnnt HMLSMBsrr ,, εδβα ++++=          (4) 
 
where rM,t is the market return in month t, SMBt is a long-short portfolio that is long the 
smallest market capitalization stocks and short the biggest market capitalization stocks, and 
HMLt is a long-short portfolio that is long value stocks (high book-to-market ratio) and short 
growth stocks (low book-to-market ratio)4. At the end of each month we estimate equation (4) 
for each available stock based on data for the past 60 months, with a minimum requirement of 
24 available months. This results in estimates for βn, sn and δn. Let Xt be the (Nx3) matrix 
containing all the estimated coefficients using data up to month t–1, and let Ft be the sample 

                                                 
4 We would like to thank Kenneth French for making these data available on his website. 
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covariance matrix of the three factor returns using the past 60 months. Then we use for the 
covariance matrix, 
 

tttt
F
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where Δt is a (NxN) diagonal matrix with the residual variances, i.e. on the diagonal of Vt we 
get the sample variances based on the past 60 months. 
 
We also consider two ways to make the covariance matrix more robust. First we can use 
shrinkage on the factor exposures. Therefore we assume a hierarchical model for the risk 
model, in particular we assume a flat prior in the random coefficient model for the parameters 
in (4). This risk model becomes 
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where βn contains the three factor exposures of stock n. We assume flat priors for all 
parameters σε, α, σα, β and Σβ. The final shrinkage estimates for the factor exposures are found 
by either maximizing a highly nonlinear likelihood or Gibbs sampling. Our large portfolio 
optimizations are already very time-consuming and therefore we choose to use an intuitive 
shrinkage 
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where σε is the standard error of the OLS regression of (4), βn is estimated in (4) using OLS, 
Σβ the cross-sectional covariance matrix of all these estimated OLS betas and β  is the cross-
sectional average of the OLS betas. This results in a large shrinkage towards the cross-
sectional beta for stocks with a large standard error of regression, the stocks that have most 
likely erroneous betas. If a stock’s betas are close to the cross-sectional average, but the 
uncertainty is large, its betas do not change a lot of course. Thus, betas with a large estimation 
error are shrunk more towards the cross-sectional average than stocks with a low standard 
error of regression. 
 
Second we can combine the covariance matrix in equation (5) with the sample covariance 
matrix, see Ledoit and Wolff (2003). The covariance matrix is then of the form 
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where VHist is the historical covariance matrix over the past 60 months. It is very time-
consuming to determine the weights according to Ledoit & Wolf (2003), since we have to 
deal with a very large covariance matrix; every month we would have to sum and multiply the 
return histories of more than 1500 stocks. Rather than computing the optimal shrinkage 
factors we pick 0.99, 0.95 and 0.90 as weights on the factor covariance matrix for the sake of 
computation time. Ledoit & Wolf (2003) find an average weight of 0.80 on the shrinkage 
target if they use 120 months of history and have a maximum of 1200 stocks in their universe. 
We use a higher weight on the shrinkage target as we have more stocks and use less history 
which both increase the weight on the shrinkage target. 
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2.4 Weight constraints 
Besides the weight constraints already mentioned in Section 2.1 we also test the merits of 
imposing a maximum weight constraint for each individual stock as also is done by e.g. Chan 
et al. (1999) and Jaganathan and Ma (2003). There the target is a long-only portfolio and the 
non-negative constraint is very important, but also here it will avoid extreme weights in 
individual stocks. 
 
3. Data and equity momentum 
Total monthly returns of all NYSE and AMEX stocks in the CRSP database are used, 
covering the period 1926 to 2005. Stocks that have a stock price lower than $5 at any moment 
during the ranking period are excluded as also done by Amihud (2002) and Pastor and 
Stambaugh (2003). We use a six-month ranking period, wait for one month to avoid price 
reversals5, and then go long in the 10% winners and short in the 10% losers for one month. 
We rule out those stocks that do not exist in the whole six-month ranking period as well as 
stocks that do not have at least 24 months of history for the estimation of the risk models. The 
number of stocks available per month shows a sharp increase in August 1962; we therefore 
choose to start in this month as our focus is on large long-short portfolios. 
 
Table I shows the sample characteristics of the standard momentum strategy. The first two 
columns show the characteristics of the standard momentum strategy, while the last two 
columns show these characteristics if the momentum strategy uses the top and bottom 5% 
(vigintiles) rather than the top and bottom deciles of the ranking. The first and third column 
show these results if only stocks are included that only need to exist during the 6 months of 
the formation period, whereas the second and fourth column only use stocks that also exist 
during the previous 24 months to ensure a proper estimation of the risk model. 
 
Table I: Annualized characteristics of standard momentum strategy 

 
Top/Bottom 

Required history 

I 
deciles 

6 months 

II 
deciles 

24 months 

III 
vigintiles 
6 months 

IV 
vigintiles 
24 months 

Average return 0.0769 0.0719 0.1065 0.1087 
Volatility 0.1582 0.1518 0.1882 0.1793 

Information Ratio 0.4859 0.4734 0.5658 0.6064 
Note: This table shows the annualized return, realized volatility and information ratio of the momentum strategy 
starting in February 1963 (August 1964) until December 2005 in columns I and III (II and IV) if the stock 
universe consists of stocks that exist for at least 6 (24) months. The strategies reported in columns I and II (III 
and IV) buy the top decile (vigintile) of the 6 month ranking and short-sell the bottom 10% (5%) of this ranking 
after a skip month. 
 
Key in understanding our momentum results is the difference between the forecasted and 
realized returns of the deciles or vigintiles of the momentum strategy. Figures I and II show 
the average realized and forecasted returns (using equation (2)) of the vigintiles, respectively, 
if we require that the stocks exist for at least 24 months. The forecasted vigintile returns in 
Figure II show a nice decreasing pattern from the top to the bottom vigintile. The realized 
vigintile returns in Figure I however, only show this pattern for the top and two bottom 
vigintiles; the remaining vigintiles are not strictly decreasing. This introduces problems in the 
portfolio optimization process when using equation (2) for the expected returns. The 
optimizer finds stocks in vigintile 2 more attractive than stocks in vigintile 3, while ex-post 
vigintile 3 outperforms vigintile 2. Besides this difference between the forecasted and realized 

                                                 
5 See e.g. Jegadeesh and Titman (1993, 1995), Lehmann (1990) and Lo and MacKinlay (1990). 
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bucket returns, there is also a large difference in the scale of the returns. The forecasted 
bucket returns, the realized past six month average over all stocks in a particular bucket, range 
from plus 100% for the top vigintile to minus 80% for the bottom vigintile. 
 
Figure I: Realized vigintile returns 

 
Note: This figure shows the realized vigintile returns per annum from August 1964 until December 2005 if we 
sort all stocks that exist at least 24 months on their performance in the last six months, subsequently skip one 
month and then invest in the [(Bucket number -1) x 5%] till [(Bucket number x 5%)] of the ranked stocks. 
 
Figure II: Forecasted vigintile returns 

 
Note: This figure shows the average forecasted return per annum according to equation (2) for the period August 
1964 until December 2005 of stocks that existed at least 24 months. The forecasts for vigintile Bucket number i 
are averaged over all stocks that were in [(Bucket number i -1) x 5%] till [(Bucket number i x 5%)] of the 
ranking on the past six months returns after the skip month. 
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4. Results 
We have solved the optimization problem in equation (1) for several values for the risk-
averseness parameter, λ: 100, 500, 1000, 5000 and 10000. These risk-aversions are 
uncommonly high compared to risk-aversions found in other research, but standardizing the 
expected returns leads to higher absolute expected returns that we have to correct for with 
these higher risk-aversions as discussed in Subsection 2.2. Usually expected returns range 
from -20% to 20%, whereas 95% of the standardized expected returns ranges from -196% to 
196%. A low risk-aversion λ indicates more emphasis on the expected returns estimation of ft, 
while a high risk-aversion moves the emphasis to the estimation of the covariance matrix Vt. 
Consequently we expect that the robustification of the expected returns (covariance matrix) 
will increase the ex-post Sharpe-ratio for lower (higher) risk-aversions. In general we expect 
that the robustifications do not always increase the maximum realized Sharpe-ratio, but will 
improve the Sharpe ratios given a particular low or high level of risk-averseness. 
  
4.1 Impact of using different return inputs 
We start with showing the results for different ways to compute the expected return based on 
momentum returns. For this we use the Fama and French 3-factor covariance matrix, as we 
know factor models are robust (see e.g. Fan et al., 2008) and the market return, size return and 
value-growth premium are important risk dimensions for the momentum strategy, see Martens 
and Van Oord (2008). 
 
Table II shows the results. First we use the return from month t-7 to t-2 for each stock, see 
equation (2). In this case we use a different expected return for each stock, at the risk that the 
most extreme past returns are in no relation to the subsequent realized next month’s return. Of 
all methods this is the approach that is most prone to error maximization. The best Sharpe 
ratio of 0.531 is quite good. When we choose, however, a low level for λ meaning we focus 
more on the expected returns than on the expected risk, we see that the Sharpe ratio is quite 
low at 0.106. Effectively, the optimizer just buys a few top-listed stocks and short-sells the 
bottom ranked stocks. For lower risk-aversions there is a strong emphasis of the optimization 
on the expected returns; the optimizer chooses to invest in only the best stocks according to 
the momentum ranking and thus suffers from a lack of diversification. 
 
Second we use two solutions where the expected return is made more robust by requiring it to 
be the same for all stocks in the same decile or vigintile, where for each decile and vigintile 
we use the average ex-post returns of each bucket (see Figure 1 for the vigintiles). For a 
forecaster standing in 1965 this information would be unavailable, but so of course is the 
notion that momentum is a good strategy in the first place. In columns II and III we can see 
that the Sharpe improves when going from 10 to 20 buckets, hence there is information in 
providing more detailed information. Also we see that for 20 buckets the best Sharpe ratio is 
0.646, substantially higher than the 0.531 for raw returns. Furthermore the outcome is much 
less sensitive to the risk averseness parameter. 
 
Finally we use two solutions that are the same as the one just discussed, but for using only 
information up to month t where you stand each time when running the optimizer to 
determine the expected return of each bucket. Again we see that using 20 buckets is better 
than using just 10 buckets and that the foresight information underlying the best Sharpe in 
column III at 0.646 is run close by the one in column V at 0.618 and both are a substantial 
improvement over the raw returns from equation (2) as input for expected returns. 
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Columns II-IV in table II do not show a lot of dispersion over the different risk-aversions. 
This is explained by the fact that the optimizer only chooses stocks from the top and bottom 
decile (vigintile). These chosen stocks all have the same expected bucket return and the 
optimizer thus minimizes the variance over these selected stocks. This yields almost equal 
portfolios over the different risk-aversions. This also explains why the standard momentum 
strategy for vigintiles as presented in Table I column IV and the mean-variance 
implementation lead to similar results. Both methods simply go long in the top vigintile and 
short-sell stocks from the bottom vigintile. It appears that diversification according to the 
Fama & French 3 factor risk model does not add much value over simply equally weighting 
the stocks in the top and bottom vigintile. We do see, however, that when choosing the 
highest risk-averseness parameter in the final row, that the more accurate expected return with 
20 buckets (i.e. based on the full sample instead of only the in-sample) is important when the 
focus is on risk, because in that case the stocks in buckets 3, 4 etceteras matter, and it is 
exactly for these that the full-sample provides a more accurate picture. 
 
Table II: Optimization of the momentum strategy with different expected returns  

 
Returns 

Covariances 
Constraints 

I 
Raw returns 

F&F Cov  
None 

II 
10 buckets (inf) 

F&F Cov 
None 

III 
20 buckets (inf) 

F&F Cov 
None 

IV 
10 buckets (feas) 

F&F Cov 
None 

V 
20 buckets (feas) 

F&F Cov 
None 

λ1 = 100 0.106 0.469 0.617 0.469 0.617 

λ2 = 500 0.314 0.469 0.617 0.469 0.617 

λ3 = 1000 0.418 0.469 0.620 0.469 0.618 

λ4 = 5000 0.531 0.498 0.646 0.462 0.586 

λ5 = 10000 0.487 0.500 0.631 0.454 0.566 
Note: We solve the quadratic optimization problem in equation (1) for different choices for the risk-averseness 
parameter λ, different choices for the expected returns ft, and the Fama and French 3-factor covariance matrix in 
equation (5). The choices for the expected returns are the return from month t-7 to t-2 for each stock (see 
equation (2)) in column I, the average ex-post return of the momentum deciles or vigintiles from 1965-2006 in 
columns II and III, and the average ex-post return of the momentum deciles or vigintiles from 1965 to the month 
t-1 to predict the next month t in columns IV and V. The table shows the Sharpe ratios based on the realized (ex-
post) monthly returns and standard deviation of these returns. 
 
In Table III we show results when combining the raw return inputs from equation (2) with the 
expected returns from the bucket approach. Here we put much more weight on the bucket 
returns because these are much less extreme for the top and bottom buckets than the outcomes 
from equation (2). The results show that even with a small weight for the volatile returns from 
equation (2) we cannot improve upon the results in Table II for just basing expected returns 
on the buckets. Only in column II we see and outcome of 0.534 that is slightly higher than 
using only expected returns from equation (1) that results in a Sharpe of 0.531. 
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Table III: Combined (raw & bucket feasible) expected returns 
 

Returns 
Covariances 
Constraints 

I 
10 buckets (0.05) 

F&F Cov 
None 

II 
10 buckets (0.10) 

F&F Cov 
None 

III 
20 buckets (0.05) 

F&F Cov 
None 

IV 
20 buckets (0.10) 

F&F Cov 
None 

λ1 = 100 0.179 0.135 0.185 0.139 

λ2 = 500 0.415 0.376 0.425 0.384 

λ3 = 1000 0.492 0.460 0.517 0.476 

λ4 = 5000 0.522 0.534 0.574 0.565 

λ5 = 10000 0.484 0.491 0.538 0.525 
Note: We solve the quadratic optimization problem in equation (1) for different choices for the risk-averseness 
parameter λ, different choices for the expected returns ft, and the Fama and French 3-factor covariance matrix in 
equation (5). The choices for the expected returns are a weighted average of the return from month t-7 to t-2 for 
each stock (see equation (2)) and the average ex-post return of the momentum deciles or vigintiles from 1965 to 
the month  t-1 to predict the next month t in columns IV and V. For the weights we use 0.05 (columns I and III) 
or 0.10 (columns II and IV) for the expected returns from equation (2) and 0.95 (columns I and III) and 0.90 
(columns (II and IV) for the bucket expected returns. The table shows the Sharpe ratios based on the realized 
(ex-post) monthly returns and standard deviation of these returns. 
 
4.2 Impact of using different covariance matrices 
Given the results in Tables II and III we fix the expected return to using the average in-sample 
return of the 20 buckets formed based on equation (2). In this section we will look at 
alternatives for the Fama and French 3-factor covariance matrix used in Tables II and III. In 
particular we show results for the sample covariance matrix measured over the past 24 to 60 
months depending on the availability of the stocks, the Single Index Model (SIM) using only 
the market factor from the Fama and French factors, a shrunk version of the Fama and French 
3-factor covariance matrix using equation (7) to shrink the factor loadings towards the cross-
sectional mean, combinations of the sample covariance matrix and SIM, and combinations of 
the sample covariance matrix and the FF 3-factor covariance matrix. Table IV and V show the 
results. 
 
Table IV: Optimization of the momentum strategy with different covariance matrices 

 
Returns 

Covariances 
Constraints 

I 
20 buckets (feas) 

Sample Cov 
None 

II 
20 buckets (feas) 

SIM Cov 
None 

III 
20 buckets (feas) 
shrunk SIM Cov 

None 

IV 
20 buckets (feas) 
shrunk F&F Cov 

None 
λ1 = 100 0.027 0.615 0.616 0.625 

λ2 = 500 0.021 0.615 0.616 0.625 

λ3 = 1000 0.111 0.614 0.616 0.626 

λ4 = 5000 –0.125 0.603 0.610 0.594 

λ5 = 10000 –0.153 0.584 0.587 0.570 
Note: We solve the quadratic optimization problem in equation (1) for different choices for the risk-averseness 
parameter λ. For the expected return we use the average ex-post return of the momentum vigintiles from 1965 to 
the month  t-1 to predict the next month t. For the covariance matrix we use the sample covariance matrix over 
the past 24 to 60 months (column I), the Single Index Model (equation (4) and (5) leaving out SMB and HML) 
with and without shrinkage of the market betas using equation (7), and the Fama and French 3-factor model in 
equations (4) and (5) with betas shrunk towards the cross-sectional mean, see equation (7). The table shows the 
Sharpe ratios based on the realized (ex-post) monthly returns and standard deviation of these returns. 
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The results in Table IV first of all show that the sample covariance matrix fails to produce any 
good results. Problem is that the number of assets easily exceeds the number of observations, 
resulting in the covariance matrix to be poorly defined. When placing more emphasis on risk 
(higher risk-averseness) we even get negative Sharpe ratios. Hence whereas the sample 
covariance matrix is a popular choice in the literature on robust optimization, it fails for 
problems with many assets. 
 
Second the results in column II of Table IV show that the Single Index Model is a perfectly 
viable alternative for the 3-factor model (see Table II column V). We believe the reason is 
that the market beta dominates the long and short portfolio, and hence to reduce risk this is the 
most important dimension to match the long and short portfolio. Chan et al. (1999) find 
something similar in that for minimizing the variance of a long-only portfolio (all weights are 
non-negative) it does not matter when adding additional factors to the market factor. 
 
Finally we see from columns III and IV in Table IV that shrinking the factor loadings to the 
cross-sectional mean only leads to a marginal improvement over simply using ordinary least 
squares to estimate the factor loadings. For example for the Single Index model we get very 
similar Sharpe ratios in Table IV (columns II & III) with and without shrinkage 
 
The results in Table V focus on shrinkage as proposed in Ledoit and Wolf (2003). In 
particular we take the weighted average of the sample covariance matrix and the covariance 
matrix according to the Single Index Model. When comparing column I in Table V (99% 
weight for the Single Index Model, 1% weight for the sample covariance matrix) with column 
II in Table IV (100% weight for the Single Index Model covariance matrix) we see that 
shrinkage makes the results worse. Hence the quality of the sample covariance matrix is that 
low that combining it with the Single Index Model does not improve the Sharpe ratios. Giving 
more weight to the sample covariance matrix even leads to worse results. This contradicts the 
results of Ledoit and Wolf (2003). They use a better estimated sample covariance matrix, 
since it is based on fewer names (at most 1300) for a return history of 120 months, whereas 
we have 1500 to 2500 stocks with a return history of at most 60 months, but usually closer to 
24 months. Both differences improve the performance of the sample covariance used by 
Lediot and Wolf (2003). If we require our stocks to exist for at least 120 months the return to 
the standard momentum strategy would almost completely diminish. In addition we think that 
in this setting the beta dimension of risk for the momentum strategy is that important that 
measuring risk primarily through beta is the key to success. This also explains why the 
corresponding shrinkage results for the Fama and French 3-factor covariance matrix in 
columns III and IV of Table V do not produce higher Sharpe ratios. 
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Table V: Combined (sample and factor) covariance matrices 
 

Returns 
Covariances 
Constraints 

I 
20 buckets (feas) 

0.99SIM+0.01Sample 
None 

II 
20 buckets (feas) 

0.95SIM+0.0Sample 
None 

III 
20 buckets (feas) 

0.99FF3+0.01Sample 
None 

IV 
20 buckets (feas) 

0.95FF3+0.01Sample 
None 

λ1 = 100 0.600 0.539 0.597 0.528 

λ2 = 500 0.601 0.539 0.598 0.529 

λ3 = 1000 0.600 0.541 0.599 0.532 

λ4 = 5000 0.584 0.499 0.549 0.468 

λ5 = 10000 0.547 0.500 0.526 0.453 
Note: We solve the quadratic optimization problem in equation (1) for different choices for the risk-averseness 
parameter λ. For the expected return we use the average ex-post return of the momentum vigintiles from 1965 to 
the month  t-1 to predict the next month t. For the covariance matrix we use a combination of the sample 
covariance matrix over the past 24 to 60 months with either the Single Index Model (equation (4) and (5) leaving 
out SMB and HML) or the Fama and French 3-factor model in equations (4) and (5). The table shows the Sharpe 
ratios based on the realized (ex-post) monthly returns and standard deviation of these returns. 
 
4.3 Impact of using weight constraints on individual stocks 
Jaganathan and Ma (2003) show that to get the minimum variance portfolio it really helps to 
impose the constraint that weights are non-negative. Chan et al. (1999) even impose the 
weights to be bounded between 0 and 2%. This to some extent avoids error maximization 
because it avoids having extreme weights in individual stocks. These extreme weights are 
likely to be resulting from erroneous inputs. 
 
Here we also test adding the constraint that the weights cannot exceed 1% in absolute value. 
Of course we already had the constraint that stocks that are ranked in the top half cannot have 
negative weights, and stocks that are ranked in the bottom half cannot have positive weights. 
The results are shown in Table VI. 
 
First of all we look at the case where we use the raw returns in equation (2) as the return 
input, and the 3-factor covariance matrix. In Table II (column I) we have seen that especially 
when focusing on expected returns (very low risk-averseness parameter) we get a 
disappointing Sharpe ratio of 0.106. In that case the optimizer will really make use of the 
extreme expected returns resulting from equation (2). In Table VI (column III) we see that 
especially this case benefits from imposing a maximum weight of 1% on individual stocks. 
Hence the optimizer is no longer allowed to put almost all its weight in a few top ranked 
stocks. As a result the Sharpe ratio increases from 0.106 to 0.534. This, however, is still well 
short of Sharpe ratio of 0.617 when using expected returns based on 20 buckets (Table II, 
column V). Hence making the return input robust is better than imposing weight constraints. 
In fact, when doing so, adding the weight constraint does not help anymore as shown in Table 
VI (column IV) and comparing this result with column V in Table II. The robust return input 
already resulted in all weights being below 1% for individual stocks. 
 
Second we see from columns I and II that also for the sample covariance matrix it helps to 
add the weight constraint when using the raw returns in equation (2) for the expected returns. 
And again (not reported here) it does not help adding the weight constraint when using the 20 
buckets to determine the expected returns. 
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Table VI: Optimization of the momentum strategy with weight constraints 
 

Returns 
Covariances 
Constraints 

I 
Raw returns 
Sample Cov 

None 

II 
Raw returns 
Sample Cov 

1% 

III 
Raw returns 

F&F Factor Cov 
1% 

IV 
Vigintiles (feas) 
F&F Factor Cov 

1% 
λ1 = 100 -0.049 0.399 0.534 0.617 

λ2 = 500 -0.221 0.150 0.592 0.617 

λ3 = 1000 -0.186 0.097 0.596 0.617 

λ4 = 5000 -0.160 0.017 0.531 0.586 

λ5 = 10000 -0.191 0.027 0.475 0.566 
Note: We solve the quadratic optimization problem in equation (1) for different choices for the risk-averseness 
parameter λ. For the expected return we use the raw returns from equation (2). For the covariance matrix we use 
the sample covariance matrix (columns I and II) or the 3-factor covariance matrix (column III). The table shows 
the Sharpe ratios based on the realized (ex-post) monthly returns and standard deviation of these returns. 
 
 
 
 
5. Conclusion 
In this paper we study quadratic optimization for a very large number of stocks. The danger in 
such a setting is that quadratic optimization turns into error maximization, with the optimizer 
trying to exploit especially the extreme expected returns and the extreme low risk elements in 
the covariance matrix. In the literature much attention is given to shrinkage estimators and 
weight constraints to reduce the impact of error maximization. This is often done in simple 
settings with poor return and covariance inputs, making it easy to improve the results. 
 
The unique features in this paper are that we do use a useful input for both the expected 
returns and the covariance matrix, we have a large universe, and we have a hard-to-beat 
benchmark in the long-short equally weighted equity momentum portfolio. We find that in 
this case the Bayes-Stein estimator for expected returns, shrinkage of the factor loadings, 
shrinkage of the covariance matrix by combining different covariance matrices, and weight 
constraints all add little to nothing to improve the performance of the resulting portfolios. In 
fact these approaches are clearly worse than simply thinking carefully about logical robust 
expected returns for the specific problem and a covariance matrix that relates to the return 
source on the important risk dimensions. Hence we show in this practical case that common 
sense prevails over dogmatic theories that aim for a one-fits-all approach. In the process we 
also solved the initial non-convexity problems in aiming for a zero-investment long-short 
portfolio. 
 
For further research it will be interesting to look into robust optimization. Challenge there is 
to refrain from the simplest way in which most studies apply this idea of taking into account 
the errors in the inputs during the optimization, as this basically leads to a standard quadratic 
optimization problem with more emphasis on risk. In addition it would be interesting to see 
whether robustification of the inputs and robust optimization can be used together to improve 
the results obtained by applying just one of the two approaches. 
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