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Abstract

We address the notion of dynamic, endogenous diversity and its role in theories of
investment and technological innovation. We develop a formal model of an innovation
arising from the combination of two existing modules with the objective to optimize
the net benefits of diversity. The model takes into account increasing returns to scale
and the effect of different dimensions of diversity on the probability of emergence of
a third option. We obtain analytical solutions describing the dynamic behaviour of
the values of the options. Next we optimize diversity by trading off the benefits of
diversity (due to recombinant innovation) and the benefits associated with returns to
scale. We derive conditions for optimal diversity under different regimes of returns to
scale. When the investment time horizon is beyond a threshold value, the best choice
becomes diversity. This threshold will be larger the higher the returns to scale.
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1 Introduction

When making decisions on investment and technological innovation, implicitly or explicitly
choices are made about diversity of options, strategies or technologies. Nevertheless the
notion of diversity has not been systematically addressed in related theoretical analyses.
Here we propose a theoretical framework for the description of a generic innovative process
resulting from the interaction of two existing but different technologies. The interaction will
depend on how these two options match. Matching can occur via spillover or recombination,
leading to modular innovation. The model will allow addressing the problem of optimal
diversity in the context of modular innovation. The present paper takes the conceptual
framework of van den Bergh (2008) as a starting point. The main idea is that in an
investment decision problem where available options may recombine and give birth to an
innovative option (technology), under particular regimes of returns to scale a certain degree
of diversity of parent options can lead to higher benefits than specialization.

Usually in economics and finance, diversity is seen as conflicting with efficiency of spe-
cialization. Such efficiency is claimed on the basis of increasing returns to scale arising from
fixed costs, learning, network and information externalities, technological complementari-
ties and other self-reinforcement effects. Arthur (1989) studies the dynamics of competing
technologies in cases where path dependence and self-reinforcement possibly lead to lock-
in. This can be seen as a descriptive approach. Our approach instead is normative in that
it studies the efficiency of the system of different options, considering total net benefits of
technologies over time, including the innovation-related benefits of diversity.

The positive role of diversity is recognized in option value and real option theories
(Arrow and Fisher (1974), Dixit and Pindyck (1994)). But this is concerned merely with
the benefits of keeping different options open for later uncertain circumstances. These
approaches moreover treat diversity as exogenous. Van den Bergh (2008) proposes an evo-
lutionary model of recombinant innovation where diversity is endogenous, showing how
diversity may contribute to the value of the overall system of investment options well
beyond the mere opportunity of keeping decisions open. This is because diversity can pro-
duce an innovative option (technology) through recombination of already existing modula
and through spillovers between technologies. Here we will elaborate this model deriving
analytical solutions and general insights.

The economic and policy relevance of our analysis relates to myopia of economic agents.
In real world decisions short term interests often prevail, since the advantages of increasing
returns are perceived as more clear and certain than the advantages of diversity. The
trade-off between short term efficiency and long term benefits from diversity is related to
the issue of exploitation versus exploration (March, 1991). Here recombinant innovation
can be regarded as a form of exploration.

A model of diversity fits into the approach of evolutionary economics as theorized by
Nelson and Winters (1982), Dosi et al. (1988) and Potts (2000), among others. However
evolutionary economics tends to avoid the notion or goal of optimality or efficiency in term
of maximizing a net present value function. Our approach in fact can be seen as combining
diversity-innovation ideas from evolutionary economics with optimality and cost-benefits
analysis concepts of neoclassical economics. What economics calls spillover corresponds
to recombination or cross-over in genetics and evolutionary computation and to modular
innovation in biology and technological innovation studies. Adopting the view of an evo-
lutionary approach we will talk of a population of parent options and an offspring which
is the innovative option. Here we will deal with the smallest population possible, namely
only two parent options. But the model can be extended to more than two parents as
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shown by van den Bergh (2008), in order to analyse the effects of asymmetric diversity.
Within an evolutionary perspective innovation acts against selection in that it creates

new individuals while selection reduces diversity according to relative performance or fit-
ness. The first, innovation, is a force leading to disequilibrium. The second, selection, is an
equilibrating force instead. Here we will concentrate on the role of innovation. A possible
extension of the model could be the addition of selection, creating more complex dynamics.

Following Stirling (2007), we will consider three dimensions of diversity, namely variety,
balance and disparity. The first refers to the number of starting options, the elements in the
parent population. The second denotes the relative size or distribution of parent options.
Finally disparity is the degree of difference between the options, that is, how distinct the
different elements are. This represents a sort of distance in technology space when applying
the model to technological innovation).

Another motivation of this work is the analysis of the transition from an old to a
new basic socio-technological system, possibly given in by considerations of environmental
sustainability (Geels, 2002). Diversity may help in preventing early or fast lock-in to an
inferior technology. This consideration connects the themes of diversity and lock-in, which
is a policy relevant issue, as it may shed light on the problem of how to unlock inferior
but dominant technological regimes. In particular unlocking is relevant to fossil-fuel based
electricity production, in view of global warming. A diversity analysis can provide useful
insights regarding the transition to sustainable energy, since renewable energy technologies
require investments in uncertain technological paths. This involves dealing with diversity,
innovation, market liberalization, renewable energy and (de)centralized systems (the latter
has implications for increasing returns). The general analysis offered here is ultimately
meant to generate insights for environmental-energy policy.

The building blocks of our model are endogenous diversity, probabilistic recombinant
innovation and returns to scale. The latter play a role in the optimization problem of final
benefits from the overall system made of parent and innovative options. There is a trade-off
in pushing for more diverse systems: on the one hand the contribution from innovation
increases because of a higher probability of recombination, which is assumed to be positively
correlated with diversity. On the other hand we lose benefits from lost opportunities of
enjoying increasing returns to scale: this can be seen as the cost of diversity. We will see
that under some threshold level of returns to scale the benefits of diversity are larger than
its costs.

This paper is structured in the following way. Section 2 presents a simple “pilot” model
to illustrate the main concepts and their interactions. Section 3 generalizes the model by
developing a more general structure of diversity. In section 4 we solve the model obtaining
a general solution for the value of the innovative option as a function of time. In section
5 we introduce a size effect into the probability of recombinant innovation. In section 6
we address the optimization problem for the different versions of the model, presenting a
complete set of conditions under which either diversity or specialization is the best choice.
We also study the effect of the time horizon on the optimal solution. Section 7 concludes
and provides suggestions for further research.

2 A “pilot” model

Consider a system of two investment options that can be combined to give rise to a third
one. Let I denote cumulative investment in the parent options while investment I3 in the
new option only occurs if this arises, which happens with probability PE . The growth
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rates of parent options are proportional to the capital invested, with shares α and 1 − α.
The growth of the innovative option is non-linear instead and depend on the way and the
extent that parent options match. We assumed no depreciation and that the allocation of
capital is constant through time. If we indicate the value of the investment options with
O1 and O2 for the parents and O3 for the innovative option, the dynamics of the system is
described by the following set of equations:

Ȯ1 = I1 = αI

Ȯ2 = I2 = (1 − α)I (1)

Ȯ3 = PE(O1, O2)I3

The optimization problem that we address is how to set an α that maximizes the final
total benefits of parent and innovative options.

The matching factor PE denotes a probability of recombinant innovation or Emergence
of the third option. It depends on the interaction of the two preexisting options that form
the system under analysis together with the innovative option. The rate of growth of this
innovative option can thus be interpreted as the expected value of this recombinant inno-
vation process: Ȯ3 = E

[

Innovation
]

where Innovation is a random variable representing
the value of the innovative option. Such a random variable is subject to a binary event
where the new option comes out with probability PE and nothing happens with probability
1−PE . Then the expected value is simply PE times the capital invested in the new option
I3. We express the probability factor by the product of two main ingredients, namely
the balance of the parent options and a scaling factor π which can be interpreted as the
efficiency of the R&D process underlying the recombinant innovation:

PE(O1, O2) = πB(O1, O2) = 4π
O1O2

(O1 + O2)2
(2)

In principle π is time dependent since innovation efficiency responds to learning and to
progress in general. Here we keep it constant. Diversity is here expressed as the balance of
parent options: the more equally present they are, the larger the probability of emergence.
A system with two options close to each other is diversified, while the situation with one
option close to zero (or relatively very small) corresponds to specialization. The balance
function has the following features: B(O1, O2) ∈ [0, 1], B(O1 = O2) = 1 (maximum
diversity or perfect balance), limOi→0 B(Oi, Oj)|Oj=const = 0 with i, j = 1, 2 and i 6= j. The
following figure shows a graph of the diversity function.

Assuming that investment in parent options begins at time t = 0, their value at time t
is simply O1(t) = αIt and O2(t) = (1−α)It. Under this assumption the balance function is
independent of time: B = 4α(1−α). Consequently the probability of emergence is constant
and only depends on the initial allocation α. The innovative option grows linearly with
time then:

O3(t) = 4πI3α(1 − α)t (3)

The optimization problem of this investment decision is addressed considering the joint
benefits of parents and innovative options. In order to model the trade-off between diversity
and scale advantages of specialization we introduce a returns to scale parameter s. This
acts on the cumulative investment in each option, in order to capture learning over time.
We can then express the overall benefits as follows:

V (α; T ) = O1(T ; α)s + O2(T ; α)s + O3(T ; α)s (4)
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Figure 1: Graph of the diversity function with two parent options

Where t = T is the time horizon. According to this expression, once we substitute the
expressions of options’ values, the maximization problem of the investment decision can
be written as

max
α∈[0,1]

V (α; T ) = T sIs
[

αs + (1 − α)s + Csαs(1 − α)s
]

(5)

where C = 4πI3
I

. This factor weights the contribution of diversity to total benefits. As
intuition may tell, such a contribution will be larger for a larger probability of recombinant
innovation π and a lower total investment ratio I. It is useful to normalize the benefits
function to its value value in case of specialization. Since the system is symmetric we have
V (α = 0; T ) = V (α = 1; T ) = IsT s. Then we define

Ṽ (α) ≡ V (α; T )

IsT s
= αs + (1 − α)s + Csαs(1 − α)s (6)

Depending on returns to scale s and the factor C, Ṽ will be maximum for α = 1/2
(maximum diversity) or for either α = 0 or α = 1 (specialization). It can be instructive
to look at some examples of the curve Ṽ (α) for different values of returns to scale s and
efficiency π. Setting I = 4I3 we have C = π. Figure 2 reports the normalized benefits
curves for increasing returns to scale with s = 1.2 and six different values of the factor
π. As one can see either specialization is to be preferred or diversity, depending on the
efficiency of the recombinant innovation process as captured by the probability factor π.
Under this perspective there will be a threshold value π for this probability such that for
π < π the optimal decision is specialization while for π > π, i.e. a sufficiently efficient
recombinant innovation process, diversity is optimal. Conversely, given an intensity of
recombinant innovation π one may want to understand what is the turning point s of
returns to scale at which maximal diversity (α = 1/2) becomes optimal1. This is given by

1Here and from now onwards with “diversity” we always mean maximum diversity, which is represented
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Figure 2: Normalized final benefits Ṽ as a function of the investment share α under increasing returns
to scale (s = 1.2) for different values of the innovation efficiency factor π = 0, 0.2, 0.4, 0.6, 0.8, 1.

the threshold level s that solves the equation

Ṽ
(

α = 1/2
)

=
1

2s

[

2 +

(

C

2

)s]

= 1 (7)

If C = 1 (for instance with I = 4I3 and π = 1) the threshold level of returns to scale is
given by the equation 2s+1 + 1 = 22s and s ≃ 1.2715. For s = 1/2 (decreasing returns) we
have Ṽ (1/2)s=1/2 =

(

2 +
√

C/2
)

/
√

2 which is always larger than one. For s = 1 (constant

returns to scale) we have Ṽ (1/2)s=1 = 1 + C/4 which is again always larger than one.
Since C ≥ 0, assuming that a positive capital I3 is assigned to innovation after emergence,
a straightforward computation gives the following result:

Proposition 1. It holds s ≥ 1 and s > 1 iff π > 0.

Corollary 1. For all decreasing or constant returns regimes a maximum value of total
final benefits is realized for the allocation α = 1/2, i.e. for maximum diversity

This is true no matter what value the factor C assumes2. In other words, in all cases of
decreasing returns to scale up to constant returns it is better to have maximum diversity
and divide equally the investment among the two parent options. One interesting result is
that diversity is optimal also in absence of recombinant innovation, when returns to scale
are low enough. This situation is summarized in figure 3. Note how for C = 0 the threshold

by α = 1/2 since the system is symmetric.
2Consider the function f(s) ≡

(

2 + (C/2)s
)

/2s. The statement is true if f(s) ≥ 1 ∀s ∈ [0, 1]. f
is a decreasing function for fixed C, f ′(s) < 0 ∀s ≥ 0. For fixed s instead f is an increasing function
of C. When C = 0 f(1) = 1 and f(s) ≥ 1 ∀s ∈ [0, 1]. When C > 0 f(1)|C>0 > f(1)|C=0 = 1 and
f(s)|C>0 > f(s)|C=0 = 1 ∀s ∈ [0, 1]. This proves proposition 1.
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Figure 3: Normalized final benefits Ṽ as a function of the investment share α under decreasing returns
to scale (s = 0.5) for different values of the innovation efficiency factor π = 0, 0.2, 0.4, 0.6, 0.8, 1.

is s = 1 and Ṽ = 1 for all α: with constant returns and no recombinant innovation the
benefits function is constant.
In order for α = 1/2 to give a minimum of benefits the condition s > s must hold. When
C > 0 we have s > 1, according to equation (7)3. For s = 3/2 for instance we have
Ṽ (1/2)s=3/2 =

[

2 + (C/2)3/2
]

/23/2. If C < C ≃ 1.764 we have that α = 1/2 is not a
maximum of benefits and specialization is optimal, then.

The case of increasing returns to scale is the most interesting and maybe also the one
that better represents real cases of technological innovation or investment projects. In this
regime we study the tradeoff between scale advantages and benefits from diversity. We
have already seen the shape of benefits curve for some values of C when s = 1.2 (figure
2). If the probability of recombinant innovation and the ratio I3/I are insufficiently high,
returns to scale may be too high for diversity to be the optimal choice. In figure 2 this
holds for the bottom four curves. In general we have the following result, which completes
Proposition 1:

Corollary 2. Diversity α = 1/2 can be optimal also with IRTS ( s > 1) provided that the
probability of recombination π is large enough.

3In principle C can have any positive value, but for eq. (7) to hold a higher C requires a higher s. In
the limit, as C approaches 4 such a condition would require an infinite value for the parameter s.
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3 A general model

3.1 Innovation probability and diversity factors

Now we will build a more general model of recombinant innovation which will relax some
of the assumptions of the “pilot” model and at the same time we will enter the structure of
the probability of emergence. We will allow for non-zero initial values of parent options and
will consider a marginally diminishing effect of options’ size on PE. The optimization of
diversity is addressed for the more general model then, with successive steps of increasing
complexity.

We define the probability of emergence of the innovative option PE as depending posi-
tively on the diversity ∆ of the two parent options’ system and positively on their disparity4

D:

PE(O1, O2) = k
∆(O1, O2)

Dγ
(8)

The factor k expresses that part of the intensity of recombinant innovation that is not
captured by diversity ∆ and disparity D. Besides this k can be used to normalize the
probability of emergence to one5. The parameter γ allows for a non-linear effect of disparity
D. It can be seen to express the concept of “cognitive distance” between two technologies:
it may be that two ideas are very different but historical or geographical events make the
cognitive distance small, for instance through interdisciplinary research (van den Bergh,
2008).

As observed by Stirling (2007) diversity is a multidimensional concept. In a study of
innovation he indicates three dimensions: variety, disparity and balance. Diversity can be
expressed as follows:

∆(O1, O2) = δNDB(O1, O2) (9)

Here the three dimensions of diversity are present as multiplicative factors that positively
affect diversity. Variety N and disparity D are set exogenously while balance B is a function
of the values of the existing options. The factor δ is a scaling parameter that can be set to
normalize maximum diversity to one, given the values of N and D. Variety indicates the
number of parent options present (technologies, organizations, investment projects, firms,
etc.). We fix N = 2 in our case. Disparity captures how “different” or how far apart in
technology space the two options are. In principle D can assume any positive value since
it expresses a degree of differentiation among two alternatives (sort of distance between
different species, as in Weitzman, 1992). Balance expresses how (un)equally different
options are present in a population, assuming that the more balanced the more diversified
a system is. While disparity expresses the substantial diversity of the interacting options,
the degree of difference between their nature, balance models their difference in size, a sort
of “mechanical” diversity as if we could “weight” options’ value on a balance, indeed.

The mathematical expression of PE shows that disparity has two opposite effects on the
probability of recombinant innovation. An example from technological innovation may be
instructive. If two very different and apparently unrelated technologies are considered, the

4A basic assumption of the model is that PE depends deterministically on other quantities and parame-
ters. Assigning a deterministic value to PE is like to deal with a δ-Dirac probability distribution, centered
on (O1, O2): all values other than (O1, O2) have zero probability of occurring, while the probability dis-
tribution value in (O1, O2) is infinite. The integral of the probability distribution leaves us with the finite
value PE .

5in terms of the probability of recombinant innovation π that we introduced in the last section, this
amounts to require that π ≤ 1.
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probability that they meet to produce a new technology through recombinant innovation
is very low. Still, if this happens, we may expect the new technology to have a big impact
and consequently the rate of growth of its value to be very large. Disparity plays opposite
roles within these two effects, the probabilistic one and the innovative one, as the two
occurrences of disparity in the expression of the probability of emergence PE show. The
overall effect will depend on the parameter γ. If γ < 1 the innovative effect prevails and
a larger disparity means a larger PE . If γ > 1 instead, the probabilistic effect is stronger
and disparity negatively affects PE .

The balance function B(O1, O2) ranges from the minimum value 0, which is the limiting
case where only one option is present, to the maximum value 1 corresponding to perfect
symmetry. The idea here is that a higher symmetry results in a larger probability of
emergence of the innovative option.

3.2 The balance function

The balance function is defined in the positive octant of a n-dimensional space. If n = 2
as here B is defined on the positive quadrant. A functional specification of the balance of
two options x and y is defined by the following properties:

1. it is symmetric in its arguments B(x, y) = B(y, x)

2. the maximum value (normalized to one) is attained on the diagonal B(x, x) ≥ B(x, y)
∀x, y ≥ 0

3. the minimum value (lowest balance) is realized when one of the two options has a
zero value: B(x, 0) = B(0, x) < B(x, y) ∀y > 0

4. it is homogeneous of degree zero: B(λx, λy) = B(x, y)

The latter means that the balance of two quantities can be expressed as a function of their
ratio b = O1/O2 (simply put λ = 1/x) and does not depend on the two values separately.
Moreover the balance goes to 0 when one option growths indefinitely while the other stays
constant:

lim
Oi→∞

B(Oi, Oj)
∣

∣

∣

Oj=const
= 0 i, j ∈ 1, 2, i 6= j

The functional specification of the balance that we adopt is the following6:

B(O1, O2) = 1 − (O1 − O2)
2

(O1 + O2)2
= 4

O1O2

(O1 + O2)2
(10)

This is the so-called “Gini balance”. The main reason for such a choice is the differen-
tiability in O1 = O2. Expressed as a function of the ratio the above specification reads
B(b) = 4 b

(1+b)2
.

6Other specifications are possible, for instance B(O1, O2) = 1 − |O1−O2|
O1+O2

and B(O1, O2) = min{O1,O2}
max{O1,O2}

(see also Stirling, 2007). A detailed analysis of the latter specification is available at request. The case
O1 = O2 = 0 is excluded by all these specifications. This is rather a degenerate and irrelevant case
however, as we are only interested in systems with at least one option (∃ i = 1, 2 | Oi > 0). Otherwise we
can always define B(0, 0) = limO1,O2→0B(O1, O2) = 1.
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3.3 The efficiency factor

Equation (8) contains a scaling factor, k. Its value must comply with a normalization of
the probability of emergence, that is, it must assure PE ≤ 1. The diversity ∆ assumes
values in a compact interval [0, ∆max], depending on the values of variety N , disparity D
and balance B. Diversity can be normalized as well. Variety in our case is set to N = 2
since we deal with two parent options. As for disparity, we can restrict ourselves to two
discrete values, D = 1 (no disparity, identical options) and D = 2 (maximum disparity).
Balance ranges in the interval [0, 1]. Looking at equation (9), the maximum value ∆max is
attained for N = 2 and D = 2. Setting δ = 1

4
we have ∆max = 1. We have the following

limit cases:

∆ = ∆min = 0 for N = 1, B = 0, D = 1

∆ = ∆max = 1 for N = 2, B = 1, D = 2

If we substitute equation (9) into equation (8), the probability of emergence is given by

PE =
k

4
ND1−γB

Let us define π = k
4
ND1−γ , which is a sort of static probability factor in the expression of

PE: the higher the number of available options N , the more likely recombinant innovation
is, while the contribution of disparity D depends on γ. Normalization is achieved by
requiring that π ≤ 1, which translates in the following condition for k

k ≤ 4Dγ−1

N
(11)

The factor k captures all other factors of influence on the recombinant innovation process.
For instance, two recombinant innovation processes with the same number of parent options
N , disparity D and balance B may render different values of the innovation likelihood PE

due to different values of recombination efficiency k, possibly reflecting different levels of
knowledge (education) or experience.

4 Solving the dynamic model

Our model of recombinant innovation is made of the system of equations (1) together
with the definitions (8) and (9). This section studies the time patterns of the differential
equations system (1). These time patterns will then be used to determine optimal diversity
maximizing the value function of the options in section 6. We assume a constant allocation
over time

I1

I2
=

α

1 − α
≡ x(α) (12)

This setting results in a constant linear growth (accumulation) of parent options O1 and
O2. The time pattern of the innovative option is non-linear thought. With respect to the
pilot model the only difference here is that initial values are different from zero. The value
of the investment option at time t is the following:

O1(t) = O10 + I1t

O2(t) = O20 + I2t (13)

O3(t) = I3

∫ t

0

PE(s)ds

10



When the initial values O10 and O20 are different from zero this model describes a situation
where two existing ideas (technologies, products, institutions, etc.) meet and are matched
with the aim of inventing a third one (O3(0) = 0). The first two equations of system
(13) are independent and autonomous: a coupling effect only exists between these two
and the third equation. Let us focus on the third equation, therefore. The probability of
emergence is PE(t) = πB

(

O1(t), O2(t)
)

, where the scaling factor π ∈ [0, 1] is the probability
of recombinant innovation (which in turn depends on variety and on disparity in the way
explained in section 3.3). The value of the innovative option at time t is then

O3(t) = I3

∫ t

0

PE(s)ds = πI3

∫ t

0

B(s)ds (14)

Before computing the integral (14) we will analyse the dynamic behaviour of the balance
function. If the initial value of parent options is zero (O01 = O02 = 0) the balance is
constant and defined only for t > 0:

B(t) = 4
O1(t)O2(t)

(

O1(t) + O2(t)
)2 = 4

αIt(1 − α)It
(

αIt + (1 − α)It
)2 = 4α(1 − α) = B(α)

The function B(α) is a portion of a parabola enclosed in the interval [0, 1] with a maximum
value of 1 for α = 1/2.

If instead we relax the assumption and allow for generic initial values O10, O20 6= 0 we
obtain the following function of time

B = 4
(O10 + αIt)(O20 + (1 − α)It)

(O10 + O20 + It)2
−→ 4α(1 − α) (15)

where the last limit holds for t >> Oi0/(αI), i = 1, 2. We see that in the long run the
balance converges to a constant value which depends only on the investment shares and is
the same function that one has with zero initial values. We can state the following then:

Proposition 2. In the long run the balance converges to the constant value B(α) = 4α(1−
α).

The dynamics of the balance in the transitory phase (t ≃ Oi0/(αI)) is different depend-
ing on the settings of the systems. There are seven different cases:

case 1. O10 < O20 and α < 1/2

Option O1 remains smaller. The balance B(t) never reaches its maximum value and follows
a monotonic trend with the following sub-cases:

• if O10

O20
> α

1−α
then B(t) is decreasing

• if O10

O20
< α

1−α
then B(t) is increasing

case 2. O10 < O20 and α > 1/2

Option O1 starts smaller but grows at a faster rate than option O2. There is a time t = t∗

when the two options are equal and the balance is maximal.:

t∗ =
O20 − O10

(2α − 1)I
(16)
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Such a value has to be positive and then it is defined only in this case and in case 3 (see
below).

case 3. O10 > O20 and α < 1/2

This case is equivalent to case 2 with exchanged roles of options O1 and O2.

case 4. O10 > O20 and α > 1/2

This case is the mirror of case 1.

case 5. O10 6= O20 and α = 1/2

The two options start with different values but eventually become equal when t >> t∗. In
the long run the balance reaches a maximum, as the following limit shows

4
(O10 + It

2
)(O20 + It

2
)

(O0 + It)2
−→ 1

case 6. O10 = O20 and α 6= 1/2

The balance is maximal at t = 0 and then decreases monotonically, converging to the value
given by (15).

case 7. O10 = O20 and α = 1/2

This is the setting in which the balance is kept constant at its maximum value. Defining
O0 = O10 + O20, we have

B(t) = 4
(O0

2
+ It

2
)2

(O0 + It)2
= 1

The last case is what one would desire to have if aiming at maximizing the probability
of emergence, since it keeps the balance at its maximum forever. Nevertheless this is a
particular case of a more general configuration in which the balance stays constant through
time:

Proposition 3. The balance is constant through time and equal to B(α) = 4α(1 − α) if
and only if

O10

O20

=
α

1 − α
(17)

The proof of this proposition is in appendix A. This configuration falls into cases 1, 4
and 7 of the list presented above. As a function of time the balance may or may not have
a critical point t∗, that is a time when it reaches its maximum value: this depends on the
relative value of the ratio of initial values and the ratio of investments shares. In words,
if an option starts smaller but has higher investment share, it will overcome the other
option eventually. The time t∗ when this happens is a maximum point for the balance.
The following figure shows two examples of time evolution of the balance function. Here
we have set I = 4, with initial values O10 = 1 and O20 = 2. Example B represents case
“2”, with α = 3/4 (but we would obtain a similar pattern in case 3). In the latter case
there is a time t∗ = 1/2 when the balance is maximum (equal to one). As we will see
below this corresponds to the trajectory in (O1, O2) space crossing the diagonal. Example
A falls into case “1” and the balance happens to be monotonically decreasing because
O20/O10 < (1 − α)/α. If we would have set α = 2/5 for instance, B(t) would have been
monotonically increasing. In general B(t) is decreasing when α

1−α
< O10

O20
and increasing

when α
1−α

> O10

O20
.
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Figure 4: Two cases for the balance as a function of time (I = 4, O10 = 1 and O20 = 2). Case 1 has
α = 1/4. Case 2 has α = 3/4

The dynamics of this simple two-dimensional system can be understood also looking at
options trajectories in (O1, O2) space (figure 5). Starting from the expression of the two
options’ ratio

O1

O2
=

O10 + αIt

O20 + (1 − α)It

one can eliminate time and express one option in terms of the other:

O2 = O20 −
1 − α

α
O10 +

1 − α

α
O1

The starting point (t = 0) of each trajectory is determined by the initial values (O10, O20).
The slope is the ratio of investment shares. In the following figure we report the trajectories
representing the first five cases of the previous list plus a case of constant balance. In case
“6” the system starts on the diagonal and moves away. In case “7” the trajectory coincides
with the diagonal, representing the perfect maximal balance of two options.

Now we proceed to the integration of balance, giving the value of the innovative option
at time t. We assume that k = 4Dγ−1/N , so that π = 1 (maximal efficiency of recombinant
innovation). Equation (14) becomes

O3(t) = 4I3

∫ t

0

(O10 + αIs)(O20 + (1 − α)Is)

(O0 + Is)2
ds (18)

The detailed solution of this integral is reported in appendix B. The final result is the
following:
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Figure 5: Trajectories of the two parent options in the (O1, O2) space. Trajectory “1” has O10 < O20

and α < 1/2, trajectory “2” has O10 < O20 and α > 1/2, trajectory “3” has O10 > O20 and α < 1/2,
trajectory “4” has O10 > O20 and α > 1/2, trajectory “5” has O10 6= O20 and α = 1/2, trajectory
“6” has O10 = O20 and α < 1/2 and trajectory “7” has O10 = O20 and α = 1/2. The trajectory of
constant balance has a slope equal to the ratio of the coordinates of the starting point.

O3(t) = 4
I3

I

[

(

O10 − αO0

)2
(

1

O0 + It
− 1

O0

)

+ (19)

+
(

O10 − αO0

)

(1 − 2α) ln
O0 + It

O0
+ α(1 − α)It

]

If condition (17) holds, O10 = αO0 and the expression of the innovative option reduces to
O3(t) = 4I3α(1−α)t. This linear behaviour is what we have in the early stages of existence
of the innovation, namely when It << O0. In the long run instead the logarithmic term
can not be neglected and the value of innovation is approximately given by

O3(t) ≃ 4
I3

I

[

(

O10 − αO0

)

(1 − 2α) ln
It

O0
+ α(1 − α)It

]

(20)

The first term in this expression is constant and does not affect the growth rate of the
innovative options. The coefficient of the logarithmic term will determine whether the
time pattern of the innovative option will be concave (positive sign) or convex (when the
sign is negative). The first case arises when α < 1/2 and α < O10/O0 or α > 1/2 and
α > O10/O0. These are exactly the conditions of cases “3” (α < 1/2 and O10 > O20)
and “2” (α > 1/2 and O10 < O20) respectively, when the balance has a critical point t∗.
The convex time pattern occurs when balance does not have a critical point instead. For
example take O0 = 3, O10 = 1, O20 = 2, α = 2/3. Since O10/O20 = 1/2 < α/(1 − α) = 2
we have that option 3 follows a concave time pattern, O3(t) = 4

3

[

2t + ln(1 + t) − t
1+t

]

.
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5 A size effect

5.1 Specifying the size effect

Up to now the probability of emergence of a third option was related only to the diversity
index as a function of the two starting options and the dynamics of the system was driven
only by the balance. We now introduce a size effect into the probability of emergence of
the third option. This is meant to catch the positive effect that a larger size of one or
both options has on the probability of emergence, some kind of scale economy effect in the
innovation process. If the size effect is captured by a factor S(O1, O2), the probability of
emergence of the third option can be expressed as

PE = πB(O1, O2)S(O1, O2) (21)

The size effect is defined to have the following properties. First it is increasing in the size of
each of the two starting options with diminishing effects (i.e. first derivatives and negative
second derivatives). Secondly it should not overlap with the balance factor, which means
that only the total sum of the sizes of options matters for the size effect and not their
distribution. Third, the size function must be bounded, to guarantee that the probability
PE ranges in the interval [0, 1]. One attractive functional specification then is the following:

S(O1, O2) = 1 − e−σ(O1+O2) (22)

The parameter σ captures the sensitivity of the system to the size: the higher its value,
the stronger is the size effect in the sense that the factor S is larger for a given size of the
two options7.
The marginal effect of the options values is diminishing as we can see by taking the first
derivative of the factor S with respect to the sizes. Moreover this marginal effect is the
same for each of the options values:

∂S

∂O1

=
∂S

∂O2

=
∂S

∂O
=

σ

eσO
(23)

where O = O1 + O2. We see how the particular contribution of each option is indistin-
guishable within the size factor. in other words, the size factor is the same with two equal
options sizes as with two very different values that sum up the same total size.

If now we substitute in the size factor the explicit values of the two parent options
at time t (which are not affected by the presence of a size factor into the probability of
emergence of a third option), we obtain the following expression for the probability of
emergence

PE(t) = πB(t)
(

1 − e−σ(O0+It)
)

(24)

where O0 = O10+O20 as before. Note how the effect of size on the probability of emergence
is independent of the time t = 0 when the investment was done. Only the overall size
O(t) = O0 + It counts. In particular the size factor is not necessarily zero at t = 0, as
the initial values of the two starting options affect the probability of emergence not only
through the balance but also directly via the size effect.

7Alternatively one could allow for heterogeneous effects with the specification 1 − e−σ1O1−σ2O2 . For
example this one may address two different technologies operating in different sectors with different sen-
sitivities σ1 and σ2.
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The size effect converges to one as the cumulative investment becomes sufficiently large
(It >> O0) so that the exponential term is negligible. This is consistent with normalization
of the probability PE(t) as shown by the following limit:

limt→∞S(t) = 1 (25)

5.2 Time pattern of PE with constant balance

In order to understand the impact of the size of parent options on the innovation process we
look at the behaviour of the probability of emergence through time for few different values
of the balance in the particular setting in which the balance is constant (condition (17)).
Doing so we select the dynamic size effect. Assume that the efficiency of recombinant
innovation is maximal (π = 1), so that PE(t; α) = B(α)S(t), with B(α) = α(1 − α).
Considering the previous analysis of the balance and the specification of the size effect, in
the long run we have

limt→∞PE(t) = B(α) (26)

In the case α = 1/2 we have the maximal balance B(α) = 1. This means that the third
option can arise with certainty only in an infinite time. The size factor S(t) describes a
saturation effect of the probability of emergence PE: if we wait for a sufficiently long time
this probability is almost one. We might think of the event of birth (emergence) of this
third option as occurring suddenly at a time tE . Then we can write PE(t) = Prob(tE < t).
In cases other than the symmetric one the balance is suboptimal (B < 1) and PE(t) < 1
even after an infinite time. This means that the occurrence of a third option is not certain
with unbalanced starting options even waiting an infinite amount of time. All this can be
summarized in the following proposition:

Proposition 4. When a marginal diminishing size effect is introduced in the probability of
emergence, innovation occurs almost surely if and only if the balance is constant and equal
to its maximum value (B = 1).

Table 1 helps to get an idea of how the balance and the size factor jointly determine
the probability of emergence. The balance is constant and the dynamics is due only to
the size effect. We set σ = 1/O0 and consider the investment shares α = 1/2, α = 1/3,
α = 1/4 and α = 1/8:

PE It >> O0 It = 3O0 It = 2O0 It = O0 It = 0
(S = 1) (S ∼= 0.98) (S ∼= 0.95) (S ∼= 0.87) (S ∼= 0.63)

α = 1/2 B = 1 100% 98% 95% 87% 63%

α = 1/3 B = 8/9 89% 87% 84% 77% 56%

α = 1/4 B = 3/4 75% 74% 71% 65% 47%

α = 1/8 B = 7/16 44% 43% 42% 38% 28%

Table 1: Probability of emergence for different values of balance B and size factor S.

In the long run the size factor is nearly one and the probability of emergence reflects
directly the balance of the two options: according to our assumption, the more symmetric
is the system the more likely the third option is to arise.
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5.3 Solving the dynamic model with the size factor

We now integrate the third equation of the model (1) with a full specification of the proba-
bility of emergence, that is taking into account the balance and the size effect. Beforehand
it is useful to write down explicitly the probability of emergence as a function of time when
both the balance and the size factor are included (again we assume π = 1):

PE(t) = 4
(O10 + αIt)(O20 + (1 − α)It)

(O10 + O20 + It)2

(

1 − e−σ(O0+It)
)

(27)

We will proceed by steps in order to better understand the effect of size in the model.
First assume that the investment shares are set in a way that their ratio equals the ratio of
the initial values of the parent options (condition (17)). In this case we obtain a constant
balance B = 4α(1 − α) and the rate of growth PE of the third option becomes

PE(t) = B
(

1 − e−σ(O0+It)
)

(28)

With this specification of the dynamics we obtain the following time pattern for option the
innovative option:

O3(t) = 4πI3α(1 − α)

[

t +
e−σO0

σI

(

e−σIt − 1
)

]

(29)

The first term of this expression is what we have without size factor. The second term comes
from the size effect. Here Ȯ3(t) > 0 and Ö3(t) > 0 ∀t ≥ 0.8 This means the innovative
option has a convex time pattern9. Such a behaviour accounts for a transitory phase in
which the third option “warms up” before getting to work. The time pattern of O3(t)
tends to the asymptote Bt−B/(σeσO0): after a sufficiently long time the innovative option
attains linear growth. An indication of the characteristic time interval of transitory phase
before linear growth is given by the intercept t̂ = e−σO0

σI
B. Depending on the sensitivity

parameter σ and depending on the total initial value of the parent options and their
cumulative investment I, the transitory phase can last a very long time or may be very
brief: the higher the sensitivity σ or the initial value O0 or the investment rate I, the
shorter the transitory phase and the faster the innovative option gets to linear growth. In
figure 6 we give an example of function O3(t): here we have set B = 1, σ = 1/4, I = 4 and
O10 = O20 = 2. With these values we have O3(t) = t + (e−t − 1)/e and the asymptote is
t − 1/e.

In this section we solve the third equation of the model (1) in the general case. This
means that we want to compute the time integral of the general expression of the probability

8the first derivative is Ȯ3(t) = PE(t) while the second derivative is Ö3(t) = σIe−σ(O0+It)

9The profile of O3(t) suggests to compare the innovative options value to the value of a financial call
option. In our case the time plays the role of the underlying asset. The characteristic time t̂ resembles the
strike price. The first time derivative of the option value, which is equal to the probability of emergence,
corresponds to the financial delta of the option. This interpretation may not seem to fit well the option
generated by recombinant innovation at a first glance and the time as underlying may look a bit weird. But
one should think that under our assumption the parent options evolve linearly with time, so that time is
just a rescaled value of the parent options. Thinking this we see how the parent option play effectively the
role of underlying assets. And the process of recombinant innovation somehow resembles the exercise of a
call option. An extension of our model would be to consider stochastic processes for the parent options.
Under such assumption the interpretation of the innovative option as derivative would probably be more
natural.
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Figure 6: Value of the innovative option at time t, case of constant balance (B = 1, σ = 1/4, I = 4
and O10 = O20 = 2)

of emergence as given by (27):

O3(t) = 4I3

∫ t

0

(O10 + αIs)(O20 + (1 − α)Is)

(O0 + Is)2

(

1 − e−σ(O0+Is)
)

ds

We will call this solution Oσ
3 (t) to differentiate it from the solution without size effect.

Appendix B contains all the details of the derivation of O3(t). Here we report the result:

Oσ
3 (t) = BI3t + B

e−σO0

σI

(

e−σIt − 1
)

+
4I3

I
σEG ln

O0 + It

O0
+

+
4I3

I
EG

[ 1

O0

(

1 − e−σO0
)

− 1

O0 + It

(

1 − e−σ(O0+It)
)

]

+ (30)

+
4I3

I

[

σEG − (EH + FG)
]

[ ∞
∑

k=1

(

− σ(O0 + It)
)k

k · k!
−

∞
∑

k=1

(

− σO0

)k

k · k!

]

Here B = 4α(1 − α) is the value of the balance when it does not depend on time.
E = O10(1 − α) − αO20, F = α, G = O20α − (1 − α)O10 and H = (1 − α). When
the balance is constant we have O10(1 − α) = O20α, and the expression of O3(t) only con-
tains the first two terms since E = G = 0. This case was already described in the previous
section. When the balance is not constant the time pattern of the third option contains
a logarithmic term, a negative exponential divided by a linear function and two infinite
sums, one constant and the other dependent on time. As argued in appendix B, the two
sums converge to negative exponentials. This means that the infinite sum which depends
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on time goes to zero for It >> O0. In the long run the time pattern of Oσ
3 is given by the

following expression (we make explicit the constants B, E and G):

Oσ
3 (t) ≃ 4α(1 − α)I3t − 4

I3

I
σ[O10(1 − α) − O20α]2 ln

It

O0
(31)

Without size effect we have (see equation (20))

O3(t) ≃ 4α(1 − α)I3t + 4
I3

I
[O10(1 − α) − O20α](1 − 2α) ln

It

O0

When a size factor is present, the logarithmic term adds negatively to the value of the
innovative option in the long run. Without size effect the logarithmic term can be either
positive or negative instead. With a size effect the contribution of the logarithmic term
depends much on the value of σ, which relates to the size effect of the parent options on
the probability of emergence and which should be estimated empirically.

6 Optimization of diversity

Now we address the problem of optimal diversity. The objective function depends on the
benefits from parent and innovative options at some final date t:

V (α; t) = O1(t; α)s + O2(t; α)s + O3(t; α)s (32)

This function contains a parameter s > 0 which indicates the returns to scale from invest-
ment in each option. This definition clarifies the relevance of the trade-off between returns
to scale from specialization and benefits from recombinant innovation. Our control vari-
able is the time-constant investment share α. The maximization problem is then defined
as follows:

max
α∈[0,1]

O1(t; α)s + O2(t; α)s + O3(t; α)s (33)

We will solve this optimization problem for different versions of the model, namely with
and without initial values of parent options and with and without the size factor. The
simple case of zero initial values and no size effect was the pilot model that we addressed
initially. Before passing on to more complex specifications we study in some detail the
first order conditions for that simple case because they give a general indication of the
qualitative properties of the benefits curve.

6.1 The shape of the benefits curve

Substituting the solutions Oi(t) of the pilot model (see section 2), the maximization prob-
lem becomes

max
α∈[0,1]

V (α; T ) = T sIs
[

αs + (1 − α)s + Csαs(1 − α)s
]

(34)

Here C = 4πI3/I as usual and π is the efficiency of recombinant innovation defined in
section 3.3. We prefer to examine the normalized version of the benefits function, which is
obtained dividing V by the benefits from specialization V (α = 0; t) = V (α = 1; t) = Ists.
Such a normalization does not affect the solution of the optimization problem since Ists is
a factor that does not depend on α. The first order necessary condition for maximization
of final benefits is

∂Ṽ

∂α
= sαs−1 − s(1 − α)s−1 + Css

[

α(1 − α)
]s−1

(1 − 2α) = 0 (35)
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There may be one or three interior solutions to this equation. The symmetric solution
α = 1/2 always exists. Depending on the returns to scale parameter s two other solutions
are present, α1(s) and α2(s). They are symmetric with respect to α = 1/2 (in accordance
with the symmetry of the system under study) so that α1 + α2 = 1 and if they exist they
always give a minimum value of benefits, while α = 1/2 may be either a minimum or a
maximum. The transition from α = 1/2 as a minimum to α = 1/2 as a maximum depends
on the appearance of these two roots. In general for a given value of the factor C there is a
threshold level of returns to scale ŝ at which α = 1/2 is neither a maximum or a minimum.
This threshold value is given by a tangency requirement

∂2Ṽ

∂α2

∣

∣

∣

∣

α=1/2

= 0

Computing the second derivative in α = 1/2 and setting it to zero one works out the
condition

ŝ =

(

C

2

)ŝ

+ 1 (36)

This means that for a given probability of recombinant innovation (C given) the threshold
value of returns to scale ŝ is a fixed point of the function f(s) =

(

C
2

)s
+1. Note that ŝ > 1

since C ≥ 0. Then we have the following proposition:

Proposition 5. Necessary condition to have only 1 stationary point (α = 1/2, local and
global minimum) is increasing returns to scale. With decreasing returns there are always 3
stationary points.

Conversely if the returns to scale are set to some value s then one can obtain an
explicit solution for the threshold value of the probability of recombinant innovation, Ĉ =
2(s − 1)1/s.

A graphical analysis is illustrative. With C = 1 (for instance with I = 4I3 and π = 1)
we have ŝ ≃ 1.3833. In the following figures we report the graphs of Ṽ (α) and its derivative
for two different cases:

Ṽ ′(α)/s = αs−1 − (1 − α)s−1 +
[

α(1 − α)
]s−1

(1 − 2α)

In the first case (s = 1.5, figure 7) the only stationary point is α = 1/2, a local and global
minimum of final benefits. Global maxima are the corner solutions α = 0 and α = 1. In
the second case (s = 1.5, figure 8) there are three stationary points: α = 1/2 is now a
local maximum (possibly also global), while the two symmetric stationary points appear,
α1 and α2, which are local and global minima.

If we now go back to the analysis of section 2, we can compare the transition value
ŝ with the threshold value s between diversity and specialization as optimal solution for
maximum final benefits.

Lemma Without recombinant innovation (π = 0) we have ŝ = s = 1. With recombinant
innovation (π > 0) it holds ŝ > s > 1.

This means that three different regions can be identified in the returns to scale domain, as
figure 9 shows.
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Figure 9: With a positive probability of recombinant innovation π > 0 we have ŝ > s > 1.

6.2 Optimization with size effect and zero initial values

In this subsection we consider zero initial values for the parent options and a probability of
emergence PE containing both the balance and the size factors. As we know from section
2 the balance is constant when initial values are zero. But PE depends on time because
of the size effect. The objective function for the problem of maximization of final benefits
is defined as in the pilot model. The expression of the innovative option is given by (29).
Substituting this, the final benefits read

V (α, t) = (αIt)s +
(

(1 − α)It
)s

+
[

4πI3α(1 − α)
]s[

t + g(t)
]s

(37)

where g(t) = (e−σIt − 1)/σI. If we normalize the objective function dividing it by (It)s

(benefits from specialization) we have

Ṽ (α, t) = αs + (1 − α)s + Csm(t)sαs(1 − α)s (38)

where the constant factor C is the same as we defined for the pilot model (C = 4πI3/I).

Now a time dependent factor shows up, m(t) = 1 + e−σIt−1
σIt

, with m′(t) > 0, limt→0 m(t) =
0 and limt→∞ m(t) = 1. The factor m(t) monotonically modulates the contribution of
innovative recombination to final benefits, being very small at early stages and converging
to one at the end of the investment. This feature adds considerably to the realism of the
model.

In the long run (It >> O0) the model converges to the pilot model, where only C
appears in the expression of final benefits. This consideration can be pushed even further
incorporating m(t) into C and defining a function C(t) = Cm(t). As one can see looking
at expression (38), final benefits with size effect are formally the same as in the pilot
model (6). Only difference is that constant C now depends on time. This consideration
is maximally important for the optimization of diversity. Even if the size effect makes the
investment system dynamic, still the optimal solution will be either α = 0, 1 or α = 1/2.
The optimal diversity now is time dependent but it can be just one of these values. This
is better understood by looking at figures 2 and 3. As time flows, the factor C(t) increases
and the benefits curve goes from the lower curve π = 0 (representing C = 0) to the upper
curve π = 1 (which stands for C = 1).

The first order necessary condition for optimization of diversity in this dynamic setting
is the following:

sαs−1 − s(1 − α)s−1 + C(t)s
[

α(1 − α)
]s−1

(1 − 2α) = 0 (39)

The analysis of section 6.1 can be repeated here by substituting the constant factor C with
the function C(t). In particular the threshold value ŝ of returns to scale where the two
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symmetric roots appear and α = 1/2 becomes a (local) maximum of benefits is given by
the counterpart of equation (36):

ŝ(t) =

(

C(t)

2

)ŝ(t)

+ 1 (40)

Now the transition value is a function of time. It may also be interesting to think in terms
of transition time t̂: for a given value of returns to scale s one computes the factor C that
satisfies the equation above:

C(t̂) = 2(s − 1)1/s (41)

Similarly to the transition from one to three stationary points, also the threshold analy-
sis for optimal diversity is formally the same as in the pilot model. We define the threshold
value s(t) as the returns to scale level at which, for a given time horizon t, the benefits
with α = 1/2 are the same as the benefits from specialization (either α = 0 or α = 1).
Using expression (38) this requirement turns into the following equation

Ṽ
(

α = 1/2
)

=
1

2s

[

2 +

(

C(t)

2

)s]

= 1 (42)

We can express this result with the following proposition10:

Proposition 6. For a given time horizon t diversity (α = 1/2) is optimal if and only if
s < s(t).

How s(t) behaves? The larger t, the larger s(t). The intuition is the following: C(t) is
increasing and this means that time works for recombinant innovation. As time goes, the
threshold value of returns to scale above which specialization is optimal becomes larger
and larger. The region where diversity is optimal enlarges. This fact is represented in the
following figure.

Figure 10: As time goes, the region of returns to scale where diversity is optimal becomes larger

Alternatively one can define a threshold time horizon t:

C(t) = 2s+1
(

2s−1 − 1
)

(43)

The threshold value t that satisfies (43) for a given level of returns to scale s must be
computed numerically. Its interpretation is the following: for t < t specialization (in one
of parent options) is optimal. For t ≥ t diversity (α = 1/2) is optimal. We may want to
understand how such a threshold time depends on returns to scale. The function C(t) is
monotonically increasing: the inverse C−1(·) can be defined (and it is increasing as well)
and a solution t exists. The right hand side of (43) is increasing11 in s. We have the
following result then:

10This generalizes proposition 1 of the pilot model
11We have d

ds
2s+1

(

2s−1 − 1
)

= 2s+1 ln 2(2s − 1) > 0 since s > 0
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Proposition 7. For higher returns to scale s the threshold time horizon t is larger and it
takes a longer time for diversity (α = 1/2) to become the optimal decision.

Concluding, the size effect introduces a dynamical scale effect into the system. The
optimal solution may change through time, but it can only switch from α = 0, 1 to α = 1/2
if it ever would. This happens if and only if the probability of recombination π is large
enough (see corollary 2 in section 2).

A last important consideration. in the limit of infinite time (It >> O0) the size effect
saturates (limt→∞ S(t) = 1). This means that if one faces a time horizon long enough the
size factor can be discarded in the probability of emergence of recombinant innovation.
Not paying attention to the transitory phase, the solution at time t for optimal diversity
in such a dynamic model will converge to the static pilot model solution.

6.3 The effect of non-zero initial values on optimization

Now we want to see what happens if we consider the initial value of parent options in the
optimization of final benefits. Equation (19) shows the value of the innovative option in
this case:

O3(t) = C
[

f(α, t) + α(1 − α)It
]

(44)

where C = 4πI3/I. Comparing this with the expression that we used in the model of
section 2 we have one more term:

f(α, t) =
(

O10 − αO0

)2
( 1

O0 + It
− 1

O0

)

+
(

O10 − αO0

)

(1 − 2α) ln
O0 + It

O0

This is the sum of two terms: one is hyperbolic and converges to a negative value as
time goes to infinity. The other is logarithmic and monotonically increasing or decreasing
depending on the factor (O10 − αO0

)

(1− 2α). The objective function for maximization of
final benefits is

V (α, t) =
(

O10 + αIt
)s

+
(

O20 + (1 − α)It
)s

+ Cs
[

f(α, t) + α(1 − α)It
]s

(45)

Normalizing this function to (It)s as done before is less meaningful since with non-zero
initial values (It)s does no longer represent the value of benefits with specialization. Nev-
ertheless this normalization leaves us with an adimensional function and allows to compare
the results with other versions of the model. The normalized benefits are

Ṽ (α, t) =

(

O10

It
+ α

)s

+

(

O20

It
+ 1 − α

)s

+ Cs

[

f(α, t)

It
+ α(1 − α)

]s

(46)

The first order necessary condition for a maximum is

(

O10

It
+ α

)s−1

−
(

O20

It
+ 1 − α

)s−1

+ (47)

+ Cs

[

f(α, t)

It
+ α(1 − α)

]s−1(
1

It

∂f(α, t)

∂α
+ 1 − 2α

)

= 0

The solution to this equation is rather complicated. But the important result is a breaking
of symmetry in the system because O10 6= O20 in general. A first consequence is that
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α = 1/2 is not a solution to the above equation in general12. Initial values of parent
options make the investment system truly dynamic. Now diversity as optimal solution is
represented by a function of time α∗(t). Given the time horizon t, equation (47) must be
solved numerically in order to find α∗(t). But there is more to it. If the time horizon is
long enough (It >> O0) the initial values do not affect the system anymore and we are
back in the situation of the pilot model. In the long run symmetry is restored. In the long
run one can disregard the complicate dynamics of the system produced by initial values
and simply find the optimal diversity of the investment system as if facing the conditions
of the pilot model.

6.4 Optimization in the general case

In this last section we address the optimization of the more general model, with a size
factor and initial values different from zero. The value of the innovative option at time t
is given by (30). We rewrite it here as

O3(t) = C

{

B(α)It + B(α)
e−σO0

σ

(

e−σIt − 1
)

+ σE(α)G(α) ln
O0 + It

O0
+

+ E(α)G(α)
[ 1

O0

(

1 − e−σO0
)

− 1

O0 + It

(

1 − e−σ(O0+It)
)

]

+ (48)

+
[

σE(α)G(α) − (E(α)H(α) + F (α)G(α))
]

[ ∞
∑

k=1

(

− σ(O0 + It)
)k

k · k!
+

−
∞

∑

k=1

(

− σO0

)k

k · k!

]

}

Here we explicitly indicated which factors depending on the control variable α: B(α) =
α(1 − α) and for the other functions of α we refer to equation (30). Note that it is not
possible to separate this expression into two factors dependent separately on t and α as
we managed to do in section 6.2. The value of final benefits from the overall investment is
similar to the one given by equation (45)

V (α, t) =
(

O10 + αIt
)s

+
(

O20 + (1 − α)It
)s

+ (49)

+ Cs
[

B(α)It + B(α)
e−σO0

σ

(

e−σIt − 1
)

+ h(α, t)
]s

where h(α, t) collects all terms in the expression of O3 but the first two. The contribution
of innovation (the term multiplied by Cs) consists of three terms. The first is the basic
and linear one, which already appeared in the pilot model. The second is a direct effect
of the size factor. The third one is due to the presence of non-zero initial values of parent
options. This expression combines the effects that we have been analysing separately so
far. If we normalize this expression dividing it by Ists as we have done before we obtain

Ṽ (α, t) =

(

O10

It
+ α

)s

+

(

O20

It
+ 1 − α

)s

+ Cs

[

B(α)n(t) +
h(α, t)

It

]s

(50)

where n(t) = 1+e−σO0/(σIt)(e−σIt−1). This time factor can be expressed in terms of factor
m(t) that we have introduced in section 6.2: n(t) = e−σO0m(t)+1−e−σO0 , n(0) ≃ 1−e−σO0 ,

12α = 1/2 is still a solution to the particular case of equal initial values O10 = O20, where the system is
symmetric.
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n′(t) = e−σO0m′(t) > 0 and limt→∞ n(t) = 1. The smaller the sum of initial values (O0)
the closer n(t) is to m(t). In the limit, limO0→0 n(t) = m(t). The qualitative effect of n(t)
on final benefits is the same as the effect of m(t) anyway: as time goes by, this term drives
the benefits curve from lower values where the contribution of innovation is negligible to
higher values where diversity may be the optimal choice eventually. The presence of non-
zero initial values brakes the symmetry of the system and α = 1/2 is not a solution to the
first order condition in general. The first order necessary condition for optimization is

(

O10

It
+ α

)s−1

−
(

O20

It
+ 1 − α

)s−1

+ (51)

+ Cs

[

B(α)n(t) +
h(α, t)

It

]s−1(
1

It

∂h(α, t)

∂α
+ n(t)(1 − 2α)

)

= 0

In the long run (It >> O0) the initial values become negligible, as already noticed, and
the size factor converges to one. This means that also in the more general case, where
both initial values and size effect are important, if the time horizon is long enough, one
can address the much simpler pilot model, doing as if initial values and size effects were
absent. The solution for optimal diversity in the corresponding version of the pilot model
will be the long run solution of the general model.

7 Conclusions and further research

This study has proposed a model of recombinant innovation which was applied to an invest-
ment decision problem where the decision maker faces a tradeoff between scale advantages
and the benefits of diversity. We considered three different versions of the model with
increasing levels of complexity. First a pilot model was developed to express the core ele-
ments of recombinant innovations. A more general model devoted attention to the detailed
structure of diversity and allowed initial values of parent options to be different from zero.
Finally a third version introduced a diminishing marginal size effect in the probability of
emergence of a recombinant innovation.

The initial part of the analysis consisted of deriving a solution for the three model
versions. We have shown the condition for constant diversity of the system of parent
options: in order to have constant diversity the ratio of investment shares must be equal
to the ratio of initial values of parent options. When this is not the case, diversity changes
over time and its qualitative behaviour depends on which ratio is larger. Nevertheless in
all cases diversity converges to the same constant value in the long run. The investment
shares and the initial values of parent options also determine the shape of the time pattern
of the innovative option. In the long run we have a linear plus a logarithmic term and the
shape may be either convex (faster than linear growth) or concave (slower than linear).

In order to account for the diminishing marginal contribution of total parent options’
size, a size effect is added into the probability of emergence. The time pattern of the
innovative option then becomes quite complicated. In the long run it reduces again to a
linear plus a logarithmic term. What is interesting is that now such a logarithmic term
always adds negatively and causes a convex shape of the innovative option through time.

We then moved on to optimize diversity given a final benefits function, which comes
down to finding an optimal balance or an optimal trade-off between the benefits of diversity
due to recombinant innovation and the benefits associated with returns to scale. We derived
conditions for optimal diversity under different regimes of returns to scale. Maximum
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diversity, expressed by a perfectly symmetric system with α = 1/2, may be either a local
maximum or a local minimum of final benefits, depending on the level of returns to scale.
When diversity is a local maximum two other stationary points of final benefits are present.
We have defined two threshold values of returns to scale: the first one is the value where
the system makes a transition from one to three stationary points of final benefits. The
second threshold is the returns to scale level below which diversity is a global maximum of
final benefits.

The presence of a size factor in the probability of emergence makes the returns to scale
threshold time dependent. This suggests a second dimension of a threshold analysis, which
is in the time domain: for a given level of returns to scale, when the investment time horizon
is beyond a threshold value, the best choice becomes diversity. This threshold time horizon
will be larger the higher are the returns to scale. Introducing the initial values of parent
options breaks the symmetry of the system. In particular an investment share α = 1/2 is
not a general solution to the maximization problem. In the long run symmetry is restored,
that is, approximated through convergence and diversity (α = 1/2) may become optimal
eventually.

A number of directions for future research can be identified. Basic extensions are the
use of a NPV (CBA) objective and the inclusion of a discount factor. Somewhat related
(mathematically equivalent to discounting in fact) is adding a depreciation term for invest-
ment dynamics. Currently the assumption is that somehow it represents knowledge that
does not depreciate over time. Another line of research is to endogenize investment in the
innovative option (which now is fixed and exogenous) and make it part of the (optimal)
allocation decision. Next, one can study recombinant innovation in the context of three
or more parent options. Then the marginal effect of adding options can be assessed (e.g.,
diminishing returns under certain conditions), and possibly something can be said about
the optimal number of options in general. Moreover, three or more options allow for an ex-
amination of the role and dynamics of disparity, one of the dimensions of diversity, between
parent options. Finally, one could consider the value of parent options as stochastic pro-
cesses. This suggests an analogy between the innovative option and a financial derivative:
parent options can then be regarded to play the role of underlying assets.
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Appendix A Condition for constant balance

Here we give a proof of the necessary and sufficient conditions of constant balance for the
“Gini” specification.

In order to prove necessity we differentiate the expression B
(

O1(t), O2(t)
)

with respect
to time and see under which conditions the derivative is equal to zero. Using the chain
rule we have

dB

dt
=

∂B

∂O1

dO1

dt
+

∂B

∂O2

dO2

dt
(52)

where

∂B

∂Oi
=

Oj(Oj − Oi)

(Oi + Oj)3
i, j = 1, 2 i 6= j

Time derivatives are given by the specifications of the model (1). If now one substitutes
the time flow of each option value, O1(t) = O10 + αIt and O2(t) = O20 + (1 − α)It, the
time derivative of balance becomes

dB

dt
=

O10 − O20 + (2α − 1)It

(O10 + O20 + It)3

[

(O10 + αIt)(1 − α)I − (O20 + (1 − α)It)αI
]

(53)

Setting this derivative to zero we obtain

(O10 + αIt)(1 − α) = (O20 + (1 − α)It)(αI)

This equation must hold true for any value of t. For instance taking t = 1/I we have

O10

O20
=

α

1 − α

which is condition (17).

This is also a sufficient condition for constant balance as one can see by direct substi-
tution:

B(t) = 4
(O10 + αIt)(O20 + (1 − α)It)

(O10 + O20 + It)2
= 4

(O10 + αIt)(O10
1−α

α
+ (1 − α)It)

(O10 + O10
1−α

α
+ It)2

= 4
(1 + α

O10
It)(1−α

α
+ 1−α

O10
It)

(1 + 1−α
α

+ It
O10

)2
= 4

1 − α

α

(1 + α
O10

It)2

( 1
α

+ It
O10

)2
= 4

1 − α

α
α2 = 4α(1 − α)
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Appendix B General solution to the dynamics of the

innovative option

Here we report the steps of the integration of the probability of emergence as defined in
(27), that is the integration of the third equation of the model (1) leading to the time
value of the third option O3. For less general definitions of the probability of emergence
(for instance without the size factor) the solution can be easily obtained by considering
only the required terms out of those in which we split the general integral.

O3(t) =

∫ t

0

4
(O10 + αIs)(O20 + (1 − α)Is)

(O0 + Is)2

(

1 − e−σ(O0+Is)
)

ds (54)

We substitute s = (x − O0)/I and obtain

O3 =
4

I

∫ O0+It

O0

(E + Fx)(G + Hx)

x2

(

1 − e−σx
)

dx (55)

where E = O10(1 − α) − αO20, F = α, G = O20α − (1 − α)O10 and H = (1 − α). Observe
that E = −G. The expression above contains the difference of two integrals (for ease of
notation we avoid reporting the extremes of integration and consider indefinite integrals
for the moment). The first one is

∫

(E + Fx)(G + Hx)

x2
dx = EG

∫

dx

x2
+ (EH + FG)

∫

dx

x
+ FH

∫

dx

= −EG

x
+ (EH + FG)lnx + FHx

As for the second integral we have

∫

(E + Fx)(G + Hx)

x2
e−σxdx = EG

∫

e−σx

x2
dx + (EH + FG)

∫

e−σx

x
dx +

+ FH

∫

e−σxdx =

= −FH

σ
e−σx − EG

e−σx

x
+

+ [EH + FG − σEG]
[

lnx +

∞
∑

k=1

(−σx)k

k · k!

]

When substituting the latter two results into equation (55) we obtain

∫

(E + Fx)(G + Hx)

x2

(

1 − e−σx
)

dx = −EG

x
+ FHx + FH

e−σx

σ
+

+ EG
e−σx

x
+ σEGlnx +

+ [σEG − (EH + FG)]
∞

∑

k=1

(−σx)k

k · k!
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It is instructive to look first at the case of constant balance. The necessary and sufficient
condition can be written as O10(1 − α) = O20α. Then EG = 0, EH + FG = 0 and
FH = α(1 − α) and the integral above simplifies to

∫

(E + Fx)(G + Hx)

x2

(

1 − e−σx
)

dx

∣

∣

∣

∣

B=const

= α(1 − α)
(

x +
e−σx

σ

)

(56)

The solution for the value of the third option as a function of time is then

O3(t) =
4

I
α(1 − α)

(

x +
e−σx

σ

)

∣

∣

∣

∣

x=O0+It

x=O0

= Bt + B
e−σO0

σI

(

e−σIt − 1
)

(57)

where B = 4α(1 − α). It is useful to check the “physical” dimensions of the solution just
obtained. The first term Bt is a time (balance is dimensionless). The second term is time
too since in the denominator we have the product σI where σ is the inverse of an option
value (money for instance), while I is an investment rate, that is money per unit of time.
Not surprisingly O3 has a time dimension, since at the very beginning of our analysis we
have normalized the investment in the third option: I3 = 1, so that [O3] = time.

Relaxing the condition of constant balance we have the following general result for the
value of the innovative option at time t:

O3(t) =
4

I

∫ x=O0+It

x=O0

(E + Fx)(G + Hx)

x2

(

1 − e−σx
)

dx = (58)

= Bt + B
e−σO0

σI

(

e−σIt − 1
)

+
4

I
σEG log

O0 + It

O0
+

+
4

I
EG

[ 1

O0

(

1 − e−σO0
)

− 1

O0 + It

(

1 − e−σ(O0+It)
)

]

+

+
4

I

[

σEG − (EH + FG)
]

[ ∞
∑

k=1

(

− σ(O0 + It)
)k

k · k!
−

∞
∑

k=1

(

− σO0

)k

k · k!

]

The first two terms are what we have with constant balance (see section 5.3). In the short
run (It << O0) we have O3(t) ≃ Bt. A bit more complex is the analysis of the long
run behaviour (t >> O0/I). The part referring to constant balance will tend to a linear
growth, as we have seen already in the main text. In the logarithmic term the value of the
new investment It overcomes the initial option value O0. The second part of the third term
vanishes even faster than the exponential term of the part relative to constant balance,
because of the presence of t in the denominator. Finally the infinite sum containing t goes
to zero at least exponentially: this can be seen by noting that for even values of k we have
(O0 + It = y)

(−y)k

2k · k!
<

(−y)k

k · k!
<

(−y)k

k!

For odd values of k the inequalities are reversed. This means that our series is bounded
between the functions −1 + e−(O0+It) and −1 + e−(O0+It)/2, implying that it goes to zero at
least exponentially:
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∞
∑

k=1

(

− σ(O0 + It)
)k

k · k!
= −σ(O0 + It) +

σ2(O0 + It)2

2 · 2 − σ3(O0 + It)3

3 · 3!
+

σ4(O0 + It)4

4 · 4!
− . . .

< −σ(O0 + It) +
σ2(O0 + It)2

2
− σ3(O0 + It)3

3!
+

σ4(O0 + It)4

4!
− . . .

= −1 + e−σ(O0+It) ≤ 0

∞
∑

k=1

(

− σ(O0 + It)
)k

k · k!
= −σ(O0 + It) +

σ2(O0 + It)2

2 · 2 − σ3(O0 + It)3

3 · 3!
+

σ4(O0 + It)4

4 · 4!
− . . .

> −σ(O0 + It)

2
− σ(O0 + It)

2
+

σ2(O0 + It)2

22 · 2!
− σ3(O0 + It)3

23 · 3!
+ . . .

= −1 − σ(O0 + It)

2
+ e−

σ(O0+It)
2

Alternatively one can think that for k >> 1 we have k · k! ≃ kek log k−k ≃ k!. This means
that the infinite sums in the expression of O3(t) do not differ too much from negative
exponential functions. In particular the one depending on t goes to zero as time is long
enough (It >> O0). Consequently we are left with the following long run functional
behaviour:

O3(t) ≃ B
(

t − e−σO0

σI

)

+
4

I
σEG log

It

O0
+ (59)

+
4

I
EG

[ 1

O0

(

1 − e−σO0
)

]

− 4

I

[

σEG − (EH + FG)
]

D(σ, O0)

The factor D(σ, O0) =
∑∞

k=1
(−σO0)k

k·k!
only depends on parameters σ and O0; similarly to

what we have noticed for the series dependent on t we can say that such a quantity is
bounded between e−O0 and e−O0/2. In particular one can easily see that C(σ, O0) is finite:

∞
∑

k=1

(

− σO0

)k

k · k!
= −σO0 +

σ2O2
0

2 · 2 − σ3O3
0

3 · 3!
+

σ4O4
0

4 · 4!
− . . .

< −σO0 +
σ2O2

0

2
− σ3O3

0

3!
+

σ4O4
0

4!
− . . .

= −1 + e−σO0 ≤ 0

∞
∑

k=1

(

− σO0

)k

k · k!
= −σO0 +

σ2O2
0

2 · 2 − σ3O3
0

3 · 3!
+

σ4O4
0

4 · 4!
− . . .

> −σO0

2
− σO0

2
+

σ2O2
0

22 · 2!
− σ3O3

0

23 · 3!
+

σ4O4
0

24 · 4!
− . . .

= −1 − σO0

2
+ e

−σO0
2

Obviously the expression in (59) must be positive. The third and the fourth terms are
constant and since we are in the long run regime it does not really matter whether they
are positive or negative (actually the third term is negative, while the fourth can be either
negative or positive depending on σ, the investment share α and the initial values O10 and
O20). The second term is negative, since G = −E. But in the long run the linear function
overcomes the logarithmic one. Then we can be sure that what we obtain for O3(t) in the
long run is a positive quantity.
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