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Abstract We analyze the propensity to approve a random proposal of a large
committee that makes decisions by weighted voting. The approach is a generalized
version of James Coleman’s “power of a collectivity to act”. Throughout the paper it is
assumed that the voters are of two kinds: a fixed (possibly empty) set of “major” (big)
voters with fixed weights, and an ever-increasing number of “minor” (small) voters,
whose total weight is also fixed, but where each individual’s weight becomes negli-
gible. As our main result, we obtain that asymptotically many minor voters act like a
modification of the quota for the vote among major voters. The paper estimates the
rate of convergence which turns out to be very high if the weight distribution among
the small voters is not too skewed. The results obtained are illustrated by evaluating
the decision rules for the Council of Ministers of the EU for various scenarios of EU
enlargement.

1 Introduction

Decision rules can be characterized in terms of the way in which voting power of
individuals is distributed—as represented for example by the Shapley–Shubik index
(Shapley 1953) or Banzhaf (1965) measure—or by some global values. This paper is
concerned with the latter, specifically one that was introduced by Coleman in his 1971
as the “power of a collectivity to act”.
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582 I. Lindner

Coleman defined the power of a collectivity to act as the a priori probability that a
committee representing this collectivity will be able to pass a random bill that comes
before it. The measure is simply the cardinality of winning coalitions divided by all
possible coalitions. Formally, a simple voting game is a collection W of subsets of an
assembly N representing the winning coalitions; hence any S ⊂ N with S /∈ W is a
losing coalition. The power of a collectivity to act A is defined by

A[W] := |W|
2n

, (1)

where n = |N |. If we read |W| as the number of outcomes that lead to action, then
A is defined as the relative number of voting outcomes leading to action. It reflects
the ease with which the individual members’ interests in a collective action can be
translated into actual collective action. This ease is at a minimum if the collectivity
operated under a decision rule in which each member has a veto—unanimity—since
only the grand coalition (the total assembly) can initiate action, i.e. A = 1/2n . If the
committee operates under simple majority rule and has an odd number of members,
then exactly half of the coalitions can initiate action (for an even number of members
it is slightly less than one half). The power of the collectivity is at a maximum under
what Rae (1969) has called a “rule of individual initiative”: where action can be initi-
ated by a single individual, for example when s/he gives a fire alarm. In this case A is
obtained by A = 1 − (1/2n). Unless n is very small A will be close to one.1

Following Felsenthal and Machover (1998, p. 62) we can think of Coleman’s A
as measuring the propensity of a committee to approve a random proposal, i.e. the
complaisance of the rule W .

The interest in Coleman’s A is that it allows us to say something about the ability
of a collectivity that uses voting to make its decisions not only to act, but as Coleman
himself said, “...to act in accord with the aims or interests of some members, but often
against the aims or interests of others. Thus for a collectivity of a given size, the greater
the power of the collectivity to act, the more power it has to act against the interests
of some of the members” (1971, p. 277).

Interest in such a global measure as A has recently emerged. Baldwin et al. (2000),
Felsenthal and Machover (2001), Leech (2002a) have all made use of A to evaluate the
decision rules for the Council of Ministers (CM) of the EU prescribed by the Treaty
of Nice for various scenarios of EU enlargement. All these studies suggest that A falls
significantly as the size of the voting body increases. Table 1 is taken from Felsenthal
and Machover (2001) and gives the decision rules of the CM from 1958 to 1995. The
greatest number of issues in EU parlance, except those concerned with the constitu-
tion of the EU itself, is decided by a rule known as qualified majority voting (QMV).
From 1958 to 1995, the QMV has been a purely weighted decision rule. In a weighted
voting game (WVG) each board member is assigned a non-negative number as weight
and a proposed act is adopted if the combined weight of those affirming it achieves
a fixed quota. Table 4 (see Appendix A) is taken from the Treaty of Nice (2001) and

1 This generally reflects the situation in which a public good, or a public bad, can be supplied by only a
few members of a collectivity.
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The power of a collectivity to act in weighted voting games with many small voters 583

Table 1 QMV weights and
quota, first five periods

“Total” gives the total weight
sum. “Quota” is the absolute
quota; “Quota %” indicates the
relative quota in percentage
terms; “min#” gives the least
number of members whose total
weight equals or exceeds the
(absolute) quota; “A %” is the
Coleman index (1) in percentage
terms

Country 1958 1973 1981 1986 1995

Germany 4 10 10 10 10

Italy 4 10 10 10 10

France 4 10 10 10 10

Netherlands 2 5 5 5 5

Belgium 2 5 5 5 5

Luxembourg 1 2 2 2 2

UK 10 10 10 10

Denmark 3 3 3 3

Ireland 3 3 3 3

Greece 5 5 5

Spain 8 8

Portugal 5 5

Sweden 4

Austria 4

Finland 3

Total 17 58 63 76 87

Quota 12 41 45 54 62

Quota % 70.59 70.69 71.43 71.05 71.26

min# 3 5 5 7 8

A % 21.88 14.65 13.67 9.81 7.78

represents the decision rule designed for the QMV in the EU’s Council of Ministers
following its enlargement to 27 member states.2

Tables 1 and 4 show an alarming decrease of A from 21.88 % in 1958 to 7.78 %
in 1995 and to 1.66 % in 2004. With each enlargement the quotient was kept in the
range of 71 ± 0.5 %. These numbers suggest that if the assembly keeps enlarging,
while keeping the quota more or less constant, it is likely to lead to immobilism of
decision making at the CM. This in turn may endanger the functioning of the whole
EU. These numbers seem to suggest that as a committee expands we may have to
adjust the quota in order to avoid creating an undue bias in favor of the status quo.

In (1) Coleman uses a probability distribution which is equivalent to a random-
voting model in which each member votes for or against with equal probability inde-
pendently of all other members. This is not a behavioral assumption but is a method
of a priori analysis. The latter models the voting system as an “abstract shell”, without

2 The decision rule is not stated in the treaty in this simple form, as a weighted voting game; but it can be
reduced to the form shown in Table 4. The treaty also contains a different interpretation of the agreement,
which cannot be represented as a weighted game. It is thus ambiguous as to which rule applies in an enlarged
27-member CM. In the latter interpretation A slightly increases to 2.025%. For details see Felsenthal and
Machover (2001) and Galloway (2001).
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584 I. Lindner

taking into consideration voters’ preferences, the range of issues over which a decision
is taken or the degree of affinity between the voters. This abstraction seems to be neces-
sary to evaluate the decision rule itself (for a more elaborated discussion, see Sect. 7).
However, the assumption that each voter’s “yes” and “no” choice is equally likely
does not seem to match the observation of many real-world voting scenarios. When
the nature of the analysis changes from the a priori to the actual the question is whether
the pessimistic prognosis on EU’s functioning still holds. In defining complaisance
we take a more general route than Coleman by solely assuming that the small voters
vote independently.

This paper is concerned with the asymptotic behavior of complaisance in WVGs
when there are many small voters. Many economic and political organizations have
systems of governance by weighted voting; examples of economic organizations are
the International Monetary Fund, the World Bank, stock companies, etc. In federal
political bodies the weights are usually designed to reflect the number of inhabitants
of each represented state like in the case of EU’s CM or the US Presidential Electoral
College. However, weighted voting does not only play a central role because it is
very common but also because many voting systems can be reformulated and equiv-
alently represented as such. Taylor and Zwicker (1992, 1999) give a combinatorial
characterization of such games.

Tables 1 and 4 show that in case of EU’s CM the distribution of weights is not
too skewed (in other words, the ratio of the largest weight to the smallest is not very
high). However, in many large economic organizations a small group of “major” voters
owns a significant number of votes usually reflecting their large capital investment.
The formal setup of this paper takes care of possible different settings by assuming
that the voters are of two kinds: a fixed (possibly empty) set of “major” voters with
fixed weights, and an ever-increasing number of “minor” (small) voters whose total
weight is also fixed but the individual weight of each minor voter becomes negligible.
This approach follows Shapiro and Shapley (1978) and Dubey and Shapley (1979)
who give an asymptotic analysis for the Shapley–Shubik and the Banzhaf index. We
combine the analytical solution techniques of Dubey and Shapley with a general ver-
sion of the central limit theorem.3 This enables us to get a closed form solution for
the limit of complaisance and to estimate the rate of convergence.

Using the idea that asymptotically many minor voters act like a modification of the
quota,4 this paper derives the limiting complaisance as a function of voting behavior
for the vote among major voters.

The rate of convergence turns out to be very high (on an exponential rate) if the
weight distribution among the small voters is not too skewed. As a rule of thumb
the limit value of complaisance manifests itself at around 20 small players. The limit
values are easy to compute and hence serve as a convenient approximation for large
committees that apply weighted voting.

3 The approach of Banzhaf (1965) and Coleman (1971) to voting power is comparable in that both assume
voters to act independently of one another. Hence some analytical proof techniques are applicable to either.
4 Dubey and Shapley (1979) use a similar argument for analyzing asymptotic properties of the Banzhaf
index.
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The power of a collectivity to act in weighted voting games with many small voters 585

Section 2 introduces the probabilistic machinery that will be used throughout the
paper. Section 3 formally defines the general setup of the games. Section 4 discusses
the passage of the Coleman index A to the limit when the number of small voters
grows to infinity. As an example Sect. 5 discusses the application of the results to
the CM of the EU. Section 6 provides statements estimating the rate of convergence.
Finally, Sect. 7 concludes.

2 Preliminaries

Let N be a nonempty finite set to which we shall refer as assembly. The elements
of N are called voters and we shall often identify them with the integers 1, 2, . . . , n,
where n = |N |. A play of the voting game consists in a division in which each voter
chooses one of two options (usually, “yes” and “no”). Any subset of S ⊆ N is called
a coalition.

Definition 2.1 A weighted voting game—briefly, WVG

[q;w1, w2, . . . , wn] (2)

is given by an assignment of a non-negative real weight wk to each voter k ∈ N , and
a relative Quota q ∈ (0, 1) such that a coalition S ⊂ N is a winning coalition iff

∑

k∈S

wk ≥ q
∑

k∈N

wk . (3)

The loose inequality ≥ in (3) may be replaced by the strict inequality >. In this
case we shall use the notation

〈 q;w1, w2, . . . , wn〉. (4)

We shall represent the choice of each minor voter k by an independent random
variable Xk such that

Xk =
{

wk if k votes “yes” with probability pk,

0 otherwise,
(5)

where each pk is bounded away from 0 and 1.
Our main tool, borrowed from probability theory, is derived from a general version

of the central limit theorem. We shall use the symbol � to denote the standard normal
distribution. Let the expectation and variance of Xk be denoted by

E [Xk] = µk,

Var [Xk] = σ 2
k .
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586 I. Lindner

Further put

(sn)2 := Var

⎡

⎣
∑

k≤n

Xk

⎤

⎦ =
∑

k≤n

σ 2
k ,

Sn := 1

sn

∑

k≤n

Xk − µk,

and

Qn :=
∑

k≤n

w2
k .

Theorem 2.1 In order that

lim
n→∞ sup

x
|Prob {Sn < x} − �(x)| = 0 (6)

it is necessary and sufficient that the following condition be satisfied:

lim
n→∞

wn√
Qn

= 0. (7)

For a proof see Appendix B.

3 General setup

Consider a partition of the set of voters into two camps. The set of major voters is
L = {1, . . . , l}, where l is a natural number. Note that l = 0 takes care of the case
where L is empty by the general convention that {1, . . . , 0} is empty. Each k ∈ L is
assigned a weight wk , and let wL = ∑

k∈L wk ∈ [0, 1] denote the combined voting
weight of L . We shall consider a sequence of WVGs {�(n)}n∈N with a growing popu-
lation of minor voters. In each of these games �(n), the set of n minor voters is denoted
by M (n) = {l + 1, . . . , l + n}. For each n, these voters have weights α

(n)
1 , . . . , α

(n)
n ,

which sum up to α = 1 − wL > 0.
Formally, the WVG �(n) is described by the tuple

�(n) = [q; w1, . . . , wl , α
(n)
1 , . . . , α(n)

n ], (8)

where q ∈ (0, 1] is the relative quota.

Put α(n)
max := maxk≤n α

(n)
k and Q(n) := ∑

k≤n

[
α

(n)
k

]2
. Let {�(n)}n∈N evolve in such

a way that
lim

n→∞ α(n)
max/

√
Q(n) = 0, (9)

which ensures α
(n)
max → 0 as n → ∞.5

5 However, it can be shown that Q(n) tends to zero so that condition (9) is stronger than α
(n)
max → 0: it

holds that
∑

k (αk )2 ≤ ∑
k αk α

(n)
max ≤ α

(n)
max

∑
k αk = α

(n)
maxα. Now, since α is fixed, but α

(n)
max → 0, it

follows that
∑

k (αk )2 also goes to 0.
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The power of a collectivity to act in weighted voting games with many small voters 587

We do not impose any behavioral assumption on the major voters, however, for the
minor voters we assume:

Assumption 3.1 Each minor voter k votes “yes” independently with probability pk

bounded away from 0 and 1.

Throughout our analysis we shall interpret the weight sum of a random coalition
of minor voters as a sum of random variables which are independent according to
Assumption 3.1. This interpretation allows to derive the limit distribution by means of
the normal distribution as depicted in (6) of Theorem 2.1. Condition (9) ensures that
(7) holds.

In the following let α(n)(S) = ∑
k∈S α

(n)
k denote the random weight sum of the

affirming minor voters S, where S is a random subset of M (n). Let the expectation of
α(n)(S) be denoted by

µ(n) := E
[
α(n)(S)

]
=

∑

k≤n

pkα
(n)
k . (10)

Note that in the a priori case we have µ(n) = α/2 for all n. For general pk we assume

that µ(n) converges to the limit µ with order o
(√

Q(n)
)

.

4 Complaisance in WVG

Let A[�] denote the complaisance of any game �. Note that with Assumption 3.1 we
take a more general route than Coleman’s A as defined in (1). We shall refer to the
latter as a priori complaisance.

Assumption 3.1 suggests that in the limit the continuous “ocean” of minor voters
would be divided such that the affirming voters represent a fraction µ of the total minor
weight sum α.6 Formally, this suggests to focus on the following games

�0 = [q − µ;w1, . . . , wl ],
�′

0 = 〈q − µ;w1, . . . , wl〉 . (11)

Let Bl = [wL ; w1, w2, . . . , wl ] denote the unanimity game among the major vot-
ers in which each voter has a veto. Let B∗

l = 〈0; w1, w2, . . . ., wl〉 represent the
special case where the major voters operate under what Rae (1969) has called a “rule
of individual initiative”: action can be initiated by any single individual.

Put

R := {q | 0 < q < 1} , (12)

J := {q | µ < q < wL + µ} . (13)

6 We owe this insight to Dubey and Shapley (1979) who use a similar argument for an asymptotic analysis
of the Banzhaf index. Theorem 4.1 of the present paper can be seen as an analogue to their Theorem 8,
p. 116.
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588 I. Lindner

Fig. 1 Limit scenario for a priori complaisance in WVGs

Theorem 4.1 In the sequence of games {�(n)}n∈N we have

lim
n→∞ A[�(n)] = 1

2
A[�0] + 1

2
A[�′

0] if q ∈ J . (14)

For other values of q, the right-hand side of (14) simplifies to

lim
n→∞ A[�(n)] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if q < µ,

1
2 (1 + A[B∗

l ]) if q = µ,

1
2 A[Bl ] if q = wL + µ,

0 if q > wL + µ.

(15)

For a proof see Appendix C.
Figure 1 illustrates the result for a priori complaisance and hence µ = α/2. The

asymptotic value of A is determined by the relation of the quota q to the total major
weight wL . At the interior region J = {q | α/2 < q < wL +α/2} the limit follows as
the arithmetical mean of complaisance of finite major games as defined in (11). Let the
closure of J be denoted by J̄ . In the domain R−J̄ the influence of the major voters is
“destroyed”: in the limit we have a combined voting weight of exactly α/2 affirming
minor voters such that q < α/2, the left triangle, always ensures the passage of a
proposal. The opposite holds for wL +α/2 < q, the right triangle, respectively. Here,
even with all major voters affirming the quota q is too high for any motion to pass.

For general {pk}∞k=1, in particular for general µ, the scenario as depicted in Fig. 1
stays topologically the same, however, the interior region J is distorted. The reason
is a shift of the triangle’s lower point at the wL = 0 axis to the right for µ > α/2, to
the left for µ < α/2, respectively, as illustrated in Fig. 2.
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The power of a collectivity to act in weighted voting games with many small voters 589

Fig. 2 Limit scenario for general complaisance

5 An example: the EU council of ministers

This section applies the results on complaisance to the expansion of EU’s CM since
1958. The substantial property of the process was that with each enlargement of the
EU the maximal normalized voting weight decreased while the relative quota was
kept more or less constant at 71% as indicated by Tables 1 and 4. We shall therefore
interpret the enlargement of the CM as a sequence of WVGs with an empty set of
major voters. In formal terms, we put

�(n) = [q;α1, . . . , αn] (16)

with L = ∅. We shall identify the five scenarios from 1958 to 1995 and the QMV
following its prospective enlargement to 27 as sequence elements�(6), �(9), . . . , �(15),

�(27), where the index denotes the size of the Council. The second row of Table 2
suggests that these games can be interpreted as elements of a sequence satisfying
condition (9).

The limit scenario for WVGs with no major voters is depicted by the horizontal
axis wL = 0 and hence α = 1 in Figs. 1 and 2. Theorem 4.1 provides for games with
an empty set of major voters

lim
n→∞ A

[
�(n)

]
=

⎧
⎨

⎩

1 if q < µ,

1/2 if q = µ,

0 if q > µ,

(17)

where µ = 1/2 for a priori complaisance.

Table 2 Evolution of the CM

�(6) �(9) �(10) �(12) �(15) �(27)

α
(n)
max 0.2353 0.1724 0.1587 0.1316 0.1149 0.0852

α
(n)
max/

√
Q(n) 0.5298 0.4603 0.4486 0.4131 0.3994 0.3627
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Fig. 3 Complaisance in EU council of ministers

Figure 3 illustrates a priori complaisance A
[
�(n)

]
for the six scenarios �(6), �(9),

. . . , �(27) as a function of q ∈ (0, 1). The points marked with “ ∗ ” are the corre-
sponding realizations of q in CM as given by Tables 1 and 4. The step function in
the front indicates (in dashed lines) the limit values with increasing number of voters.
As a reference scenario, Fig. 4 provides the same picture for the symmetric weight
distribution “one person one vote” with α

(n)
k = α/n for all k = 1, . . . , n which are

qualitatively similar to the WVGs of the CM.
In all scenarios we observe that convergence tends to be relatively quick for q �= 0.5.

For a detailed convergence analysis see Sect. 6. Higher the convergence rate, the closer
q gets to the boundaries q = 0 and q = 1 as indicated by Lemmas 6.1 and 6.2 in the
following section.

Interestingly Figs. 3 and 4 identify another indicator for the dramatic decrease of a
priori A in the process of enlarging EU: both exhibit a high sensitivity to changes in q
especially for low values of n. It turns out that this sensitivity has a large impact. The
first three columns of Table 1 indicate that the decrease of A is due to a slight increase
in the quota from 70.59% in �(6) to 70.69% in �(9) and 71.43% in �(10). Row A71 in
Table 3 gives the corresponding values if the quota q had been kept at constant 71%
which represents the arithmetic mean of the quotas from 1958 to 1995. In this case the
first scenario would have started with a lower value A

[
�(6)

]
and hence the difference

in comparison to the subsequent scenario would have been less significant. In fact,
with a fixed quota q = 0.71 a priori complaisance would have slightly increased from
1973 to 1981.
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Table 3 Complaisance of QMV
with fixed 71%, first five periods

Country 1958 1973 1981 1986 1995

Quota % 70.59 70.69 71.43 71.05 71.26

A % 21.88 14.65 13.67 9.81 7.78

A71 % 15.62 13.09 13.67 9.81 7.78

6 Convergence characteristics

Let T denote a random subset of L , S be a random subset of M (n), respectively. For
any B ⊂ L put wB := ∑

k∈B wk . Disentangling the vote among major and minor
voters complaisance can be represented as

A[�(n)] =
∑

B⊂L

Prob {T = B} Prob{αn(S) ≥ q − wB}. (18)

Hence complaisance can be derived as finite sums of (weighted) terms

Prob
{
α(n)(S) ≥ z

}
, z ∈ R,

determining the convergence behavior which in turn hinges on the relation of z to the
mean value µ(n). We shall see that the rate of convergence is high if z �= µ(n) and if
the distribution of the minor votes is reasonably smooth.
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592 I. Lindner

Lemma 6.1 In the sequence of games {�(n)}n∈N defined by (8) we have under Assump-
tion 3.1

Prob
{
|α(n)(S) − µ(n)| > ε

}
≤ exp

⎡

⎣−
(

ε

2
√

n α
(n)
max

)2
⎤

⎦ . (19)

For a proof see Appendix D.
In the following consideration we assume for simplicity µ(n) = µ for all n ∈ N.

The statements are easily extendable for more general µ(n) for sufficiently large n
(such that µ(n) is sufficiently close to µ). We shall focus on weight distributions of
the major voters and the quota q such that z �= µ always holds. For a “tail” estimation
we shall exclude the set P given by

P := {q | q − wB = µ for some B ⊆ L} . (20)

Put
λ := min

B⊂L
{|q − wB − µ|} . (21)

Corollary 6.1 In the sequence of games {�(n)}n∈N defined by (8) we have under
Assumption 3.1 and for q /∈ P

∣∣∣A[�(n)] − Ã
∣∣∣ ≤ exp

⎡

⎣−
(

λ

2
√

n α
(n)
max

)2
⎤

⎦ , (22)

where Ã = limn→∞ A[�(n)].
From Corollary 6.1 it follows that the rate of converges hinges on

√
n α

(n)
max. If the

weight distribution among the minor voters is sufficiently smooth so that
√

n α
(n)
max

tends to zero sufficiently fast7 we can expect high rates of convergence.

Corollary 6.2 Under the conditions of Corollary 6.1 we have for α
(n)
max ≤ γ /n

∣∣∣A[�(n)] − Ã
∣∣∣ ≤ exp

[
− n

(
λ

2γ

)2
]

. (23)

Section 5 discussed a priori complaisance in absence of major voters. Figures 3
and 4 illustrate that if the number of voters increases while at the same time the quota
is pegged at a constant percentage, the scenario is qualitatively comparable to the “one
person one vote” situation (the symmetric case). However, there is a distortion effect
due to unequal weight distribution. The following theorem provides a statement for
l = 0, considering the ratio α

(n)
max/α

(n)
min.

7 Note that the condition
√

n α
(n)
max → 0 is stricter than (9).
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The power of a collectivity to act in weighted voting games with many small voters 593

Lemma 6.2 If every subset S ⊂ M (n) is equally probable then for any ε > 0,

Prob
{
α(n)(S) > α/2 + ε

}
≤ exp

[
− 8nε2θ

α2(1 + θ)2

]
,

where θ denotes α
(n)
max/α

(n)
min.

For a proof see Hoeffding (1963).

7 Discussion and concluding remarks

In his seminal paper Coleman (1971) introduced a priori complaisance which is based
on the assumption that each “yes” and “no” choice is equally likely. Contrary to actual
(a posteriori) analysis, it models the voting system as an “abstract shell”, without tak-
ing into consideration voters’ preferences, the range of issues over which a decision
is taken or the degree of affinity between the voters. This abstraction seems to be
necessary to evaluate the decision rule itself. Roth (1988, p. 9) puts it this way:

Analyzing voting rules that are modeled as simple games abstracts away from
the particular personalities and political interests present in particular voting
environments, but this abstraction is what makes the analysis focus on the rules
themselves rather than on other aspects of the political environment. This kind
of analysis seems to be just what is needed to analyze the voting rules in a new
constitution, for example, long before the specific issues to be voted on arise or
the specific factions and personalities that will be involved can be identified.

It is tempting to question a pessimistic prognosis based solely on a priori
complaisance. The assumption that voters act independently and vote at random “yes”
or “no” with equal probability does not match the observation of many real-world
voting scenarios, as for example the CM: when it comes to voting the affirmative
votes usually represent a majority. Hence when changing the nature of the analysis
from the a priori to the actual this suggests to modify the a priori probabilistic-voting
assumption in order to introduce more realism. However, care must be taken when
leaving the a priori ground since recording voting behavior for or against a proposal
can be misleading. The outcome of a vote is usually the result of a foregoing bargain-
ing process. Before the formal vote is taken there is usually a whole series of shadow
or straw divisions—which comes to a halt when a majority can be expected.8 In that
sense, a priori complaisance can be thought of as measuring the barrier that members
of a committee have to overtake via negotiations and bargaining in order to approve a
given proposal (for models of bargaining in committees see e.g. Laruelle and Valen-
ciano 2006). An increase of this barrier is usually reflected by a long pre-vote period
and therefore imparts a considerable bias in favor of the status quo.

The present analysis takes a general route—in probabilistic terms—by solely
assuming that the minor voters vote independently which covers the a priori approach

8 Also, many committees as, e.g., the CM seem to publish only positive outcomes, i.e., when acts have
been adopted.
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as a special case. However, when we are concerned with a posteriori or actual (rather
than a priori) voting power, surely also the assumption that all (or indeed any) voters
are independent cannot be taken for granted. What would be the effect on complaisance
in large WVGs when voters’ choices are correlated? This is still an open question.
Addressing it, however, would require different analytical tools from those used in the
present paper and is therefore left for future investigations.

Under the independence assumption, asymptotically many minor voters act like a
modification of the quota for the vote among major voters. Absence of major voters
reflects the scenario when the distribution of the voting weights of a large committee
is not too skewed (in other words, if the ratio of the largest weight to the smallest is not
very high). Examples are the US Presidential Electoral College or the CM of the EU.
Our analysis covers absence of major voters as a special case. Here, we have shown
that if the quota is pegged at a constant percentage which is greater than the expected
affirming minor votes, then as the number of voters increases complaisance falls close
to zero very fast. This could pose a serious threat to the functioning of the EU.

When it comes to designing the constitution of a future decision-making body, there
is a near-consensus that we must take an aprioristic stance. Even if information on
specific interests, preferences and affinities of the voters is presently available there
is, in general, very little reliable information about future developments. This holds
in particular for the CM where the political orientation of its members changes every
few years. For the CM, the lesson would be that to maintain a desired level of a pri-
ori complaisance, the quota need to be moved closer to 50% with each enlargement.
Instead, it is raised in the Treaty of Nice to 74.66%. Hence the main conclusion is
that decision making within the CM of the EU is likely to get more rigid with every
enlargement which endangers the effectiveness of the Council.

The reason for the high quota of the CM since its origin in 1958 was presumably the
concern of the individual member countries with their own blocking powers (Leech
2002a). However, while choosing a high level for the threshold has the advantage of
protecting (the large) countries against being outvoted too easily, it also restricts the
ability of all members to get their own proposals accepted. Felsenthal and Machover
(2000) offer the explanation that the politicians and officials who decided on the
weights and quota might have been mislead by the following naive and fallacious
assumption: by pegging the quota at about 71% of the total weight, they would be
keeping complaisance more or less constant as with each enlargement of the EU,
the same proportion of the total weight—about 29%—would be needed to block a
resolution.

This misconception shows that the extent of common acceptance and application
of measures of complaisance to real-life voting design is still modest. A major lim-
iting factor is presumably that the computation is not straightforward. The standard
approach for evaluating WVGs is a method using generating functions (see Mann
and Shapley 1960)9. Unfortunately, this method is not without limitation due to space
complexity in both integer size and array dimension. For example, Leech (2002a)
who examines voting power for the weighted rules of the IMF, uses approximations

9 The key computational idea goes back to David G. Cantor who suggested it to the authors, following a
lecture at Princeton University in October 1960.
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to cope with comparable numerical challenges. The present paper shows that with
an increasing number of voters complaisance converges very fast (on an exponential
rate) if the weight distribution among the small voters is not too skewed. As a rule of
thumb the limit values manifests itself at around 20 small players. These values are
easy to compute and hence serve as a convenient approximation for large committees
that apply weighted voting.

Appendix A. WVG from the Treaty of Nice

Table 4 QMV under N27

Quota: 1,034 = 74.66% of 1,385.
A = 0.0166.
For explanations see
“Introduction”

(1) (2)
Country w w̄ (%)

Germany 118 8.5199

UK 117 8.4477

France 117 8.4477

Italy 117 8.4477

Spain 108 7.7978

Poland 108 7.7978

Romania 56 4.0433

Netherlands 52 3.7545

Greece 48 3.4657

Czech Republic 48 3.4657

Belgium 48 3.4657

Hungary 48 3.4657

Portugal 48 3.4657

Sweden 40 2.8881

Bulgaria 40 2.8881

Austria 40 2.8881

Slovakia 28 2.0217

Denmark 28 2.0217

Finland 28 2.0217

Ireland 28 2.0217

Lithuania 28 2.0217

Latvia 16 1.1552

Slovenia 16 1.1552

Estonia 16 1.1552

Cyprus 16 1.1552

Luxembourg 16 1.1552

Malta 12 0.8664

Total 1,385 100.0001
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Appendix B. Proof of Theorem 2.1

Theorem B.1 (Lindeberg–Feller)
Let {Xk}∞k=1 be a sequence of independent random variables, at least one of which

has a non-degenerate distribution. Let the distribution of Xk be denoted by Fk, its
expectation by E [Xk] = µk and assume its variance Var [Xk] = σ 2

k to be finite.
Further put

(sn)2 := Var

⎡

⎣
∑

k≤n

Xk

⎤

⎦ =
∑

k≤n

σ 2
k ,

Sn := 1

sn

∑

k≤n

Xk − µk .

In order that
lim

n→∞ max
k≤n

σk

sn
= 0 (24)

and
lim

n→∞ sup
x

|Prob {Sn < x} − �(x)| = 0 (25)

it is necessary and sufficient that the following condition (the Lindeberg condition) be
satisfied:

lim
n→∞ Ln(ε) = 0 (26)

with

Ln(ε) := s−1
n

∑

k≤n

E
[
(Xk − µk)

2; |Xk − µk | ≥ εsn

]
(27)

= s−1
n

∑

k≤n

∫

{|x−µk |≥εsn}
(x − µk)

2d Fk(x)

for every fixed ε > 0.

For a proof see, e.g., Petrov (1975), pp. 100–101.

Lemma B.1 The sequence {Xk}∞k=1 as given by (5) satisfies the Lindeberg condition
(26) iff

lim
n→∞

wn√
Qn

= 0. (28)

Proof For each k follows

E [Xk] = pkwk, (29)

V ar [Xk] = pk(1 − pk)w
2
k , (30)

s2
n =

∑

k≤n

pk(1 − pk)w
2
k . (31)
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Since any pk is bounded away from 0 and 1 there exists a δ = mink≤n{pk (1−pk)} > 0.
For sn follows

δ Qn ≤ s2
n ≤ 1

4
Qn (32)

Now suppose the Lindeberg condition (26) is satisfied. Then by Theorem B.1 we have
(24), from which (28) follows at once in view of (30), (31) and (32).

Conversely, suppose that (28) holds. We now show that

lim
n→∞ max

k≤n

wk√
Qn

= 0. (33)

For any ε > 0 fix n
′

so large that wk/
√

Qk < ε for all k > n
′
. Thus, for all n > n

′

we have

wk√
Qn

≤ wk√
Qk

< ε for k = n
′ + 1, . . . , n.

Thus (33) holds. Now observe that for every k, the integral in (27) follows as

∫

|x−pkwk |>εsn

(x − pkwk)
2d Fk(x). (34)

But from |x − pkwk | = |y − pk |wk for all y ∈ [0, 1] and from (32) and (33) it
follows that, for any given ε > 0, if n is sufficiently large, then

|y − pk |wk < εsn

for all y ∈ [0, 1] and all k ≤ n. That implies the integral (34) vanishes for all k ≤ n.
Hence (26) holds. ��

Appendix C. Proof of Theorem 4.1

We represent the vote of each minor voter k ∈ M (n) as the random variable

X (n)
k =

{
α

(n)
k if k votes “yes”,

0 otherwise.
(35)

The expectation µ(n) and standard deviation s(n) of
∑

k≤n X (n)
k is given by

µ(n) =
∑

k≤n

E
[

X (n)
k

]
=

∑

k≤n

pkα
(n)
k , (36)

(
s(n)

)2 =
∑

k≤n

pk(1 − pk)
(
α

(n)
k

)2
. (37)

123



598 I. Lindner

Since the pk are bounded away from zero and one there exists a δ > 0 such that

s(n) ≥ δ
√

Q(n). (38)

For the proof of Theorem 4.1 we shall use the following Lemma.

Lemma C.1 Let 0 ≤ z ≤ α and choose a subset S ⊆ M (n) at random. For the
sequence of games given by (8) and (9) we have

lim
n→∞ Prob{α(n)(S) ≥ z} =

⎧
⎨

⎩

1 if z < µ,

1/2 if z = µ,

0 if z > µ.

(39)

Proof From Theorem 2.1 follows

lim
n→∞ Prob{α(n)(S) < z} = lim

n→∞ �(
z − µ(n)

s(n)
) (40)

With increasing n the standard deviation s(n) tends to zero which provides (39) for
z �= q. For z = µ note that the argument of � is a fraction of two zero sequences.

However, in Sect. 3 we assumed that µ(n) converges with order o
(√

Q(n)
)

such that

from (38) follows that this fraction converges to zero. ��
For any B ⊂ L put wB := ∑

k∈B wk . Let T ⊂ L denote a random subset of L .

A[�(n)] =
∑

B⊂L

Prob {T = B} Prob{αn(S) ≥ q − wB}. (41)

Proof of Theorem 4.1 From Lemma C.1 follows

Prob
{
α(n)(S) ≥ q − wB

}
→

⎧
⎨

⎩

0 wB < q − µ,

1/2 if wB = q − µ,

1 wB > q − µ.

(42)

For q ∈ J the games �0 and �′
0 are well defined, and for any B ⊆ L for which the

limit of Prob
{
α(n)(S) ≥ q − wB

}
is 1 we have that B is a winning coalition in both

�0 and �′
0. If the limit is 1/2 the coalition B is winning in �0 but not �′

0. This yields
for (41)

lim
n→∞ A[�(n)] =

∑

wB>q−µ

Prob{T = B} + 1

2

∑

wB=q−µ

Prob{T = B}

= 1

2

∑

wB>q−µ

Prob{T = B} + 1

2

∑

wB≥q−µ

Prob{T = B}

= 1

2
A[�0] + 1

2
A[�′

0],

and hence (14).
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To see (15) note that from q < µ follows that the third condition in (42) is fulfilled
for any B ⊆ L and hence Prob

{
α(n)(S) ≥ q − wB

} → 1 for all B ⊆ L .
The equality q = µ implies Prob

{
α(n)(S) ≥ q − wB

} → 1/2 for B = ∅ and 1
otherwise which yields

lim
n→∞ A[�(n)] =

∑

B �=∅
Prob{T = B} + 1

2
Prob{T = ∅}

= A[B∗
l ] + 1

2
(1 − A[B∗

l ]) = 1

2
(1 + A[B∗

l ]).

If q = wL + µ then Prob
{
α(n)(S) ≥ q − wB

} → 1/2 for B = L and 0 otherwise.
Finally, from q > wL + µ follows that Prob

{
α(n)(S) ≥ q − wB

} → 0 for any
B ⊆ L . ��

Appendix D. Proof of Lemma 6.1

We shall use the following Lemma of Kemperman (1964).

Lemma D.1 Let {Zk}∞k=1 be a sequence of independent real-valued random variables
such that |Zk | ≤ 1 for all k. Let further {ck}∞k=1 be a sequence of real constants such
that

s2 =
∞∑

k=0

ck
2 < ∞. (43)

Then

Z̃ =
∞∑

k=0

ck(Zk − µk), (44)

with µk = E [Zk], satisfies

Prob
{

Z̃ > δs
}

≤ exp

[
−δ2

2

]
, Prob

{
Z̃ < −δs

}
≤ exp

[
−δ2

2

]
(45)

for each number δ > 0.

Proof of Lemma 6.1 10 For a fixed n let

Zk =
{

α
(n)
k /α

(n)
max with probability pk,

0 otherwise,
(46)

for each k = 1, . . . , n. For k > n set Zk ≡ 0. For the constants ck put

ck =
{

α
(n)
max for k ≤ n,

0 otherwise.
(47)

10 The argumentation follows Dubey and Shapley (1979). (See their Sect. 11 for a convergence analysis
of the Banzhaf index.)
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From (43) follows

s = √
n α(n)

max .

This setting allows us to identify the Z̃ in (44) with α(n)(S) − µ(n) and from (45)
follows

Prob
{
|α(n)(S) − µ(n)| > δs

}
≤ exp

[
−δ2

2

]
,

for any positive number δ > 0. Putting ε := δs yields the reformulation

Prob
{
|α(n)(S) − µ(n)| > ε

}
≤ exp

⎡

⎣−
(

ε

2
√

n α
(n)
max

)2
⎤

⎦ . (48)

Finally, for each q /∈ P and sufficiently large n (such that µ(n) is sufficiently close
to µ) each term Prob {αn(S) ≥ q − wB} in (18) has an upper bound as given by the
right-hand side of (48). ��
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