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INES LINDNER

A SPECIAL CASE OF PENROSE’S LIMIT THEOREM
WHEN ABSTENTION IS ALLOWED

ABSTRACT. In general, analyses of voting power are performed through
the notion of a simple voting game (SVG) in which every voter can
choose between two options: ‘yes’ or ‘no’. Felsenthal and Machover
[Felsenthal, D.S. and Machover, M. (1997), International Journal of Game
Theory 26, 335–351.] introduced the concept of ternary voting games
(TVGs) which recognizes abstention alongside. They derive appropriate
generalizations of the Shapley–Shubik and Banzhaf indices in TVGs.
Braham and Steffen [Braham, M. and Steffen, F. (2002), in Holler, et al.
(eds.), Power and Fairness, Jahrbuch für Neue Politische Ökonomie 20,
Mohr Siebeck, pp. 333–348.] argued that the decision-making structure
of a TVG may not be justified. They propose a sequential structure in
which voters first decide between participation and abstention and then
between ‘yes’ or ‘no’. The purpose of this paper is two-fold. First, we
compare the two approaches and show how the probabilistic interpreta-
tion of power provides a unifying characterization of analogues of the
Banzhaf (Bz) measure. Second, using the probabilistic approach we shall
prove a special case of Penrose’s Limit Theorem (PLT). This theorem
deals with an asymptotic property in weighted voting games with an
increasing number of voters. It says that under certain conditions the
ratio between the voting power of any two voters (according to various
measures of voting power) approaches the ratio between their weights.
We show that PLT holds in TVGs for analogues of Bz measures, irre-
spective of the particular nature of abstention.

KEY WORDS: limit theorems, ternary voting games, voting power,
weighted voting games

JEL CLASSIFICATION: C 71, D71

1. INTRODUCTION

In real-life decisions, the option to abstain is one that can
undoubtedly influence the outcome of a vote. This is clearly
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evident in the most commonly used rule in decision-making
bodies: the simple majority, whereby a resolution passes if and
only if more voters vote for it than against it. Unless specified
otherwise, this rule does not treat abstentions as tantamount
to either ‘yes’ or ‘no’. Certainly, in some real-life decision rule
abstention is not a distinct third option. For example, in the
Council of Ministers of the European Union, abstention usu-
ally counts as a ‘no’, except when an issue to be vote upon is
basic constitutional. In this case abstention counts as a ‘yes’.
However, these are exceptions since in most real-life situations
abstention is a tertium quid. In the United Nations Security
Council (UNSC) abstention plays a key role: an abstaining
permanent member is usually not interpreted as a voter. Since
Article 27 of the UN Charter requires a minimum of nine
affirmative members abstention it is not treated tantamount to
‘yes’ either.1 In each of the two houses of the US Congress
the rule is that for a proposal to pass a certain percentage2 of
the members present has to be achieved (provided that a quo-
rum of half the membership is present).

Somewhat surprisingly, the literature has only recently
started to take any notice of it. The widely used instrument to
analyze voting power is that of a simple voting game (SVG)
which is binary in that it assumes that each voter has just
two options: ‘yes’ and ‘no’. This is even more surprising as
social choice theory does not in general impose strict pref-
erence orderings, i.e. it allows for indifference over alterna-
tives. In their 1998 paper, Felsenthal and Machover criticize
the ‘misreporting’ of some authors to squeeze rules into the
SVG corset when abstention is a distinct third option. Felsen-
thal and Machover (1997, 1998) overcome this shortcoming
by proposing a setup called a ternary voting game (TVG). By
adding abstention as a third option alongside ‘yes’ and ‘no’
they define an appropriate generalization of a SVG.3

In their TVG setup they offer analogous definitions of the
Banzhaf measure (1965) and Shapley–Shubik index (1954),
the classical measures of voting power in SVGs. Whereas
an analogous definition of the Banzhaf (Bz) measure follows
more or less naturally, the translation of the Shapley–Shubik
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(S-S) index is less obvious. The authors construct it by means
of an alternative representation of this index (Felsenthal and
Machover, 1996).

Any reasonable extension of a power concept in the more
general setting of games with abstentions should of course
provide the prevalent classical power measures designed for
SVGs games when the option to abstain is equivalent to either
‘yes’ or ‘no’. However, several generalizations may have the
same projection to the binary case, such that it is a mistake to
latch on to a particular formulation of the original idea. More
recently, Braham and Steffen (2002) remarked that the simple
majority rule is often specified as counting only the votes of
those voting (‘yes’ or ‘no’) so that abstention can be seen as
tantamount to ‘non-participation’. From this they argue that
in contrast to Felsenthal and Machover who treat ‘abstain’
as symmetric to ‘yes’ and ‘no’, abstentions are to be treated
separately. They point out that the TVG structure assumes
that voters can choose simultaneously between ‘yes’, ‘no’ and
‘abstain’, when in fact the ‘counting the votes of those vot-
ing’ implies a sequential choice structure: a voter first decides
whether to vote at all, and then to vote ‘yes’ or ‘no’. In par-
ticular this approach suggests other generalizations of the Bz
and S-S index than the ones proposed by Felsenthal and Mac-
hover.

This paper provides a probabilistic characterization of Bz
power in games with abstentions which unifies both approaches
of taking abstention into account. It will be achieved by
recourse to a probabilistic interpretation of voting power, such
that it is expressed as a voter’s expected contribution to the
outcome of the vote (i.e. the practical difference that a voter
makes). Furthermore, the fact that the Bz power in TVG
behaves mathematically as expectations allows to apply the
powerful tools of stochastics, primarily important for approx-
imation purposes and analyzing asymptotic properties. Using
the probabilistic approach we shall prove a special case of Pen-
rose’s Limit Theorem (PLT).

L S Penrose (1946) was the first to propose a measure of
voting power (which later came to be known as ‘the (absolute)
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Bz measure’). His limit theorem – which is implicit in Penrose
(1952) – says that, in simple weighted voting games, if the
number of voters increases indefinitely while the quota is
pegged at half the total weight, then – under certain con-
ditions – the ratio between the voting powers (as measured
by him) of any two voters converges to the ratio between
their weights. Penrose gave no rigorous proof of this limit
theorem and there are in fact counter-examples to his claim
(see Lindner and Machover, 2004). Nevertheless, experience
suggests that such counter-examples are atypical, contrived
exceptions. Both real-life and randomly generated weighted
voting games (WVGs) with many voters provide much empir-
ical evidence that the following holds in most cases as a gen-
eral rule: if the distribution of weights is not too skewed
(in other words, the ratio of the largest weight to the small-
est is not very high), then the relative powers of the vot-
ers tend to approximate closely to their respective relative
weights.

This typical tendency is illustrated in Table I which is based
on a WVG model of the Electoral College that elects the Pres-
ident of the US. Here, each ‘voter’ is a bloc of Electors for a
State, or for the District of Columbia.4 California, one of the
most populous states, can cast 55 electoral votes while Alaska
may cast only 3 votes. The column headed ‘No.’ shows the
number of states with a given weight w. Column (1) gives
the weights of the voters. The absolute and relative quota are
stated at the bottom of the table. Column (2) gives the respec-
tive relative weights w̄ as percentages. Column (3) to (5) show
various measures of voting power in percentage terms. Col-
umn (3) gives the voting powers as measured by the S-S index
φ. Column (4) gives the relative voting powers as measured by
the Bz index β. Column (5) gives the generalized Bz index as
proposed by Felsenthal and Machover (1997, 1998) for voting
games with abstention. Note that we reserve the term ‘index’
for measures whose values for all voters always add up to 1.
Hence, β and β̃ are obtained by normalizing the (absolute) Bz
measures.
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TABLE I

US Presidential Electoral College (2000 Census)

No. (1) (2) (3) (4) (5)
w w̄ (%) φ (%) β (%) β̃ (%)

1 55 10.2230 11.0358 11.4021 11.0402

1 34 6.3197 6.4988 6.3927 6.3875

1 31 5.7621 5.8884 5.7948 5.7959

1 27 5.0186 5.0869 5.0119 5.0199

2 21 3.9033 3.9100 3.8654 3.8784

1 20 3.7175 3.7166 3.6771 3.6903

1 17 3.1599 3.1411 3.1157 3.1289

3 15 2.7881 2.7612 2.7442 2.7569

1 13 2.4164 2.3841 2.3746 2.3863

1 12 2.2305 2.1967 2.1904 2.2016

4 11 2.0446 2.0099 2.0066 2.0171

4 10 1.8587 1.8239 1.8231 1.8329

3 9 1.6729 1.6385 1.6400 1.6489

2 8 1.4870 1.4538 1.4571 1.4652

4 7 1.3011 1.2698 1.2744 1.2816

3 6 1.1152 1.0865 1.0920 1.0982

5 5 0.9294 0.9038 0.9097 0.9150

5 4 0.7435 0.7218 .7276 0.7318

8 3 0.5576 0.5404 0.5456 0.5488

Total 51 538 99.9977 100.0002 100.0006 100.0006

D(ξ,w)∗103 23.9940 25.6880 18.3940

d(ξ,w)∗103 73.6512 103.4108 74.0204

Quota: 270 =

50.19% of 538

Note For the purpose of this table, the Electoral College is regarded as
a WVG, in which each ‘voter’ is a bloc of Electors for a State, or for
the District of Columbia. The number of Electors in each bloc is taken
as the weight w of this bloc-voter.
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Let ξ be an index of voting power. The overall discrepancy
between ξk and the relative voting weight w̄k is given by

D(ξ,w) :=
n∑

k=1

|ξk − w̄k| . (1)

The local distortion is given by

d(ξ,w) :=max1≤k≤n

∣∣∣∣1− ξk

w̄k

∣∣∣∣ . (2)

Table I illustrates the typical tendency of various indices ξ
to approximate closely to their respective relative weigths w̄.

This suggests a general problem: under what conditions
does the ratio of the voting powers of any two voters, as mea-
sured by a given index, converge to the ratio of their weights?
Penrose’s claim implies that this asymptotic property holds
with respect to the Bz index β if the relative quota is 1/2 and
the relative weight of each voter tends to 0. However, Lind-
ner and Machover (2004) show by means of a simple counter-
example that these conditions are insufficient. They prove the
asymptotic property for β for the relative quota q = 1/2 sat-
isfying more stringent conditions. They further provide suffi-
cient conditions with respect to the S-S index φ for a large
class of WVGs with arbitrary q ∈ (0,1).

However, on the basis of empirical-computational evidence
these sufficient conditions are most likely to be too strict. In
addition, similar results seem to apply to other measures of
voting power besides the classical indices φ and β (as illus-
trated above for β̃). Hence, PLT may best be regarded not as
a collection of a single theorem but – like the central limit
theorem of probability theory, with which it has some affin-
ity – as an open-ended research programme covering many
related results. The present paper is a contribution to this
programme. PLT suggests relative irrelevance: with increasing
number of voters the power ratio of any two voters converges
to the ratio of the voting weights, irrespective of the specific
measure chosen, irrespective of the nature of the abstention
decision in particular.5
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The paper is organized as follows. Section 2 gives a general
probabilistic characterization for power in voting games with
abstentions. Section 3 introduces the different concepts of the
nature of abstention as prevalent in the literature. Section 4
discusses PLT in weighted voting games with abstentions.

2. PROBABILISTIC INTERPRETATION

Let N be a non-empty finite set to which we shall refer as
assembly. The elements of N are called voters and we shall
identify them with the integers 1,2, . . . , n, where n= |N |. We
shall briefly recall the definition of the classical measures of
voting power in SVGs (in which abstention is not a tertium
quid).

A SVG consists of N together with a characteristic func-
tion v on the power set of N such that v(S)=1 iff S⊆N is a
winning coalition and 0 otherwise. In SVGs the S-S index and
Bz measure of a voter a ∈N is represented as the (weighted)
sum of contributions Ca(S) :=v(S)−v(S−{a}) voter a brings to
each possible coalition S⊂N in which s/he is a member. The
contribution Ca(S) is 1 if a joining S makes a practical differ-
ence to the outcome; it is 0 otherwise. The contributions are
weighted with coalition-specific factors fa(S). Let ξa stand for
either the Bz measure or S-S index of voter a. Then ξa can be
written as

ξa =
∑

S⊂N | a∈S
fa(S)Ca(S), (3)

where fa(S) = (|S| − 1)!(n − |S|)!/n! when ξa stands for the
S-S index, fa(S)= 1/2n−1 when ξa stands for the Bz measure,
respectively.

The following definition is taken from Felsenthal and
Machover (1997, 1998).6

DEFINITION 2.1. A tripartition of a set N is a map T from
N to, {−1,0,1}. We denote by T −, T 0 and T + the inverse



502 INES LINDNER

images of {−1}, {0} and {1}, respectively under T :

T − ={k∈N | T (k)=−1},
T 0 ={k∈N | T (k)=0},
T + ={k∈N | T (k)=1}. (4)

We define partial ordering ≤ among tripartitions: if T1 and T2

are two tripartitions of N , we define

T1 ≤T2 ⇔def T1(k)≤T2(k) for all k∈N.
By a ternary voting game – briefly TVG – we mean a map-
ping v from the set TN := {−1,0,1}N of all tripartitions of N
to {0,1}, satisfying the following three conditions:

(i) T + =N⇒v(T )=1;
(ii) T − =N⇒v(T )=0;
(iii) Monotonicity: T1 ≤T2 ⇒v(T1)≤v(T2).

We call v the outcome of T (under v).

A ternary division T is interpreted as a voting division
which allows abstentions. T − and T + are interpreted as the
sets of ‘no’ and ‘yes’ voters, T 0 as the set of abstainers, respec-
tively. T (k) can be interpreted as a degree of support of voter
k for the decision in question.

Remark 2.1. Note that Definition 2.1 does not cover all pos-
sible cases of TVGs as Felsenthal and Machover include a
monotonicity condition (here, condition (iii) ). In fact, there
exist many constitutions where a referendum is valid only if
50% of the voters cast their ballot (Italy for example). In this
case, the monotonicity condition is not fulfilled and the situ-
ation becomes more complex. For more on this subject, see
Corte Real and Pereira (2004). See also Remark 3.1 of the
present paper.

Analogously to SVGs, we shall model power of voter
a∈N in a game with abstentions as the weighted sum of his
or her contributions Ca(T ) to each possible tripartition. The
contributions are weighted by a factor fa(T ) which can be
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interpreted as the probability that the specific tripartition T

forms. Formally, let ξ denote a measure of voting power in
TVGs, then

ξa =
∑

T ∈TN

fa(T )Ca(T ). (5)

First, consider the contribution term Ca(T ). For each a∈N
we define an indicator function of a, Ia, as a function on N

such that Ia(k)=1 for k=a and zero elsewhere. Put

Ca(T ) :=
⎧
⎨

⎩

v(T )−v(T −2Ia) if a∈T +,

0 otherwise.
(6)

We say that voter a is critical iff Ca(T )= 1, i.e. his or her
choice makes a practical difference to the outcome. Note that
it is not important at which level the change in the outcome
occurs, i.e. whether ceteris paribus from a’s switch from ‘yes’
to ‘abstain’ or from ‘abstain’ to ‘no’. Figure 1 gives an illus-
tration.

In Scenario I , the bill passes even with voter a switching
from ‘yes’ to ‘abstain’. But T + no longer has a majority when
a votes ‘no’ instead of abstaining. In Scenario II , the change
in the outcome occurs when voter a decides to abstain instead
of voting ‘yes’. If decreasing support of a has no effect on the

Figure 1. Contribution of a voter.
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Figure 2. Nature of abstention.

outcome we have v(T )=v(T − Ia)=v(T −2Ia) such that voter
a has a contribution of 0 (i.e. makes no practical difference to
the outcome).

Technically, Ca works as a filter. With it’s binary values of
either 0 or 1, it causes the sum in (5) to be taken only over
the specific probabilities where a is considered to be critical.
With (6) it is therefore possible to read (5) as the probability
that voter a is decisive as a ‘yes’ voter in a random triparti-
tion X

ξa =Prob{X wins, X−2Ia loses| a∈T +}. (7)

Equation (7) is a direct extension of the terms of a voter hav-
ing power which Straffin uses for the SVG framework: the
power of voter a is ‘the probability that a bill passes if we
assume a votes for it, but would fail if a voted against it’
(Straffin, 1994, p. 1136).

The next section discusses the tripartition specific factor
fa(T ). The probability that a tripartition T forms hinges on
two settings: the nature of the abstention decision and the
behavioral assumptions about the voters.

3. NATURE OF ABSTENTION

In their 1997, Felsenthal and Machover treat abstention on a
par with ‘yes’ and ‘no’ which implies that the voter decides
simultaneously between the three options. In contrast Braham
and Steffen (2002) propose a sequential structure in which vot-
ers first choose between participation and abstention and then
between ‘yes’ or ‘no’. Figure 2 illustrates the two approaches.
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In the simultaneous approach, an abstaining voter can be
thought of as being present in an assembly but indecisive
about the issue to vote on. In this case the voter may feel
neither affirmative nor negative about the proposal and thus
chooses to declare ‘I abstain’ or casts an empty ballot. This
is what Machover (2002) has called active abstention. In this
case the voter is part of the quorum, even though his or her
decision is neutral.

A different form of abstention takes place if the voter sim-
ply does not participate in the division. This may occur if
the voter is prevented for any reason or if the issue to vote
on is of minor interest to the voter, such that the costs of
voting are higher than the expected pleasure of being on the
winning side. Machover (2002) has termed this abstention by
default and is reflected by the sequential approach proposed
by Braham and Steffen (2002).

In general, decision rules are blind to the distinction between
the two kinds of abstentions. But in some cases active and
default abstentions are specified. For example, in the US Con-
gress active abstainers are counted for purpose of a quorum. So,
if a quorum is not present because too many have abstained by
default, no voting can take place at all.7 But if a quorum is
present and all present actively abstain the outcome according
to the ordinary majority rule in the House of Representatives
is presumably negative since the number of ‘yes’ voters is not
greater than the number of ‘no’ voters.

Remark 3.1. If a quorum is required for a vote to take place
one could extend the binary outcomes ‘accepted’ or ‘rejected’
in Definition 2.1 by a third one, ‘defer’, representing a tie (see
Freixas and Zwicker, 2003). In the present account we shall
not discuss ties.

The Bz measure in the classical SVG setup assumes a pri-
ori that the voters vote independently and each voter votes
‘yes’ and ‘no’ with equal probability 1/2. The independence
assumption is easily translated into the TVG framework.
However, the spirit of a priori ignorance is less obvious when
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it comes to assigning probabilities to the single options in
either approach of the nature of abstention. The route that
Felsenthal and Machover have taken in their 1997 and 1998 is
to appeal Bernoulli’s Principle of Insufficient Reason8 to jus-
tify assigning a priori probabilities of 1/3 for each option. In
terms of (5) they put

fa(T ) :=3n−1. (8)

However, in TVGs the symmetric probability distribution on
the option set is much less self-evident in comparison to the
SVG setup although it surely is the only non-arbitrary choice.
In the following we will therefore stick to a more general
treatment as proposed as an alternative by the authors in
their 1997 (p. 340). We assume that the a priori probability of
any given voter abstaining is t ∈ (0,1) and s/he votes ‘yes’ and
‘no’ each with probability (1− t)/2. Hence, we put

fa(T )= t |T 0|((1− t)/2)n−1−|T 0|, (9)

such that (8) is given by t=1/3.
In the sequential approach of Braham and Steffen (2002)

any voter first decides whether to vote or abstain with proba-
bility 1− t and t , respectively. In the second stage s/he decides
how to vote, i.e. to choose either ‘yes’ or ‘no’ with probability
1/2 each. This provides

fa(T )= t |T 0|(1− t)n−1−|T 0|(1/2)n−1−|T 0| (10)

which equals (9). However, an a priori argument appealing
Bernoulli’s Principle of Insufficient Reason suggests t=1/2 for
the sequential approach. In the next section, we will show that
with an increasing size of the assembly, the particular assign-
ment of t tends to irrelevance when it comes to measuring
normalized Bz power in weighted voting games with absten-
tions.

With a tripartition specific factor as in (9) we will refer to
the power measure as defined in (5) as the generalized Bz mea-
sure and denote it by ψ(t). Analogously, we shall refer to it’s
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normalized form as generalized Bz index β̃(t). Hence, we put

ψa(t)=
∑

T ∈TN

t |T
0|((1− t)/2)n−1−|T 0|Ca(T ), (11)

β̃a(t)= ψa(t)∑
k∈N ψk(t)

. (12)

Remarks 3.1.
(i) Braham and Steffen (2002) model voting games with

abstentions (by default) as a whole bundle of SVGs in
which each assembly consists of the non-abstaining vot-
ers. They express power as an expected value: power is
the weighted sum of power in each single SVG. How-
ever, their concept is controversial in that an abstaining
voter never exerts any power. Hence, with expression (5)
we only partly follow their concept of power.

(ii) From (10) it is apparent that in the sequential approach
the actual order of a voter’s decision is not important.
The order in Figure 2 is the one we observe, i.e. we see
people either going to vote or not and then casting a
‘yes’ or ‘no’ ballot. However, the decision to vote ‘yes’
or ‘no’ may have been prior to the decision whether to
abstain or participate in the vote.

4. PLT IN WVGS WITH ABSTENTIONS

In WVGs with abstention as a tertium quid a motion is
accepted if the combined weight of affirming voters meets or
exceeds some preset relative weight share of those voting either
‘yes’ or ‘no’.

DEFINITION 4.1. A ternary weighted voting game – briefly,
TWVG –

[q;w1,w2, . . . ,wn]

is given by an assignment of a non-negative real wk to
each voter k ∈N , and a relative Quota q such that for any
tripartition T of N
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v(T )=
{

1 if
∑

k∈T + wk ≥q
∑

k∈N−T 0 wk,

0 otherwise. (13)

We shall use the notation

<q;w1,w2, . . . ,wn>

for a TWVG when the blunt inequality ≥ in (13) is replaced
by the sharp inequality >.

Remark 4.1. The rule given in (13) may be rewritten such that
a bill is passed iff the total weight of those voting for it is
at least q̃ = q/(1 − q) times the total weight of those voting
against it.

We shall focus on the following problem: Under what con-
ditions does the ratio of voting powers of any two voters, as
measured by ψ(t), converge to the ratio of their weights?

In order to make this problem more precise, let us intro-
duce the following framework.

DEFINITION 4.2. Let

N(0)�N(1)�N(2)� · · ·
be an infinite increasing chain of finite non-empty sets, and let

N =
∞⋃

n=0

N(n). (14)

Letw be a weight function that assigns to each a∈N a positive real
numberwa as weight; and let q be a real ∈ (0,1). For each n∈N let
W (n) be the TWVG whose assembly is N(n) – each voter a ∈N(n)

being endowed with the pre-assigned weight wa – and whose rel-
ative quota is q. We shall then say that {W (n)}∞n=0 is a q-chain of
TWVGs.

Remark 4.2. In what follows, whenever we shall refer to a q-
chain {W (n)}∞n=0, we shall assume that the N(n), N and w are
as specified in Definition 4.2: N(n) is the assembly of W (n), N

is given by (14), and w is the weight function.
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DEFINITION 4.3. We shall say that Penrose’s Limit Theo-
rem (PLT) holds for the q-chain {W (n)}∞n=0 with respect to the
index ψ(t) and a, b∈N if

lim
n→∞

ψa(t)[W (n)]
ψb(t)[W (n)]

= wa

wb
. (15)

Remark 4.3. Note that ψa(t)[W (n)]/ψb(t)[W (n)] in (15) is unde-
fined if a �∈N(n) or b �∈N(n), but this does not matter because
a, b∈N(n) for all sufficiently large n.

Let the following random variables denote the decision of
every voter k∈N , i.e.

Zk =
{

0 if k abstains ,
wk otherwise, (16)

Yk =
{
wk if k votes ‘yes’,
0 otherwise. (17)

Put

S¬a :=
(
∑

k∈N
Yk

)
−Ya , W¬a :=

(
∑

k∈N
Zk

)
−Za . (18)

Then (7) provides

ξa =Prob{q(W¬a +wa)−wa ≤S¬a <q(W¬a +wa)}. (19)

Note that in contrast to the SVG setup the majority quota
q(W¬a +wa) is random.

Let Vk denote the random variable

Vk :=Yk −qZk
which takes the values

Vk =
⎧
⎨

⎩

0 t,

(1−q)wk with probability (1− t)/2,
−qwk (1− t)/2.

(20)

Put

X¬a :=
(
∑

k∈N
Vk

)
−Va.
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Subtracting qW¬a in (19) provides

ξa =Prob{(q−1)wa ≤X¬a <qwa}. (21)

Given a q-chain {W (n)}∞n=0 of TWVGs, we associate with
it the family {Vk| k ∈ N} of independent random variables
indexed by N . We consider the chain

W :={{Vk| k∈N(n)}| n∈N} . (22)

For any a∈N we put

X
(n)
¬a :=

(
∑

k∈N(n)

Vk

)
−Va, µ

(n)
¬a :=E

[
X
(n)
¬a
]
,

σ
(n)
¬a :=

(
V ar

[
X
(n)
¬a
]) 1

2
.

Let X̄(n)
¬a be the ‘standardized’ form of X(n)

¬a , i.e.

X̄
(n)
¬a := X

(n)
¬a −µ(n)¬a
σ
(n)
¬a

. (23)

From (20) we obtain the following explicit expressions for µ(n)¬a
and σ

(n)
¬a

µ
(n)
¬a = (1− t)(1−2q)

(∑
k∈N(n) wk

)−wa
2

, (24)

(
σ
(n)
¬a
)2

= (1− t)
[
(1−q)2 +q2 − 1− t

2
(1−2q)2

]

×
(∑

k∈N(n) w
2
k

)−w2
a

2
. (25)

DEFINITION 4.4. We shall say that the chain W satisfies the
special local central limit condition (SLCL) if, for every a∈N ,

lim
n→∞ Prob

{
X̄(n)
a ∈

[
− wa

2σ (n)¬a
,
wa

2σ (n)¬a

)}
σ
(n)
¬a
wa

= 1√
2π

; (26)

and for all a, b∈N

lim
n→∞

σ
(n)
¬a
σ
(n)
¬b

=1. (27)
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Remark 4.4. The X̄(n)
¬a are evidently discrete random variables

with mean 0. We shall be interested in cases where their
standard deviations, σ (n)¬a , tend to ∞ with n. Then equation
(26) says that the average density of X̄

(n)
¬a in a half-open

interval around 0, whose length becomes vanishingly small,
approaches the value of the standard normal density function
ϕ at 0, namely 1/

√
2π . This means that W obeys a special

case (namely, at 0) of the local central limit theorem of prob-
ability theory.

THEOREM 4.1. Let
{
W (n)

}∞
n=0 be a 1

2 -chain of TWVGs. If its
associated chain W satisfies the SLCL condition, then PLT
holds with respect to the generalized Bz index and any a, b∈N .

Proof. Let a ∈N and take n large enough so that a ∈N(n).
Then, by definition, the generalized Bz measure of a in W(n)

is given by

ψa
[
W(n)

]=Prob

{
X̄(n)
a ∈

[
− wa

2σ (n)¬a
,
wa

2σ (n)¬a

)}
.

Invoking (26) we obtain

lim
n→∞ψa

[
W(n)

] σ (n)¬a
wa

= 1√
2π
. (28)

Hence by (27)

lim
n→∞

ψa
[
W(n)

]

ψb
[
W(n)

] = wa

wb
. (29)

Finally, using (11) and (12) we obtain

lim
n→∞

β̃a
[
W(n)

]

β̃b
[
W(n)

] = wa

wb
. (30)

From (28) and (25) follows �
COROLLARY 4.1. If (26) holds, then

ψa[W (n)]≈ 1√
2π

wa

σ
(n)
¬a
.
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For q=1/2 this simplifies to

ψa[W (n)]≈wa
√

2

(1− t)π{(∑k∈N(n) w
2
k)−w2

a}
. (31)

Table II illustrates the results for the US Presidential Elec-
toral College. The numbers of the WVG are taken from
Table I. All values are in percentage terms. Column (1) gives
relative weights. Columns (2–4) refer to the simultaneous
approach of abstention which puts t = 1/3. Column (2) gives
the generalized Bz index β̃. Column (3) provides the exact
values of ψ whereas column (4) gives numerical approxima-
tions based on (31). Analogously, columns (5–7) refer to the
sequential approach of abstention where t=1/2.

THEOREM 4.2. Let
{
W(n)

}∞
n=0 be a 1

2 -chain of TWVGs such
that its weight function assumes only finitely many values, all of
them positive integers; and such that the greatest common divi-
sor of those values wa that occur infinitely often is 1. Then the
associated chain V satisfies the SLCL condition. Hence, PLT
holds with respect to the generalized Bz index and any a, b∈N .
Also, (31) holds.

Proof. To prove that (26) holds for any a∈N , observe that
all possible values of X(n)

¬a are integers multiplied by 1/2 and
therefore belong to a lattice whose span is 1/2. Hence, all pos-
sible values of X̄(n)

a belong to a lattice whose span is 1/(2σ (n)¬a ).
In the half open interval

[
−wa/(2σ (n)¬a ),wa/(2σ

(n)
¬a )

)

there are exactly 2wa points of this lattice: say x
(n)
i , i = 1,2,

. . . ,2wa.
We invoke Pevtrov’s version of the local central limit theorem
(1975, p. 189, Theorem 2; see also Remark 4.1(i) of the pres-
ent paper). It follows that if n is sufficiently large then for
each i=1,2, . . . ,2wa the product

Prob
{
X̄(n)
a =x(n)i

}
2σ (n)¬a (32)
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is arbitrarily close to ϕ(x(n)i ). From (25) it is clear that limn→∞
σ
(n)
¬a =∞; thus for a sufficiently large n each of the x(n)i is arbi-

trarily close to 0. Hence, the product (32) is arbitrarily close
to ϕ(0)= (2π)−1/2. The left-hand side of (26) is just the arith-
metic mean of 2wa many products (32) and hence tends to
(2π)−1/2 as required.
With n→∞ the term w2

a in (25) becomes negligible and (27)
holds. �
Remarks 4.1. (i) Petrov’s theorem deals with a sequence of

independent integer-valued random variables each having
finite variance, such that the set of distinct distributions
of these variables is finite. The key condition is that the
greatest common divisor of the maximal spans of those
distributions that occur infinitely often in the sequence is
1. For details see Petrov (1975, ibid.).

(ii) The condition in Theorem 4.2 is similar to the one in
Theorem 3.6 in Lindner and Machover (2004). The latter
is a PLT statement for the Bz measure in SVGs.

(iii) For general q ∈ (0,1) the proof for Theorem 4.2 shows
one major difficulty: application of Petrov’s version of
the local central limit theorem analogously to the q=1/2
case yields

ψa[W (n)]σ (n)¬a =waϕ(m(n)¬a)+ ε(n)¬a , (33)

where m(n)¬a is a mean value and ε
(n)
¬a is the approximation

error which tends to 0 with increasing n. For q=1/2, the
mean value is arbitrarily close to 0 for any sufficiently
large n. However, for q �= 1/2 the mean value tends to
±∞ such that waϕ(m

(n)
¬a) also tends to zero. Hence, it has

to be shown that the relative error of the approximation
tends to 0.

5. CONCLUSIONS

This paper proposes a unified way to define a family of
Bz indices with different nature of abstention. The proba-



516 INES LINDNER

bilistic interpretation has shown that the actual difference
between the symmetric and the sequential approach lies in
the assignment of an a priori probability of the three options.
Conceptually, it is still correct to assign equal a priori proba-
bility to ‘yes’ and ‘no’, however, the assignment of a value of
the abstention probability is less evident. The research on PLT
represents a relative irrelevant statement for weighted voting
games: with an increasing number of voters the power ratio
of any two voters converges to the ratio of the voting weights,
irrespective of the particular probability of abstention.

The paper provides sufficient conditions for PLT to hold,
however, both real-life and randomly generated TWVGs pro-
vide much empirical evidence that it holds as a general rule
in most cases. This gives rise to conjecture that the suffi-
cient conditions presented in this paper are too strict and
PLT holds in larger classes of TWVGs. In cases where the
asymptotic behavior asserted by PLT holds it begins to man-
ifests itself at around n = 15 provided that the distribution
of the weights is not too skewed (as in the US Presidential
Electoral College). As a rule of thumb, the convergence pro-
cess tends to get slower with an increasing ratio between the
largest and the smallest voting weight. Also, for values of q
getting closer to 1 we observe slower convergence due to a
‘unanimity effect’.

PLT may be best regarded as an open-end research pro-
gramme covering many related results. Lindner and Machover
(2004) provide sufficient conditions for the S-S index (1954)
and the Bz measure (1965) in the classical SVG setup. The
present results of this paper for power measures in TVGs are
yet another contribution to this programme. The theory of
a priori voting power in games with active abstentions is a
still young and under-developed part of the theory of vot-
ing power. The recent paper of Freixas and Zwicker (2003)
introduces weighted (j, k) games. In these games a voter is
endowed with j many voting weights and there are k many
levels if output. This conceptual approach can be interpreted
as modeling j many levels of approval ranging from complete
enthusiasm to total opposition which covers the classical SVG
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setup as a (2,2) game. Voting games with active abstention
can be interpreted as a special case of (3,2) games. We conjec-
ture that PLT holds under rather general conditions, for large
classes of variously defined weighted voting games, other val-
ues of the quota, and other measures of voting power.

NOTES

1. Perhaps the most famous precedent ocurred in 1950, when the
USSR’s boycott of the UNSC led to a resolution of sending UN
forces to Korea. Although the USSR strongly opposed it, their
absence – ‘passive’ abstention – did not prevent the passage of the
motion.

2. The voting rule depends on the nature of the issue at hand. In some
cases it is simple majority, in some the needed affirmative share is
two-thirds.

3. An earlier step in this direction was taken by Fishburn (1973, pp. 53–55);
but he considers only a special class of weighted voting games.

4. This way of modeling the Electoral College involves some over-sim-
plification, because there may be more than two candidates, and
since 1969 the Electors of Maine did not have to vote as a single
bloc. Since 1993, the same applies to Nebraska.

5. Note that this observation is not concerned with absolute voting
power. The (absolute) Bz powers of the voters typically do not sum
up to one. PLT is a statement is for it’s normalized version and
hence refers to relative power.

6. In stating Definition 2.1.ii we are paraphrasing Felsenthal and Mac-
hover in using a more ‘one-sided’ model with respect to the out-
come. For their own formulation see their 1998, Definition 8.2.1.

7. This is a simplifying assumption as, in fact, there must be a motion
to consider the quorum in order for a count to even take place. For
details see Felsenthal and Machover (1998), Chapter 4.

8. This principle claims that each of the alternatives should have equal
probability if there is no known reason for assigning unequal ones
(for more details see, for example, Felsenthal and Machover, 1998).
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