
 
 

 
 
 
 

On Computer-Aided Methods for 
Modeling and Analysis of 

Organizations 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 
Cover illustration: Pieter Bruegel der Ältere “Turmbau zu Babel” , Kunsthistorisches 
Museum, Wien 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

SIKS Dissertation Series No. 2008-02  
 

The research reported in this thesis has been carried out under the auspices of SIKS, 
the Dutch Research School for Information and Knowledge Systems. 

 
 

 



VRIJE UNIVERSITEIT 
 

 
 
 

On Computer-Aided Methods for  
Modeling and Analysis of Organizations 

 
 

 
 
 
 

 
ACADEMISCH PROEFSCHRIFT 

 
ter verkrijging van de graad Doctor aan 

de Vrije Universiteit Amsterdam, 
op gezag van de rector magnificus 

prof.dr. L.M. Bouter, 
in het openbaar te verdedigen 

ten overstaan van de promotiecommissie 
van de faculteit der Exacte Wetenschappen 
op donderdag 10 januari 2008 om 10.45 uur 

in de aula van de universiteit, 
De Boelelaan 1105 

 
 
 

 
 
 
 
 
 
 
 

door 
 

Olexiy Albertovitsj Sharpanskykh 
 

geboren te Zaporizhzhya, Oekraïne 
 



promotor: prof.dr. J. Treur 



 
 
 
 �������

 �
������	�
�����

 
 



 
 



 

 i 

 
 
 
 
 
 
 
 

Preface 

 

The dissertation has been finished. It gives a good feeling to realize that three and a 
half years of persistent work have resulted into the holistic (hopefully useful) 
outcome. I am glad that I had the opportunity to work on and to finish this dissertation 
successfully at the Vrije Universiteit Amsterdam, in the Agent Systems Research 
Group. First of all, I am grateful for that to my supervisor Jan Treur and to Catholijn 
Jonker, who recognized the potential in me and gave me the chance to prove myself 
in pursuing research. Hope that their expectations have been justified. 

Before coming to Amsterdam my major background was in the Computer Science 
area. However, during the last years of my university studies in Ukraine I had a 
particular interest in doing multidisciplinary research, on the edges of exact and 
humanitarian/natural sciences. This interest influenced the choice of the topic for my 
Master thesis – approaches and techniques for adaptive distance learning systems. 
Luckily, after receiving my Master I have got the opportunity to continue 
multidisciplinary research in Amsterdam. The major topic of the projects in which I 
was involved from the beginning was formal agent-based modeling and analysis of 
organizations. Although I possessed knowledge on formal methods, the area of 
organization modeling was new to me. Many fruitful discussions that we had in our 
group during my first year contributed to my quick acquaintance with the agent-based 
organization modeling domain and the related techniques. However, since our 
projects required modeling of real (human) organizations, the existing approaches 
from the area of agent systems that aimed mainly at improving the performance of 
artificial organizations, were not sufficient for our purposes. During my PhD period I 
performed investigations also in other areas that study different aspects of 
organizations, such as Social Science, Enterprise Information Systems, Computational 
Organization Theory, Social Simulations… Methods and techniques of each of these 
areas have their own advantages and drawbacks. Moreover, from my observations, 
sometimes weaknesses of methods in one area were addressed in another area, and 
vice versa. However, I also observed that currently not much interaction between 
different areas exists. Often methods and techniques are restricted to a particular 
scientific school and tradition. This situation in the conditions of the increasing 
complexity of organizations can be metaphorically compared to the building of the 
legendary Tower of Babel, the image of which I used for the cover. This metaphor is 
also applicable to the process of organization modeling. Many modern organizations 



 

 ii 

are characterized by high behavioral and structural complexities, involving many 
parties with diverse goals performing for a wide range of tasks. Thus, mistakes, 
inconsistencies and performance bottlenecks are not rare in modern organizations. 
Some of these organizational flaws may result into less ideal performance, whereas 
others can seriously affect the vitality of an organization. This dissertation describes 
formally grounded methods for analysis of organizations based on complex structural 
and behavioral relations that exist between different organizational aspects.  

Although I had sufficient freedom to make choices and to realize my ideas in the 
research, many parts of this work have resulted from the collaboration. In the 
Netherlands I really learned the value of teamwork, which is also crucial in modern 
organizations. Particularly, I would like to acknowledge Jan in collaboration with 
whom the formal foundations of the dissertation were developed; Catholijn and pInar 
with whom I started our organization modeling activities; Viara with whom we had 
very nice and very productive collaboration during my last year. Further, I would like 
to acknowledge my (former and current) colleagues with many of whom I 
collaborated in a number of projects: Annerieke, Charlotte, Egon, Fiemke, Ghazanfar, 
Lai, Lourens, Mark, Martijn, Matthijs, Michel, Peter-Paul, Radu, Savas, Tibor, Vera, 
Waqar and Zulfiqar. With many of these people I developed very good personal 
relations, which I value a lot. I am glad we undertook many trips to conferences and 
activities beyond the work. 

Also, I would like to acknowledge the partners within the projects, in which I was 
involved: CIM (Cybernetic Incident Management), DEAL (Distributed Engine for 
Advanced Logistics), and CARE INO III (in particular, Sybert Stroeve and Henk 
Blom from the NLR Air Transport Safety Institute). 

I am very grateful to the sponsors who not only allowed me to accomplish this 
research successfully, but also provided means to travel to many conferences around 
the world: the Dutch Ministry of Economical Affairs, the Netherlands Organisation 
for Scientific Research (NWO), and the European Organization for the Safety of Air 
Navigation. This was particularly important to me, since getting in touch with the 
research community, presenting my research results and receiving feedback always 
gave me a strong impulse to continue investigations and provided grounds for new 
ideas. 

Further, I want to thank the members of the reading committee: Olivier Boissier, 
Jaap Boonstra, Kathleen Carley, Catholijn Jonker, Michael Petit, and Stefan 
Schlobach for the time they spent on the reading of this dissertation and for their 
encouraging comments. 

Work is a significant part of life, but life is not confined to work only. The 
Netherlands became the country, in which I began to live completely independently, 
building everything from nothing. I am glad I met nice people here, with whom I hope 
we shall stay in touch for a long time. I want to thank Paula for the opportunity to live 
in her house in a very nice and quite neighborhood in Amstelveen. It was very nice to 
spend my leisure time with Nicholas, Jurie, Elizabeth, Maria, Edgard, Tatiana, Ton, 
Vadim, Maxim, Boris, Dmitry, Marius and Katerina. Taking a distance from the 
Slavic cultural tradition and getting a broader view over the West European cultural 
and historical tradition helped me to develop a deeper understanding of many 
important things…  



 

 iii 

I spent very nice time in Germany with my old and new German friends. Ich danke 
allen - Alexander, Susanne, Wolfgang, Christian und Gereon, Marlies und Hubert, 
Magda und Waldemar, Rita und Wolfgang, Beata und Dietmar, Maria und Johann, 
Ralf, Ingrid und Alois, Elisabeth - für die warmherzige Gastfreundschaft und für alles, 
was wir zusammen unternommen und erlebt haben. Durch Euch alle habe ich mich in 
Deutschland immer wieder wie zuhause gefühlt. Further many warm greetings to 
Helene, Rodney, Mike, Frederick and Jerome. 

Of course, my family and friends in Ukraine and Russia play a special role in my 
life. Few words to them in Russian: ���������
	�����  ���
�����  ���
���������������������  ���  ������������ "!�#  
�  ������#  $%����&  ����$%	��  �  ����#��'	�(�$ . )*���  �����
	�+,���  ��-�������	�� , -����  ./  ������	 ! 0  �������'����1  2����  
!3�� ���#
1  $%���4#
��#  �  5����41 . 

 
 
 
October 2007 
Rome – Amsterdam 

 
 



 

 iv 



 

 v 

 
 
 

Table of Contents 
 
 

I: Introduction and Related Work 1 

1. Introduction 3 

2. Related work 17 

II: Formal Foundations 31 

1. A Language for Modeling of System Dynamics 35 

2. Integrating Agent Models and Dynamical Systems 43 

3. Automated Transformation of Multi-Agent System Behaviour 
Specifications into Executable Specifications 

63 

4. Formal Modeling and Analysis of Cognitive Agent Behavior 95 

5. Specification and Verification of Dynamics in Cognitive Agent 
 Models 

121 

III: Methods for Modeling and Analysis of Organizations 135 

1. Modeling Organizational Performance Indicators 139 

2. Formal Modelling of Goals in Organizations 163 

3. Process-oriented organization modeling and analysis 193 

4. Formal Analysis of Executions of Organizational Scenarios Based on 
Process-Oriented Models 

227 

5. A Framework for Formal Modeling and Analysis of Organizations 249 

6. Authority and its Implementation in Enterprise Information Systems 277 

7. Agent-based Modeling of Human Organizations 289 

8. On the Complexity Monotonicity Thesis for Environment, Behaviour 
 and Cognition 

303 

IV: Supporting Organization Design 321 

1. General Approaches to Organization Design 323 

2. A Formal Framework to Support Organization Design 327 

V: Case Study 353 

1. Modeling and Analysis of Organizations from the Air Traffic  
 Management Domain 

355 

VI: Conclusions 405 



 

 vi 

1. Discussion of results 407 

2. Future work 417 

Samenvatting 419 
���������	�

 423 

SIKS Dissertation Series 427 

 
 
 



 

 

 

Part I 

Introduction and Related Work 



 

 2 



 

 3 

 
 
 
 
 
 
 
 

Chapter 1 

 

Introduction 

The modern world is unthinkable without organizations. The rapid scientific, societal 
and technological development of the last centuries, coupled with the changed 
environmental conditions gave rise to a great diversity of organizational forms and 
types of interaction between them. The structural and behavioral complexity of 
organizations is interdependent on the complexity of the environment, in which these 
organizations are situated. The complex, dynamically changing environment with 
insufficient resources often creates challenging obstacles for the satisfaction of the 
primary goals of any organization – to survive and to prosper. To be successful an 
organization should effectively and efficiently organize its internal structure and 
activities, in such a way that the fit with the environment is achieved. In reality these 
requirements are difficult to fulfill, since no universally applicable recipes exist that 
ensure the successfulness of an organization in all times and in all cases [27]. 
Therefore, most modern organizations suffer from different performance 
inefficiencies, inconsistencies and bottlenecks that may have (serious) consequences 
for the organizational vitality. Often only a small number of these flaws can be easily 
identified (e.g., evident inconsistencies and mistakes), whereas latent organizational 
flaws can be revealed using more profound (formal) analysis methods. To enable such 
formal analysis, this thesis introduces formal modeling approaches that allow 
representing diverse aspects of organizational reality. For verification and validation 
of organizational specifications developed using the proposed modeling techniques 
this thesis contributes a set of automated formal analysis techniques. Such techniques 
aim at identifying inconsistencies and performance bottlenecks both in the 
organizational structure and behavior. The proposed modeling and analysis 
techniques form a basis for a general organization modeling and analysis framework, 
which is described in this thesis. 

In this chapter first the motivation for the research is presented in Section 1.1. 
Then, the research goals are described in Section 1.2. Section 1.3 discusses the 
professional significance of the study. The research methodology is described in 



 

 4 

Section 1.4. An overview of the proposed framework is provided in Section 1.5. The 
delimitations of the study are given in Section 1.6. Definitions of key terms are given 
in Section 1.7. Finally, an overview of the thesis is given in Section 1.8. 

1.1 Motivation 

In the areas of management and organization theory a range of theories, guidelines 
and best practices concerning the design and management of effective and efficient 
organizations has been developed [10, 20, 22, 23, 25, 27]. However, most of these 
theoretical findings are specified in an informal, imprecise and ambiguous way. 
Consequently, such theories and guidelines are difficult to apply in practice. One of 
the attempts to identify concrete, practically applicable recommendations for 
designing and managing an organization situated in a particular type of environment 
has been undertaken within the framework of the contingency theory [10, 27]. The 
key thesis of the contingency theory is that to ensure the effectiveness and the 
efficiency of an organization, its structure and behavior should be defined depending 
on particular environmental characteristics [27]. Although the contingency theory 
provides many useful insights into the principles on which the organizational structure 
and dynamics are based, still these principles are formulated at a high level of 
abstraction. To achieve high organizational performance these principles should be 
carefully adapted in the context of particular organizational settings. In the process of 
adaptation inconsistencies and inefficiencies may by introduced that cannot be 
foreseen and identified by the contingency theory. To identify these inconsistencies 
and inefficiencies analysis techniques are required. 

Many of the techniques for analysis of organizational performance developed in 
organization theory are informal and imprecise (cf. [4, 26]), which undermines the 
feasibility and the rigor of the analysis results. For more precise evaluation of the 
organizational performance, for identification of performance bottlenecks and 
organizational conflicts, and for estimation (prediction) of consequences of different 
environmental influences, organization structures and behaviors on organizational 
performance, detailed organizational analysis based on a formal organization model 
should be performed. Furthermore, a formal organization model constitutes a basis for 
many automated processes within enterprises (e.g., computer integrated 
manufacturing [6], production management [11]) and provides a foundation for inter-
enterprise cooperation. Approaches for formal organization modeling and analysis 
have been developed in a number of areas, which may be divided into two groups: 
traditional and agent-based organization modeling methods. 

Traditional organization modeling methods 
The first formal computational organization modeling approaches have been 
developed in the areas of the system dynamics theory [14] and operation research 
[21]. Organizational models specified in system dynamics are based on numerical 
variables and equations that describe how these variables change over time. Operation 
research proposes mathematical methods for identifying best possible solutions to 
problems related to coordination and execution of the operations within an 
organization that improve or optimize the organizational performance [21]. Both 



 

 5 

system dynamics- and operation research-based modeling approaches abstract from 
single events, entities and actors of organizations and take an aggregate view on the 
organizational dynamics. Such methods may be useful for the analysis of the 
organizational dynamics at macro levels (e.g., market fluctuations, general trends of 
the organizational development), however, provide little help for the investigation of 
the behavior of organizational individuals and (the dynamics of) relations between 
them at (the most) detailed levels. As a high complexity of social dynamics results 
from a large number of diverse local interactions among organizational actors, the 
examination of an organization at the most detailed level may help identifying causes 
of organizational malfunctioning and inefficiencies at more general levels.  

The agent-based approaches to complex systems have been used for modeling and 
analysis of both human and artificial organizations. 

Agent-based organization modeling 
Agent-based modeling approaches take into account the local perspective of a 
possibly large number of separate components and their specific behaviors (i.e., 
interactions) in a system. The concept of an agent may be used to model both human 
beings as well as hardware and software components of socio-technical systems such 
as organizations. Currently many definitions exist for the concept of an agent. One of 
them is given in [15]:  

An autonomous agent is a system situated within and a part of an environment 
that senses that environment and acts on it, over time, in pursuit of its own 
agenda and so as to effect what it senses in the future. 

In the area of Multi-Agent Systems the organizational paradigm is used to improve 
computational properties of distributed algorithms, based on agent systems [3, 13, 18, 
24]. In particular, representation of a multi agent system as an organization consisting 
of roles and groups can facilitate handling high complexity and poor predictability of 
the dynamics in a system, and thus, allows building better algorithms [19]. 
Organization-oriented models of multi-agent systems have been also used to support 
processes of real organizations: goal-related aspects of organizations are considered in 
[17], models for different types of organizational interactions are described in [19], an 
approach to coordinate the execution of tasks is shown in [9]. Although organization-
oriented models developed in the area of multi-agent systems can be computationally 
effective for particular tasks, those known to the author lack the ontological 
expressivity required to conceptualize a wide range of concepts and relations of 
human organizations. Furthermore, such frameworks only rarely use the extensive 
theoretical basis from Organization Theory. Many agent-based approaches that 
incorporate findings from Social Science are considered in the area of computational 
organization theory. 

In the area of computational organization theory [5] computational and 
mathematical techniques are applied for the investigation of human organizations; 
development, testing and improvement of organization theories. Many models in this 
area are based on the agent paradigm. Such models aim at the representation, 
investigation and prediction of processes in organizations considered at three 
representation levels: (1) the macro level that focuses on an organization as a whole 
and its relations with the environment (e.g., other organizations, markets); (2) the 



 

 6 

meso level that focuses on the interaction between individuals and/or groups in the 
organizational context; and (3) the micro level that focuses on an individual of an 
organization, his/her characteristics and behavior in an organization. Organizational 
factors that exert an influence on the behavior of agents are diverse: norms and 
regulations related to the task execution and to communication, a power (authority) 
system, a reward/punishment system. Furthermore, organizational factors are 
interrelated (e.g., a power structure influences the execution of tasks). However, often 
models used in computational organization theory consider only a limited number of 
the organizational aspects directly related to the considered research problem and do 
not reveal (inter-) dependencies that exist between these and other (indirectly related) 
organizational aspects. Neglecting indirect relations between aspects may result into 
limited evaluation possibilities of different organizational processes and may 
undermine the practical feasibility of organizational models.  

To perform a profound evaluation of the organizational performance and to enable 
analysis and prediction of organizational behavior under different environmental 
influences, more sophisticated modeling and analysis techniques are required that 
employ concepts and relations between them across different perspectives on 
organizations and establish relations between different representation levels (i.e., 
micro, meso and macro). 

1.2 Research objectives 

The main research objective of the thesis is to develop expressive scalable agent-
based formal methods for modeling structures and processes of organizations of most 
types and the related techniques for elaborated manifold computational analysis of 
organizational specifications. The modeling methods should be able to represent both 
predefined formal organizational structures of diverse types and arbitrary behavior of 
autonomous organizational actors. Furthermore, these methods should allow explicit 
representation of relations that exist between different aspects of organizational 
reality. Also, dedicated analysis techniques that make use of these relations should be 
developed. 

To enable reliable analysis of organizational specifications, the formal foundations 
(for modeling languages and analysis techniques) should be defined. Furthermore, to 
be feasible and applicable in practice the developed techniques should be supported 
by theoretical findings and empirical evidences from Social Science (in particular, 
organization theory and Psychology). Also, the developed techniques should be 
integrated into a general framework for organization modeling and analysis. It is 
intended to apply within the framework automated formal methods together with (to a 
great extent) informal social theories to verify and validate organizational 
specifications, and to gain a better understanding of general principles, on which the 
structure and dynamics of different forms of organizations are based. 

Another objective of the thesis is the identification of methodological guidelines 
for the development of organizational specifications. Furthermore, the proposed 
modeling and analysis techniques are required to be implemented. Also, a preliminary 
validation and evaluation of the proposed framework should be performed. 



 

 7 

1.3 Significance 

The proposed organization modeling and analysis techniques developed as a part of 
this dissertation are based on formal many-sorted predicate languages. The formal 
modeling of organizations enables more precise, sophisticated and rigorous types of 
analysis in comparison to informal analysis methods proposed in Social Science [16, 
23, 25]. Formal organizational specifications expressed using languages as proposed 
may describe complex processes (e.g., adaptation) in organizations by complex 
logical formulae, which cannot be directly used for automated analysis (simulation, 
verification). To enable automated analysis of organizational behavior, the 
dissertation proposes an automated procedure for transformation of behavioral 
specifications of dynamic systems (e.g., of an organization) into executable format 
that allows formal analysis and execution. 

Furthermore, to reduce the complexity of organization modeling and analysis and 
to increase the scalability of organizational specifications, a formal approach has been 
developed using which organizations can be modeled and analyzed at different 
aggregation levels. To ensure the integrity of a complete organizational specification, 
the approach provides means to establish and to prove relations between different 
aggregation levels. Moreover, the proposed formal techniques are based on the 
findings from Social Science, which allow designing and analyzing realistic 
organization models. 

Generalized organization modeling and analysis with explicit identification of 
relations between different aspects of organizations considered in the dissertation has 
a number of advantages compared with a variety of specialized modeling approaches 
for particular organizational aspects: 

(1) a unified set of concepts and relations between them is used for modeling 
different types of organizations; 

(2) the relations between the concepts from different perspectives (e.g., goal-
oriented, process-oriented, human-oriented) are explicitly defined; 

(3) computational analysis can be performed across multiple views; 
(4) indirect relations between different organizational and environmental 

characteristics and processes can be investigated. 
Nowadays a number of highly expressive enterprise modeling frameworks exist. 

However, the frameworks known to the author either do not have formal foundations 
[2, 6] or have limited verification possibilities [2]. This thesis proposes diverse formal 
verification and validation means for analyzing expressive organizational 
specifications. Such analysis means can be applied by organizational designers and 
managers for the evaluation and improvement of different aspects of an organizational 
structure and dynamics, for the estimation of organizational performance. 

1.4 Research Methodology 

As a point of departure for this research, based on the analysis of theoretical and 
practical findings from Social Science a number of paradigmatic types of modern 
organizations have been identified and investigated. Based on the results of these 
investigations coupled with the needs of practitioners identified from the managerial 



 

 8 

literature, during the project meetings and workshops, a set of requirements for 
computational formal methods for modeling and analysis of organizations of diverse 
types have been identified. Useful contributions to this set were provided during the 
meetings on the projects CIM (Cybernetic Incident Management), DEAL (Distributed 
Engine for Advanced Logistics), and CARE INO III (from the air traffic management 
domain). The most important high level requirements are the following: 

(1) expressivity: the modeling methods should provide languages with sufficient 
expressivity to represent different structural and behavioral aspects of 
organizations of different types; furthermore, relations between different 
aspects of the organizational reality should be specified explicitly; 

(2) a strong connection to Social Science: the meaning attached to the introduced 
modeling concepts and the rules of correct use of these concepts in 
organizational specifications should be specified based on the literature from 
Social Science; 

(3) automated formal analysis: the language used for the formalization of 
organizational specifications should also allow rigorous automated formal 
analysis of these specifications (e.g., by simulation, verification and 
validation) both within particular views on organizations and across multiple 
views; 

(4) complexity: since specifications for real organizations may be very complex, 
means to handle a high complexity and to increase scalability of modeling 
and analysis should be identified; 

(5) support for the execution of organizational scenarios: the developed methods 
should allow designing organizational specifications that form a basis for 
enterprise information systems, which support and control the execution of 
organizational scenarios; 

(6) usability: the framework based on the developed techniques should be usable 
and convenient for organizational practitioners: modelers, designers, analysts, 
etc. 

 
Thereafter, many existing organization and enterprise modeling and analysis 

frameworks and techniques have been evaluated against the identified requirements. 
To name a few from the area of multi-agent systems: Gaia, SODA, AGR, DESIRE, 
AAII, MOISE+, TROPOS, OperA, ISLANDER, OMNI, TAEMS; from the area of 
enterprise information systems: CIMOSA, GRAI, Zachman, ARIS, TOVE, GERAM, 
PERA. The results of the study indicate that none of the investigated frameworks 
satisfied the requirements completely. On the one hand, some of the enterprise 
modeling frameworks developed in the area of Enterprise Information Systems (e.g., 
CIMOSA, GRAI) provide considerable ontological expressivity, however, do not 
have any formal foundations. Further, even the frameworks based on formal modeling 
languages (e.g., TOVE, Zachman) provide only limited organization analysis means. 
On the other hand, (computational) formal frameworks developed in the areas of 
Artificial Intelligence and computational organization theory known to the author 
have a limited expressivity, focusing on particular aspects of organizations abstracting 
from the structural and behavioral complexity of organizations. In particular, the 
ISLANDER [12] framework focuses primarily on normative aspects of an 



 

 9 

organization, whereas process-related and intentional aspects are not elaborated much. 
On the contrary, the framework TAEMS [9] addresses detaily the execution of tasks 
in an organization; however, only a little attention is devoted to different types of 
relations between the organizational roles in this framework. 

The development of formal organization modeling and analysis methods that 
satisfy the identified requirements began from the identification of the organizational 
perspectives with the relevant concepts and relations based on the input from Social 
Science and Enterprise Information Systems. The fulfillment of this step contributed 
to the satisfaction of the requirements (1) and (2). The identified modeling 
perspectives are similar to the ones recommended by the Generalized Enterprise 
Reference Architecture and Methodology (GERAM) [2], which is often used as a 
basis for comparison of the existing enterprise modeling frameworks and serves as a 
template for the development of new ones. The identification of particular modeling 
perspectives on organizations with their languages and techniques also decreases the 
complexity of modeling and analysis, thus, contributing to the satisfaction of the 
requirement (4). 

Then, the choice of a formal apparatus used for the formalization of the methods 
being developed has been performed. A formal language used for the formalization of 
a particular view was required to be expressive enough to represent different 
(quantitative and qualitative) structural and behavioral aspects of this view. 
Furthermore, to satisfy the requirement (3) such a language should allow performing 
different types of computational analysis (e.g., by simulation, verification and 
validation). Moreover, to enable analysis across different interrelated views, the 
formal languages of these views should be syntactically and semantically compatible 
with each other. 

Sorted predicate logic restricted to finite sorts has been chosen as a formal basis for 
defining dedicated modeling languages for each view. To express temporal relations 
in specifications of the views, the dedicated languages of the views are embedded into 
the Temporal Trace Language (TTL) [28], which is a variant of reified order-sorted 
temporal predicate logic. To enable automated formal analysis on organizational 
specifications the formal syntax and semantics of TTL have been defined. 
Furthermore, to enable different particular types of analysis several executable 
sublanguages of TTL have been defined.  

The predicate-based ontologies used for the formalization of the views are 
intuitive, close to natural language. These ontologies share a terminological basis with 
the one used by practitioners (e.g., organizational managers, analysts), which 
contributes to the satisfaction of requirement (6). Furthermore, the concepts and 
relations of these languages can be represented graphically. The graphical interface 
has been implemented for the performance-oriented view, whereas other views are 
specified textually using dedicated modeling tools. 

Within every view a set of structural and behavioral constraints imposed on the 
specifications of the view can be identified. Some of these constraints are formulated 
based on the theoretical findings from Social Science. An example is the constraint 
expressing the transitivity of a “subordinate-superior”  relation in an organizational 
authority structure. Other constraints are domain-dependant (e.g., based on the formal 
regulations of a particular organization). The algorithms for verification of 



 

 10 

satisfaction of different types of constraints with respect to specifications of different 
views have been developed and implemented.  

To reduce the complexity of modeling and analysis (the requirement (4)) and to 
support the scalability of organizational specifications, the means for specifying, 
depicting and analyzing organizational specifications at different aggregation levels 
have been developed. For example, the specification of an organizational structure 
and dynamics can be performed at the level of departments or at the level of roles 
within a particular department. Furthermore, organizational processes can be 
considered with different level of details. To ensure the consistency of a whole 
organizational specification the (structural and dynamic) relations between different 
aggregation levels of an organizational representation should be established and their 
correctness should be formally proved. An approach for automated formal verification 
of such relations is described in this thesis.  

The dedicated modeling and analysis techniques have been integrated into a 
general framework. Organization specifications developed using the proposed 
framework can be also used as a basis for enterprise information systems that guide 
and execute organizational scenarios (the requirement (5)). Examples of the 
application of the framework for this purpose are considered in the thesis. 

For the development (designing) of organizational specifications for both new and 
existing organizations using the proposed framework, methodological guidelines are 
provided. These guidelines comprise the general guidelines for designing 
organizational specifications over multiple views, and the guidelines for every 
particular view.  

The evaluation and validation of the proposed framework have been performed in 
the context of three research projects from the domains of transport logistics, of 
incident management and of air traffic control. The investigated organizations 
combined features of mechanistic organizations (e.g., a functional specialization, a 
high level of task formalization, a hierarchical structure of managerial positions) with 
some features of organic organizations inherent in some structural units (e.g., a flat 
power structure, informal work style, adaptivity and flexibility of the task execution). 
In all these projects organizational specifications have been built using the proposed 
modeling framework representing (parts of) real organizations. During the 
organizational modeling process different types of formal and informal organizational 
knowledge have been used. In particular, formal knowledge was obtained from 
different organizational documents (e.g., charts, job descriptions, procedures, 
regulations, norms, reports), available descriptions of similar organizations from the 
same domain. Informal knowledge also plays an important role in creating feasible 
organizational specifications. Such knowledge was obtained from interviews, 
questionnaires, and brainstorming sessions. Then, the constructed specifications have 
been investigated using different types of the developed analysis techniques (a brief 
overview of the proposed analysis techniques is given in Section 1.5). The performed 
analysis aimed at establishing the consistency of organizational specifications and at 
inspecting and improving of efficiency and effectiveness of the organization operation 
by identifying inconsistencies and performance bottlenecks. The results of the 
automated analysis were provided for the further evaluation and consideration to 
organizational domain experts and managers. Major results of these investigations are 
described in the thesis. 



 

 11 

1.5 Overview of the proposed modeling and analysis methods 

In line with GERAM [2] four interrelated modeling views have been introduced: The 
performance-oriented view describes organizational goal structures, performance 
indicators structures, and relations between them. The process-oriented view contains 
information about the organizational functions and processes, how they are related, 
ordered and synchronized and the resources they use and produce. Within the 
organization-oriented view organizational roles, their authority, responsibility and 
power relations are defined. In the agent-oriented view different types of agents with 
their capabilities are identified, models of agent behavior are specified based on social 
theories, and principles of allocating agents to roles are formulated.  

The sorted predicate logic-based languages of the views provide high expressivity 
for conceptualizing a variety of concepts and relations and allow expressing both 
quantitative and qualitative aspects of different views. To express temporal relations 
in specifications of the views, the dedicated languages of the views are embedded into 
the Temporal Trace Language (TTL). In TTL the organizational dynamics are 
represented by a trace, i.e. a temporally ordered sequence of states. Each state is 
characterized by a unique time point and a set of state properties that hold (i.e., are 
true). State properties are specified using the dedicated language(s) of the view(s). 
Temporal (or dynamic) properties are defined in TTL as transition relations between 
state properties.  

A set of constraints imposed on a specification of a particular view is represented 
by a logical theory that consists of formulae constructed in the standard predicate 
logic way from the terms of the dedicated language of the view (and of TTL if 
temporal relations are required). Since the views are related to each other by sets of 
common concepts, also these concepts can be used in the constraints expressions (see 
Fig. 1).  

The constraints are divided in two groups: (1) generic constraints need to be 
satisfied by any specification of the view; (2) domain-specific constraints are dictated 
by the application domain and may be changed by the designer. Two types of generic 
constraints are considered: (1) structural integrity and consistency constraints based 
on the rules of the specification composition; (2) constraints imposed by the physical 
world. Two examples of the generic constraints are the following: “not consumed 
resources become available after all processes are finished” , “non-sharable resources 
cannot be used by more than one process at the same time” . Domain-specific 
constraints can be imposed by the organization, external parties or the physical world 
of the specific application domain. Two examples of the domain-specific constraints 
are the following: “ the amount of driving hours for each driver should not exceed 6 
hours per day”  (imposed by a law), “agent A has no access to resource of type rt”  
(imposed by the organization). The developed organization modeling tools allow 
defining parameterized templates (macros) for complex constraints that can be 
instantiated in different ways, which can also be used as support for designers not 
skilled in logics.  

The environmental conditions in which an organization operates can be represented 
by both generic and domain-specific constraints. Furthermore, for particular purposes 
(e.g., for simulation of particular scenarios) an environment can be represented by a 
separate modeling component. In this case either an aggregated view on the 



 

 12 

environment may be taken (e.g., to represent the global behavior of markets) or a 
more elaborated specification of the environment may be created. In the latter case, 
the internal specification for the environment can be specified using one of the 
existing world ontologies (e.g., CYC, SUMO, TOVE). It can be also defined by a set 
of objects with certain properties and states and with causal relations between objects. 
In general no particular restrictions on the representation of the environment are 
imposed by the framework. 

 

 

Fig. 1. Modeling an organization using the proposed framework. Each arrow denotes that a set 
of constraints is imposed on a specification. 

A specification of the view is correct if the corresponding theory T of constraints is 
satisfied by this specification, i.e., all sentences in T are true in the many-sorted first-
order structure(s) corresponding to the specification. Thus, the specification defines a 
set of models of the theory T. 

The proposed analysis techniques will be described in the following. 
The first analysis type focuses on the verification of specifications of every view, 

i.e., establishing the correctness of a specification of a view with respects to a set of 
constraints defined in this view. Furthermore, some constraints may be specified 
across views, i.e., using concepts and relations of several views. In this case the 
satisfaction of such constraints is checked with respect to a combined organizational 
specification that comprises the specifications of these views. The algorithms 
developed for the verification of constraints of different types in the proposed 
framework are more efficient than general-purpose methods for verifying 
specifications (e.g., model checking [7]). 

A specification of a view can be represented and analyzed at different aggregation 
levels. In general, modeling and analyzing an organizational specification of a 
particular aggregation level is computationally much cheaper than dealing with the 
whole detailed organizational specification. However, to guarantee the consistency of 
a complete organization specification that comprises the specifications of different 
aggregation levels, structural and behavioral relations between these levels should be 
identified and formally proven. For the formal verification of relations between 



 

 13 

different aggregation levels an approach based on model checking [7] has been 
developed and automated. 

Based on correct (combined) specifications of the views further analysis of some 
properties of interest can be performed. Such properties are usually not implied by an 
organizational specification; they may be checked with the aim to optimize the 
organizational operation by discovering and eliminating bottlenecks, to test 
hypotheses on the organizational behavior under different circumstances, or to 
investigate theories from Social Science. If such properties are required to hold with 
respect to all possible executions of an organizational specification, then model 
checking techniques may be used for the verification. If the satisfaction of properties 
is required to be established with respect to a limited set of organizational executions 
(e.g., in some scenario(s) under certain environmental conditions), then simulation is 
performed. For the simulation of different scenarios of organizational behavior with 
agents allocated to organizational roles a dedicated tool is used. By performing 
simulation this tool generates a trace. Then, properties of interest formalized in TTL 
can be checked on a simulation trace using another dedicated checking tool called 
TTL Checker.  

Correct organizational specifications can be also used to guide and control the 
actual execution of processes in organizations. The execution data recorded by an 
enterprise information system and structured in the form of an execution trace can be 
checked for conformity to a formal organization (i.e., specifications and constraints 
defined in particular views). To this end, the relations and constraints specified for 
particular views are translated into properties expressed in the execution language 
used for the formalization of the trace. They are checked in real time on the trace.  

A trace can also be analyzed after the execution of an organizational scenario is 
completed. For this type of analysis, next to the properties obtained from the formal 
organization, the designer may specify in TTL and check other properties.  

The introduced techniques can be used for modeling and analysis of structures and 
dynamics of organizations of different types. In particular, they allow modeling 
mechanistic organizations that represent systems of hierarchically linked job positions 
with clear responsibilities that operate in a relatively stable (possibly complex) 
environment. At the same time the techniques can be applied for modeling and 
analysis of organic organizations characterized by highly dynamic, constantly 
changing, organic structure with non-linear behavior. Although the structure and 
behavioral rules for organic organizations can be hardly identified and formalized, 
nevertheless by defining a limited number of (temporary) constraints and by 
performing agent-based simulations with changing characteristics of proactive agents, 
useful insights into the functioning of such organizations can be gained (e.g., how 
different organizational and environmental factors influence the work motivation and 
performance of employees). Furthermore, the techniques allow reuse of parts of 
models constructed within particular organizational views. 

1.6 Research delimitations 

Using the terminology of computational organization theory the main focus of this 
research is on the micro and meso levels of the organization representation and 



 

 14 

relations between them. Although interaction between an organization and the 
environment in which it is situated is modeled at the macro level in this research, still 
a thorough investigation of macro level processes (e.g., different aspects of 
interorganizational cooperation) is out of scope of this thesis. Nevertheless, since all 
levels of the organization representation are closely related to each other, the 
investigation of how macro level processes influence the processes of meso and micro 
levels and vice versa is also a part of this research. Also, a preliminary study showed 
that many modeling principles and analysis techniques identified at the meso and 
micro levels can be also applied for the macro level. 

Another delimitation of this research is related to the application of the proposed 
methods for automated enterprise management. In sections 1.4 and 1.5 it was 
indicated that organizational specifications may be used as a basis for an EIS. An 
example of the implementation of a specification for the process-oriented view in an 
EIS to guide and control the execution of organizational scenarios is described in the 
thesis. However, the implementation and the exploitation of an EIS built based on a 
complete organization model description for the automated enterprise management is 
out of scope of this research. 

1.7 Definitions 

Aggregation level of the organization’s representation: a level of abstraction at which 
the structure and/or behavior of an organization are represented. 
 
Constraint: an expression over organizational objects and/or processes that limits the 
set of all possible behaviors of an organization. 

 
Correct organizational specification: an organizational specification of some view 
that satisfies all the constraints of this view defined for the organization. 
 
Formal organization: a fixed set of rules of intra-organization procedures, regulations 
and structures often specified in the formal documents of the organization. 
 
Organization: a structure that comprises sets of interrelated roles, which are 
intentionally organized to ensure a desired (or required) pattern of activities [1]. 
 
Organizational specification of a view: a representation of the structural and/or 
dynamic aspects related to a particular view of an organization using a representation 
language. 

 
Perspective (view) of an organization: an organizational facet that addresses 
particular (closely related) aspects of an organization that may be both static 
(structural) and dynamic in nature. 

 
Trace: a temporal development of processes of a system (e.g., an organization) 
represented in the form of an ordered time-indexed sequence of states. 



 

 15 

1.8 Overview of the thesis 

The thesis represents a collection of papers structured in six parts.  
Part I provides the introduction to the thesis (Chapter 1) and an overview of the 

related work on modeling and analysis of organizations from different areas (Chapter 
2).  

Part II presents the formal theoretical foundations, on which the proposed 
modeling and analysis methods are based. This part introduces the syntax and the 
semantics of the Temporal Trace Language (TTL) used for specifying dynamic 
aspects of systems (e.g., organizations, biological organisms, hardware). Furthermore, 
in this part TTL is compared to other known formalisms. Moreover, the part describes 
a normal form for TTL formulae that enables different types of computational 
analysis of TTL specifications and a procedure for the transformation into the normal 
form, which creates a basis for automated analysis. Examples of the application of the 
transformation procedure for the purpose of simulation and analysis of agent 
behavioral specifications are provided in this part. Also, the part introduces another 
type of analysis technique and a software tool that aim at checking dynamic properties 
expressed in TTL on a set of simulation and/or empirical traces.  

The modeling and analysis methods for the performance-oriented view, the 
process-oriented view, the organization-oriented view and the agent-oriented view 
with the related methodological guidelines and the analysis techniques are described 
in Part III. 

The general guidelines for using the proposed modeling framework in a process of 
organization design, and an approach for designing specifications from the 
organization-oriented view are described in Part IV. 

A case study from the area of the air traffic control management that demonstrates 
the application of the proposed framework is provided in Part V. 

Finally, Part VI presents the conclusions and the directions for the future work. 

References 

1. Biddle, B.: Role Theory: Concepts and Research, Krieger Publishing Co. (1979) 
2. Bernus, P. et al. (eds.): Handbook on Architectures of Information Systems, Springer-

Verlag, Heidelberg (1998) 209-241. 
3. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J. and Perini, A.: Tropos: An 

Agent-Oriented Software Development Methodology. Journal of Autonomous Agent 
and Multi- Agent Systems, vol. 8(3), 203-236 (2004) 

4. Campbell, D.: Outcomes Assessment and the Paradox of Nonprofit Accountability. 
Nonprofit Management and Leadership, 12(3) (2002) 243-260. 

5. Carley, K.M.: A comparison of artificial and human organizations. Journal of 
Economic Behavior & Organization, 31(2), 175-191 (1996) 

6. CIMOSA – Open System Architecture for CIM; ESPRIT Consortium AMICE, 
Springer-Verlag, Berlin (1993) 

7. Clarke, E.M., Grumberg, O., and Peled, D.A.: Model Checking. MIT Press (2000) 
8. Dastani M, Hulstijn J, Dignum F, Meyer J-J.: Issues in Multiagent System 

Development. In: Proceedings of the Third International Joint Conference on 
Autonomous Agents and Multi Agent Systems (AAMAS'04), ACM (2004) 922-929 



 

 16 

9. Decker, K.: TAEMS: A Framework for Environment Centered Analysis & Design of 
Coordination Mechanisms. Foundations of Distributed Artificial Intelligence, Chapter 
16, O'Hare, G. and Jennings, N. (eds.), Wiley Inter-Science, 429-448 (1996) 

10. Donaldson, L.: The Contingency Theory of Organizations. Sage, London (2001) 
11. Doumeingts, G., Vallespir, B., and Chen, D.: Decisional Modelling using the GRAI 

Grid, In: Bernus, P., Mertins, K. and Schmidt, G. (Eds): Handbook on Architectures 
of Information Systems, Springer-Verlag, 313-338 (1998) 

12. Esteva, M., Rodriguez-Aguilar, J. A., Sierra, C., Garcia, P., Arcos, J. L. : On the 
Formal Specification of Electronic Institutions. In the book Agent-mediated 
Electronic Commerce: the European AgentLink Perspective, LNAI 1991, Springer-
Verlag, (2001) 126-147 

13. Ferber, J. and Gutknecht, O.: A meta-model for the analysis and design of 
organizations in multi-agent systems. In: Y. Demazeau (ed.), Proceedings of Third 
International Conference on Multi-Agent Systems (ICMAS'98), IEEE Computer 
Society (1998) 128-135 

14. Forrester, J. W.: Industrial dynamics, Waltham, MA: Pegasus Communications 
(1961) 

15. Franklin, S., Graesser, A. Is it an agent, or just a program? A taxonomy for 
autonomous agents. In Mueller, J.P., Wooldridge, M., and Jennings, N.R., editors, 
Intelligent Agents III, Springer LNAI 1193, 21-35 (1996) 

16. Galbraith, J.R.: Organization design, Addison-Wesley Publishing Company, London 
Amsterdam Sydney (1978) 

17. Giorgini, P., Kolp, M. and Mylopoulos, J.: Multi-Agent Architectures as 
Organizational Structures. Journal of Autonomous Agents and Multi-Agent Systems. 
Kluwer Academic Publishers, 13(1) (2006) 3-25. 

18. Hannoun, M., Boissier, O., Sichman, J.S., and Sayettat, C.: MOISE: An 
organizational model for multi-agent systems. In: M. C. Monard and J. S. Sichman 
(eds.), Proceedings of the 7th International Joint Ibero-American Conference on 
Artificial Intelligence (IBERAMIA'00) and 15th Brazilian Symposium on Artificial 
Intelligence (SBIA'00), Atibaia, Brasil, 156-165 (2000) 

19. Horling, B., Lesser, V.: A Survey of multi-agent organizational paradigms. The 
Knowledge Engineering Review, Vol. 19(4) (2005) 281-316 

20. Lorsch, J.W. and Lawrence. P.R.: Organization design, Richard D. Irwin Inc., USA 
(1970) 

21. Marlow, W. H.: Mathematics for Operations Research. New York: Dover (1993) 
22. Mintzberg, H.: The Structuring of Organizations. Prentice Hall, Englewood Cliffs 

(1979) 
23. Morgan, G.: Images of organizations. SAGE Publications, Thousand Oaks London 

New Delhi (1996) 
24. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of agent-

based systems. In: M.J. Wooldridge, P. Ciancarini (eds.), Proceedings of Agent-
Oriented Software Engineering Workshop, Springer Verlag (2000)185–193 

25. Pfeffer, J.: Organizations and organization theory. Pitman Books Limited, Boston 
London Melbourne Toronto (1982) 

26. Herman, R.D., Renz, D.O.: Doing Things Right and Effectiveness in Local Nonprofit 
Organizations. Public Administration Review, 64:6, (2004) 694-704 

27. Scott, W.R.: Organizations: rational, natural and open systems. (4nd ed). Prentice 
Hall International Inc., Upper Saddle River, New Jersey (1998) 

28. Sharpanskykh, A., Treur, J.: Verifying Interlevel Relations within Multi-Agent 
Systems. In: Brewka, G., Coradeschi, S., Perini, A., and Traverso, P. (eds.), 
Proceedings of the 17th European Conference on Artificial Intelligence, Riva del 
Garda, September, IOS Press (2006) 290-294 



 

 17 

 
 
 
 
 
 
 
 

Chapter 2 

 

Related Work 

This chapter provides a general overview of organization modeling and analysis 
approaches and techniques developed in four areas: organization theory (Section 1), 
enterprise information systems (Section 2), organization-oriented multi-agent systems 
(Section 3), and computational organization theory (Section 4). Note that the literature 
overviews related to the specific modeling views are given in the corresponding 
sections of the Part III. 

1  Organization theory 

Organization theory is a broad discipline that studies structures and dynamics of 
human organizations. The research methods that are used in organization theory stem 
from such disciplines as economics, psychology, sociology, political science, 
anthropology, and system theory. Related practical disciplines include human 
resources and industrial and organizational psychology. This literature overview 
focuses in particular on the major theories and trends in the western sociological 
tradition. 

Most of the definitions for an organization in organization theory are based on the 
concept of rationality that lies in the basis of organizational theory [47]. One of the 
examples is the definition given by Giddens in [27]:  

An organization is defined as a planned, coordinated and purposeful action of 
human beings to construct or compile a common tangible or intangible product. 

Indeed, according to this definition, organizations are created for certain purposes 
(or goals). To achieve these goals organizational activities are intentionally planned, 
coordinated and executed (e.g. using scientific methods).  



 

 18 

In organization theory different types of organizations are distinguished. Classical 
organization theories [43] provide useful insights into the functioning of mechanistic 
organizations. This type of organizations comprises systems of hierarchically linked 
job positions with clear responsibilities that use standard well-understood technology 
and operate in a relatively stable (possibly complex) environment.  

In contrast to mechanistic (or functional) organizations, a substantial group of 
modern organizations are characterized by a highly dynamic, constantly changing, 
organic structure with non-linear behavior. Such organizations (sometimes called 
organic organizations [44]) can be investigated using modern organization theories. 
Modern theories are based on two essential frameworks: the systems framework [58] 
and the contingency approach [17].  

The systems framework is based on the notion of interdependency, which implies 
that a change in one part of an organization affects the behavior of all other parts. The 
systems framework is applied for studying matrix and network organizations [44]. 

The contingency approach [17] focuses on external determinates of organizational 
structure and behavior called contingencies. A contingency is any variable that 
moderates the effect of an organizational characteristic on organizational 
performance. The key thesis of the contingency theory is that to ensure the 
effectiveness and the efficiency of an organization, its structure and behavior should 
be defined depending on particular environmental conditions. The contingency 
approach is claimed to be useful for studying organizations of most of the types and it 
is claimed to be particularly suitable for organization design. 

Organization design is a special topic in the organization theory [39, 25]. Galbraith 
[25] stated that ‘organization design is conceived to be a decision process to bring 
about a coherence between the goals or purposes for which the organization exists, 
the patterns of division of labor and inter-unit coordination and the people who will 
do the work.’  Further Galbraith argues that ‘design is an essential process for creating 
organizations, which perform better than those, which arise naturally.’  The ideas of 
Galbraith and others are used extensively in the managerial practice to (re)design 
efficient and effective organizations [49]. The literature on organizational design 
proposes an extensive set of factors identified at every level of representation of an 
organization (i.e., micro, meso, and macro) that influence the choice of specific 
design parameters (e.g., the group size, the task complexity, reporting relations, the 
number of employees) related to the organizational structure and dynamics.  

Often three aggregation levels of the organizational representation are considered. 
At the individual (or micro) level the behavior of organizational individuals and work 
groups is investigated. Sometimes the study of individual behavior is separated in the 
disjoint from organization theory discipline – organizational behavior [35]. Among 
the topics that are considered at the micro level are the following: perceptions of an 
individual in the organizational context [52], work motivation and satisfaction [57], 
group formation [4], leadership [64], individual conflicts in organizations [40]. 

At the level of the whole organization (or meso level) different aspects of the 
organizational structure and dynamics are considered. At this level the following 
topics are of relevance: organization structure and behavior [2, 42, 44], organization 
authority and power structures [52, 42, 47], organization normative systems [52], 
intergroup conflict within an organization [40], technology in organizations [44, 52], 
organizational change [15]. 



 

 19 

At the global (or macro) level the interaction between the organization and its 
environment that includes other organizations, society, markets etc. is considered. At 
this level the behavior of organizations is investigated using the population ecology 
theory [30] and the resource dependence theory [48]. The following topics are 
considered at this level: inter-organizational formations (e.g., mergers and 
consolidations, joint ventures and programs) [52], governmental impact on 
organizations [44], organizations and politics [1], interactions between organizations 
and the society [52], organizations and markets [37], virtual organizations [59]. 

The specifications of organizations that are normally used in organization theory 
are represented by informal or semi-formal graphical descriptions that illustrate 
specific aspects of organizations [42, 52] (e.g., decision making, authority and power 
relations). The disadvantages of such specifications are obvious: (1) lack of generality 
and relations between different specific types of specifications, and (2) graphically 
depicted data can not be effectively processed, combined and analyzed. A class of 
specifications built based on the System Dynamics Theory is an exception in 
organization theory devoid of both these disadvantages [23]. Organizational 
descriptions specified in System Dynamics are based on numerical variables and 
equations that describe how these variables change over time. Although such 
specifications can be computationally effective (i.e., used for simulations and 
computational analysis), nevertheless they still lack the ontological expressivity 
needed to conceptualize a wide range of relations and phenomena that exist in 
different types of organizations. Furthermore, system dynamics-based modeling 
approaches abstract from single events, entities and actors of organizations and take 
an aggregate view on the organizational dynamics. Therefore, such approaches cannot 
be used for modeling and analyzing organizations at the micro level. 

The solution to the ontological expressivity problem has been proposed in the area 
of enterprise information systems, considered in the following Section. 

2  Enterprise information systems 

In general, an enterprise information system is any computing system that automates 
the execution of certain process(es) of an enterprise. Such systems constantly collect 
data about the execution of various processes in manufacturing and production, 
finance and accounting, sales and marketing, and human resources. The collected data 
are used for different purposes. For example, based on these data inconsistencies and 
variances that may occur during the execution of processes can be identified. 
Furthermore, these data can be used as an input for decision making processes 
performed by managers. Finally, these data can be provided as input for other 
processes. Modern enterprises use both general and specialized information systems. 
General enterprise information systems are dedicated for the control and guidance of 
the operation of the whole enterprise. Among the specialized enterprise information 
systems are Material Resource Planning systems (MRP), Customer Relationship 
Management systems (CRM) and Supply Chain Management system [28]. 

Enterprise-wide information systems are often built based on enterprise 
architectures. An enterprise architecture is an enterprise-wide, integrating framework 



 

 20 

used to represent and to manage enterprise (business) processes, information systems 
and personnel, so that key (strategic) goals of the enterprise are satisfied. Typically a 
framework for enterprise architecture includes the following aspects: 

(1) modeling framework that consists of a set of modeling concepts (i.e., an 
ontology) and of a modeling language; 

(2) modeling methodology; 
(3) partial models (templates). 
Enterprise architectures may address methodological issues related to the 

enterprise modeling. Such issues include the identification of aspects of the 
organizational reality that should be captured by an organization model. Usually the 
specific boundaries of a model are dependent upon the specific modeling goals. For 
example, for the analysis of processes in a supply chain, particular organizations that 
constitute the chain can be modeled as parts of the same organizational model. 
Furthermore, enterprise methodologies address a process of engineering of enterprise 
models. Enterprise model engineering may be expressed in the form of a process 
model or structured procedure with detailed instructions for each enterprise 
engineering and integration activity. Several existing enterprise architectures do not 
have a formal foundation (e.g., CIMOSA [13], ARIS [50]) that allows formal 
verification and validation of enterprise models built using these architectures.  

In the past many different enterprise architectures have been developed CIMOSA 
[13], GRAI/GIM [18], TOVE [24], ARIS [50]. Based on common features, 
characteristics and elements of these architectures a generalized framework called 
GERAM (the Generalized Enterprise Reference Architecture and Methodology) has 
been developed [26]. The GERAM framework provides a generalized template for the 
development of elaborated enterprise modeling frameworks, based on which several 
international standards for enterprise modeling have been created [10, 11, 12, 19, 20]. 
Fig.1 shows a diagram of the three dimensions of the GERAM modeling framework:  

(1) The life-cycle phases dimension describes phases in the life cycle of an 
enterprise. 

(2) The instantiation dimension describes the model instantiation ranging from 
generic, partial to particular.  

(3) The views dimension describes enterprise activities from the viewpoint of 
content, purpose or implementation. 

To characterize the framework proposed in this thesis in relation to the GERAM in 
the following parts of the thesis, a more detailed description of the GERAM’s 
dimensions is provided below. 

To compare enterprise architectures GERAM identifies a number of phases of the 
life cycle of an enterprise that can be supported by enterprise information systems: 

(1) Identification of the boundaries of the enterprise and the relations between 
internal and external environments. 

(2) Concept phase, at which the enterprise’s mission, vision, values, strategies, 
objectives, operational concepts, policies and business plans are identified. 

(3) Requirements phase, at which operational requirements of the enterprise, its 
relevant processes and the collection of all their functional, behavioral, 
informational and capability needs are identified. 

(4) Preliminary design (translation of general user requirements into system 
requirements). 



 

 21 

(5) Detailed design (assignment to concrete human, software, hardware 
components). 

(6) Implementation. 
(7) Operation. 
(8) Decommissioning. 

 
Fig.1. The GERAM Framework (adopted from [26]). 

An instantiation of an enterprise model can be generic, partial or particular. Within 
the generic dimension the most generic concepts of enterprise modeling are defined in 
the form of a meta-model (e.g. entity relationship meta-schema) describing the 
relationship among modeling concepts available in enterprise modeling languages. 
Partial models capture characteristics common to many enterprises within or across 
one or more industrial sectors. Thereby these models capitalize on previous 
knowledge by allowing model libraries to be developed and reused in a “plug-and-
play” manner rather than developing the models from scratch. Particular models 
include various designs, models prepared for analysis, executable models to support 
the operation of the enterprise, etc. Particular representations may consist of several 
models describing various aspects (or views) of the enterprise. 

To reduce the complexity of enterprise models, GERAM proposes a number of 
dedicated views on enterprises that address particular aspects described along the life 
cycle phases introduced above. The set of the views of GERAM represents another 
dimension for the comparison of enterprise architectures. All views of GERAM are 
divided into three large groups:  

(1) Entity model content views. 
(2) Entity purpose views. 



 

 22 

(3) Entity implementation views. 
These views will be discussed in the following. 
Entity model content views are dedicated for the user oriented process 

representation of the enterprise and are defined as follows:  
(a) The function view presents the functionalities (activities) and the behavior 

(flow of control) of the business processes of an enterprise. The dynamics of 
business processes is defined by temporal (ordering) relations, which also 
determine resource usage/consumption/generation schemas. This view is 
realized in many existing enterprise architectures and methodologies. Dynamic 
aspects of the execution of processes are represented using the following 
formalisms and frameworks: IDEF standards [41], statecharts, Petri-nets [56], 
event algebra [53], semi-formal languages such as BPML. 

(b) The information view describes knowledge about objects (material and 
information) as they are used and produced. Information is represented in the 
existing architectures by data models. These models comprise entities 
(objects), attributes (properties of entities), attribute domains, relations among 
entities, key constraints (expressed as formulae in the first order predicate 
logic), cardinalities of relations. Different data structures adopted from 
computer sciences and mathematics are used in the existing architectures [51]: 
e.g., Entity-Relationship-diagrams used in databases, object-oriented 
representations, UML class diagrams. 

(c) The resource view considers resources of an enterprise. Resources are often 
modeled as separate entities in the existing frameworks, however, with varying 
level of details.  

(d) The organization view defines responsibilities and authorities on processes, 
information and resources. Furthermore, the representation of organizational 
structure that consists of roles and relations between them (e.g., authority, 
interaction) is considered in this view. This view is only rarely addressed in the 
existing architectures. Two of the exceptions are the methodology described in 
this thesis and CIMOSA [13]. 

Entity purpose views allow representing the model contents according to the 
purpose of the enterprise: 

(a) The customer service and product view addresses the mission of the enterprise 
entity being studied. 

(b) The management and control view. 
Within these views (strategic, tactical, and operational) goals of an enterprise are 

defined, with which the business processes of the enterprise should be aligned. 
Furthermore, decision making activities are addressed in these views.  

Entity implementation views describe implementation aspects based on the division 
between human- and automated tasks: 

(a) The human activities view represents all information related to the tasks to be 
done by humans. The view distinguishes between the tasks that may be done 
by humans (extent of humanisability) and those that will be done by humans 
(extent of automation). 

(b) The automated activities view presents all the tasks to be done by machines. 
This includes information related to those tasks to be carried out by mission 
support technology and those carried out by management and control 



 

 23 

technology (i.e. "technology tasks"). The implementation view distinguishes 
between the tasks which may be done by machines (extent of automatability) 
and those which will be done by machines (extent of automation). 

Usually enterprise information systems are based on predefined organizational 
specifications that guide and/or control processes performed by organizational actors. 
To enable modeling and analysis of behavior of and relations between organizational 
actors in different organizational and environmental settings, the agent paradigm is 
particularly useful. 

3  Organization-oriented multi-agent systems 

An agent is an active object with the ability to perceive, reason, and act. Interactions 
among agents often take place in the context of certain organizational formations (or 
structures). On the one hand, such structures may be intentionally designed to enforce 
certain rules on the behavior of an agent, e.g., which are based on norms and policies, 
organizational culture etc. On the other hand, organizational structures may emerge 
from the non-random and repeated patterns of interactions among agents. The 
organization structure provides means to coordinate the execution of tasks in a multi-
agent system and to ensure the achievement of organizational goals. Furthermore, by 
defining the organizational layer in agent models, the predictability of the behavior of 
the agents can be substantially increased. 

In [33] several types of organizational structures are distinguished. Among them 
hierarchies, holarchies (i.e., hierarchical nested structures that consist of holons; each 
holon is composed of one or more subordinate entities, and can be a member of one or 
more superordinate holons), coalitions, teams, congregations (i.e., groups of 
individuals who have banded together into a typically flat organization in order to 
derive additional benefits), and federations. 

Often organizational structures are specified in terms of roles. A role is usually 
defined as an abstract representation of a set of functionalities performed by an 
organization. Furthermore, roles are often characterized by sets of requirements 
(skills, traits and capabilities) that agents should fulfill in order to be allocated to these 
roles. Note that several agents can be allocated to the same organizational role, and 
several roles can be enacted by one agent.  

Depending on the type of an organizational structure, agents are provided different 
degrees of autonomy. Usually the behavior of agents is restricted by a set of norms 
that can be defined at different aggregation levels of the organizational structure. 
Currently many approaches for modeling normative multi-agent systems have been 
proposed in the literature. In particular, in [29] different types of organizational norms 
are defined that may be specified in different types of organizations. Besides 
prescriptive also descriptive behavioral specifications are provided for multi-agent 
systems in some approaches [36].  

Many of the existing approaches describe organizational specifications, using only 
two or three aggregation levels; i.e., the level of an individual role, the level of a 
group composed of roles, and the overall organization level. A few exceptions (e.g., 
[36]) allow representing as many aggregation levels as required. One of the important 



 

 24 

issues considered for multi-level organization-oriented multi-agent systems is the 
consistency of the structural and behavioral specifications of these systems both of 
particular aggregation levels and across multiple levels. 

Many different methodologies for modeling and design of multi-agent systems that 
allow representing the organizational layer have been proposed. In Table 1 some of 
these methodologies are characterized along the following categories: the possibility 
to specify environment (structure and/or behavior); the availability of means to define 
internal models of agents and interaction relations between them (e.g., 
communication); the availability of means to define the organizational layer (both 
structure and dynamics), the availability of an implementation.  

Table 1. Summary of characteristics for some of the methodologies for modeling and design of 
multi-agent systems. A ‘+’ denotes that a characteristic is addressed in the methodology, ‘-’ 
denotes that a characteristic is not considered. 

Agents Organization 
Methodology 

 
Environ-
ment 

Internal 
models 

Interaction Structure Dynamics Implemen-
tation 

GAIA - - + + - - 
AGR - - + + - + 
SODA + - + + + - 
MOISE - + + + - + 
TROPOS - + + + + + 
OperA + +/- + + + +/- 

 
The GAIA methodology [65] addresses two development phases: an analysis and 

design phase. The analysis phase describes two models: a role model and an 
interaction model. The role model specifies organizational roles. The interaction 
model defines the dependencies and relation between roles by means of protocol 
definitions. At the design phase societies of agents are specified. The design phase 
provides three models: the agent model, the service model, and the acquaintance 
model. The agent model identifies agent types, which are sets of roles. The service 
model identifies the services (or functions) associated with a role. Finally, the 
acquaintance model identifies the communication links between agent types. GAIA 
does not capture the internal aspects of agents. The interaction of agents with the 
environment is not treated separately. 

The original AGR methodology proposed in [21] considers only structural aspects 
of organization models. Each organization model of the AGR comprises a set of 
interrelated groups that consist of roles (see Fig.2). Groups are related through shared 
agent(s) allocated to roles within these groups. Furthermore, the AGR places no 
constraints on the internal architecture of agents and does not provide any 
implementation details, except for the recommendation to use ACL FIPA language 
for implementing the communication between agents. In [22] an extension of the 
AGR is described called AGRE (AGR + Environment). This extension includes a 
representation of physical (or simply geometrical) environments.  

 



 

 25 

 

Fig. 2. The meta-model of AGR 

The SODA methodology [46] makes a distinction between the analysis and design 
phases of the development process. The analysis phase provides three models: the role 
model, the resource model, and the interaction model. The design phase refines the 
abstract models from the analysis phase and provides three models: the agent model, 
the society model and the environment model. SODA focuses particularly on inter-
agent interactions and does not specify the design of the agents themselves.  

The MOISE methodology [31] allows constructing models along three levels: (1) 
the individual level of agents; (2) the aggregate level of large agent structures; (3) the 
society level of global structuring and interconnection of the agents and structures 
with each other. The methodology also addresses some implementation issues of the 
introduced models. In [34] the original methodology is extended with functional 
aspects (such as task, plans, and constraints on the behavior of a multi-agent system).  

The TROPOS methodology [3] addresses three development phases of multi-agent 
systems: the analysis, design and implementation phases. The analysis phase is 
represented by an early and a late requirements phase. The early requirements phase 
is based on the i* organizational modeling framework [63]. The late requirements 
phase results in a list of functional and non-functional requirements for the system. 
The design phase is divided into an architectural design and a detailed design phase. 
The architectural design defines the structure of a system in terms of subsystems that 
are interconnected through data, control and other dependencies. The detailed design 
defines the behavior of each component. The implementation phase maps the models 
from the detailed design phase into software by means of Jack Intelligent Agents [32].  

The OperA framework [16] focuses on social norms and explicitly defines control 
policies to establish and reinforce these norms. The framework comprises three 
components: (1) the organizational model that defines the organizational structure of 
the society, consisting of roles and interactions; (2) the social model that assigns roles 
defined in the organization model to agents; and (3) the interaction model that 
describes possible interactions between agents. Thus, the OperA framework addresses 



 

 26 

both organizational structure and dynamics. The internal representation of agents is 
not clearly defined in this framework. Also, the implementation details are not well 
explained. 

The agent paradigm is also often used in studies within the Computational 
organization theory. 

4  Computational organization theory 

In [8] the focus of computational organization theory (COT) is defined as follows: 

The discipline of Computational organization theory focuses on theorizing about, 
describing, understanding, and predicting the behavior of organizations and the 
process of organizing using formal approaches (computational, mathematical and 
logical models). This research includes the development, testing and analysis of 
computational models, and the development and testing of computational techniques 
particularly suited to organizational analysis. 

In contrast to the traditional organization theory, the COT has a special attention 
for the investigation of relations between and behavior of organizational individuals 
modeled by autonomous agents. Further, COT considers organizations as complex 
intelligent, computational, adaptive entities (synthetic agents), whose dynamics 
emerges from the behavior of individual agents allocated to the organizational roles. 
The organizational agents are involved into different types of dynamic networks (e.g., 
social networks, knowledge networks), which determine different types of relations 
between the agents. Some of these relations are formally defined and imposed by the 
organization, whereas others are created by the agents themselves. 

A number of models and elaborated modeling frameworks for representing 
cognitive processes of agents have been developed in COT. For example, in VDT 
[14] agents are modeled as simple processors with in- and out-boxes; in CORP [8] 
simple model of experiential learning is used; and in Plural-Soar [9] and TAC Air 
Soar [55] a fully articulated model of human cognition is used. In [54] mathematical 
models for studying the value of motivational leadership in teams have been 
described. 

Often analysis of the organizational behavior in COT is performed by agent-based 
“what-if” simulations [6]. In particular, by using the ORGAHEAD framework [7] the 
behavior of organizational individuals as they learn, interact and perform tasks is 
examined. For this information about the formal organizational networks is used. 
Another computational framework CONSTRUCT-O [5] is dedicated for examining 
the co-evolution of social structure and culture under different technological and 
demographic conditions. In contrast to the ORGAHEAD this framework focuses on 
information diffusion and the impact of technology at the informal or 
interorganizational level.  

One of the research directions in COT is the investigation of social networks of 
individuals, which are often modeled as multi-agent systems. At the beginning, in 
contrast to formal organizations, social networks were considered as “proto-
organizations” with vaguely defined, constantly changing structures and dynamics. 
However, in reality social networks often emerge and exist within organizations with 



 

 27 

formally defined structures and dynamics. Therefore, to enable feasible analysis of 
such social networks their relations to different aspects of formal organizations should 
be identified and taken into account. At present, analysis approaches that take into 
account both informal and formal aspects of an organization are being developed. In 
particular, [60] identifies different topologies of network structures within the 
organizations of certain types.  

Furthermore, many studies performed in the area of COT aim at the establishing 
relations between micro, meso and macro levels of the organizational representation. 
In particular, in the studies [6, 7, 38, 55, 62] it is investigated how the characteristics 
and behavior of agents, and different internal organizational configurations influence 
the organizational performance, adaptability and learning abilities in certain 
environmental conditions. In [61] the author discusses how the dynamics of single 
organizations impact the behavioral trends of macro structures, such as markets. 

Besides the modeling and analysis of the existing forms of organizations COT also 
aims at the investigation and testing of new organizational types and theories. For 
example, in [45] a new organizational form called Edge is introduced and evaluated. 

References  

1. Bacharach, S.B., Lawler, E.J.: Power and politics in organizations. Jossey-Bass, San 
Francisco (1980) 

2. Blau P.M., Schoenherr R.A.: The structure of organizations. Basic Books Inc., New York 
London (1971) 

3. Bresciani P., Giorgini P., Giunchiglia F., Mylopoulos J., Perini A. Tropos: An Agent-
Oriented Software Development Methodology. Journal of Autonomous Agent and Multi- 
Agent Systems, 8(3): 203-236 (2004) 

4. Campion M.A., Medsker G.J., Higgs A.C.: Relationship between Work Group 
Characteristics and Effectiveness: Implications for Designing Effective Work Groups. 
Personnel Psychology, 46: 823-850 (1993) 

5. Carley, K.M.: A Theory of Group Stability. American sociological Review, 56: 331-354 
(1991) 

6. Carley, K.M.: Computational Organization Science: A New Frontier. Arthur M. Sackler 
Colloquium Series on Adaptive Agents, Intelligence and Emergent Human Organization: 
Capturing Complexity through Agent-Based Modeling October 4-6, 2001; Irvine, CA, 99, 
7257-7262. National Academy of Sciences Press (2002) 

7. Carley, K.M., Svoboda, D.: Modeling Organizational Adaptation as a Simulated Annealing 
Process. Sociological Methods and Research, 25: 138-168 (1996) 

8. Carley, K.M., Wallace, W.: Computational organization theory: A New Perspective. 
Norwell, MA: Kluwer Academic Publishers (2000) 

9. Carley, K.M., Kjaer-Hansen, J., Newell, A., Prietula, M.: Plural-SOAR: capabilities and 
coordination of multiple agents. In: Masuch, M., Warglien M. (eds.) Artificial intelligence in 
organization and management theory, Elsevier Science (1991) 

10. CD 14258. Industrial automation systems - Rules and guidelines for enterprise models. ISO 
TC184/SC5/WG1 (1996) 

11. CEN/TC310. CIM Systems Architecture - Enterprise model execution and integration 
services - Evaluation report. CEN Report CR: 1831 (1995)  

12. CEN/TC310. CIM Systems Architecture - Enterprise model execution and integration 
services - Statement of Requirements CEN Report CR: 1832 (1995)  



 

 28 

13. CIMOSA – Open System Architecture for CIM. ESPRIT Consortium AMICE, Springer-
Verlag, Berlin (1993) 

14. Cohen, G.P.: The Virtual Design Team: An Information Processing Model of Coordination 
in Project Design Teams. PhD Thesis, Stanford University, CA. (1992) 

15. Cummings T.G., Worley C.G.:  Organization development and change. Thomson/South 
Western (2005) 

16. Dignum, V.: A model for organizational interaction: based on agents, founded in logic. 
Ph.D. Dissertation, Utrecht University (2003) 

17. Donaldson, L.: The Contingency Theory of Organizations. Sage, London (2001) 
18. Doumeingts G., Vallespir B., Chen D.: Decisional Modelling using the GRAI Grid. In: 

Bernus, P., Mertins, K. and Schmidt, G. (eds): Handbook on Architectures of Information 
Systems, Springer-Verlag, 313-338 (1998) 

19. ENV 40003. Computer Integrated Manufacturing - Systems Architecture - Framework for 
Enterprise Modelling CEN/CENELEC (1990)  

20. ENV 12204 Advanced Manufacturing Technology - Systems Architecture - Constructs for 
Enterprise Modelling CEN TC 310/WG1 (1995) 

21. Ferber J., Gutknecht O.: A meta-model for the analysis and design of organizations in 
multi-agent systems. In: Y. Demazeau (ed.), Proceedings of Third International Conference 
on Multi-Agent Systems (ICMAS'98), IEEE Computer Society (1998) 128-135 

22. Ferber, J., Michel, F., Baez-Barranco, J.-A.: AGRE: Integrating Environments with 
Organizations. In: D. Weyns, H. Van Dyke Parunak, M. Fabien (eds.) Proceedings of 
E4MAS, Lecture Notes in Computer Science, vol. 3374/2005, Springer Verlag (2004) 48-56 

23. Forrester, J. W.: Industrial dynamics, Waltham, MA: Pegasus Communications (1961) 
24. Fox, M, Barbuceanu M, Gruninger, M, Lin, J.: An Organization Ontology for Enterprise 

Modelling. In: M. Prietula, K. Carley and L. Gasser (eds.), Simulating Organizations: 
Computational Models of Institutions and Groups, Menlo Park CA: AAAI/MIT Press, 131-
152 (1997) 

25. Galbraith, J.R.: Organization design, Addison-Wesley Publishing Company, London 
Amsterdam Sydney (1978) 

26. GERAM: The Generalized Enterprise Reference Architecture and Methodology. IFIP-IFAC 
Task Force on Architectures for Enterprise Integration, In: Bernus P, Nemes L, Schmidt G. 
(eds): Handbook on Enterprise Architectures, Springer-Verlag, 21-63 (2003) 

27. Giddens, A: Sociology, 5th edn, Polity, Cambridge (2006) 
28. Gronau, N.: Enterprise Resource Planning und Supply Chain Management - Architektur 

und Funktionen. Oldenbourg Wissenschaftsverlag, Munchen (2004) 
29. Grossi, D., Aldewereld, H., Vazquez-Salceda, J., Dignum, F.: Ontological Aspects of the 

Implementation of Norms in Agent-Based Electronic Institutions. Journal of Computational 
and Mathematical organization theory. Special issue of Normative Multiagent Systems 12 
(2-3): 251 -275 (2006) 

30. Hannan M.T., Freeman J. The population ecology of organizations. American Journal of 
Sociology 82: 929-964 (1977) 

31. Hannoun, M., Boissier, O., Sichman JS., Sayettat, C.: MOISE: An Organizational Model 
for Multi-agent Systems. In Proceedings of the International Joint Conference, 7th Ibero-
American Conference on AI: Advances in Artificial Intelligence, LNCS, vol. 1952 (2000) 
156 - 165 

32. Hodgson, A., Roennquist, R., Busetta, P. and Howden, N.: Team Oriented Programming 
with SimpleTeam. In: J. G. Carbonell and J. Siekmann (eds.), Innovative Concepts for 
Agent-Based Systems, Lecture Notes in Computer Science, vol. 2564, Springer Verlag 
(2000) 115-122 

33. Horling, B, Lesser, V.: A Survey of multi-agent organizational paradigms. The Knowledge 
Engineering Review, 19(4): 281-316 (2005) 



 

 29 

34. Hubner, J.F., Sichman, J.S. and Boissier, O.: MOISE+: towards a structural, functional and 
deontic model for MAS organization. In: C. Castelfranchi and L. Johnson (eds), Proceedings 
of the 1st International Joint Conference on Autonomous Agents and Multi-Agent Systems 
(AAMAS'02), Bologna, Italy (2002) 501-502 

35. Horenberg, J.: Organizational Behavior. Lawrence Erlbaum Associates, Hillsdale, NJ 
(1994) 

36. Jonker C.M., Sharpanskykh, A., Treur, J., Yolum, P.: A Framework for Formal Modeling 
and Analysis of Organizations, Applied Intelligence, 27(1), 49-66 (2007) 

37. Langlois, R.N., Robertson, P. L.: Firms, Markets, and Economic Change: A Dynamic 
Theory of Business Institutions. London: Routledge (1995) 

38. Lin, Z.: The Choice Between Accuracy and Errors: A Contingency Analysis of External 
Conditions and Organizational Decision Making Performance. In: K.M. Carley and M.J. 
Prietula (eds.): Computational Organization Theory. L. Erlbaum, Hillsdale, NJ, 67–88 
(1994) 

39. Lorsch J.W., Lawrence P.R.: Organization design. Richard D. Irwin Inc., USA (1970) 
40. March, J.G., Simon, H.A. Organizations. John Wiley & Sons, Inc. (1967) 
41. Menzel, C., Mayer, R.J.: The IDEF family of languages. In: Bernus, P. et al. (eds.): 

Handbook on Architectures of Information Systems, Springer-Verlag, Heidelberg 209-241  
(1998)  

42. Mintzberg, H.: The Structuring of Organizations, Prentice Hall, Englewood Cliffs (1979) 
43. Mooney, J.D.: The principles of organization, Harper & Bros., New York (1947) 
44. Morgan, G.: Images of organizations. SAGE Publications, Thousand Oaks London New 

Delhi (1996) 
45. Nissen, M.E.: Computational experimentation on new organizational forms: Exploring 

behavior and performance of Edge organizations. Journal Computational & Mathematical 
Organization Theory Springer Netherlands 13(3): 203-240 (2007) 

46. Omicini, A.: Societies and infrastructures in the analysis and design of agent-based systems. 
In: M.J. Wooldridge, P. Ciancarini (eds.), Proceedings of Agent-Oriented Software 
Engineering Workshop, Springer Verlag (2000)185–193 

47. Pfeffer, J.: Organizations and organization theory, Pitman Books Limited, Boston London 
Melbourne Toronto (1982) 

48. Pfeffer, J., Salancik, G.R.: The external control of organizations: A resource dependence 
perspective, Harper & Row, New York (1978) 

49. Romme, AGL: Making a difference: Organization as design. Organization Science, 14: 
558-573 (2003) 

50. Scheer, A-W., Nuettgens, M. ARIS Architecture and Reference Models for Business 
Process Management. In: van der Aalst, W.M.P.; Desel, J.; Oberweis, A. (eds.), LNCS 
1806, Berlin et al. 366-389 (2000) 

51. Schenk, D., Wilson, P.: Information Modeling: The EXPRESS Way. Oxford University 
Press. (1994) 

52. Scott, W.G., Mitchell, T.R., Birnbarum, P.H.: Organization theory: a structural and 
behavioural analysis, Richard D. Irwin inc., Illinois, USA (1981) 

53. Singh, M.P.: Synthesizing distributed constrained events from transactional workflow 
specifications. In: S.Y.W. Su (ed.), Proceedings of the 12th IEEE International. Conference 
on Data Engineering, IEEE Computer Society (1996) 616–623 

54. Solow, D., Burnetas, A., Piderit, S. K., Leenawong, C.: Mathematical Models for Studying 
the Value of Motivational Leadership in Teams. Computational & Mathematical 
Organization Theory, 11: 1:  5-36 (2005) 

55. Tambe, M.: Agent Architectures for flexible, practical teamwork. In Proceedings of the 
AAAI American Association of Artificial Intelligence (1997) 

56. Van der Aalst, W. M.P., van Hee, K: Workflow Management: Models, Methods, and 
Systems. MIT Press (2002) 



 

 30 

57. Vroom, V.H. Work and motivation. Wiley, New York (1964) 
58. Walter, B. Modern systems research for the behavioral scientist, Aldine Publishing Co, 

Chicago (1968) 
59. Warner, M., Witzel, M.: Managing in Virtual Organizations, Thomson Learning (2004) 
60. White, D.R., Owen-Smith, J., Moody, J., Powell, W.W.: Networks, Fields and 

Organizations: Micro-Dynamics, Scale and Cohesive Embeddings. Computational and 
Mathematical Organization Theory 10(1):95-117 (2004) 

61. White, H.C.: Markets from Networks: Socioeconomic Models of Production. Princeton 
University Press, NJ (2002) 

62. Yilmaz, L.: Validation and Verification of Social Processes within Agent-Based 
Computational Organization Models. Computational & Mathematical Organization Theory,  
12: 4: 283-312 (2006) 

63. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements 
Engineering. 3rd IEEE Int. Symposium on Requirements Engineering, IEEE Computer 
Society (1997) 226-235 

64. Yukl, G.: Leadership in organizations, 6edn, Englewood Cliffs, NJ: Prentice-Hall (2006) 
65. Zambonelli, F., Jennings, N. R., Wooldridge, M.: Developing multiagent systems: the Gaia 

Methodology, ACM Transactions on Software Engineering and Methodology, 12 (3): 317-
370 (2003) 



 

 31 

 

 
 
 

Part II 

Formal Foundations 



 

 32 

Modelling dynamics poses real challenges for modellers in different disciplines. 
Currently, continuous modelling techniques based on differential and difference 
equations are often used to address this challenge, with limited success. In particular, 
for creating realistic continuous models for natural processes a great number of 
equations with a multitude of parameters are required. Such models are difficult to 
analyze, both mathematically and computationally. Further, continuous modelling 
approaches, such as the Dynamical Systems Theory [3], provide little help for 
specifying global requirements on a system being modelled and for defining high 
level system properties that often have a qualitative character (e.g., reasoning, 
coordination). Also, sometimes system components (e.g., switches, thresholds) have 
behaviour that is best modelled by discrete transitions. Thus, the continuous 
modelling techniques have limitations, which can compromise the feasibility of 
system modelling in different domains. Furthermore, many real world systems (e.g., a 
television set, a human organization, a human brain) are hybrid in nature, i.e., are 
characterized by both qualitative and quantitative aspects. To represent and reason 
about structures and dynamics of such systems, the possibility of expressing both 
qualitative and quantitative aspects is required. To this end, the Temporal Trace 
Language (TTL) is proposed, which subsumes languages based on differential 
equations and temporal logics. Furthermore, TTL supports the specification of the 
system behaviour at different levels of abstraction, which allows increasing the 
scalability and reducing the complexity of both system modelling and analysis. 

Generally, the expressivity of modelling languages is limited by the possibility to 
perform effective and efficient analysis of models. Analysis techniques for complex 
systems include simulation based on system models, and verification of dynamic 
properties on model specifications and traces generated by simulation or obtained 
empirically. 

For simulation it is essential to have limitations to the language. To this end, an 
executable language that allows specifying only direct temporal relations can be 
defined as a sublanguage of TTL; cf. [1]. This language allows representing the 
dynamics of a system by a (possible large) number of simple temporal (or causal) 
relations, involving both qualitative and quantitative aspects. Furthermore, using a 
dedicated tool, TTL formulae that describe the complex dynamics of a system 
specified in a certain format may be automatically translated into the executable form. 
Based on the operational semantics and the proof theory of the executable language, a 
dedicated tool has been developed that allows performing simulations of executable 
specifications.  

To verify properties against specifications of models two types of analysis 
techniques are widely used: (1) logical proof procedures and (2) model checking [2]. 
Both techniques allow computation of the entailment relation between the 
specification of a system model and a property being verified. In particular, by means 
of model checking entailment relations are justified by checking properties on the set 
of all theoretically possible traces generated by execution of a system model. To make 
such verification feasible, expressivity of both the language used for the model 
specification and the language used for expressing properties has to be sacrificed to a 
large extent. Therefore, model specification languages provided by most model 
checkers allow expressing only simple temporal relations in the form of transition 
rules with limited expressiveness (e.g., no quantifiers). For specifying a complex 



 

 33 

temporal relation a large quantity (including auxiliary) of interrelated transition rules 
is needed. In this part normal forms and a transformation procedure are introduced, 
which enable automatic translation of an expressive TTL specification into the 
executable format required for automated verification (e.g., by model checking).  

In some situations it is required to check properties only on a limited set of traces 
obtained empirically or by simulation (in contrast to model checking which requires 
exhaustive inspection of all possible traces). Such type of analysis, which is 
computationally much cheaper than model checking, is described in this part. 

This part is organised as follows. Chapter 1 describes the syntax and semantics of 
the TTL language and discusses relations of TTL to other well-known formalisms. 
Chapter 2 introduces an approach of how quantitative, numerical and qualitative, 
logical aspects of dynamic systems can be integrated and analyzed using TTL and the 
related techniques. A general (domain-independent) normal form that enables 
automatic translation of a TTL specification into the executable format required for 
different types of computational analysis and a procedure for the transformation into 
the normal form are introduced in Chapter 3. Different steps of the transformation 
procedure are illustrated in the context of an example from the area of multi-agent 
systems. Chapter 4 presents two automated formal analysis techniques that use a 
normalized system specification: (1) analysis by simulation and (2) verification of 
relations between different aggregation levels of the system representation. Finally, 
Chapter 5 introduces another type of analysis technique and a software tool that aim 
at checking dynamic properties expressed in TTL on a set of simulation and/or 
empirical traces. Note that the formal techniques described in this part are general and 
can be applied to any dynamic system (e.g., from the social, biological and cognitive 
domains). The application of the proposed analysis techniques in organizational 
context will be described in Part III and in Part V. 

References 

1. Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J.: A Language and Environment for 
Analysis of Dynamics by Simulation. International Journal of Artificial Intelligence Tools, 
16: 435-464 (2007) 

2. McMillan, K.: Symbolic Model Checking, Kluwer Academic Publishers (1993) 
3. Port, R. F.; and Gelder. T. van. Mind as Motion: Explorations in the Dynamics of Cognition. 

MIT Press, Cambridge, MA (1995) 



 

 34 



 

 35 

 
 
 
 
 
 
 
 

Chapter 1 

 

A Language for Modeling System Dynamics1 
 
 

In this Chapter a language for modeling the dynamics of a system is introduced. For 
this language called Temporal Trace Language (TTL) first syntax and semantics are 
introduced (Sections 1 and 2). Then, relations between TTL and some other well-
known formalisms are described in Section 3. Finally, some discussions are presented 
in Section 4. 

1   Syntax of TTL 

The language TTL is a variant of an order-sorted predicate logic [14]. Whereas 
standard multi-sorted predicate logic is meant to represent static properties, TTL is an 
extension of such language with explicit facilities to represent dynamic properties of 
systems. To specify state properties for system components, ontologies are used 
which are specified by a number of sorts, sorted constants, variables, functions and 
predicates (i.e., a signature). State properties are specified based on such ontology 
using a standard multi-sorted first-order predicate language. For every system 
component A a number of ontologies can be distinguished used to specify state 
properties of different types. That is, the ontologies IntOnt(A), InOnt(A),  OutOnt(A), and 
ExtOnt(A) are used to express respectively internal, input, output and external state 
properties of the component A. For example, a state property expressed as a predicate 
pain may belong to IntOnt(A), whereas the atom has_temperature(environment, 7) may 
belong to ExtOnt(A). Often in agent-based modelling input ontologies contain elements 
for describing perceptions of an agent from the external world (e.g, observed(a) means 
that a component has an observation of state property a), whereas output ontologies 

                                                           
1 This chapter is taken from Sharpanskykh, A. and Treur, J.: Analysis of Dynamic Properties 

Involving Logical and Numerical Aspects, Technical Report TR061204, Artificial 
Intelligence Department, Vrije Universiteit Amsterdam (2006) (the names of the authors are 
ordered alphabetically reflecting the comparable contribution of each author) 



 

 36 

describe actions and communications of agents (e.g., performing_action(b) represents 
action b performed by a component in its environment). 

To express dynamic properties, TTL includes special sorts: TIME (a set of linearly 
ordered time points), STATE (a set of all state names of a system), TRACE (a set of all 
trace names; a trace or a trajectory can be thought of as a timeline with a state for 
each time point), STATPROP (a set of all state property names), and VALUE (an ordered 
set of numbers). Furthermore, for every sort S from the state language the following 
TTL sorts exist: the sort SVARS, which contains all variable names of sort S, the sort 
SGTERMS, which contains names of all ground terms, constructed using sort S; sorts 
SGTERMS and SVARS are subsorts of sort STERMS. 

In TTL, formulae of the state language are used as objects. To provide names of 
object language formulae ϕ in TTL, the operator (*) is used (written as ϕ*), which 
maps variable sets, term sets and formula sets of the state language to the elements of 
sorts SGTERMS, STERMS, SVARS and STATPROP in the following way: 

(1) Each constant symbol c from the state sort S is mapped to the constant name c’ 
of sort SGTERMS. 

(2) Each variable x: S from the state language is mapped to the constant name x’∈ 
SVARS. 

(3) Each function symbol f: S1 x S2 x … x Sn → Sn+1 from the state language is mapped 
to the function name f’: S1

TERMS x S2
TERMS x … x Sn

TERMS → Sn+1
TERMS. 

(4) Each predicate symbol P: S1 x S2 x … x Sn is mapped to the function name P’: 
S1

TERMS x S2
TERMS x … x Sn

TERMS → STATPROP. 
(5) The mappings for state formulae are defined as follows: 

a. (~ϕ)* = not(ϕ*) 
b. (ϕ & ψ)* =  ϕ* ∧ ψ*,    (ϕ | ψ)* =  ϕ* ∨ ψ* 
c. (ϕ � ψ)* = ϕ* → ψ* ,  (ϕ ⇔ ψ)* = ϕ* ↔ ψ* 
d. (∀x ϕ(x))*= ∀x’ ϕ*(x’), where x is variable over sort S   

        and x’ is any constant of SVARS; the same for ∃. 
It is assumed that the state language and the TTL define disjoint sets of 

expressions. Therefore, further in TTL formulae we shall use the same notations for 
the elements of the object language and for their names in the TTL without 
introducing any ambiguity. Moreover we shall use t with subscripts and superscripts 
for variables of the sort TIME; and γ with subscripts and superscripts for variables of 
the sort TRACE. 

A state is described by a function symbol state: TRACE x TIME → STATE. A trace is a 
temporally ordered sequence of states. A time frame is assumed to be fixed, linearly 
ordered, for example, the natural or real numbers. Such an interpretation of a trace 
contrasts to Mazurkiewicz traces [15] that are frequently used for analysing behaviour 
of Petri nets. Mazurkiewicz traces represent restricted partial orders over algebraic 
structures with a trace equivalence relation. Furthermore, as opposed to some 
interpretations of traces in the area of software engineering [11], a formal logical 
language is used here to specify properties of traces.  

The set of function symbols of TTL includes ∧, ∨, →, ↔: STATPROP x STATPROP → 
STATPROP; not: STATPROP → STATPROP, and ∀∀∀∀, ∃∃∃∃: SVARS x STATPROP → STATPROP, of 
which the counterparts in the state language are boolean propositional connectives 
and quantifiers. Further we shall use ∧, ∨, →, ↔ in infix notation and ∀∀∀∀,∃∃∃∃ in prefix 
notation for better readability. For example, using such function symbols the state 



 

 37 

property about external world expressing that there is no rain and no clouds can be 
specified as: not(rain) ∧ not(clouds). 

To formalise relations between sorts VALUE and TIME, functional symbols –, +, /, 
•:TIME x VALUE→ TIME are introduced. Furthermore, for arithmetical operations on the 
sort VALUE the corresponding arithmetical functions are included. 

States are related to state properties via the satisfaction relation denoted by the 
prefix predicate holds (or by the infix predicate |==): holds(state(γ, t), p) (or state(γ, t) |= p), 
which denotes that state property p holds in trace γ at time point t. 

Both state(γ, t) and p are terms of the TTL language. In general, TTL terms are 
constructed by induction in a standard way from variables, constants and function 
symbols typed with all before-mentioned TTL sorts.  

Transition relations between states are described by dynamic properties, which are 
expressed by TTL-formulae. The set of atomic TTL-formulae is defined as: 
(1) If v1 is a term of sort STATE, and u1 is a term of the sort STATPROP, then holds(v1, 

u1) is an atomic TTL formula. 
(2) If τ1, τ2 are terms of any TTL sort, then τ1 = τ2 is a TTL-atom.  
(3) If t1, t2 are terms of sort TIME, then t1 < t2 is a TTL-atom.  
(4) If v1, v2 are terms of sort VALUE, then v1 < v2 is a TTL-atom. 

The set of well-formed TTL-formulae is defined inductively in a standard way 
using Boolean connectives and quantifiers over variables of TTL sorts. An example of 
the TTL formula, which describes observational belief creation of an agent, is given 
below: 
‘In any trace, if at any point in time t1 the agent A observes that it is raining, then there exists a 
point in time t2 after t1 such that at t2 in the trace the agent  A believes that it is raining’.  

∀γ ∀t1 [holds(state(γ, t1), observation_result(itsraining)) � 
∃t2 > t1  holds(state(γ, t2) , belief(itsraining))  ] 

The possibility to specify arithmetical operations in TTL allows modelling of 
continuous systems, which behaviour is usually described by differential equations. 
Such systems can be expressed in TTL either using discrete or dense time frames. For 
the discrete case, methods of numerical analysis that approximate a continuous model 
by a discrete one are often used, e.g., Euler’s and Runge-Kutta methods [18]. For 
example, by applying Euler’s method for solving a differential equation dy/dt = f(y) 
with the initial condition y(t0)=y0, a difference equation yi+1=yi+h* f(yi) (with i≥0 the step 
number and h>0 the step size) is obtained. This equation can be modelled in TTL in 
the following way: 

∀γ ∀t ∀v: VALUE holds(state(γ , t), has_value(y, v))    �  
holds(state(γ , t+1), has_value(y, v + h • f(v))) 

The traces γ satisfying the above dynamic property are the solutions of the 
difference equation. 

Furthermore, a dense time frame can be used to express differential equations with 
derivatives specified using the epsilon-delta definition of a limit, which is expressible 
in TTL. To this end, the following relation is introduced, expressing that x = dy/dt:  

is_diff_of(γ, x, y)  :  
  ∀t, w  ∀ε>0 ∃δ>0 ∀t', v, v' 
    0 < dist(t',t) < δ  &  holds(state(γ, t), has_value(x, w))      

&  holds(state(γ, t), has_value(y, v)) 



 

 38 

&  holds(state(γ, t'), has_value(y, v')) 
�     dist((v'-v)/(t'-t),w) < ε 

 

where dist(u,v) is defined as the absolute value of the difference. 
Furthermore, a study has been performed in which a number of properties of 

continuous systems and theorems of calculus were formalized in TTL and used in 
reasoning. Some results of these studies are presented in Chapter 3. 

2   Semantics of TTL 

An interpretation of a TTL formula is based on the standard interpretation of an order 
sorted predicate logic formula and is defined by a mapping I that associates each: 

(1) sort symbol S to a certain set (subdomain) DS, such that if S ⊆ S’ then DS ⊆ DS
’ 

(2) constant c of sort S to some element of DS 
(3) function symbol f of type <X1, …, Xi> → Xi+1 to a mapping: I(X1) x  …x I(Xi) → I(Xi+1) 
(4) predicate symbol P of type <X1, …, Xi> to a relation on I(X1) x  …x I(Xi) 
A model M for the TTL is a pair M=<I, V>, where I is an interpretation function, and 

V is a variable assignment, mapping each variable x of any sort S to an element of DS. 
We write V [x/v] for the assignment that maps variables y other than x to V(y) and maps 
x to v. Analogously, we write M[x/v] = <I, V [x/v]>. 

If M=<I, V> is a model of the TTL, then the interpretation of a TTL term τ, denoted 
by τM, is inductively defined by: 

(1) (x)M=V(x), where x is a variable over one of the TTL sorts. 
(2) (c)M= I(c), where c is a constant of one of the TTL sorts. 
(3) f(τ1,…,τk)

M = I(f)(τ1
M,…, τk

M), where f is a TTL function of type S1 x … x Sn → S and 
τ1,…, τn are terms of TTL sorts S1,…., Sn. 

The truth definition of TTL for the model M=<I, V> is inductively defined by: 
(1) |==M Pi(τ1,…,τk) iff I(Pi) ( τ1

M,…, τk
M) = true 

(2) |==M ¬ϕ iff |≠M ϕ 
(3) |==M ϕ ∧ ψ iff |==M ϕ and iff |==M ψ 

(4) |==M∀x(ϕ(x)) iff |==M[x/v] ϕ(x) for all v∈DS, where x is a variable of sort S. 
The semantics of connectives and quantifiers is defined in the standard way. A 

number of important properties of TTL are formulated in form of axioms: 
(1) Equality of traces:  

 ∀γ1, γ2 [∀t [state(γ1, t) = state(γ2, t) ] � γ1 = γ2] 
(2) Equality of states:  

 ∀s1, s2 [∀a:STATPROP [truth_value(s1, a) = truth_value(s2, a)] � s1=s2] 
(3) Truth value in a state:  

    holds(s, p) ⇔ truth_value(s, p)= true 

(4) State consistency axiom: 
           ∀γ, t, p (holds(state(γ, t), p) � ¬holds(state(γ, t), not(p))) 

(5) State property semantics: 
a. holds(s, (p1 ∧ p2)) ⇔ holds(s, p1) & holds(s, p2) 
b. holds(s, (p1 ∨ p2)) ⇔ holds(s, p1) | holds(s, p2) 
c. holds(s, not(p1)) ⇔ ¬holds(s, p1) 

(6) For any constant variable name x from the sort SVARS: 



 

 39 

holds(s, (∃∃∃∃(x, F))) ⇔ ∃x’:SGTERMS holds(s, G), and holds(s, (∀∀∀∀(x, F))) ⇔ ∀x’: SGTERMS holds(s, 

G) with G, F terms of sort STATPROP, where G is obtained from F by substituting all 
occurrences of x by x’. 

(7) Partial order axioms for the sort TIME: 
a. ∀t t ≤ t (Reflexivity) 
b. ∀t1, t2 [ t1 ≤ t2 ∧ t2 ≤ t1 ] � t1=t2 (Anti-Symmetry) 
c. ∀t1, t2, t3 [ t1 ≤ t2 ∧ t2 ≤ t3 ] � t1 ≤ t3   (Transitivity)  

(8) Axioms for the sort VALUE: 
a.-c.The same as for the sort TIME 

d. Standard arithmetic axioms 
(9) Axioms, which relate the sorts TIME and VALUE: 

a. (t + v1) + v2 = t + (v1 + v2) 
b. (t • v1) • v2 = t • (v1 • v2) 

(10)  (Optional) Finite variability property (for any trace γ): 
∀t0, t1 t0 < t1 � ∃δ>0 [ ∀t [ t0 ≤ t & t ≤ t1 ] � ∃t2 [t2 ≤t & t<t2+δ & ∀t3 [ t2 ≤ t3 & t3 ≤ t2+δ ] ]  �  
    state(γ, t3) = state(γ, t) ]  

3   Relation to Other Languages 

In this section TTL is compared to a number of existing languages for modelling 
dynamics of a system. 

Executable languages can be defined as sublanguages of TTL. An example of such 
a language, which was designed for simulation of dynamics in terms of both 
qualitative and quantitative concepts, is the LEADSTO language, cf. [4]. The 
LEADSTO language models direct temporal or causal dependencies between two 
state properties in states at different points in time as follows. Let α and β be state 
properties of the form ‘conjunction of atoms or negations of atoms’, and e, f, g, h non-
negative real numbers (constants of sort VALUE). In LEADSTO the notation α →→e, f, g, h 
β, means: 
 If state property α holds for a certain time interval with duration g,  
 then after some delay (between e and f) state property β will hold 
 for a certain time interval of length h. 

A specification in LEADSTO format has as advantages that it is executable and 
that it can often easily be depicted graphically, in a causal graph or system dynamics 
style. In terms of TTL, the fact that the above statement holds for a trace γ is 
expressed as follows: 

∀t1[∀t  [t1–g ≤ t & t < t1  �  holds(state(γ, t), α) ] � 
∃d:VALUE  [e ≤ d & d ≤ f  & ∀t'  [t1+d ≤  t' & t’<  t1+d+h  �  holds(state(γ, t’), β) ] 

Furthermore, TTL has some similarities with the situation calculus [21] and the 
event calculus [12]. However, a number of important syntactic and semantic 
distinctions exist between TTL and both calculi. In particular, the central notion of the 
situation calculus - a situation - has different semantics than the notion of a state in 
TTL. That is, by a situation is understood a history or a finite sequence of actions, 
whereas a state in TTL is associated with the assignment of truth values to all state 
properties (a ‘snapshot’ of the world). Moreover, in contrast to situation calculus, 



 

 40 

where transitions between situations are described by execution of actions, in TTL 
action executions are used as properties of states. 

Moreover, although a time line has been introduced to the situation calculus [17], 
still only a single path (a temporal line) in the tree of situations can be explicitly 
encoded in the formulae. In contrast, TTL provides more expressivity by allowing 
explicit references to different temporally ordered sequences of states (traces) in 
dynamic properties. For example, this can be useful for expressing the property of 
trust monotonicity: 
 ‘For any two traces γ1 and γ2, if at each time point t agent A’s experience with public 
transportation in γ2 at t is at least as good as A’s experience with public transportation in γ1 at t, 
then in trace γ2 at each point in time t, A’s trust is at least as high as A’s trust at t in trace γ1’.  

∀γ1, γ2 [∀t, ∀v1:VALUE [holds(state(γ1, t), has_value(experience, v1)) & 
[∀v2:VALUE holds(state(γ2, t), has_value(experience, v2) → v1≤ v2 )]] �  
[∀t, ∀w1:VALUE  [ holds(state(γ1, t),has_value(trust, w1)) &  
[∀w2:VALUE  holds(state(γ2, t), has_value(trust, w2)  →  w1≤ w2) ]]]] 

In contrast to the event calculus, TTL does not employ the mechanism of events 
that initiate and terminate fluents. Event occurrences in TTL are considered to be state 
occurrences the external world. Furthermore, similarly to the situation calculus, also 
in the event calculus only one time line is considered. 

Formulae of the loosely guarded fragment of the first-order predicate logic [2], 
which is decidable and has good computational properties (deterministic exponential 
time complexity), are also expressible in TTL:  

∃y ((α1 ∧ … ∧ αm) ∧ ψ(x, y))  or   ∀y ((α1 ∧ … ∧ αm) �  ψ(x, y)), 

where x and y are tuples of variables, α1 … αm are atoms that relativize a quantifier (the 
guard of the quantifier), and ψ(x, y) is an inductively defined formula in the guarded 
fragment, such that each free variable of the formula is in the set of free variables of 
the guard. Similarly the fluted fragment [19] and ∃*∀* [1] can be considered as 
sublanguages of TTL.  

TTL can also be related to temporal languages that are often used for verification 
(e.g., LTL and CTL [3, 10]). For example, dynamic properties expressed as formulae 
in LTL can be translated to TTL by replacing the temporal operators of LTL by 
quantifiers over time. E.g., consider the LTL formula 

G(observation_result(itsraining) → F(belief(itsraining))) 

where the temporal operator G means ‘for all later time points’, and F ‘for some 
later time point’. The first operator can be translated into a universal quantifier, 
whereas the second one can be translated into an existential quantifier. Using TTL, 
this formula then can be expressed, for example, as follows: 

 ∀t1 [holds(state(γ, t1), observation_result(itsraining)) �  
 ∃t2 > t1 holds(state(γ, t2), belief(itsraining)) ] 

Note that the translation is not bi-directional, i.e., it is not always possible to 
translate TTL expressions into LTL expressions due to the limited expressive power 
of LTL. For example, the property of trust monotonicity specified in TTL above 
cannot be expressed in LTL because of the explicit references to different traces. 
Similar observations apply for other well-known modal temporal logics such as CTL. 



 

 41 

In contrast to the logic of McDermott [16], TTL does not assume structuring of 
traces in a tree. This enables reasoning about independent sequences of states 
(histories) in TTL (e.g., by comparing them), which is also not addressed by 
McDermott. 

4   Discussion 

TTL allows the possibility of explicit reference to time points and time durations, 
which enables modelling of the dynamics of continuous real-time phenomena. 
Although the language has a logical foundation, it supports the specification of both 
qualitative and quantitative aspects of a system, and subsumes specification languages 
based on differential equations. 

Sometimes dynamical systems that combine both quantitative and qualitative 
aspects are called hybrid systems [9]. In contrast to many studies on hybrid systems in 
computer science (e.g., [26]), in which a state of a system is described by assignment 
of values to variables, in the proposed approach a state of a system is defined by 
(composite) objects using a rich ontological basis (i.e., typed constants, variables, 
functions and predicates). This provides better possibilities for conceptualizing and 
formalizing different kinds of systems (including those from natural domains). 
Furthermore, by applying numerical approximation methods for continuous behavior 
of a system, variables in a generated model become discrete and are treated in the 
same manner as finite-state transition system variables. Therefore, so-called control 
points [13], at which values of continuous variables are checked and changes in a 
system’s functioning mode are made, are not needed.  

Furthermore, more specialized languages can be defined as a sublanguage of TTL. 
For simulation, the executable language LEADSTO has been developed [4]. For 
verification, decidable fragments of predicate logics and specialized languages with 
limited expressivity can be defined as sublanguages of TTL. TTL has similarities (as 
well as important conceptual distinctions) with (from) situation and event calculi. A 
proper subclass of TTL formulae can be directly translated into formulae of temporal 
logics (e.g., LTL and CTL).  

Finally, TTL and the related analysis techniques proved their value in a number of 
research projects in such disciplines as artificial intelligence, cognitive science, 
biology, and social science. In particular, the analysis of continuous models (i.e., 
based on differential equations) is illustrated by the case study on trace conditioning 
considered in [5]. An example of the compositional analysis of a multi-agent system 
specification in TTL by model checking is described in [22, 8]. In [6] TTL is used for 
modelling and analysis of adaptive agent behaviour specified by complex temporal 
relations. The use of arithmetical operations in TTL to perform statistical analysis is 
illustrated by a case study from the criminology [7]. 



 

 42 

References 

1. Ackermann, W.: Solvable Cases of the Decision Problem. North-Holland Publishing 
Company, Amsterdam (1962) 

2. Andreka, H., Nemeti, I., and van Benthem, J.: Modal Languages and Bounded Fragments of 
Predicate Logic. Journal of Philosophical Logic 27(3) (1998) 217-274 

3. Benthem, J van.: The Logic of Time: A Model-theoretic Investigation into the Varieties of 
Temporal Ontology and Temporal Discourse. Reidel, Dordrecht (1983) 

4. Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J.: A Language and Environment for 
Analysis of Dynamics by Simulation. International Journal of Artificial Intelligence Tools, 
16: 435-464 (2007) 

5. Bosse, T., Jonker, C.M., Los, S.A., Torre, L. van der, and Treur, J.: Formal Analysis of 
Trace Conditioning. Cognitive Systems Research Journal, 8: 36-47 (2007) 

6. Bosse, T., Jonker, C.M., and Treur, J.: On the use of Organisation Modelling Techniques to 
Address Biological Organisation. Multi-Agent and Grid Systems Journal, 3: 199-223 (2007) 

7. Bosse, T., Gerritsen, C., and Treur, J.: Cognitive and Social Simulation of Criminal 
Behaviour: the Intermittent Explosive Disorder Case. In: Proceedings of the Sixth 
International Joint Conference on Autonomous Agents and Multi-Agent Systems, 
AAMAS'07. ACM Press (2007) 

8. Broek, E., Jonker, C. M., Sharpanskykh, A., Treur, J., and P. Yolum: Formal Modeling and 
Analysis of Organizations. In: Boissier, J. Padget, V. Dignum, G. Lindemann, E. Matson, S. 
Ossowsk, J. Sichman and J. Vazquez Salceda (eds.), Coordination, Organization, 
Institutions and Norms in Agent Systems I, Lecture Notes in Artificial Intelligence 3913, 
Springer-Verlag (2006) 18-34 

9. Davoren, J.M.; and Nerode, A: Logics for Hybrid Systems. In Proceedings of the IEEE, 
88(7) (2000) 985-1010. 

10. Goldblatt, R.: Logics of Time and Computation, 2nd edition, CSLI Lecture Notes 7 (1992) 
11. Iglewski, M., and Mincer-Daszkiewicz, J.: Internal design of modules specified in the trace 

assertion method. Science of Computer Programming, 28 (1997) 139-170 
12. Kowalski, R., and Sergot, M.: A logic-based calculus of events, New Generation 

Computing, 4 (1986) 67-95. 
13. Manna, Z., and Pnueli, A.: Verifying Hybrid Systems. In Hybrid Systems, Lecture Notes in 

Computer Science 736, Springer-Verlag (1993) 4-35. 
14. Manzano, M.: Extensions of First Order Logic, Cambridge University Press (1996) 
15. Mazurkiewicz, A. Trace Theory. In: Advances in Petri nets II: applications and relationships 

to other models of concurrency. Springer LNCS, vol. 255 (1987) 279-324. 
16. McDermott, D.V.: A Temporal Logic for Reasoning About Processes and Plans. Cognitive 

Science 6: 101-155(1982) 
17. Pinto, J.; and Reiter, R.: Reasoning About Time in the Situation Calculus. Ann. Math. 

Artificial Intelligence, 14(2-4) (1995) 251-268. 
18. Pearson, C.E.: Numerical Methods in Engineering and Science. CRC Press (1986) 
19. Purdy, W.C. 1996. Fluted Formulas and the Limits of Decidability, Journal of Symbolic 

Logic, 61 (1996) 608–620. 
20. Rajeev, A., Henzinger, T.A., and Wong-Toi, H. Symbolic analysis of hybrid systems. In 

Proceedings of the 36th Annual Conference on Decision and Control (CDC), IEEE Press 
(1997) 702-707 

21. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing 
Dynamical Systems, Cambridge MA: MIT Press (2001) 

22. Sharpanskykh, A., and Treur, J.: Modeling of Agent Behavior Using Behavioral 
Specifications. In: Fum, D., Missier, F. del, Stocco, A. (eds.), Proceedings of the Seventh 
International Conference on Cognitive Modelling, ICCM'06 (2006) 280-286 



 

 43 

 
 
 
 
 
 
 
 

Chapter 2 

 

Integrating Agent Models and Dynamical Systems 1 

Abstract. Agent-based modelling approaches are usually based on logical 
languages, whereas in many areas dynamical system models based on 
differential equations are used. This paper shows how to model complex agent 
systems, integrating quantitative, numerical and qualitative, logical aspects, and 
how to combine logical and mathematical analysis methods. 

1   Introduction 

Existing models for complex systems are often based on quantitative, numerical 
methods such as Dynamical Systems Theory (DST) [23], and more in particular, 
differential equations. Such approaches often use numerical variables to describe 
global aspects of the system and how they affect each other over time; for example, 
how the number of predators affects the number of preys. An advantage of such 
numerical approaches is that numerical approximation methods and software 
environments are available for simulation. 

The relatively new agent-based modelling approaches to complex systems take into 
account the local perspective of a possibly large number of separate agents and their 
specific behaviours in a system; for example, the different individual predator agents 
and prey agents. These approaches are usually based on qualitative, logical languages. 
An advantage of such logical approaches is that they allow (automated) logical 
analysis of the relationships between different parts of a model, for example 

                                                           
1 This chapter appeared as Bosse, T., Sharpanskykh, A., Treur, J.: In: Baldoni, M., Son, T.C., 

Riemsdijk, M.B. van, and Winikoff, M. (eds.): Proceedings of the 5th International 
Workshop on Declarative Agent Languages and Technologies, DALT 2007, 1-16 (2007) (the 
names of the authors are ordered alphabetically reflecting the comparable contribution of 
each author). The post-proceedings of the workshop will be published by Springer Verlag. 



 

 44 

relationships between global properties of the (multi-agent) system as a whole and 
local properties of the basic mechanisms within (agents of) the system. Moreover, by 
means of logic-based approaches, declarative models of complex systems can be 
specified using knowledge representation languages that are close to the natural 
language. An advantage of such declarative models is that they can be considered and 
analysed at a high abstract level. Furthermore, automated support (e.g., programming 
tools) is provided for manipulation and redesign of models. 

Complex systems, for example organisms in biology or organisations in the socio-
economic area, often involve both qualitative aspects and quantitative aspects. In 
particular, in the area of Cognitive Science, the lower-level cognitive processes of 
agents (e.g., sensory or motor processing) are often modelled using DST-based 
approaches. Furthermore, at the global level the dynamics of the environment, in 
which agents are situated, is often described by continuous models (i.e., models based 
on differential equations); e.g., dynamic models of markets, or natural environmental 
oscillations. Yet agent-based (logical) languages are often used for describing high-
level cognitive processes of agents (e.g., processes related to reasoning) and agent 
interaction with the environment (e.g., agent actions, execution of tasks).  

It is not easy to integrate both types of approaches in one modelling method. On 
the one hand, it is difficult to incorporate logical aspects in differential equations. For 
example, qualitative behaviour of an agent that depends on whether the value of a 
variable is below or above a threshold is difficult to describe by differential equations. 
On the other hand, quantitative methods based on differential equations are not usable 
in the context of most logical, agent-based modelling languages, as these languages 
are not able to handle real numbers and calculations. 

This paper shows an integrative approach to simulate and analyse complex 
systems, integrating quantitative, numerical and qualitative, logical aspects within one 
expressive temporal specification language. Some initial ideas behind the simulation 
approach proposed in this paper were described in [5, 6]. The current paper elaborates 
upon these ideas by proposing more extensive means to design precise, stable, and 
computationally effective simulation models for hybrid systems (i.e., comprising both 
quantitative and qualitative aspects). Furthermore, it proposes techniques for analysis 
of hybrid systems, which were not previously considered elsewhere. The developed 
simulation and analysis techniques are supported by dedicated tools. 

In Section 2, this language (called LEADSTO) is described in detail, and is applied 
to solve an example differential equation. In Section 3, it is shown how LEADSTO 
can solve a system of differential equations (for the case of the classical Predator-Prey 
model), and how it can combine quantitative and qualitative aspects within the same 
model. Section 4 demonstrates how existing methods for approximation (such as the 
Runge-Kutta methods) can be incorporated into LEADSTO, and Section 5 shows how 
existing methods for simulation with dynamic step size can be incorporated. Section 6 
demonstrates how interlevel relationships can be established between dynamics of 
basic mechanisms (described in LEADSTO) and global dynamics of a process 
(described in a super-language of LEADSTO). Finally, Section 7 is a discussion. 



 

 45 

2   Modelling Dynamics in LEADSTO  

Dynamics can be modelled in different forms. Based on the area within Mathematics 
called calculus, the Dynamical Systems Theory [23] advocates to model dynamics by 
continuous state variables and changes of their values over time, which is also 
assumed continuous. In particular, systems of differential or difference equations are 
used. This may work well in applications where the world states are modelled in a 
quantitative manner by real-valued state variables. The world’s dynamics in such 
application show continuous changes in these state variables that can be modelled by 
mathematical relationships between real-valued variables. However, not for all 
applications dynamics can be modelled in a quantitative manner as required for DST. 
Sometimes qualitative changes form an essential aspect of the dynamics of a process. 
For example, to model the dynamics of reasoning processes usually a quantitative 
approach will not work. In such processes states are characterised by qualitative state 
properties, and changes by transitions between such states. For such applications often 
qualitative, discrete modelling approaches are advocated, such as variants of modal 
temporal logic, e.g. [20]. However, using such non-quantitative methods, the more 
precise timing relations are lost too. For the LEADSTO language described in this 
paper, the choice has been made to consider the timeline as continuous, described by 
real values, but for state properties both quantitative and qualitative variants can be 
used. The approach subsumes approaches based on simulation of differential or 
difference equations, and discrete qualitative modelling approaches. In addition, the 
approach makes it possible to combines both types of modelling within one model. 
For example, it is possible to model the exact (real-valued) time interval for which 
some qualitative property holds. Moreover, the relationships between states over time 
are described by either logical or mathematical means, or a combination thereof. This 
will be explained in more detail in Section 2.1. As an illustration, in Section 2.2 it will 
be shown how the logistic model for population growth in resource-bounded 
environments [4] can be modelled and simulated in LEADSTO. 

2.1   The LEADSTO Language 

Dynamics is considered as evolution of states over time. The notion of state as used 
here is characterised on the basis of an ontology defining a set of properties that do or 
do not hold at a certain point in time. For a given (order-sorted predicate logic) 
ontology Ont, the propositional language signature consisting of all state ground atoms 
(or atomic state properties) based on Ont is denoted by APROP(Ont). The state 
properties based on a certain ontology Ont are formalised by the propositions that can 
be made (using conjunction, negation, disjunction, implication) from the ground 
atoms. A state S is an indication of which atomic state properties are true and which 
are false, i.e., a mapping S: APROP(Ont) → {true, false}.  

To specify simulation models a temporal language has been developed. This 
language (the LEADSTO language [7]) enables to model direct temporal 
dependencies between two state properties in successive states, also called dynamic 
properties. A specification of dynamic properties in LEADSTO format has as 
advantages that it is executable and that it can often easily be depicted graphically. 



 

 46 

The format is defined as follows. Let α and β be state properties of the form 
‘conjunction of atoms or negations of atoms’, and e, f, g, h non-negative real numbers. 
In the LEADSTO language the notation α →→e, f, g, h β (also see Fig. 1), means: 

 

If state property α holds for a certain 
time interval with duration g, then 
after some delay (between e and f) 
state property β will hold for a 
certain time interval of length h. 

Fig. 1.  Timing relationships for LEADSTO expressions. 

An example dynamic property that uses the LEADSTO format defined above is 
the following: “observes(agent_A, food_present) →→ 2, 3, 1, 1.5  beliefs(agent_A, food_present)”. 
Informally, this example expresses the fact that, if agent A observes that food is 
present during 1 time unit, then after a delay between 2 and 3 time units, agent A will 
belief that food is present during 1.5 time units. In addition, within the LEADSTO 
language it is possible to use sorts, variables over sorts, real numbers, and 
mathematical operations, such as in “has_value(x, v) →→ e, f, g, h  has_value(x, v*0.25)”. Next, 
a trace or trajectory γ over a state ontology Ont is a time-indexed sequence of states 
over Ont (where the time frame is formalised by the real numbers). A LEADSTO 
expression α →→e, f, g, h β, holds for a trace γ if: 
∀t1 [∀t [t1–g ≤ t < t1 � α holds in γ at time t ] � ∃d [e ≤ d ≤ f & ∀t' [t1+d ≤ t' < t1+d+h � β holds in γ at time t' ] 

To specify the fact that a certain event (i.e., a state property) holds at every state 
(time point) within a certain time interval a predicate holds_during_interval(event, t1, t2) 
is introduced. Here event is some state property, t1 is the beginning of the interval and 
t2 is the end of the interval. 

An important use of the LEADSTO language is as a specification language for 
simulation models. As indicated above, on the one hand LEADSTO expressions can 
be considered as logical expressions with a declarative, temporal semantics, showing 
what it means that they hold in a given trace. On the other hand they can be used to 
specify basic mechanisms of a process and to generate traces, similar to Executable 
Temporal Logic [3]. More details on the semantics of LEADSTO can be found in [7]. 

2.2   Solving the Initial Value Problem in LEADSTO: Euler ’s method 

Often behavioural models in the Dynamical Systems Theory are specified by systems 
of differential equations with given initial conditions for continuous variables and 
functions. A problem of finding solutions to such equations is known as an initial 
value problem in the mathematical analysis. One of the approaches for solving this 
problem is based on discretisation, i.e., replacing a continuous problem by a discrete 
one, whose solution is known to approximate that of the continuous problem. For this 
methods of numerical analysis are usually used [22]. The simplest approach for 
finding approximations of functional solutions for ordinary differential equations is 
provided by Euler’s method. Euler’s method for solving a differential equation of the 

α
β

t1

e

g h

t2

time

f
t0



 

 47 

form dy/dt = f(y) with the initial condition y(t0)=y0 comprises the difference equation 
derived from a Taylor series: 

y(t) = n

n

n

tt
n

ty
)(*

!
)(

0
0

0
)(

−�
∞

=

, 

where only the first member is taken into account: yi+1=yi+h* f(yi), where i≥0 is the step 
number and h>0 is the integration step size. This equation can be modelled in the 
LEADSTO language in the following way: 

• Each integration step corresponds to a state, in which an intermediate value of y 
is calculated.  

• The difference equation is modelled by a transition rule to the successive state in 
the LEADSTO format.  

• The duration of an interval between states is defined by a step size h.  
Thus, for the considered case the LEADSTO simulation model comprises the rule: 

has_value(y, v1) →→ 0, 0, h, h  has_value(y, v1+h* f(v1)) 

The initial value for the function y is specified by the following LEADSTO rule: 
holds_during_interval(has_value(y, y0), 0, h) 

By performing a simulation of the obtained model in the LEADSTO environment 
an approximate functional solution to the differential equation can be found.  

To illustrate the proposed simulation-based approach based on Euler’s method in 
LEADSTO, the logistic growth model or the Verhulst model [4] which is often used 
to describe the population growth in resource-bounded environments, is considered: 
dP/dt = r*P(1-P/K), where P is the population size at time point t; r and K are some 
constants. This model corresponds to the following LEADSTO simulation model: 
has_value(y, v1) →→ 0, 0, h, h  has_value(y, v1+ h*r* v1*(1-v1/K)). The simulation result of this 
model with the parameters r=0.5 and K=10 and initial value P(0)=1 is given in Figure 2. 

 

 

Fig. 2.  Logistic growth function modelled in LEADSTO with parameters r=0.5, K=10, P(0)=1. 

3   Modelling the Predator-Prey Model in LEADSTO 

The proposed simulation-based approach can be applied for solving a system of 
ordinary differential equations. In order to illustrate this, the classical Lotka-Volterra 
model (also known as a Predator-Prey model) [21] is considered. The Lotka-Volterra 
describes interactions between two species in an ecosystem, a predator and a prey. 



 

 48 

The model consists of two equations: the first one describes how the prey population 
changes and the second one describes how the predator population changes. If x(t) and 
y(t) represent the number of preys and predators respectively, that are alive in the 
system at time t, then the Lotka-Volterra model is defined by:   dx/dt = a*x - b*x*y   ;  
dy/dt = c*b*x*y - e*y  where the parameters are defined by: a is the per capita birth rate of 
the prey, b is a per capita attack rate, c is the conversion efficiency of consumed prey 
into new predators, and e is the rate at which predators die in the absence of prey. To 
solve this system, numerical methods derived from a Taylor series up to some order 
can be used. In the following section it will be shown how Euler’s (first-order rough) 
method can be used for creating a LEADSTO simulation model for finding the 
approximate solutions for the Predator-Prey problem. After that, in Section 3.2 it will 
be demonstrated how the generated LEADSTO simulation model can be extended by 
introducing qualitative behavioural aspects in the standard predator-prey model. 
Section 3.3 briefly presents a more elaborated example of a LEADSTO simulation 
model combining quantitative and qualitative aspects of behaviour, addressing 
simulation of human conditioning processes. 

3.1   The LEADSTO language 

Using the technique described in Section 2.2, the Lotka-Volterra model is translated 
into a LEADSTO simulation model as follows: 

has_value(x, v1)  ∧ has_value(y, v2) →→ 0, 0, h, h  has_value(x, v1+h*(a*v1-b*v1*v2)) 
has_value(x, v1)  ∧ has_value(y, v2) →→ 0, 0, h, h  has_value(y, v2+h*(c*b*v1*v2-e*v2)) 

The initial values for variables and functions are specified as for the general case. 
Although Euler’s method offers a stable solution to a stable initial value problem, a 
choice of initial values can significantly influence the model’s behaviour. More 
specifically, the population size of both species will oscillate if perturbed away from 
the equilibrium. The amplitude of the oscillation depends on how far the initial values 
of x and y depart from the equilibrium point. The equilibrium point for the considered 
model is defined by the values x=e/(c*b) and y=a/b. For example, for the parameter 
settings a=1.5, b=0.2, c=0.1 and e=0.5 the equilibrium is defined by x=25 and y=7.5. Yet 
a slight deviation from the equilibrium point in the initial values (x0=25, y0=8) results 
in the oscillated (limit cycle) behaviour. 

3.2   Extending the Standard Predator-Prey Model with Qualitative Aspects 

In this section, an extension of the standard predator-prey model is considered, with 
some qualitative aspects of behaviour. Assume that the population size of both 
predators and preys within a certain eco-system is externally monitored and controlled 
by humans. Furthermore, both prey and predator species in this eco-system are also 
consumed by humans. A control policy comprises a number of intervention rules that 
ensure the viability of both species. Among such rules could be following: 
- in order to keep a prey species from extinction, a number of predators should be 

controlled to stay within a certain range (defined by pred_min and pred_max); 



 

 49 

- if a number of a prey species falls below a fixed minimum (prey_min), a number of 
predators should be also enforced to the prescribed minimum (pred_min); 

- if the size of the prey population is greater than a certain prescribed bound 
(prey_max), then the size of the prey species can be reduced by a certain number 
prey_quota (cf. a quota for fish catch). 
These qualitative rules can be encoded into the LEADSTO simulation model for 

the standard predator-prey case by adding new dynamic properties and changing the 
existing ones in the following way:  

has_value(x, v1) ∧ has_value(y, v2) ∧ v1< prey_max →→ 0, 0, h, h   has_value(x, v1+h*(a*v1-b*v1*v2)) 
has_value(x, v1)  ∧ has_value(y, v2) ∧ v1 ≥ prey_max →→ 0, 0, h, h 

has_value(x, v1+h*(a*v1-b*v1*v2) - prey_quota) 
has_value(x, v1)  ∧ has_value(y, v2) ∧ v1 ≥ prey_min ∧ v2 < pred_max →→ 0, 0, h, h 

has_value(y, v2+h* (c*b*v1*v2-e*v2)) 
has_value(x, v1)  ∧ has_value(y, v2) ∧ v2 ≥ pred_max →→ 0, 0, h, h  has_value(y, pred_min) 
has_value(x, v1)  ∧ has_value(y, v2) ∧ v1 < prey_min →→ 0, 0, h, h  has_value(y, pred_min) 

The result of simulation of this model using Euler’s method with the parameter 
settings: a=4; b=0.2, c=0.1, e=8, pred_min=10, pred_max=30, prey_min=40, prey_max=100, 
prey_quota=20, x0=90, y0=10 is given in Fig. 3.  

 

 
Fig. 3.  Simulation results for the Lotka-Volterra model combined some qualitative aspects. 

3.3   Example Hybrid LEADSTO Specification - Model for Conditioning 

Research into conditioning is aimed at revealing the principles that govern associative 
learning. An important issue in conditioning processes is the adaptive timing of the 
conditioned response to the appearance of the unconditioned stimulus. This feature is 
most apparent in an experimental procedure called trace conditioning. In this 
procedure, a trial starts with the presentation of a warning stimulus (S1; comparable 
to a conditioned stimulus). After a blank interval, called the foreperiod, an imperative 
stimulus (S2, comparable to an unconditioned stimulus) is presented to which the 
participant responds as fast as possible. The reaction time to S2 is used as an estimate 
of the conditioned state of preparation at the moment S2 is presented. In this case, the 
conditioned response obtains its maximal strength, here called peak level, at a 
moment in time, called peak time, that closely corresponds to the moment the 
unconditioned stimulus occurs. 



 

 50 

Machado developed a basic model that describes the dynamics of these 
conditioning processes in terms of differential equations [18]. The structure of this 
model is shown in Figure 4. The model posits a layer of timing nodes and a single 
preparation node. Each timing node is connected both to the next (and previous) 
timing node and to the preparation node. The connection between each timing node 
and the preparation node (called associative link) has an adjustable weight associated 
to it. Upon the presentation of a warning stimulus, a cascade of activation propagates 
through the timing nodes according to a regular pattern. Owing to this regularity, the 
timing nodes can be likened to an internal clock or pacemaker. At any moment, each 
timing node contributes to the activation of the preparation node in accordance with 
its activation X and its corresponding weight W. The activation of the preparation 
node reflects the participant's preparatory state, and is as such related to reaction time. 

The weights reflect the state of conditioning, and are adjusted by learning rules, of 
which the main principles are as follows. First, during the foreperiod extinction takes 
place, which involves the decrease of weights in real time in proportion to the 
activation of their corresponding timing nodes. Second, after the presentation of the 
imperative stimulus a process of reinforcement takes over, which involves an increase 
of the weights in accordance with the current activation of their timing nodes, to 
preserve the importance of the imperative moment. Machado describes the more 
detailed dynamics of the process by a mathematical model (based on linear 
differential equations), representing the (local) temporal relationships between the 
variables involved. For example, d/dt X(t,n) = λX(t,n-1) - λX(t,n) expresses how the 
activation level of the n-th timing node X(t+dt,n) at time point t+dt relates to this level 
X(t,n) at time point t and the activation level X(t,n-1) of the (n-1)-th timing node at time 
point t. Similarly, as another example, d/dt W(t,n) = -αX(t,n)W(t,n) expresses how the n-th 
weight W(t+dt,n) at time point t+dt relates to this weight W(t,n) at time point t and the 
activation level X(t,n) of the n-th timing node at time point t. 

 
 
 
 
 
 
 
 
 

Fig. 4.  Structure of Machado’s conditioning model (adjusted from [18]). 
 
In [6], LEADSTO has been used to specify Machado’s mathematical model in a 

logical, declarative manner. Some of the dynamic properties used are shown below: 
 

LP5 (Extinction of associative links) 
LP5 expresses the adaptation of the associative links during extinction, based on their own 
previous state and the previous state of the corresponding timing node. Here, α is a learning rate 
parameter. Formalisation: 
∀u,v:REAL ∀n:INTEGER 
instage(ext) and X(n, u) and W(n, v) →→0,0,1,1 W(n, v*(1-α*u*step)) 
 
 

S1 

Timing nodes with 
activation level X 

Preparation node 

Associative links of 
variable weight W 

Response strength R 



 

 51 

LP6 (Reinforcement of associative links) 
LP6 expresses the adaptation of the associative links during reinforcement, based on their own 
previous state and the previous state of X. Here, β is a learning rate parameter.  
∀u,v:REAL ∀n:INTEGER 
instage(reinf) and Xcopy(n, u) and W(n, v) →→0,0,1,1 W(n, v*(1-β*u*step) + β*u*step) 
 

An example simulation trace that has been generated on the basis of this model is 
shown in Figure 5. The upper part of the figure shows conceptual, qualitative 
information (e.g., the state properties that indicate the stage of the process); the lower 
part shows more quantitative concepts, i.e., the state properties involving real 
numbers with changing values over time (e.g., the preparation level of the person). To 
limit complexity, only a selection of important state properties was depicted. In the 
lower part, all instantiations of state property r(X) are shown with different (real) 
values for X (shown on the vertical axis), indicating the participant’s preparation level 
to respond to a stimulus. For example, from time point 1 to 9, the level of preparation 
is 0.0, and from time point 9 to 10, the level of preparation is 0.019. 

Figure 5 describes the dynamics of a person that is subject to conditioning in an 
experiment with a foreperiod of 6 time units. As can be seen in the trace, the level of 
response-related activation increases on each trial. Initially, the subject is not prepared 
at all: at the moment of the imperative stimulus (S2), the level of response is 0.0. 
However, already after two trials a peak in response level has developed that 
coincides exactly with the occurrence of S2. Although this example is relatively 
simple, it demonstrates the power of LEADSTO to combine (real-valued) quantitative 
concepts with (conceptual) qualitative concepts. 

 

 
 

Fig. 5.  Example simulation trace of a conditioning process. 

4  Simulating the Predator-Prey Model by the Runge-Kutta Method 

As shown in [22], within Euler’s method the local error at each step (of size h) is 
O(h2), while the accumulated error is O(h). However, the accumulated error grows 
exponentially as the integration step size increases. Therefore, in situations in which 



 

 52 

precision of a solution is required, high order numerical methods are used. For the 
purpose of illustration of high-order numerical approaches the fourth-order Runge-
Kutta method is considered. This method is derived from a Taylor expansion up to the 
fourth order. It is known to be very accurate (the accumulated error is O(h4)) and 
stable for a wide range of problems. The Runge-Kutta method for solving a 
differential equation of the form dx/dt = f(t, x) is described by the following formulae:  

xi+1 = xi + h/6 *(k1 + 2*k2 + 2*k3 + k4),  

where i≥0 is the step number, h>0 is the integration step size, and 
k1 = f(ti, xi), k2 = f(ti + h/2, xi + h/2 *k1), k3 = f(ti + h/2, xi + h/2 *k2), k4 = f(ti + h, xi + h* k3). 

Now, using the Runge-Kutta method, the classical Lotka-Volterra model 
considered in the previous section is described in the LEADSTO format as follows: 

has_value(x, v1)  ∧ has_value(y, v2) →→ 0, 0, h, h  has_value(x, v1 + h/6 *(k11 + 2*k12 + 2*k13 + k14)) 
has_value(x, v1)  ∧ has_value(y, v2) →→ 0, 0, h, h  has_value(y, v2 + h/6 *(k21 + 2*k22 + 2*k23 + k24)),  

where: 
k11 = a*v1-b*v1*v2,  k21 = c*b*v1*v2 - e*v2, k12 = a*(v1 + h/2 *k11) - b*(v1 + h/2 *k11)*(v2 + h/2 *k21), k22 = c*b*(v1 
+ h/2 *k11)*(v2 + h/2 *k21) - e*(v2 + h/2 *k21), k13 = a*(v1 + h/2 *k12) - b*(v1 + h/2 *k12)*(v2 + h/2 *k22), k23 = 
c*b*(v1 + h/2 *k12)*(v2 + h/2 *k22) - e*(v2 + h/2 *k22), k14 = a*( v1 + h *k13) - b*(v1 + h *k13)*(v2 + h *k23),    k24 = 
c*b*(v1 + h *k13)*(v2 + h *k23) - e*(v2 + h *k23). 

5   Simulation with Dynamic Step Size 

Although for most cases the Runge-Kutta method with a small step size provides 
accurate approximations of required functions, this method can still be 
computationally expensive and, in some cases, inaccurate. In order to achieve a higher 
accuracy together with minimum computational efforts, methods that allow the 
dynamic (adaptive) regulation of an integration step size are used. This section shows 
how such methods can be incorporated in LEADSTO. 

To illustrate the use of methods for dynamic step size control, the biochemical 
model of [13], summarised in Table 1, is considered. 

Table. 1.  Glycolysis model by [13]. 

Variables 
W: Fructose 6-phosphate 
X : phosphoenolpyruvate 
Y : pyruvate 
N1 : ATP; N2 : ADP; N3 : AMP 
 

Differential equations 
X'[t] == 2*Vpfk - Vxy 
Y'[t] == Vxy - Vpdc 
N1'[t] == Vxy + Vak - Vatpase 
N2'[t] == -Vxy - 2*Vak + Vatpase 

Moiety conservation 
N1[t] + N2[t] + N3 = 20 
 
Initial conditions 
N1[0] == 10 
N2[0] == 9  
Y[0] == 0 
X[0] == 0 
 
  

Fixed metabolites 
W = 0.0001;  Z = 0 

Rate equations 
Vxy = 343*N2[t]*X[t]/((0.17 +  
          N2[t])*(0.2 + X[t])) 
Vak = -(432.9*N3*N1[t] -  
          133*N2[t]^2) 
Vatpase = 3.2076*N1[t] 
Vpdc = 53.1328*Y[t]/(0.3 + Y[t])  
           (*10.0*Y[t]*) 
Vpfk = 45.4327*W^2/(0.021*(1 + 
          0.15*N1[t]^2/N3^2 + W^2)) 

 

 
This model describes the process of glycolysis in Saccharomyces cerevisiae, a 

specific species of yeast. This model is interesting to study, because the 
concentrations of some of the substances involved (in particular ATP and ADP) are 
changing at a variable rate: sometimes these concentrations change rapidly, and 



 

 53 

sometimes they change very slowly. Using the technique described in Section 2.2 
(based on Euler’s method), this model can be translated to the following LEADSTO 
simulation model: 

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h   
has_value(x, v1+ (2* (45.4327*w^2/ (0.021* (1+0.15*v3^2/ (20-v3-v4)^2+w^2)))-343*v4*v1/  
((0.17+v4)* (0.2+v1)))*h) 

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h   
has_value(y, v2+ (343*v4*v1/ ((0.17+v4)* (0.2+v1))-53.1328*v2/ (0.3+v2))*h) 

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h   
has_value(n1, v3+ (343*v4*v1/ ((0.17+v4)* (0.2+v1))+ (- (432.9* (20-v3-v4)*v3-133*v4^2))- 
3.2076*v3)*h) 

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h   
has_value(n2, v4+ (-343*v4*v1/ ((0.17+v4)* (0.2+v1))-2*  
(- (432.9* (20-v3-v4)*v3-133*v4^2))+3.2076*v3)*h) 

The simulation results of this model (with a static step size of 0.00001) are shown 
in Fig. 6. Here the curves for N1 and N2 are initially very steep, but become flat after 
a while. As demonstrated by Figure 6, for the first part of the simulation, it is 
necessary to pick a small step size in order to obtain accurate results. However, to 
reduce computational efforts, for the second part a bigger step size is desirable. To 
this end, a number of methods exist that allow the dynamic adaptation of the step size 
in a simulation. Generally, these approaches are based on the fact that the algorithm 
signals information about its own truncation error. The most straightforward (and 
most often used) technique for this is step doubling and step halving, see, e.g. [Gear 
1971]. The idea of step doubling is that, whenever a new simulation step should be 
performed, the algorithm compares the result of applying the current step twice with 
the result of applying the double step (i.e., the current step * 2) once. If the difference 
between both solutions is smaller than a certain threshold � , then the double step is 
selected. Otherwise, the algorithm determines whether step halving can be applied: it 
compares the result of applying the current step once with the result of applying the 
half step (i.e., the current step * 0.5) twice. If the difference between both solutions is 
smaller than � , then the current step is selected. Otherwise, the half step is selected. 

Since its format allows the modeller to include qualitative aspects, it is not 
difficult to incorporate step doubling and step halving into LEADSTO. To illustrate 
this, consider the general LEADSTO rule shown in Section 2.2 for solving a 
differential equation of the form dy/dt = f(y) using Euler’s method: 

has_value(y, v1) →→ 0, 0, h, h  has_value(y, v1+h* f(v1)) 

Adding step doubling and step halving to this rule yields the following three rules: 

step(h) ∧ has_value(y, v1) ∧ |( v1+2h* f(v1)) - ((v1+h* f(v1))+h* f(v1+h* f(v1)))| ≤ ε 
→→ 0, 0, 2h, 2h  has_value(y, v1+2h* f(v1)) ∧ step(2h) 

step(h) ∧ has_value(y, v1) ∧ |( v1+2h* f(v1)) - ((v1+h* f(v1))+h* f(v1+h* f(v1)))| > ε ∧ 
|( v1+h* f(v1)) - ((v1+0.5h* f(v1))+0.5h* f(v1+0.5h* f(v1)))| ≤ ε 

→→ 0, 0, h, h  has_value(y, v1+h* f(v1)) ∧ step(h) 

step(h) ∧ has_value(y, v1) ∧ |( v1+h* f(v1)) - ((v1+0.5h* f(v1))+0.5h* f(v1+0.5h* f(v1)))| ≤ ε 
→→ 0, 0, 0.5h, 0.5h  has_value(y, v1+0.5h* f(v1)) ∧ step(0.5h) 

Besides step doubling, many other techniques exist in the literature for dynamically 
controlling the step size in quantitative simulations. Among these are several 



 

 54 

techniques that are especially aimed at the Runge-Kutta methods, see, e.g., [24], 
Chapter 16 for an overview. Although it is possible to incorporate such techniques 
into LEADSTO, they are not addressed here because of space limitations. 

 

 

Fig. 6.  Simulation results of applying Euler’s method to [13]’s glycolysis model. 

6   Analysis In Terms of Local-Global Relations 

Within the area of agent-based modelling, one of the means to address complexity is 
by modelling processes at different levels, from the global level of the process as a 
whole, to the local level of basic elements and their mechanisms. At each of these 
levels dynamic properties can be specified, and by interlevel relations they can be 
logically related to each other; e.g., [14], [27]. These relationships can provide an 
explanation of properties of a process as a whole in terms of properties of its local 
elements and mechanisms. Such analyses can be done by hand, but also software tools 
are available to automatically verify the dynamic properties and their interlevel 
relations. To specify the dynamic properties at different levels and their interlevel 
relations, a more expressive language is needed than simulation languages based on 
causal relationships, such as LEADSTO. The reason for this is that, although the latter 
types of languages are well suited to express the basic mechanisms of a process, for 
specifying global properties of a process it is often necessary to formulate complex 
relationships between states at different time points. To this end, the formal language 
TTL has been introduced as a super-language of LEADSTO; cf. [8]. It is based on 
order-sorted predicate logic and, therefore, inherits the standard semantics of this 
variant of predicate logic. That is, the semantics of TTL is defined in a standard way, 
by interpretation of sorts, constants, functions and predicates, and variable 



 

 55 

assignments. Furthermore, TTL allows representing numbers and arithmetical 
functions. Therefore, most methods used in Calculus are expressible in TTL, 
including methods based on derivatives and differential equations. In this section, first 
(in Section 6.1) it is shown how to incorporate differential equations in the predicate-
logical language TTL that is used for analysis. Next, in Section 6.2 a number of 
global dynamic properties are identified, and it is shown how they can be expressed in 
TTL. In Section 6.3 a number of local dynamic properties are identified and expressed 
in TTL. Finally, Section 6.4 discusses how the global properties can be logically 
related to local properties such that a local property implies the global property. 

6.1   The LEADSTO language 

As mentioned earlier, traditionally, analysis of dynamical systems is often performed 
using mathematical techniques such as the Dynamical Systems Theory. The question 
may arise whether or not such modelling techniques can be expressed in the Temporal 
Trace Language TTL. In this section it is shown how modelling techniques used in 
the Dynamical Systems approach, such as difference and differential equations, can 
be represented in TTL. First the discrete case is considered. As an example consider 
again the logistic growth model: dP/dt = r*P(1-P/K). This equation can be expressed in 
TTL on the basis of a discrete time frame (e.g., the natural numbers) in a 
straightforward manner: 

∀t ∀v  state(γ , t) |== has_value(P, v)  �   state(γ , t+1) |== has_value(P, v + h • r • v • (1 - v/K)) 

The traces γ satisfying the above dynamic property are the solutions of the difference 
equation. However, it is also possible to use the dense time frame of the real numbers, 
and to express the differential equation directly. To this end, the following relation is 
introduced, expressing that x = dy/dt: 

is_diff_of(γ, x, y)  :  
∀t,w  ∀ε>0 ∃δ>0 ∀t',v,v'   [ 0 < dist(t',t) < δ  &  state(γ, t) |== has_value(x, w) & 
state(γ, t) |== has_value(y, v) &  state(γ, t') |== has_value(y, v')  �     dist((v'-v)/(t'-t),w) < ε ] 

where γ is the trace that describes the change of values of x and y over time, dist(u,v) is 
defined as the absolute value of the difference, i.e. u-v if this is � 0, and v-u otherwise. 
Using this, the differential equation can be expressed by is_diff_of(γ , r • P (1 - P/K), P). 

The traces γ for which this statement is true are (or include) solutions for the 
differential equation. Models consisting of combinations of difference or differential 
equations can be expressed in a similar manner. This shows how modelling constructs 
often used in DST can be expressed in TTL. Thus, TTL on the one hand subsumes 
modelling languages based on differential equations, but on the other hand enables the 
modeller to express more qualitative, logical concepts as well. 

6.2   Mathematical Analysis in TTL: Global Dynamic Properties 

Within Dynamical Systems Theory and Calculus, also for global properties of a 
process more specific analysis methods are known. Examples of such analysis 
methods include mathematical methods to determine equilibrium points, the 



 

 56 

behaviour around equilibrium points, and the existence of limit cycles [10]. Suppose a 
set of differential equations is given, for example a predator prey model: dx/dt  =  f(x, y) 
dy/dt  =  g(x, y), where f(x, y) and g(x, y) are arithmetical expressions in x and y. Within 
TTL the following abbreviation is introduced as a definable predicate: 

point(γ, t, x, v, y, w)  ⇔  state(γ, t) |= has_value(x, v) ∧ has_value(y, w) 

Using this predicate, the following global properties can for example be specified: 

Monotonicity 
monotic_increase_after(γ, t, x) ⇔ 
∀t1, t2  [ t � t1 < t2 & point(γ, t1, x, v1, y, w1)  & point(γ, t2, x, v2, y, w2)  �  v1<v2 ] 

Bounded 
upward_bounded_after_by(γ, t, M)  ⇔ ∀t1  [ t � t1 & point(γ, t1, x, v1, y, w1)  �  v1�M ] 

Equilibrium points  
These are points in the (x, y) plane for which, when they are reached by a solution,  
the state stays at this point in the plane for all future time points. This can be 
expressed as a global dynamic property in TTL as follows: 
has_equilibrium(γ, x, v, y, w)  ⇔  ∀t1 [ point(γ, t1, x, v, y, w)  �  ∀t2≥t1  point(γ, t2, x, v, y, w) ] 
occurring_equilibrium(γ, x, v, y, w)  ⇔   ∃t point(γ, t, x, v, y, w) &  has_equilibrium(γ, x, v, y, w)   

 

Behaviour Around an Equilibrium 
attracting(γ, x, v, y, w, ε0)  ⇔  has_equilibrium(γ, x, v, y, w)  &  
ε0>0 ∧ ∀t  [ point(γ, t, x, v1, y, w1) ∧ dist(v1, w1, v, w) < ε0 �  
∀ε>0 ∃t1≥t ∀t2≥t1  [ point(γ, t2, x, v2, y, w2)  � dist(v2, w2, v, w) < ε ] ] 

Here, dist(v1, w1, v2, w2) denotes the distance between the points (v1, w1) and (v2, 
w2) in the (x, y) plane.  

Limit cycle 
A limit cycle is a set S in the x, y plane such that 
∀t, v, w  point(γ, t, x, v, y, w) & (v, w) ∈ S  �  ∀t'≥t, v', w'   [ point(γ, t', x, v', y, w') � (v', w') ∈ S ] 

In specific cases the set can be expressed in an implicit manner by a logical and/or 
algebraic formula, e.g., an equation, or in an explicit manner by a parameterisation. 
For these cases it can be logically expressed that a set S is a limit cycle. 

(1)  When S is defined in an implicit manner by a formula ϕ(v, w) with S = { (v, w) | 
ϕ(v, w) }, then it is defined that S is a limit cycle as follows: 

∀t, v, w  point(γ, t, x, v, y, w) & ϕ(v, w) �  ∀t'≥t, v', w'   [ point(γ, t', x, v', y, w') � ϕ(v', w') ] 

E.g., when S is a circle defined by a formula of the form S = { (v, w) | v2 + w2 = r2 } 

(2)  When a set S in the plane is parameterised by two functions c1, c2: [0, 1] → ℜ, i.e., 
S = { (c1(u), c2(u)) | u ∈ [0, 1] }, then S is a limit cycle if 

∀t, u  point(γ, t, c1(u), c2(u)) � ∀t'≥t ∃u'  point(γ, t', c1(u'), c2(u')) 

An example of a parameterising for S in the shape of a circle is as follows: 

c1(u) = r cos 2π u, c2(u) = r sin 2π u 

In many cases, however, the set S cannot be expressed explicitly in the form of an 
equation or an explicitly defined parameterisation. What still can be done often is to 
establish the existence of a limit cycle within a certain area, based on the Poincaré-
Bendixson Theorem [16]. 



 

 57 

6.3   Mathematical Analysis in TTL: Local Dynamic Properties 

The global dynamic properties described above can also be addressed from a local 
perspective. For example, the property of monotonicity (which was expressed above 
for a whole trace after a certain time point t), can also be expressed for a certain 
interval (with duration d) around t, as shown below.  

Local monotonicity property 
monotic_increase_around(γ, t, x, d) ⇔  
∀t1, t2  [ t-d � t1 < t < t2� t+d  & point(γ, t1, x, v1, y, w1)  & point(γ, t2, x, v2, y, w2)  �  v1< v2 ] 

In terms of f and g:   
monotic_increase_around(γ, t, x, d) ⇔ point(γ, t, x, v1, y, w1)  �  f(v1, w1) > 0 

Local bounding property 
upward_bounding_around(γ, t, M, δ, d)  ⇔  
[ point(γ, t, x, v1, y, w1) � ∀t' [ t�t'�t+d  & point(γ, t', x, v2, y, w2)  � M-v2 ≥ (1-δ)*(M-v1) ] 

In terms of f and g from the equations dx/dt  =  f(x, y) and dy/dt  =  g(x, y): 
upward_bounding_around(γ, t, M, δ, d)  ⇔ point(γ, t, x, v1, y, w1)  �  f(v1, w1) �  δ/d (M - v1) 

Local equilibrium property 
From the local perspective of the underlying mechanism, equilibrium points are those 
points for which  dx/dt  =  dy/dt  =  0, i.e., in terms of f and g for this case f(x, y) = g(x, y) = 
0.  
equilibrium_state(v, w)  ⇔  f(v, w) = 0  &  g(v, w) = 0 

Local property for behaviour around an equilibrium: 
attracting(γ, x, v, y, w, δ, ε0, d)  ⇔ has_equilibrium(γ, x, v, y, w)  &  
ε0>0 ∧ 0< δ <1 ∧ d≥0 ∧ ∀t  [ point(γ, t, x, v1, y, w1) ∧ dist(v1, w1, v, w) < ε0 �  
∀t' [ t+d�t'�t+2d  & point(γ, t', x, v2, y, w2)  �  dist(v2, w2, v, w) < δ*dist(v1, w1, v, w) ] ] 

In terms of f and g, this can be expressed by relationships for the eigen values of the 
matrix of derivatives of f and g. 

Local limit cycle property 
Let a set S in the plane be parameterised by two explicitly given functions c1, c2: [0, 1] 
→ ℜ, i.e., S = { (c1(u), c2(u)) | u ∈ [0, 1] }, and d1(u) = dc1(u)/du, d2(u) = dc2(u)/du. Then S is 
a limit cycle if: 
∀t, u  point(γ, t, c1(u), c2(u)) � d1(u)*g(c1(u), c2(u)) = f(c1(u), c2(u))*d2(u) 

6.4   Logical Relations between Local and Global Properties 

The properties of local and global level can be logically related to each other by 
general interlevel relations, for example, the following ones: 

∃d>0  ∀t'≥t  monotic_increase_around(γ, t', x, d)    � monotic_increase_after(γ, t, x) 

∃d>0, δ>0  ∀t'≥t  upward_bounding_around(γ, t, M, δ, d)   � upward_bounded_after_by(γ, t, M)   

∀t [ state(γ, t) |= equilibrium_state(v, w)     � has_equilibrium(γ, x, v, y, w)  

∃d>0, δ>0  attracting(γ, x, v, y, w, δ, ε0, d)    � attracting(γ, x, v, y, w, ε0)   

These interlevel relations are general properties of dynamic systems, as explained, 
e.g., in [10]. Full proofs for these relations fall outside the scope of this paper. 
However, to make them a bit more plausible, the following sketch is given. The first 



 

 58 

interlevel relation involving monotonicity can be based on induction on the number of 
d-intervals of the time axis between two given time points t1 and t2. The second 
interlevel relation, involving boundedness is based on the fact that local bounding 
implies that in any d-interval, if the value at the start of the interval is below M, then 
it will remain below M in that interval. The third interlevel relation, on equilibrium 
points, is based on the fact that if at no time point the value changes, then at all time 
points after this value is reached, the value will be the same. For the fourth interlevel 
relation, notice that local attractiveness implies that for any d-interval the distance of 
the value to the equilibrium value at the end point is less than δ times the value at the 
starting point. By induction over the number of d-intervals the limit definition as used 
for the global property can be obtained. 

7   Discussion 

The LEADSTO approach discussed in this paper provides means to simulate models 
of dynamic systems that combine both quantitative and qualitative aspects. A 
dynamic system, as it is used here, is a system, which is characterised by states and 
transitions between these states. As such, dynamic systems as considered in [23], 
which are described by differential equations, constitute a subclass of the dynamic 
systems considered in this paper. Systems that incorporate both continuous 
components and discrete components are sometimes called hybrid systems. Hybrid 
systems are studied in both computer science [9], [19] and control engineering [17]. 
They incorporate both continuous components, whose dynamics is described by 
differential equations and discrete components, which are often represented by finite-
state automata. Both continuous and discrete dynamics of components influence each 
other. In particular, the input to the continuous dynamics is the result of some 
function of the discrete state of a system; whereas the input of the discrete dynamics 
is determined by the value of the continuous state. In the control engineering area, 
hybrid systems are often considered as switching systems that represent continuous-
time systems with isolated and often simplified discrete switching events. Yet in 
computer science the main interest in hybrid systems lies in investigating aspects of 
the discrete behaviour, while the continuous dynamics is often kept simple. 

Our LEADSTO approach provides as much place for modelling the continuous 
constituent of a system, as for modelling the discrete one. In contrast to many studies 
on hybrid systems in computer science (e.g., [25]), in which a state of a system is 
described by assignment of values to variables, in the proposed approach a state of a 
system is defined using a rich ontological basis (i.e., typed constants, variables, 
functions and predicates). This provides better possibilities for conceptualising and 
formalising different kinds of systems (including those from natural domains). 
Furthermore, by applying numerical methods for approximation of the continuous 
behaviour of a system, all variables in a generated model become discrete and are 
treated equally as finite-state transition system variables. Therefore, it is not needed to 
specify so-called control points [19], at which values of continuous variables are 
checked and necessary transitions or changes in a mode of a system’s functioning are 



 

 59 

made. Moreover, using TTL, a super-language of LEADSTO, dynamical systems can 
be analysed by applying formalised standard techniques from mathematical calculus. 

Since LEADSTO has a state-based semantics and allows a high ontological 
expressivity for defining state properties, many action-based languages (A, B, C [12], 
 L [2] and their extensions) can be represented in (or mapped to) the LEADSTO 
format. In particular, trajectories that define the world evolution in action languages 
correspond to traces in LEADSTO, fluents evaluated in each state can be represented 
by state properties, and transitions between states due to actions can be specified by 
LEADSTO rules that contain the corresponding actions within the antecedents. 
Furthermore, to represent actions, observations, and goals of agents and facts about 
the world, the state ontology of LEADSTO includes corresponding sorts, functions 
and predicates. LEADSTO allows representing both static and dynamic laws as they 
are defined in [12], and non-deterministic actions with probabilities. To represent and 
reason about temporal aspects of actions, LEADSTO includes the sort TIME, which is 
a set of linearly ordered time points.  

The expressions of query languages used to reason about actions [2], [12] can be 
represented in TTL, of which LEADSTO is a sublanguage. TTL formulae can express 
causality relations of query languages by implications and may include references to 
multiple states (e.g., histories of temporally ordered sequences of states). Using a 
dedicated tool [8], TTL formulae can be automatically checked on traces (or 
trajectories) that represent the temporal development of agent systems. 

Concerning other related work, in [26], a logic-based approach to simulation-
based modelling of ecological systems is introduced. Using this approach, continuous 
dynamic processes in ecological systems are conceptualised by system dynamics 
models (i.e., sets of compartments with flows between them). For formalising these 
models and performing simulations, the logical programming language Prolog is 
used. In contrast to this, the LEADSTO approach provides a more abstract (or high-
level) logic-based language for knowledge representation. 

Also within the area of cognitive modelling, the idea to combine qualitative and 
quantitative aspects within one modelling approach is not uncommon. A number of 
architectures have been developed in that area, e.g., ACT-R [1] and SOAR [15]. Such 
cognitive architectures basically consist of a number of different modules that reflect 
specific parts of cognition, such as memory, rule-based processes, and 
communication. They have in common with LEADSTO that they are hybrid 
approaches, supporting both qualitative (or symbolic) and quantitative (or 
subsymbolic) structures. However, in LEADSTO these qualitative and quantitative 
concepts can be combined within the same expressions, whereas in ACT-R and 
SOAR separate modules exist to express them. In these cognitive architectures, often 
the role of the subsymbolic processes is to control the symbolic processes. For 
example, the subsymbolic part of ACT-R is represented by a large set of parallel 
processes that can be summarised by a number of mathematical equations, whereas its 
symbolic part is fulfilled by a production system. Here, the subsymbolic equations 
control many of the symbolic processes. For instance, if multiple production rules in 
ACT-R’s symbolic part are candidates to be executed, a subsymbolic utility equation 
may estimate the relative cost and benefit associated with each rule and select the rule 
with the highest utility for execution. 



 

 60 

Accuracy and efficiency of simulation results for hybrid systems provided by the 
proposed approach to a great extend depend on the choice of a numerical 
approximation method. Although the proposed approach does not prescribe usage of 
any specific approximation method (even the most powerful of them can be modelled 
in LEADSTO), for most of the cases the fourth-order Runge-Kutta method can be 
recommended, especially when the highest level of precision is not required. For 
simulating system models, for which high precision is demanded, higher-order 
numerical methods with an adaptive step size can be applied. 

References 

1. Anderson, J.R., Lebiere, C. The atomic components of thought. Lawrence Erlbaum 
Associates, Mahwah, NJ (1998) 

2. Baral, C., Gelfond, M., Provetti, A. Representing Actions: Laws, Observation and 
Hypothesis. Journal of Logic Programming, 31(1-3) (1997) 201-243 

3. Barringer, H., Fisher, M., Gabbay, D., Owens, R., Reynolds, M. The Imperative Future: 
Principles of Executable Temporal Logic, Research Studies Press Ltd. and John Wiley & 
Sons (1996) 

4. Boccara, N. Modeling Complex Systems. Graduate Texts in Contemporary Physics series, 
Springer-Verlag (2004) 

5. Bosse, T., Delfos, M.F., Jonker, C.M., Treur, J. Modelling Adaptive Dynamical Systems to 
analyse Eating Regulation Disorders. Simulation Journal: Transactions of the Society for 
Modeling and Simulation International, 82 (2006) 159-171 

6. Bosse, T., Jonker, C.M., Los, S.A., Torre, L. van der, Treur, J. Formalisation and Analysis 
of the Temporal Dynamics of Conditioning. In: Mueller, J.P. and Zambonelli, F. (eds.), 
Proceedings of the Sixth International Workshop on Agent-Oriented Software Engineering, 
AOSE'05 (2005) 157-168 

7. Bosse, T., Jonker, C.M., Meij, L. van der, Treur, J. LEADSTO: a Language and 
Environment for Analysis of Dynamics by SimulaTiOn. In: Eymann, T. et al. (eds.), Proc. 
MATES'05. LNAI 3550. Springer Verlag (2005) 165-178. Extended version in: 
International Journal of Artificial Intelligence Tools. To appear, 2007 

8. Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, A., Treur, J. Specification and 
Verification of Dynamics in Cognitive Agent Models. In: Nishida, T. (ed.), Proceedings of 
the Sixth International Conference on Intelligent Agent Technology, IAT'06. IEEE 
Computer Society Press (2006) 247-254 

9. Davoren, J.M., Nerode, A. Logics for Hybrid Systems. In Proceedings of the IEEE, 88 (7) 
(2000) 985-1010 

10. Edwards, C.H., Penney, D. L. Calculus with Analytic Geometry. Prentice Hall, London, 5th 
edition (1998) 

11. Gear, C.W. Numerical Initial Value Problems in Ordinary Differential Equations. 
Englewood Cliffs, NJ: Prentice-Hall (1971) 

12. Gelfond, M., Lifschitz, V. Action languages, Electronic Transactions on AI, 3(16) (1998) 
13. Hynne F, Dano S, Sorensen PG., Full-scale model of glycolysis in Saccharomyces 

cerevisiae. Biophys. Chem., 94 (1-2) (2001) 121-63 
14. Jonker, C.M., Treur, J. Compositional Verification of Multi-Agent Systems: a Formal 

Analysis of Pro-activeness and Reactiveness. International Journal of Cooperative 
Information Systems 11 (2002) 51-92. 

15. Laird, J.E., Newell, A., and Rosenbloom, P.S. Soar: an architecture for general intelligence. 
Artificial Intelligence 33 (1) (1987) 1-64.  



 

 61 

16. Lefschetz, S. Differential equations: geometric theory. Dover Publications (2005) 
17. Liberzon, D., Morse, A. S. Basic problems in stability and design of switched systems, 

IEEE Control Systems Magazine 19 (5) (1999) 59-70 
18. Machado, A. Learning the Temporal Dynamics of Behaviour. Psychological Review, vol. 

104 (1997) 241-265 
19. Manna, Z., Pnueli, A. Verifying Hybrid Systems. In Hybrid Systems, LNCS 736, Springer-

Verlag, (1993) 4-35 
20. Meyer, J.J.Ch., Treur, J. (volume eds.). Agent-based Defeasible Control in Dynamic 

Environments. Series in Defeasible Reasoning and Uncertainty Management Systems (D. 
Gabbay and Ph. Smets, series eds.) vol. 7, Kluwer Academic Publishers (2002) 

21. Morin P.J. Community Ecology. Blackwell Publishing, USA (1999) 
22. Pearson, C.E.. Numerical Methods in Engineering and Science. CRC Press (1986) 
23. Port, R.F., Gelder, T. van (eds.). Mind as Motion: Explorations in the Dynamics of 

Cognition. MIT Press, Cambridge, Mass (1995) 
24. Press, W. H., Teukolsky, S. A., Vetterling,W. T., Flannery, B. P. Numerical recipes in C: 

the art of scientific computing. Cambridge university press, second edition (1992) 
25. Rajeev, A., Henzinger, T.A., and Wong-Toi, H. Symbolic analysis of hybrid systems. In 

Proceedings of the 36th Annual Conference on Decision and Control (CDC), IEEE Press 
(1997) 702-707 

26. Robertson, D., Bundy, A., Muetzelfeldt, R., Haggith, M., Ushold, M. Eco-Logic: Logic-
Based Approaches to Ecological Modelling. MIT Press, Cambridge, Mass (1991) 

27. Sharpanskykh, A., Treur, J. Verifying Interlevel Relations within Multi-Agent Systems. In: 
Brewka, G., Coradeschi, S., Perini, A., and Traverso, P. (eds.), Proceedings of the 17th 
European Conference on Artificial Intelligence, ECAI'06, IOS Press (2006) 290-294 

 



 

 62 



 

 63 

 
 
 
 
 
 
 
 

Chapter 3 

 

Automated Transformation of Multi-Agent System 
Behaviour Specifications into Executable Specifications 1 

Abstract. An approach to handle the complex dynamics of a multi-agent 
system is based on distinguishing aggregation levels. The behaviour at a given 
aggregation level can specified by a set of dynamic properties at that level, 
expressed in some (temporal) language. As the behaviour of a system as a 
whole can be complex, the dynamic properties of higher aggregation levels in 
principle may involve complex temporal expressions as well. This complexity 
makes analysis, for example of the logical consequences, difficult. Software 
tools to support analysis need system specifications describing its basic steps in 
a simple format. For that reason, for such analyses, often specifications at a 
lower aggregation level have to be created, describing basic steps in the 
process. This paper presents a method and tool to support the automated 
creation of such a specification at a lower aggregation level, as a refinement of 
a given higher level specification. The generated specification has a simple 
format which can easily be used for analysis, for example, by simulation, or by 
verification of logical consequences. 

1   Introduction 

Often dynamics of a multi-agent system is described by a behavioural temporal 
specification, which consists of dynamic properties of the multi-agent system. 
Usually, these properties are expressed as formulae in some (temporal) language. The 

                                                           
1 Part of this chapter appeared as Sharpanskykh, A., Treur, J.: Verifying Interlevel Relations 

within Multi-Agent Systems. In: G. Brewka, S. Coradeschi, A. Perini, P. Traverso (eds.), 
Proceedings of the 17th European Conference on Artificial Intelligence, ECAI'06. IOS Press, 
290-294 (2006) (the names of the authors are ordered alphabetically reflecting the 
comparable contribution of each author). 



 

 64 

dynamics of a multi-agent system may be quite complex and difficult to analyze. In 
order to analyze the behaviour of a complex multi-agent system (e.g., for critical 
domains such as air traffic control and health care), appropriate approaches for 
handling the dynamics of the multi-agent system are important. One of the approaches 
to manage complex dynamics is by distinguishing different aggregation levels; e.g., 
(Jonker and Treur, 2002). According to this approach, at a higher aggregation level 
the main overall properties are described, which may have the form of a few temporal 
expressions of high complexity. At a lower aggregation level a system is described in 
terms of more basic steps. This usually takes the form of a specification consisting of 
a large number of temporal expressions in a simpler format.  

To formally analyse a given behavioural specification and its logical consequences, 
dedicated logical analysis techniques (e.g., by simulation or verification) such as 
described in (Andreka, Benthem and Nemeti, 1998; Bosse, Jonker, Mey and Treur, 
2007; Fisher, 2005; Hodkinson, Wolter and Zakharyaschev, 2000; Hustadt, Konev, 
Riazanov, and Voronkov, 2004) may be of use. The idea is that the logical 
behavioural specification is used as a system specification, whereas for other temporal 
properties it is checked whether they are entailed by this system specification. 
However, such analysis techniques are only appropriate when systems are specified in 
a simple format, at a low aggregation level, close to a finite state automaton or 
transition system. In the general case, a given behavioural specification for a multi-
agent system may consist of dynamic properties expressed by possibly complex 
temporal relations, which do not allow direct application of such automated analysis 
techniques. In order to apply them it is needed to transform the original behavioural 
specification at a higher aggregation level into a simpler temporal format at a lower 
aggregation level.  

This paper shows how a given behavioural description can be automatically 
transformed into a specification in a simple temporal logical format, called executable 
format. A software environment has been developed to automate this process. It takes 
as input a behavioural specification, which may be at a high aggregation level. Based 
on this, it constructs as a refinement output in the form of specification at a lower 
aggregation level in executable temporal logical format. This logical format is close to 
but yet independent of the formats used in most of the existing verification techniques 
and tools. The format provides a generic specification without commitment to the 
type of verification method to be used. It is easily translatable into the various formats 
often used, in particular those based on some form of logical specification. Examples 
for which this is shown are: causal-temporal modelling approaches (e.g., LEADSTO; 
Bosse et al., 2007), modal temporal logic (e.g., MetatheM; Fisher, 1996), monodic 
first-order logic (Hodkinson and Wolter and Zakharyaschev, 2000), and the guarded 
fragment of predicate logic (Andreka, and Benthem and Nemeti, 1998).  

Section 2 places the modelling issue in a historic context and discusses the main 
idea. In Section 3 the concepts for formal specification of multi-agent system 
dynamics and the reified predicate logic temporal language used are briefly 
introduced. After that, in Section 4 an overview of the transformation procedure from 
a behavioural specification into an executable specification is given, and illustrated by 
an example. Sections 5, 6 and 7 describe in more detail the different parts of the 
transformation: from interaction state (input) to memory state, from memory state to 
preparation state, from preparation state to interaction state (output). In Section 8 the 



 

 65 

different parts of the transformation are combined to obtain the refinement of a 
behavioural specification into an executable specification. After that, in Section 9 the 
implementation details of the described transformation procedure are discussed. 
Section 10 shows how the generated executable specification can easily be used to 
perform analysis using one of four different available logical techniques and 
supporting software environments: LEADSTO, Propositional Modal Temporal Logic 
and MetatheM, Monodic First-Order Temporal Logic, and the Guarded Fragment of 
Predicate Logic. The paper ends with a discussion in Section 11. More details about 
proofs are given in Appendix A. 

2  Assumptions on Dynamics and Temporal Modelling 

Descartes (1633) introduced a perspective on the world that sometimes is called the 
clockwork universe. This perspective claims that with sufficiently precise 
understanding of the world’s dynamics at some starting time, the future can be 
predicted by applying a set of laws. He first describes how at some starting time 
matter came into existence in a diversity of form, size, and motion. From that time on, 
dynamics continues according to ‘laws of nature’. 

 
‘From the first instant that they are created, He makes some begin to move in one 
direction and others in another, some faster and others slower (or indeed, if you wish, 
not at all); thereafter, He makes them continue their motion according to the ordinary 
laws of nature. For God has so wondrously established these laws that, even if we 
suppose that He creates nothing more than what I have said, and even if He does not 
impose any order or proportion on it but makes of it the most confused and most 
disordered chaos that the poets could describe, the laws are sufficient to make the 
parts of that chaos untangle themselves and arrange themselves in such right order that 
they will have the form of a most perfect world, in which one will be able to see not 
only light, but also all the other things, both general and particular, that appear in this 
true world.’  

(Descartes,  The World, 1633, Ch 6: Description of a New World, 
and on the Qualities of the Matter of Which it is Composed ) 

 

‘Know, then, first that by "nature" I do not here mean some deity or other sort of 
imaginary power. Rather, I use that word to signify matter itself, insofar as I consider 
it taken together with all the qualities that I have attributed to it, and under the 
condition that God continues to preserve it in the same way that He created it. For 
from that alone (i.e., that He continues thus to preserve it) it follows of necessity that 
there may be many changes in its parts that cannot, it seems to me, be properly 
attributed to the action of God (because that action does not change) and hence are to 
be attributed to nature. The rules according to which these changes take place I call 
the "laws of nature."’     

 (Descartes,  The World, 1633, Ch 7: On the Laws of Nature of this  
 New World) 
 

Descartes emphasizes that after such a starting time nothing (even no God) except 
the laws of nature determines the world’s dynamics: the role of God is limited to 
preserving these laws of nature. This view assumes that systematic relationships (laws 



 

 66 

of nature) are possible between world states over time, in the sense that (properties of) 
past world states imply (properties of) future world states. For a temporal modelling 
perspective, this assumption indicates that dynamics can be described by logical 
implications from properties of the past to properties of the future: 

  past properties  �   future properties 

This pattern or special cases thereof can be found in high-level modelling 
approaches developed in Computer Science and AI, in particular, in the area of 
Requirements Engineering. Such specifications often are used at a higher aggregation 
level for the more global properties of a process as a whole, abstracting from the basic 
steps or mechanisms that realise the process, but also can be used at lower 
aggregation levels. An example of such a temporal specification ‘from past to future’, 
expressed informally is: 

If    at some time point in the past agent A received a request for certain 
information from agent B, 
  and  at some time point agent A obtains this information,  
then  agent A will communicate this information to agent B 

The clockwork universe view has been developed further by Newton, Leibniz, 
Laplace, Ashby and others to what is called Dynamical Systems Theory. Van Gelder 
and Port (1995) briefly explain what a dynamical system is in the following manner. 
A system is a set of changing aspects (or state properties) of the world. A state at a 
given point in time is the way these aspects or state properties are at that time; so a 
state is characterised by the state properties that hold. The set of all possible states is 
the state space. A behaviour of the system is the change of these state properties over 
time, or, in other words, a succession or sequence of states within the state space. 
Such a sequence in the state space can be indexed, for example, by natural numbers 
(discrete case) or real numbers (continuous case), and is also called a trace or 
trajectory. Given these notions, the notion of state-determined system, adopted from 
Ashby (1952) is taken as the basis to describe what a dynamical system is: 

A system is state-determined only when its current state always determines a unique 
future behaviour. Three features of such systems are worth noting.  
First, in such systems, the future behaviour cannot depend in any way on whatever 
states the system might have been in before the current state. In other words, past 
history is irrelevant (or at least, past history only makes a difference insofar as it has 
left an effect on the current state).  
Second, the fact that the current state determines future behaviour implies the 
existence of some rule of evolution describing the behaviour of the system as a 
function of its current state. For systems we wish to understand we always hope that 
this rule can be specified in some reasonable succinct and useful fashion. One source 
of constant inspiration, of course, has been Newton’s formulation of the laws of the 
solar system.  
Third, the fact that future behaviours are uniquely determined means that state space 
sequences can never fork. (Gelder and Port, 1995), p. 6. 

According to some a dynamical system is just a state-determined system; e.g., 
Giunti (1995). For others a dynamical system is a state-determined system for which 
the state properties are described by numerical values; e.g., Van Gelder and Port 



 

 67 

(1995). In Ashby (1960), the following claim is expressed, to emphasize the heuristic 
value of the state-determined system assumption: 

‘Because of its importance, science searches persistently for the state-
determined. As a working guide, the scientist has for some centuries followed 
the hypothesis that, given a set of variables, he can always find a larger set that 
(1) includes the given variables, and (2) is state-determined. Much research 
work consists of trying to identify such a larger set, for when it is too small, 
important variables will be left out of account, and the behaviour of the set will 
be capricious. The assumption that such a larger set exists is implicit in almost 
all science, but, being fundamental, it is seldom mentioned explicitly.’         
(Ashby, 1960), p. 28. 

Ashby refers to Temple (1942) and Laplace (1825) for support of his claims. He 
distinguishes phenomena at a macroscopic level for which his claim is assumed to 
hold from phenomena at the atomic level, for which the claim turns out not to hold.  

‘Temple, though, refers to ‘… the fundamental assumption of macrophysics that a 
complete knowledge of the present state of a system furnishes sufficient data to 
determine definitely its state at any future time or its response to any future influence.’  
Laplace made the same assumption about the whole universe when he stated that, 
given its state at one instant, its future progress should be calculable. The definition 
given above makes this assumption precise and gives it in a form ready for use in the 
later chapters. The assumption is now known to be false at the atomic level. We, 
however, will seldom discuss events at this level; and as the assumption has proved 
substantially true over great ranges of macroscopic science, we shall use it 
extensively.’        (Ashby, 1960), p. 28. 

For the temporal modelling perspective, the state-determined system assumption 
indicates that dynamics can be described by logical implications from properties of a 
present state to properties of future states: 

  present properties   �   future properties 

This format is more limited than the one above, as it does not involve past states. For 
this format many modelling approaches are known that comply with it, such as 
dynamical systems theory based on differential equations and causal modelling 
approaches. Usually such specifications describe a process at a lower aggregation 
level by the basic steps or mechanisms that realize it, but sometimes also can be used 
at higher aggregation levels. In continuation of the example specification above, this 
can be replaced by a specification ‘ from present to future’  of the form in the following 
manner: 

If    at some time point agent A received a request for certain information from 
agent B, 
then at a next time point it will have a memory of this request from agent B. 

If    at some time point agent A has a memory of a request, 
then at the next time point it will have a memory of this request. 

If  at some time point agent A obtains information,  
  and at that time point it has a memory of a request for this information from 
agent B 
then  at a next time point agent A will communicate this information to agent B. 



 

 68 

 
Indeed in this specification additional state ontology is introduced, namely for the 

(persisting) memory state. Whereas the former specification ‘from past to future’ as 
given earlier expresses a property of the process from a more global aggregation 
level, the latter specification ‘from present to future’ expresses properties of the same 
process at a lower, more basic aggregation level. This can be considered a refinement 
of the former specification. This illustrates Ashby (1960)’s assumption that the 
ontology for world states can be chosen or extended in such a manner that it is 
possible to obtain a specification in the more simple and more limited ‘present to 
future’ format which determines the behaviour of the system. Carrying over this 
assumption to the temporal modelling perspective, leads to the question whether and 
how in general a temporal specification in ‘past to future’ format can be transformed 
into one in ‘present to future’ format, by adding appropriate ontology for state 
properties. This is the question addressed in this paper. 

3   Temporal Specification of Dynamic Properties  

From the external perspective, behaviour of a (e.g., multi-agent) system is 
characterized by a set of dynamic properties, which represent relations over time 
between its input and output states used for interaction with its environment.  

3.1  The Temporal Modelling Approach Adopted 

From the philosophical perspective Galton (2003) considers two main streams in 
temporal logic: modal logic approaches to temporal logic (developed mainly within 
Computer Science), and predicate logic approaches to temporal logic (developed 
mainly within AI). In (Galton, 2006) he addresses different approaches in the latter 
stream in more detail. Two substreams distinguished are the use of temporal 
arguments within domain predicates, and the reification approach, where state 
properties are represented not by statements but by terms in the language, and 
predicates are used to express temporal structure over these term expressions. In this 
approach part of the model theory is incorporated in the language. This reification 
approach to predicate logical temporal modelling is the approach adopted here. A 
basic predicate used in this approach is the holds predicate: 

holds_at(p, t) 

means that state property p holds at time point t. The model theory notation for this is 

 γ, t |= p 

where γ is a model representing a possible trace of the process (i.e., a sequence of 
states indexed by the time frame). The Temporal Trace Language (TTL; Jonker and 
Treur, 2002; Sharpanskykh and Treur, 2005) is a reified temporal language based on a 
variant of order-sorted predicate logic (Manzano, 1996). It has some similarities with 
Situation Calculus (Reiter, 2001) and Event Calculus (Kowalski and Sergot, 1986). 
Whereas standard many-sorted predicate logic is a language to reason about static 



 

 69 

properties, TTL is an extension of such a language by temporal facilities for reasoning 
about the dynamic properties of dynamical systems. One of the features of TTL is that 
the trace γ indicated above also can be represented (by a constant or a variable) as a 
first class citizen in the language. So, as a variant of 

holds_at(p, t) 

in TTL the expression 

holds_at(p, γ, t) 

means that state property p holds in the state of trace γ at time point t, also denoted 
in the language TTL in an infix notation by 

 state(γ, t) |= p 

This feature gives the possibility to quantify over traces and to compare traces, 
which can be useful and even necessary when adaptive behaviour is analysed. For 
example, a property such as ‘the more exercising, the more skill’ compares two 
traces, one with less and one with more exercising. Another example of such a 
property is trust monotonicity: ‘the better the experiences, the higher the trust’. 
However, in the current paper these trace-related features of TTL are left out of 
consideration. The subset of the language TTL considered here does not include 
quantification over traces; when the argument γ occurs in a formula, it will be 
considered a fixed constant; thus an expression such as holds_at(p, γ, t) or state(γ, t) |= p 
is equivalent to (and can be replaced by) holds_at(p, t), which is the more standard 
expression in reified predicate logic approaches to temporal modelling. 

3.2  Brief Overview of the Temporal Trace Language TTL 

State properties are expressed in TTL as terms using a standard multi-sorted first-
order predicate language with a signature, which consists of a number of sorts, sorted 
constants, variables, functions and predicates. A system or agent A has assigned an 
interaction state ontology InteractionOnt(A) for its input and output states. Specifically, 
within an agent system context, using an ontology InteractionOnt one can define 
observations of state properties, communications, and actions.  

To enable specification of dynamic properties TTL includes special sorts: TIME (a 
set of linearly ordered time points), STATE (a set of all state names of a system), 
TRACE (a set of all trace names; a trace or trajectory can be thought of as a timeline 
with a state for each time point), STATPROP (a set of all state property names), and 
VALUE (an ordered set of numbers). Furthermore, for every sort S from the state 
language the following TTL sorts exist: the sort SVARS, which contains all variable 
names of sort S; the sort SGTERMS, which contains names of all ground terms, 
constructed using sort S; sorts SGTERMS and SVARS are subsorts of sort STERMS. 

In TTL, formulae of the state language are used as objects. To provide names of 
state language formulae ϕ in TTL the operator (*) is used (written as ϕ*), which maps 
variable sets, term sets and formula sets of the state language to the elements of TTL 
sorts SGTERMS, STERMS, SVARS and STATPROP. As state formulae in a state language occur in 
a reified form as terms in TTL, a state language and TTL define disjoint sets of 



 

 70 

expressions. Therefore, in TTL formulae the same notations for the elements of the 
state language (i.e, constants, variables, functions, predicates) and for their names in 
TTL can be used without introducing any ambiguity. Furthermore, t with subscripts 
and superscripts are used for variables of the sort TIME, and γ with subscripts and 
superscripts for variables of the sort TRACE. 

For the explicit indication of an aspect of a state for a system or agent (called more 
generally component), to which a state property is related, sorts ASPECT_COMPONENT 
(a set of the component aspects of a system; i.e., input, output, internal); COMPONENT 
(a set of all component names of a system); COMPONENT_STATE_ASPECT (a set of all 
names of aspects of all component states) and a function symbol  

comp_aspect: ASPECT_COMPONENT x COMPONENT → COMPONENT_STATE_ASPECT  

are used. A state for a component is described by a function symbol state of type 
TRACE x TIME x COMPONENT_STATE_ASPECT→ STATE.  

The set of function symbols of TTL includes ∧, ∨, →, ↔: STATPROP x STATPROP→ 

STATPROP; not: STATPROP→ STATPROP, ∀∀∀∀, ∃∃∃∃: SVARS x STATPROP→ STATPROP, which 
are counterparts of Boolean connectives and quantifiers in the state language. Further 
we shall use ∧, ∨, →, ↔ in infix notation and ∀∀∀∀, ∃∃∃∃ in prefix notation for better 
readability.  

Notice that also within states statements about time can be made (e.g., in state 
properties representing memory). To relate time within a state property (sort LTIME) to 
time external to states (sort TIME) a function present_time: LTIMETERMS→ STATPROP is 
used. Here time is assumed to have the properties of correctness and uniqueness: 

Uniqueness of time 
This expresses that present_time(t) is true for at most one time point t: 

∀t, t'' state(γ, t) |= present_time(t'') � ∀t', t'≠t'' ¬state(γ, t) |= present_time(t') 
Correctness of time 
This expresses that present_time(t) is true for the current time point t: 
∀t state(γ, t) |= present_time(t) 

Furthermore, for the purposes of this paper it is assumed that LTIMEGTERMS=TIME and 
LVALUEGTERMS=VALUE (LVALUE is a sort of the state language, which is a set of 
numbers). We shall use u with subscripts and superscripts to denote constants of sort 
LTIMEVARS. For formalising relations between sorts VALUE and TIME function symbols –
, +, /, •: TIME x VALUE→ TIME are introduced. And for sorts LVALUETERMS and LTIMETERMS 
the function symbols –, +, /, • are overloaded: LTIMETERMS x LVALUETERMS → STATPROP. 

The states of a component are related to names of state properties via the formally 
defined satisfaction relation denoted by the infix predicate |= (or denoted by the prefix 
predicate holds): state(γ,t,output(A))|= p (or holds(state(γ,t,output(A))), which denotes that 
the state property with a name p holds in trace γ at time point t at the output state of 
component A. Sometimes, when the indication of a component aspect is not 
necessary, this relation will be used without the third argument: state(γ,t) |= p. Both 
state(γ,t,output(A)) and p are terms of TTL. In general, TTL terms are constructed by 
induction in a standard way from variables, constants and function symbols typed 
with all before mentioned TTL sorts.  



 

 71 

Temporal relations between states at different points in time are described by 
dynamic properties, which are expressed by TTL-formulae. The set of atomic TTL-
formulae is defined as: 

(1) If v1 is a term of sort STATE, and u1 is a term of the sort STATPROP, then holds(v1,u1) is 
an atomic TTL formula. 

(2) If τ1, τ2 are terms of any TTL sort, then τ1=τ2 is an atomic TTL formula.  
(3) If t1, t2 are terms of sort TIME, then t1<t2 is an atomic TTL formula.  

The set of well-formed TTL-formulae is defined inductively in a standard way using 
Boolean connectives and quantifiers. TTL has semantics mainly based on the 
semantics of order-sorted predicate logic. 

Dynamic properties to model a behavioural specification are TTL formulae that are 
assumed to be specified in the form of a logical implication from a temporal input 
pattern to a temporal output pattern. The consequent parts of dynamic properties do 
not contain any disjunctions in order to prevent non-determinism in behaviour. It is a 
necessary assumption to enable analysis of a system using existing checking 
techniques and tools. Dynamic properties are expressed using past, interval and future 
statements, which are defined as follows: 

a) A past statement for a trace γ and a time point t over state ontology Ont is a 
temporal statement ϕp(γ,t) in TTL, such that each time variable s different from t is 
restricted to the time interval before t: for every time quantifier for a time variable s a 
restriction of the form s �t, or s<t is required within the statement.  

b) A future statement for a trace γ and a time point t over state ontology Ont is a 
temporal statement ϕf(γ,t) in TTL, such that for every quantified time variable s, 
different from t a restriction of the form s�t, or s>t is required within the statement.  

c) An interval statement for a trace γ and time points t1 and t2 over state ontology 
Ont is a temporal statement ϕ(γ,t1,t2) in TTL, that is a past statement for t2 and a future 
statement for t1.  

4   Overview of the Transformation Process 

The procedure described in a nutshell in this section achieves the transformation of an 
external behavioural specification for a multi-agent system into executable format. An 
external behavioural specification of a multi-agent system is defined as follows. 

 
Definition 4.1 (External Behavioural Specification) 
An external behavioural specification for a multi-agent system consists of dynamic 
properties ϕ(γ, t) expressed in TTL of the form [ϕp(γ, t) � ϕf(γ, t)], where ϕp(γ, t) is a 
past statement over the interaction ontology and ϕf(γ, t) is a future statement. The 
future statement is represented in the form of a conditional behaviour: ϕf(γ, t) ⇔ ∀t1>t 
[ϕcond(γ, t, t1) � ϕbh(γ, t1)], where ϕcond(γ, t, t1) is an interval statement over the 
interaction ontology, which describes a condition for some specified action(s) and/or 
communication(s), and ϕbh(γ,t1) is a (conjunction of) future statement(s) for t1 over the 
output ontology of the form state(γ,t1+c) |= output(a), for some integer constant c and 
action or communication a.  



 

 72 

When a past formula ϕp(γ,t) is true for γ at time t, a potential to perform one or more 
action(s) and/or communication(s) exists. This potential is realized at time t1 when the 
condition formula ϕcond(γ,t,t1) becomes true, which leads to the action(s) and/or 
communication(s) being performed at the time point(s) t1+c indicated in ϕbh(γ,t1) (this is 
illustrated in Figure 1). 
 The term ‘external’ refers to the fact that such a specification is merely based on the 
interaction state ontology, no other (e.g., no internal or hidden) state ontology is 
assumed. An external behavioural specification can include arbitrarily complex 
temporal relationships. In contrast, an executable specification consists of a set of 
dynamic properties in a more simple executable temporal language, representing 
transition-like temporal relations between pairs of states. 

 
 
 
 
 
 

Fig. 1. Graphical illustration of the structure of a formula from an external behavioural 
specification 

Definition 4.2 (Executable Format) 
A temporal formula is in executable format if it has one of the following forms, for 
certain state properties , X and Y with X ≠ Y, and integer constant c. 

(1) ∀t state(γ, t) |= X � state(γ, t+c) |= Y  (states relation property) 
(2) ∀t state(γ� , t) |= X � state(γ, t+1) |= X  (persistency property) 
(3) ∀t state(γ� , t) |= X � state(γ, t) |= Y      (state relation property) 

 

The next step is to define when a specification in executable format is a refinement of 
a given external behavioural specification. First the following Definition is needed. 

Definition 4.3 (Coinciding Traces) 
Two traces γ1, γ2 coincide on ontology Ont (denoted by a predicate symbol coincide_on: 
TRACE x TRACE x ONTOLOGY (ONTOLOGY is a sort that contains all names of 
ontologies)) iff 

∀t ∀a∈STATATOMOnt    [ state(γ1, t) |= a  ⇔  state(γ2, t) |= a ] 

where STATATOMOnt ⊆ STATPROPOnt is the sort, which contains all names of ground 
atoms expressed in terms of Ont. 

 
The notion of refinement as expressed in the following Definition plays a central 

role in this paper. 
 

Definition 4.4 (Refinement of an External Dynamic Property) 
Let ϕ(γ, t) be an externally observable dynamic property for. An executable 
specification π(γ, t) refines ϕ(γ, t) iff 

(1) ∀γ, t  π(γ, t)  �  ϕ(γ, t) 

ϕp(γ,t) ϕcond(γ, t, t1) ϕbh(γ, t1) 

output(a2) output(a1) p1 p3 p2 

t1+c2 t1+c1 t1 t' t" t"' 



 

 73 

(2) ∀γ1, t [ ϕ(γ1, t)  �  [ ∃γ2  coincide_on(γ1, γ2, InteractionOnt(A)) & π(γ2, t) ] ] 
 
Note that this Definition achieves that if π(γ, t) refines ϕ(γ, t) and γ is a trace 

generated in accordance with π(γ, t) then by (1) it follows that this trace satisfies ϕ(γ, t). 
This means that simulation traces generated on the basis of specification π(γ, t) are 
simulation traces for ϕ(γ, t). Moreover, (2) guarantees that every trace for ϕ(γ, t) can be 
obtained in this manner. This shows that analysis by simulation of ϕ(γ, t) can be done 
based on π(γ, t). For another type of analysis, namely verification of logical 
consequences, first a theorem is needed. This theorem needs the following Lemma. 1 

 
Lemma 4.1 (Coinciding Traces) 
Let ϕ(γ, t) be a dynamic property expressed using the state ontology Ont. Then the 
following hold: 

(1) coincide_on(γ1, γ2, Ont)  & coincide_on(γ2, γ3, Ont)  � coincide_on(γ1, γ3, Ont)   
(2) coincide_on(γ1, γ2, Ont)  �  [  ϕ(γ1, t)  ⇔   ϕ(γ2, t)  ]. 
 
Note that for any past interaction statement ϕp(γ, t) and future interaction statement 

ϕf(γ, t) the following holds: 

∀γ1, γ2  [ coincide_on(γ1, γ2, InteractionOnt) �  [ ϕp(γ1, t) ⇔ ϕp(γ2, t) & ϕf(γ1, t) ⇔ ϕf(γ2, t) ]] 

 
Theorem 4.1 (Refinement Implies the Same Consequences) 
If the executable specification π(γ, t) refines the external behavioural specification ϕ(γ, 
t) of a multi-agent system, and ψ(γ, t) is a dynamic interaction property of the multi-
agent system in its environment, expressed using the interaction ontology, then 

[∀γ  [ π(γ, t)   �  ψ(γ, t) ]  ]  ⇔    [∀γ  [ ϕ (γ, t)   �  ψ(γ, t) ]  ] 
 

This Theorem 4.1 shows that when π(γ, t) refines ϕ(γ, t), verification of logical 
consequences of ϕ(γ, t) can be done by verification of logical consequences of π(γ, t). 
Therefore, summarizing, when a refinement of ϕ(γ, t) has been obtained, analysis is 
supported of ϕ(γ, t) both by simulation and by verification of logical consequences.  

In Section 8 it will be proven that every external behavioural specification can be 
refined into an executable specification. To obtain this refinement, an automated 
transformation procedure can be used as described below and in Sections 5 to 7. 

For transformation of an external behavioural specification into executable format, 
postulated internal states of the system are used. Internal states of a component or 
system A are described using a postulated internal state ontology InternalOnt(A). In 
Cognitive Science, which has been used as a source of inspiration, it is often assumed 
that an agent maintains a memory in the form of some internal model of the history; 
e.g., (Dennett, 1991; Damasio, 2000). Furthermore, we assume that internal states are 
formed on the basis of (input) observations (sensory representations) or 
communications. For this the function symbol memory: LTIMETERMS x STATPROP → 
STATROP is used. For example, memory(t, observed(a)) expresses that the component 
has memory that it observed a state property a at time point t. Before performing an 
action or communication it is postulated that a component creates an internal 

                                                           
1 Proofs of lemmas, propositions and theorems given in this paper are provided in Appendix A. 



 

 74 

preparation state. For example, preparation_for(b) represents a preparation of a 
component to perform an action or a communication b. Each dynamic property in the 
internal behavioural specification is specified in executable form. 

The Transformation Procedure: Brief Outline 
Let ϕ(γ,t) be a non-executable dynamic property from an external behavioural 
specification for the multi-agent system, for which an executable representation 
should be found.  
(1) Identify the set Tho→m of executable temporal properties, which describe transitions from 

interaction states to memory states (Section 5) (for a graphical representation of relations 
between the states considered in this procedure see Figure 2).  

(2) Identify the set Thm→p of executable temporal properties, which describe transitions from 
memory states to preparation states for output (Section 6). 

(3) Identify the set Thp→o of executable properties, which describe the transition from 
preparation states to the corresponding output states (Section 7). 

(4) From the sets of executable properties, identified during steps 1-3, construct the 
specification π(γ,t) =  Tho→m ∪ Thm→p ∪ Thp→o (considered as conjunction), which 
describes a refinement of ϕ(γ,t) (Section 8). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. A graphical representation of relations between interaction states described by a non-
executable dynamic property and internal states described by rules from the executable theories 
Tho→m, Thm→p  and Thp→o. 

The details of the proposed procedure are described in the next three sections by 
means of an example, in which a multi-agent system for co-operative information 
gathering is considered. The multi-agent system consists of four interacting 
components: two information gathering agents A and B, agent C, and environment 
component E representing the external world. Each of the agents is able to acquire 
partial information from an external source (component E) by initiated observations. 
Each agent can be reactive or proactive with respect to the information acquisition 
process. An agent is proactive if it is able to start information acquisition 
independently of requests of any other agents, and an agent is reactive if it requires a 
request from some other agent to perform information acquisition.  

Observations of any agent taken separately are insufficient to draw conclusions of a 
desired type; however, the combined information of both agents is sufficient. 
Therefore, the agents need to co-operate to be able to draw conclusions. Each agent 

ϕp(γ,t) ϕcond(γ, t, t1) ϕbh(γ, t1) 

output(a2) output(a1) p1 p3 p2 

t1+c2 t1+c1 t1 t' t" t"' 

memory(t', p1) 

memory(t”, p2) 

memory(t'”, p1) preparation_for(output(t1+c1, a1)) 

preparation_for(output(t1+c2, a2)) 
 

qmem 

qcprep 
qcond(t) 
qprep 

Tho→m  Thm→p  Thp→o 



 

 75 

can be proactive with respect to the conclusion generation, i.e., after receiving both 
observation results an agent is capable to generate and communicate a conclusion to 
agent C. Moreover, an agent can be request pro-active to ask information from 
another agent, and an agent can be pro-active or reactive in provision of (already 
acquired) information to the other agent. 

For the components of the multi-agent system, a number of dynamic properties 
were identified and formalized in TTL as it is shown below. In the formalization the 
variables A1 and A2 are defined over the sort AGENTTERMS, the constant E belongs to the 
sort ENVIRONMENTAL_COMPONENTGTERMS, the variable IC is defined over the sort 
INFORMATION_CHUNKTERMS, the constants IC1, IC2 and IC3 belong to the sort 
INFORMATION_CHUNKGTERMS and the constant C belongs to the sort AGENTTERMS. 

DP1(A1, A2) (Effectiveness of information request transfer between agents) 
    ∀IC∀t1 [ state(γ, t1, output(A1)) |= output(communicated(request_from_to_for(A1, A2, IC)))   
� state(γ, t1+c, input(A2)) |= communicated(request_from_to_for(A1, A2 , IC)) ]  

DP2(A1, A2) (Effectiveness of information transfer between agents) 
    ∀IC∀t1 [ state(γ, t1, output(A1)) |= output(communicated(message_from_to(A1, A2, IC)))  
�   state(γ, t1+c, input(A2)) |= communicated(message_from_to(A1, A2, IC)) ]  

DP3(A1, E) (Effectiveness of information transfer between an agent and environment) 
    ∀IC∀t1 [ state(γ, t1, output(A1)) |= output(obs_focus_from_to_for(A1, E, IC))  
�  state(γ, t1+c, input(E)) |= observed(obs_focus_from_to_for(A1, E, IC)) ]   

DP4(A1, E) (Information provision effectiveness) 
    ∀IC∀t1 [ state(γ, t1, input(E)) |= observed(obs_focus_from_to_for(A1, E, IC))   
  �   state(γ, t1+c, output(E)) |= observed(provide_result_from_to(E, A1, IC)) ]  

DP5(E, A1) (Effectiveness of information transfer between environment and an agent) 
    ∀IC∀t1 [ state(γ, t1, output(E)) |= observed(provide_result_from_to(E, A1, IC))  
�  state(γ, t1+c, input(A1)) |= observed(provided_result_from_to(E, A1, IC)) ]  

DP6(A1, A2) (Information acquisition reactiveness) 
    ∀IC∀t1 [ state(γ, t1, input(A2)) |= communicated(request_from_to_for(A1, A2, IC)) 
� state(γ, t1+c, output(A2)) |= output(obs_focus_from_to_for(A2, E, IC)) ]  

DP7(A1, A2) (Information provision reactiveness) 
    ∀IC [  ∃t1 [ t1<t &  state(γ, t1, input(A2)) |= communicated(request_from_to_for(A1, A2, IC)) ]] 
� ∀t2 [  t<t2 & state(γ, t2, input(A2)) |= observed(provided_result_from_to(E, A2, IC) �  

state(γ, t2+c, output(A2)) |= output(communicated(message_from_to(A2, A1, IC))) ]  ] 

DP8(A1, A2) (Conclusion proactiveness) 
∀IC1, IC2  [  ∀t1, t2   t1<t & t2<t & state(γ, t1, input(A1)) |= observed(provided_result_from_to(E, 
A1, IC1)) &  state(γ, t2, input(A1)) |= communicated(message_from_to(A2, A1, IC2))  
� ∃IC3, t4>t [ state(γ, t4, output(A1)) |=output(communicated(message_from_to(A1, C, IC3))) ] ] 

DP9(A1, E) (Information acquisition proactiveness) 
    ∃IC state(γ, c, output(A1)) |= output(obs_focus_from_to_for(A1, E, IC)) 

DP10(A1, A2) (Information request proactiveness) 
    ∃IC state(γ, c, output(A1)) |= output(communicated(request_from_to_for(A1, A2, IC))) 

Notice that most of the properties in the behavioural specification above (e.g., DP1, 
DP2) are already specified in executable format. Therefore, as an illustration the 
transformation procedure is applied to properties such as DP7 and DP8 which are 
non-executable. To illustrate the required transformation the dynamic property that 
describes an information provision reactiveness of the agent B has been chosen 
(DP7(A1, A2)). Informally this property expresses that the agent A2 generates an 



 

 76 

information chunk (the constant IC of sort INFORMATION_CHUNKGTERMS) for the agent 
A1 if the agent A2 observes the IC at its input from the environment and at some point 
in the past A2 received a request for the IC from the agent A1. According to the 
definition of an external behavioural specification the considered property can be 
represented in the form [ϕp(γ, t) � ϕf(γ, t)], where ϕp(γ, t) is a formula  

    ∃t2≤t state(γ, t2, input(B)) |= communicated(request_from_to_for(A, B, IC))  

and ϕf(γ, t) is a formula  
    ∀t1>t [ state(γ, t1, input(B)) |= observed(provided_result_from_to(E, B, IC) �    

state(γ, t1+c, output(B)) |= output(communicated(message_from_to(B, A, IC))) ] 

with ϕcond(γ, t, t1) is  

     state(γ, t1, input(B)) |= observed(provided_result_from_to(E, B, IC)) 

and ϕbh(γ, t1) is  
     state(γ, t1+c, output(B)) |= output(communicated(message_from_to(B, A, IC))) ], 

where t is the present time point with respect to which the formulae are evaluated and 
c is some natural number. 

5  From Interaction States to Memory States 

In this section the part of the executable specification describing the basic steps from 
interaction states to memory states is addressed. Here the past part ϕp(γ, t) of the 
behavioural specification is taken and encoded in a memory state. Memory states are 
represented by memory formulae in the following form. 

Definition 5.1 (Memory formula)  
The formula ϕmem(γ, t) obtained by replacing all occurrences in ϕp(γ, t) of subformulae 
of the form state(γ, t')|= p by state(γ, t)|= memory(t’, p) is called the memory formula for 
ϕp(γ, t).  

 
Thus, a memory formula defines a sequence of past events (i.e., a history of 
observations of an external world and actions) for the present time point t. The 
memory formula is no state formula yet. To obtain a memory state formula, 
normalization of the memory formula for ϕp(γ, t) is performed by using Lemma 5.1 
below. This Lemma will also be used to obtain other types of state formulae in 
Sections 6 and 7. 

Lemma 5.1 (Normalization to State Formula) 
Let t be a given time point. If a formula δ(γ, t) only contains temporal relations such as 
t' < t" and t' ≤ t", and atoms of the form state(γ, t)  |=  p for some state formula p, and the 
given time point t, then some state formula q(t) can be constructed such that δ(γ, t) is 
equivalent to the formula δ*(γ, t) of the form state(γ, t) |= q(t). 

Definition 5.2 (Normalized Memory State Formula)  
The state formula constructed by Lemma 5.1 for a memory formula ϕmem(γ, t) is called 
the (normalized) memory state formula for ϕmem(γ, t) and denoted by qmem(t). 
Moreover, qmem is the state formula ∀∀∀∀u’ [present_time(u’) → qmem(u’)]. 



 

 77 

The normalized memory state formula for ϕmem(γ, t) uniquely describes the present 
state at the time point t by a certain history of events. For the considered example 
qmem(t) for ϕmem(γ, t) is specified as: 

∃∃∃∃u2 ≤ t memory(u2,communicated(request_from_to_for(A, B, IC))) 

Lemma 5.2 (Memory Formula and Memory State Formula) 
If time has the properties correctness and uniqueness, then 

ϕmem(γ, t) ⇔ state(γ, t) |= qmem(t) ⇔ state(γ, t) |= qmem 
 
Additionally, memory state persistency properties are composed for all memory 
atoms. Rules that describe creation and persistence of memory atoms are given in the 
executable theory from observation states to memory states Tho→m described in 
Definition 2.3.  
 
Definition 5.3 (Executable Theory from Interaction to Memory Tho→m) 
For a given ϕ(γ, t) the executable theory from observation states to memory states 
Tho→m consists of the following formulae. 

For any atom p occurring in ϕp(γ, t), expressed in the InteractionOnt(A): 

∀t' state(γ, t') |= p  �  state(γ, t')  |= memory(t', p) 
∀t'' state(γ, t'') |= memory(t', p) �  state(γ, t"+1)  |= memory(t', p) 
state(γ, 0) |= present_time(0) 
∀t state(γ, t) |= present_time(t) � state(γ, t+1) |= present_time(t+1) 

The last two rules are assumed to be included into the two theories Thm→p and Thp→o 
defined in subsequent sections as well. 
 
For the example the rules for creation and persistence of memory atoms are specified 
as follows: 
 ∀t'  state(γ, t', input(B)) |= communicated(request_from_to_for(A, B, IC))  �   

  state(γ, t', internal(B))  |= memory(t', communicated(request_from_to_for(A, B, IC))) 
 ∀t''  state(γ, t'', internal(B)) |= memory(t', communicated(request_from_to_for(A, B, IC))) �   

  state(γ, t"+1, internal(B))  |= memory(t', communicated(request_from_to_for(A, B, IC))) 
 

The following Proposition expresses in what sense the executable theory 
guarantees that memory states are created that are correct. 

 
Proposition 5.1 (Relating Past Formula and Memory State) 
Let ϕp(γ, t) be a past statement for a given t, ϕmem(γ, t) the memory formula for ϕp(γ, t), 
qmem(t) the normalized memory state formula for ϕmem(γ, t), and Tho→m the executable 
theory from the interaction states for ϕp(γ, t) to the memory states. Then,  

Tho→m  |=  [ϕp(γ, t)  ⇔  ϕmem(γ, t)] 
and  

Tho→m  |=  [ ϕp(γ, t)  ⇔  state(γ, t) |= qmem(t)    &     state(γ, t) |= qmem(t) ⇔ state(γ, t) |= qmem]. 
 



 

 78 

6  From Memory States to Preparation States  

This section describes the executable theory for the basic steps from memory states to 
preparation states. First the ϕcond(γ, t, t1) part of the future formula in the behavioural 
specification is taken and encoded in memory state in a similar manner as the past 
formula was handled in Section 5.  

Definition 6.1 (Condition Memory Formula) 
Obtain the condition memory state formula ϕcmem(γ, t, t1) by replacing all occurrences 
in ϕcond(γ, t, t1) of state(γ, t') |= p by state(γ, t1) |= memory(t', p).  

The condition memory formula ϕcmem(γ, t, t1) describes a history of events, between 
the time point t, when ϕp(γ, t) is true and the time point t1, when the formula ϕcond(γ, t, 
t1) becomes true.  

Definition 6.2 (Normalized Condition State Formula)  
The state formula constructed by Lemma 5.1 for the condition memory formula 
ϕcmem(γ, t, t1) is called the (normalized) condition state formula for ϕcmem(γ, t, t1) and 
denoted by qcond(t, t1). Moreover, qcond(t) is the state formula ∀∀∀∀u’ [ present_time(u’) → qcond(t, 
u’) ]. 

 
Lemma 6.1  (Condition Memory Formula and Condition State Formula) 
If time has the properties correctness and uniqueness, then 

ϕcmem(γ, t, t1) ⇔ state(γ, t1) |= qcond(t, t1) & state(γ, t1) |= qcond(t, t1) ⇔ state(γ, t1) |= qcond(t) 

For the considered example qcond(t, t1) for ϕcmem(γ, t) is obtained as: memory(t1, 
observed(provided_result_from_to(E, B, IC))) and qcond(t): ∀∀∀∀u' [ present_time(u') → memory(u', 
observed(provided_result_from_to(E, B, IC)))]. 

Next the ϕbh(γ, t1) part of the future formula is considered.  
 

Definition 6.3  (Preparation Formula) 
Obtain the preparation formula ϕprep(γ, t1) by replacing in ϕbh(γ, t1) any occurrence of 
state(γ, t1+c) |= output(a) for some number c and output a by state(γ, t1) |= 
preparation_for(output(t1+c, a)).  

The preparation state is created at the same time point t1, when the condition ϕcond(γ, t, 
t1) for an output is true.  

Definition 6.4 (Normalized Preparation State Formula)  
The state formula constructed by Lemma 5.1 for the preparation formula ϕprep(γ, t1) is 
called the (normalized) preparation state formula for ϕprep(γ, t1) and denoted by qprep(t1). 
Moreover, qprep is the state formula ∀∀∀∀u’ [ present_time(u’)] → qprep(u’)] 

 
For the considered example qprep(t1) is composed as  preparation_for(output(t1+c, 

communicated(message_from_to(B, A, IC)))). 

Lemma 6.2 (Preparation Formula and Preparation State Formula) 
If time has the properties correctness and uniqueness, then 

ϕprep(γ, t1)  ⇔  state(γ, t1) |= qprep(t1)   &   state(γ, t1) |= qprep(t1) ⇔  state(γ, t1) |= qprep 

 



 

 79 

Definition 6.5 (Conditional Preparation Formula) 
Let qcond(t, t1) be the normalized condition state formula for ϕcmem(γ, t, t1) and qprep(t1) the 
normalized preparation state formula for ϕprep(γ, t1). The formula ϕcprep(γ, t) of the form  

 state(γ, t) |= ∀∀∀∀u1>t [qcond(t, u1) → qprep(u1)]  

is called the conditional preparation formula for ϕf(γ, t). 
 

Definition 6.6 (Normalized Conditional Preparation State Formula) 
The state formula ∀∀∀∀u1>t [ qcond(t, u1) → qprep(u1) ] is called the normalized conditional 
preparation state formula for ϕcprep(γ, t) and denoted by qcprep(t). Moreover, qcprep is the 
formula ∀u’ [ present_time(u’)  →  qcprep(u’) ]. 

 
Lemma 6.3 (Conditional Preparation and Conditional Preparation State 
Formula) 
If time has the properties correctness and uniqueness, then 

ϕcprep(γ, t) ⇔ state(γ, t) |= qcprep(t)   &   state(γ, t) |= qcprep(t) ⇔ state(γ, t) |= qcprep 
 
Rules, which describe generation and persistence of condition memory states, a 

transition from the condition to the preparation state, and the preparation state 
generation and persistence, are given in the executable theory from memory states to 
preparation states Thm→p.  

Definition 6.7 (Executable Theory From Memory to Preparation Thm→p) 
For any state atom p occurring in ϕcond(γ, t, t1), expressed in the InteractionOnt(A)1: 

∀t' state(γ, t') |= p  �  state(γ, t')  |= [ memory(t', p) ∧ stimulus_reaction(p) ] 
∀t'', t’ state(γ, t'')  |= memory(t', p) �  state(γ, t''+1)  |= memory(t', p) 
∀t' state(γ, t')  |= qmem �  state(γ, t')  |= qcprep 
∀t', t state(γ, t')  |= [qcprep ∧ qcond(t) ∧ ∧p stimulus_reaction(p) ] �  state(γ, t')  |= qprep 

∀t' state(γ, t')  |= [ stimulus_reaction(p) ∧ ¬ preparation_for(output(t'+c, a)) ] �  state(γ, t'+1)  |= 
stimulus_reaction(p) 
∀t' state(γ, t') |= [ preparation_for(output(t'+c, a)) ∧ ¬ output(a) ] �  state(γ, t’+1)  |= 
preparation_for(output(t'+c, a)) 
∀t' state(γ, t') |= [ present_time(t’) ∧  [ present_time(u’) → preparation_for(output(u’+c), a) ] ] �   

state(γ, t’)  |= preparation_for(output(t'+c), a) 

where a is an action or a communication for which state(γ, t’+c)  |= output(a) occurs in 
ϕf(γ, t). 

Note that the last rule in the theory can be derived from other rules of the theory and 
lemmas, and was introduced only for convenience purposes to support the following 
proofs. 

The auxiliary functions stimulus_reaction(a) are used for reactivation of agent 
preparation states for generating recurring actions or communications. 

For the considered example: 
    ∀t' [ state(γ,t',input(B))|= observed(provided_result_from_to(E,B,IC)) �   
          state(γ,t',internal(B))|= [ memory(t',observed(provided_result_from_to(E,B,IC))) ∧    
 stimulus_reaction(observed(provided_result_from_to(E,B,IC)))] ] 

                                                           
1 If a future formula does not contain a condition, then stimulus_reaction atoms are generated 

from the corresponding past formula 



 

 80 

∀t''  state(γ,t'',internal(B)) |= memory(t',observed(provided_result_from_to(E,B,IC))) �   
  state(γ, t"+1, internal(B))  |= memory(t', observed(provided_result_from_to(E,B,IC))) 

∀t'  state(γ,t') |= ∀∀∀∀u'' [ present_time(u'')→ ∃∃∃∃u2 [   
                                      memory(u2,communicated(request_from_to_for(A,B,IC)))]] �   
 state(γ, t')|= ∀∀∀∀u'''[ present_time(u''')→ [ ∀∀∀∀u1>u''' [memory(u1,  
                                       observed(provided_result_from_to(E,B,IC)))→  
                  preparation_for(output(u1+c,communicated(message_from_to(B,A,IC))))]]] 

∀t',t state(γ,t')|=[∀∀∀∀u''' [ present_time(u''')→ [∀∀∀∀u1>u''' [  
                                    memory(u1,observed(provided_result_from_to(E,B,IC))) →  
             preparation_for(output(u1+c,communicated(message_from_to(B,A,IC)))) ]]] ∧      
                      ∀∀∀∀u'' [present_time(u'') → memory(u'',observed(provided_result_from_to(E,B,IC)))] ∧  
                               stimulus_reaction(observed(provided_result_from_to(E,B,IC))) ] �  
        state(γ,t',internal(B))  |= ∀∀∀∀u1 [present_time(u1)→   
                                       preparation_for(output(u1+c,communicated(message_from_to(B,A,IC))))] 

∀t'  state(γ,t') |= [ stimulus_reaction(observed(provided_result_from_to(E,B,IC))) ∧  
                              not(preparation_for(output(t'+c,communicated(message_from_to(B,A,IC))))] � 
 state(γ,t'+1) |= stimulus_reaction(observed(provided_result_from_to(E, B, IC))) 

∀t' state(γ,t',internal(B)) |=  
                                     [preparation_for(output(t'+c,communicated(message_from_to(B,A,IC)))) ∧ 
  not(output(communicated(message_from_to(B,A,IC)))) ] �   
      state(γ,t'+1,internal(B)) |=  
                                             preparation_for(output(t'+c,communicated(message_from_to(B,A,IC)))).  

 

Proposition 6.1 (Relating Preparation Formula and Preparation State Formula) 
Let ϕf(γ, t) be a future statement for t of the form ∀t1>t [ϕcond(γ, t, t1) � ϕbh(γ, t1)], where 
ϕcond(γ, t, t1) is an interval statement, which describes a condition for one or more 
actions and/or communications and ϕbh(γ, t1) is a (conjunction of) future statement(s) 
for t1, which describes action(s) and/or communications that are to be performed; let 
ϕprep(γ, t1) be the preparation formula, ϕcprep(γ, t) be the conditional preparation formula 
for ϕf(γ, t), qcprep(t) be the normalized conditional preparation state formula for ϕcprep(γ, t), 
and Thm→p the executable theory for ϕ(γ, t) from memory states to preparation states. 
Then,  

Thm→p  |=  ∀t1>t [ϕcond(γ, t, t1) � ϕprep(γ, t1)]  ⇔  ϕcprep(γ, t)] 
and  

Thm→p  |=  [∀t1>t [ϕcond(γ, t, t1) � ϕprep(γ, t1)]  ⇔  state(γ, t) |= qcprep(t)   &    
state(γ, t) |= qcprep(t) ⇔  state(γ, t) |= qcprep ]. 

7  From Preparation States to Output States 

The preparation state preparation_for(output(t1+c, a)) is followed by the output state, 
created at time point t1+c. Rules that describe a transition from preparation to output 
state(s) are given in the executable theory from the preparation to the output state(s) 
Thp→o.  

Definition 7.2 (Executable Theory from Preparation to Output Thp→o) 
For a given ϕf(γ, t) the executable theory from the preparation to the output state(s) 
consists of the formula 



 

 81 

∀t' state(γ, t') |= preparation_for(output(t'+c, a))  �  state(γ, t’+c)  |= output(a) 

where c is a number and a an action or a communication for which state(γ, t’+c)  |= 
output(a) occurs in ϕf(γ, t). 

For the considered example the following rule is generated: 

 ∀t' state(γ, t', internal(B)) |=   
                                 preparation_for(output(t'+c, communicated(message_from_to(B, A, IC))))  �   
      state(γ, t'+c, output(B)) |= output(communicated(message_from_to(B, A, IC))). 

 

Proposition 7.1  (Relating Preparation Formula and Behaviour Formula) 
Let ϕbh(γ, t1) be a (conjunction of) future statement(s) for t1, which describes action(s) 
and/or communications that are to be performed, ϕprep(γ, t1) be the preparation formula 
and Thp→o the executable theory from preparation states to output states. Then,  

Thp→o  |=  [ ϕprep(γ, t1)  �  ϕbh(γ, t1) ] 

 

8  Combining the Executable Theories to Obtain the Refinement  

In this section the sets of executable properties, identified in Sections 5 to 7 are 
combined to construct the specification π(γ,t) =  Tho→m ∪ Thm→p ∪ Thp→o (considered 
as conjunction), which describes a refinement of ϕ(γ,t). The following theorem 
proves the existence of such a refinement for every external behavioural specification. 

Theorem 8.1  (Existence of Executable Refinement) 
Every external behavioural specification can be refined into an executable 
specification. To obtain such a refinement, the automated transformation procedure 
can be used as described in Sections 5 to 7. 

9  Some Implementation Details 

To automate the proposed procedure the software tool was developed in Java. A 
model that describes dynamics of a system using an interaction ontology should be 
provided as an ASCII text file with name input.txt in the directory with the translation 
tool. All dynamic properties should be specified in the format [past formula] implies 
[future formula], where [future formula] is of the form [conditional formula] implies [action 
formula]. If the future formula contains a trivial condition (which is always true), then 
this condition can be omitted, and the corresponding dynamic property should be 
specified as [past formula] implies [action formula]. 

In order to enter a new dynamic property into the input file, first the past formula 
should be entered, then <new line symbol> and the future formula should be entered. If 
the specified property is not the last one in the specification, then <new line symbol> 
followed by a combination of symbols “---“ and one more <new line symbol> has to be 
added. More specific technical details for specifying dynamic properties are given 
below. 



 

 82 

 
• All time variables should be named as t[index], where [index] is a natural number. 
• Time variables of both past and future formulae should be related to t, which is a 

standard variable and should not be additionally introduced (the present time 
point, with respect to which the formula is being evaluated).  

• Names of state atoms should not contain blanks; no white spaces are allowed in 
predicate expressions. 

• There are a number of standard predicates defined: 
- world(t,a): denotes an event a in the external world at a time point t 
- observed(t,a): denotes an observation a of an agent at a time point t 
- communicated(t, a): denotes a communication act a of an agent performed at a time 

point t 
- output(t,a): denotes an output a at a time point t 

• Formulae are built using the following logical connectives and quantifiers: 
- AND: denotes the logical “and” 
- THEN: denotes the logical implication 
 - not_a: denotes the negation of an atom a (note that negations can be also 

applied to the 
 predicates, e.g., not_world(t,a), not_observation(t,not_a)) 
 - ‘[‘,’]’: denote brackets for formulas (note that brackets should be always 

separated by a  
 single blank from the literals, which stand before and after them) 
 - At1: denotes a universally quantified variable t1 
 - Et1: denotes an existentially quantified variable t1 
 - , : denotes a coma (make notice that there should be no blanks between a coma 

and literals  
 before and after it). 

• Other logical connectives can be expressed by means of already mentioned ones. 
 
For example,  

Past formula:  Et3 t3<t observation(t3,a)  
Future formula: At1 t1>=t observation(t1,b) THEN action(t1+2,c) 

The transformation algorithm searches in the input file for the standard predicate 
names and the predefined structures, then performs string transformations that 
correspond precisely to the described steps of the translation procedure, and adds 
executable rules to the output specification file. In particular, for every observed atom 
from past and condition state formulae corresponding memory state generation and 
memory state persistence rules are formed. During the transformation of dynamic 
properties into corresponding rules of the executable theory  Tho→m in the expressions 
for qmem and qcprep, time variables t[index] are replaced by local time variables u[index], 
where [index] is a natural number. Additionally, for every observed atom from 
condition state formulae, a rule for generating stimulus_reaction atom and a stimulus 
reaction state persistence rule are created. Furthermore, for every output atom the 
preparation state and the output state generation rules are created. When 
transformation is finished, the output.txt file with the resulted executable specification 
is generated.  



 

 83 

The transformation tool works on any platform running JRE 1.4 or higher. The 
processor capacity and the amount of RAM do not bear considerable influence on the 
time to generate an executable specification. In particular, on a computer system with 
the Intel Pentium III 850 MHz and 128 Mb RAM, the executable specification for the 
example considered in this paper was generated in 0.53 seconds. 

10  Applications: Translating the Executable Format into Various 
Formats 

Although the executable format obtained is very general, it has much in common with 
a number of particular executable languages and logics. In this paper we shall 
consider a number of them: the LEADSTO language, propositional modal temporal 
logic, monodic first-order temporal logic, and the loosely guarded fragment of first-
order predicate logic. These logics have as advantages good computational properties 
or decidability. For all of these languages and logics dedicated techniques and tools 
for performing different types of analysis (e.g., by simulation or by verification) are 
available. The executable format obtained here is very close to these languages, but 
nevertheless is generic in the sense that it does not commit to one of them. Therefore, 
it is easy to make use of these techniques and tools, by simple translations of 
executable specifications into the considered languages and logics. First, some 
general translation principles will be described, applicable to all considered languages 
and logics. Then, more specific translation techniques for the particular languages and 
logics will be presented and illustrated by examples.  

Since most of the considered languages do not allow function symbols, first all 
functions f: y x z �  v in executable specifications and in state properties in particular 
are replaced by predicates combined_of(f, v, y, z). Furthermore, the holds-relation (|=) in 
TTL expressions is used as a predicate holds_at(X, γ, t) without function symbols in the 
arguments, which denotes that the state property X holds at time point t in the trace γ. 
Moreover, when occurring, a universal quantification (over a finite domain) in a state 
property is replaced by a conjunction of propositions and similarly an existential 
quantification is replaced by a disjunction of propositions. More specifically, 

∀x: SORT P(x) is replaced by   ∧   P(a)  
 a∈SORT 

 ∃x: SORT P(x) is replaced by  ∨   P(a). 
 a∈SORT 

10.1  Translation Into LEADSTO Format 

The LEADSTO language (Bosse et al., 2007) is an executable fragment of order-
sorted logic and a sublanguage of TTL. It models direct temporal or causal 
dependencies between two state properties in states at different points in time as 
follows. Let α and β be state properties of the form ‘conjunction of atoms or 
negations of atoms’, and e, f, g, h real or integer numbers (constants of sort VALUE). A 
LEADSTO expression α →→e, f, g, h β, holds for a trace γ if: 

 



 

 84 

∀t1 [∀t [t1–g ≤ t < t1 � α holds in γ at time t ] � ∃d [e ≤ d ≤ f & ∀t' [t1+d ≤ t' < t1+d+h � β holds 

in γ at time t' ] 

The introduced earlier types of executable TTL formulae can easily be translated 
into the LEADSTO format as shown in Table 1. 

Table 1. Translation of executable formulae into LEADSTO format 

Executable TTL formulae Corresponding LEADSTO translation 
∀t state(γ,t) |= X � state(γ,t+c) |= Y X →→ c-1, c-1, 1, 1 Y 
∀t state(γ� ,t) |= X � state(γ,t+1) |= X X →→ 0, 0, 1, 1 X 
∀t state(γ� ,t) |= X � state(γ,t) |= Y X →→ -1, -1, 1, 1 Y 
 
As an illustration, consider the following two examples of translation of properties 

from executable theories into the LEADSTO format. 
1. The transition property from the a preparation to an action state 

∀t' state(γ, t') |= preparation_for(output(t'+c, a))  �  state(γ, t’+c)  |= output(a) 

is translated into: 

preparation_for(y2) & combined_of(output, y2, y1, a) & combined_of(plus, y1, t', c) →→ c-1, c-1, 

1, 1 output(a) 

2. The persistence property for the stimulus_reaction atom 

∀t' state(γ, t')  |= [ stimulus_reaction(p) ∧ ¬ preparation_for(output(t'+c, a)) ] �  state(γ, t'+1)  
|= stimulus_reaction(p) 

is translated into the LEADSTO expression: 

stimulus_reaction(p) & ¬preparation_for(y2) & combined_of(output, y2, y1, a) & 
combined_of(plus, y1, t', c)]  
         →→ 0, 0, 1, 1 stimulus_reaction(p) 

A specification in LEADSTO format has as an advantage that it can be easily 
depicted graphically, in a causal graph or system dynamics style. Furthermore, based 
on specifications in LEADSTO format, using the dedicated software environment, 
simulations of different scenarios can be performed and predicate logical dynamic 
properties can be automatically checked with respect to the generated simulation 
traces.  

10.2  Translation Into Propositional Modal Temporal Logic 

Propositional modal temporal logic (Benthem, 1995; Fisher, 1996, 2005) has been 
extensively used in the area of computer science to formalize the temporal 
development of a system. This logic can be seen as an extension of classical 
propositional logic by temporal operators, for a linear discrete time frame (e.g., ‘ � ’, 
meaning “at the next moment in time”, ‘ � ’ meaning “at every future moment”, ‘

�
’ 

meaning “at some future moment”). The executable formulae of three types are 
translated into the propositional modal temporal logic as shown in Table 2. 



 

 85 

Table 2. Translation of executable formulae into propositional modal temporal logic 

Executable TTL formulae Corresponding propositional modal temporal logic 
translation 

∀t state(γ,t) |= X � state(γ,t+c) |= Y �  (X �  � c Y)* 
∀t state(γ� ,t) |= X � state(γ,t+1) |= X �  (X �  �  X) 
∀t state(γ� ,t) |= X � state(γ,t) |= Y �  (X � Y) 

* � c is the contracted form that denotes c executable rules in form X' �  �  Y', which describe c 
intermediate transitions between the state in which X holds and the state in which Y becomes true; notice 
that this requires that c-1 intermediate state properties are added to the state ontology to represent these 
intermediate states. 

As a first example, the executable property  

∀t' state(γ, t') |= preparation_for(output(t'+c, a))  �  state(γ, t’+c)  |= output(a) 

with domain DACTION ={a1, a2} is translated into two propositional modal temporal 
logic formulae: 

 (preparation_for(output(a1))  � c output(a1)) 

 (preparation_for(output(a2))  � c output(a2)) 

Note that some state properties contain variables (e.g., in memory functions) over 
sort LTIME, whereas in modal temporal logic time is not explicitly available. To allow 
translation of such properties into propositional modal temporal logic, the predicate 
present_time is added to the state ontology and the domain for sort LTIME is explicitly 
defined. For example, the memory state generation property 

∀t' state(γ, t') |= p  �  state(γ, t')  |= [ memory(t', p) ∧ stimulus_reaction(p) ] 

with the domains DLTIME = {1,2,3}, DEVENT = {p1, p2} is translated into a propositional 
modal temporal logic formula as follows: 

present_time(1) & p1  �  memory(1, p1) ∧  stimulus_reaction(p1)  

present_time(2) & p1  �  memory(2, p1) ∧  stimulus_reaction(p1)  

present_time(3) & p1  �  memory(3, p1) ∧  stimulus_reaction(p1)  

Similar for the domain instance p2. 
Although the obtained specification may look quite cumbersome, nevertheless, by 

applying automated verification techniques based on efficient temporal resolution 
methods, such specifications can be effectively processed and analyzed. Furthermore, 
executable properties translated into propositional modal temporal logic can be 
naturally represented in MetateM, a modelling language based on the direct execution 
of modal temporal logic statements. By means of the dedicated software tools 
simulation and analysis of MetateM specifications can be performed. However, the 
expressivity of propositional modal temporal logic is still limited. For practical 
purposes more compact and expressive representations are needed, such as, for 
example, suggested by first-order variants of temporal logic. 

10.3  Translation into Monodic First-Order Temporal Logic 

The first-order temporal logic (FOTL) is an extension of classical first-order logic 
with modal operators for a linear discrete time frame; e.g., (Hodkinson et al., 2000; 
Hustadt et al, 2005). The monodic fragment of FOTL consists of all formulae, in 
which quantifiers over the domain variables are applied to formulae with at most one 



 

 86 

free temporal variable. The three types of formulae defined in the executable format 
comply with this requirement. In general, translation into this first order temporal 
logic is similar to one given in Table 2. Furthermore, since the monodic fragment 
does not include function symbols, the functions used for building state properties in 
TTL are to be replaced by the corresponding predicates, as shown earlier. Consider 
the following two examples.  

1. The transition property from the a preparation to an action state 

∀t' state(γ, t') |= preparation_for(output(t'+c, a))  �  state(γ, t’+c)  |= output(a) 

is translated into 
�  [ preparation_for(y2) & combined_of(output, y2, y1, a) & combined_of(plus, y1, t', c)  

                 �  � c output(a)] 

2. The persistence property for the stimulus_reaction atom 

∀t' state(γ, t')  |= [ stimulus_reaction(p) ∧ ¬ preparation_for(output(t'+c, a)) ] �   
state(γ, t'+1)  |= stimulus_reaction(p) 

is translated into 
�  [stimulus_reaction(p) & ¬preparation_for(y2) & combined_of(output, y2, y1, a) &  

combined_of(plus, y1, t', c) �  �  stimulus_reaction(p)] 

Specifications in monodic first-order temporal logic can be automatically verified 
using the dedicated theorem prover TeMP (Hustadt et al, 2005) that implements the 
resolution-based calculus for monodic first-order temporal logic. 

10.4  Translation Into the Loosely Guarded Fragment of Predicate Logic 

The loosely guarded fragment (Andreka, Benthem and Nemeti, 1998) is decidable and 
has good computational properties. Formulae in the loosely guarded fragment are 
specified in the form: 

∃y ((α1 ∧ … ∧ αm) ∧ ψ(x, y))  or   ∀y ((α1 ∧ … ∧ αm) �  ψ(x, y)) 

where x and y are tuples of variables, α1 … αm are atoms that relativize a quantifier 
(the guard of the quantifier), and ψ(x, y) is an inductively defined formula in the 
guarded fragment, such that each free variable of the formula is in the set of free 
variables of the guard. The formulae defined in the executable format are also 
formulae of the loosely guarded fragment of the first-order predicate logic with 
atomic guards specified by predicates holds_at(X, γ, t). For example, the transition 
property from the a preparation to an action state 

∀t' state(γ, t') |= preparation_for(output(t'+c, a))  �  state(γ, t’+c)  |= output(a) 

is translated into the loosely guarded fragment as follows 

∀t' [ [holds(y3, γ, t') & combined_of(preparation_for, y3, y2) & combined_of(output, y2, 
y1, a) & combined_of(plus, y1, t', c) ]  
                �  [ holds_at(y4, γ,  y1) & combined_of(output, y4, a) ]] 

Specifications in terms of the loosely guarded fragment can be effectively analyzed 
by resolution techniques implemented by theorem provers such as Bliksem (Nivelle, 
1999). 



 

 87 

11   Discussion 

The approach to analyzing behaviour of a multi-agent system proposed in this paper is 
based on distinguishing dynamic properties of different aggregation levels. The 
behaviour at a given aggregation level can specified in some temporal logical 
language by a set of dynamic properties. As the behaviour of a system can be 
complex, specifications at higher aggregation levels in principle may involve complex 
temporal expressions. Analysis is often performed by simulation or by verification of 
(possible) logical consequences of a specification. However, performing simulations 
and determining logical consequences of complex temporal formulae is not easy in 
general. This complexity makes analysis on the basis of a higher level specification 
difficult. Software tools to support analysis need system specifications in a simple 
format describing the system’s basic steps at a lower aggregation level. For that 
reason, to make analysis possible, often specifications at a lower aggregation level 
have to be created, which may be a tedious task. For example, to express one complex 
temporal relation, usually a large number of simpler specifications are needed. 

To support analysis on the basis of a higher level specification, an automated 
procedure has been developed, which allows transformation of a behavioural 
specification of a certain aggregation level into an executable temporal specification 
at a lower aggregation level, as a refinement of the given higher level specification. 
Specification of multi-agent system behaviour at a higher aggregation level is much 
easier. The order-sorted logic based reified temporal language TTL provides an 
intuitive way of creating a specification of system dynamics, which by the proposed 
transformation process still can be automatically translated into a lower level 
specification, as shown here. 

The complexity of the representation of the obtained executable model is linear in 
size of the behavioural specification. More specifically, the non-executable 
specification is related to the executable specification in the following linear way:  
(1)  For every communicated and observed function from a past and a conditional 

formulae from dynamic properties, a corresponding memory state creation and 
a memory state persistence rule are introduced;  

(2) For every dynamic property being translated a conditional preparation 
generation rule is created. This rule contains qmem and qcprep formulae, for each 
of which a variable over sort LTIME is introduced. This variable is used as 
argument of the present_time function. Furthermore, all time variables from 
 ϕmem are replaced in the corresponding qmem by their local time counterparts 
(i.e., time variables over sort LTIME); the same applies for qcprep; 

(3)  For every dynamic property being translated a preparation state creation rule is 
generated. This rule contains qcond(t) and qprep formulae, for which 
transformations with time variables similar to ones in (2) are applied; 

(4)  For every output atom (i.e., action or communication) specified in ϕbh(γ, t1) a 
preparation state persistence rule and an output state creation rule are 
introduced;  

(5)  For reactivation of agent preparation states the auxiliary variables and the 
update rules corresponding to communicated and observed functions from ϕprep(γ, t1) 
are introduced.  



 

 88 

This shows that no serious representational complexity is added by the 
transformation. 

Finally, one other observation can be made. The transformation can also be seen 
and used as a way to eliminate past aspects from temporal formulae. It is sometimes a 
point of discussion in how far the possibility to incorporate references to the past adds 
expressivity to a temporal language; e.g., (Hodkinson and Reynolds, 2005). The 
transformation given here shows on the one hand that the past elements can be 
eliminated, so one can say that no essential expressivity is added by using past 
elements. On the other hand, however, this elimination is not for free: the state 
ontology has to be extended seriously to achieve it, in line with Ashby (1960)’s 
remarks discussed in Section 2.  

REFERENCES 

Ashby, R. (1952/1960). Design for a Brain. Chapman & Hall, London. First edition 1952, 
second edition 1960. 

Andreka, H., Benthem, J. van, and Nemeti, I. (1998) Modal languages and bounded fragments 
of predicate logic. Journal of Philosophical Logic 27, pp. 217-274. 

Benthem, J. van (1995). Temporal Logic. In: D. M. Gabbay, C. J. Hogger, and J. A. Robinson, 
Handbook of Logic in Artificial Intelligence and Logic Programming, Volume 4, Oxford: 
Clarendon Press, pp. 241-350. 

Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J.: A Language and Environment for 
Analysis of Dynamics by Simulation. International Journal of Artificial Intelligence Tools, 
16: 435-464 (2007) 

Damasio, A. (2000). The Feeling of What Happens: Body, Emotion and the Making of 
Consciousness. MIT Press, 2000. 

Dennett, D.C. (1991). Consciousness Explained, Penguin Press, 1991. 
Descartes, R. (1633). The World or Treatise on Light. Withdrawn from publication, 1633. In: 

Descartes, R., The World and Other Writings. (S. Gaukroger ed.) Cambridge Texts in the 
History of Philosophy. Cambridge University Press, 1998. See also translated version by 
M.S. Mahoney: URL: http://www.princeton.edu/~hos/mike/ 
texts/descartes/world/world.htm. 

Fisher, M. (2005). Temporal Development Methods for Agent-Based Systems, Journal of 
Autonomous Agents and Multi-Agent Systems, vol. 10, 2005, pp. 41-66. 

Fisher, M. (1996). A Temporal Semantics for Concurrent METATEM, Journal of Symbolic 
Computation (Special Issue on Executable Temporal Logics) 22(5):627-648, 
November/December 1996, Academic Press. 

Galton, A. (2003). Temporal Logic. Stanford Encyclopedia of Philosophy, URL: 
http://plato.stanford.edu/entries/logic-temporal/#2. 

Galton, A. (2006). Operators vs Arguments: The Ins and Outs of Reification. Synthese, vol. 
150, 2006, pp. 415-441. 

Gelder, T.J. van, and Port, R.F., (1995). It’s About Time: An Overview of the Dynamical 
Approach to Cognition. In: Port, R.F., Gelder, T. van (eds.) (1995). Mind as Motion: 
Explorations in the Dynamics of Cognition. MIT Press, Cambridge, Mass., pp. 1-43. 

Giunti, M. (1995). Dynamical Models of Cognition. In: Port, R.F., Gelder, T. van (eds.). Mind 
as Motion: Explorations in the Dynamics of Cognition. MIT Press, Cambridge, Mass., 1995, 
pp. 549-572. 



 

 89 

Hodkinson, I., and Reynolds, M. (2005).  Separation - Past, Present and Future. In: We Will 
Show Them: Essays in Honour of Dov Gabbay, Vol 2. S. Artemov, H. Barringer, A. S. 
d'Avila Garcez, L. C. Lamb, and J. Woods (eds.), College Publications, 2005, pp. 117-142. 

 Hodkinson, I., Wolter, F., and Zakharyaschev, M. (2000). Decidable fragments of first-order 
temporal logics. Annals of Pure and Applied Logic 106, pp. 85–134. 

Hustadt, U., Konev, B., Riazanov, A., and Voronkov, A. (2004). TeMP: A Temporal Monodic 
Prover. In: Basin, D. A., and Rusinowitch, M. (eds), Proceedings of the Second 
International Joint Conference on Automated Reasoning IJCAR 2004, LNAI 3097, 
Springer, pp. 326-330. 

Jonker, C.M., and J. Treur. (2002). Compositional Verification of Multi-Agent Systems: a 
Formal Analysis of Pro-activeness and Reactiveness, International Journal of Cooperative 
Information Systems, vol. 11, 2002, 51-92. 

Kowalski, R., and M.A. Sergot. (1986). A logic-based calculus of events, New Generation 
Computing, vol. 4, 1986, pp. 67-95,  

Laplace, P.S. (1825). Philosophical Essays on Probabilities. Springer-Verlag, New York, 1995. 
Translated by A.I. Dale from the 5th French edition of 1825. 

Manzano, M., (1996). Extensions of First Order Logic, Cambridge University Press, 1996. 
Marcio Cysneiros, L., and E. Yu. (2002). Requirements Engineering for Large-Scale Multi-

agent Systems. In: Proceedings of the 1st International Central and Eastern European 
Conference on Multi-Agent Systems (CEEMAS), 2002, pp. 39-56. 

Nivelle, H. de. (1999). The Bliksem Theorem Prover, Version 1.12. Max-Planck-Institut, 
Saarbruecken, Germany, 1999. (http://www.mpi-sb.mpg.de/~bliksem/manual.ps) 

Port, R.F., Gelder, T. van (eds.) (1995). Mind as Motion: Explorations in the Dynamics of 
Cognition. MIT Press, Cambridge, Mass. 

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Implementing 
Dynamical Systems, Cambridge MA: MIT Press, 2001. 

Sharpanskykh, A., and Treur, J. (2005). Syntax and Semantics of the Temporal Trace 
Language, Technical Report No. TR-1801AI, Artificial Intelligence Department, Vrije 
Universiteit Amsterdam. http://www.few.vu.nl/~sharp/tr1801ai.pdf 

Temple, G. (1942). General principles of quantum theory. 2nd ed. London: Methuen. 



 

 90 

Appendix A 

Lemma 4.1 
Let ϕ(γ, t) be a dynamic property expressed using the state ontology Ont. Then the following 
holds: 

(1) coincide_on(γ1, γ2, Ont)  & coincide_on(γ2, γ3, Ont)  � coincide_on(γ1, γ3, Ont)   
(2) coincide_on(γ1, γ2, Ont)  �  [  ϕ(γ1, t)  ⇔ ϕ(γ2, t)  ]. 
 

Proof sketch. 
The transitivity property (1) follows directly from the definition of coinciding traces for 
coincide_on(γ1, γ2, Ont)  and coincide_on(γ2, γ3, Ont): 

∀a∈STATATOMOnt   ∀t'   [state(γ1, t') |= a  ⇔  state(γ3, t') |= a  ] � coincide_on(γ1, γ3, Ont) 

From 
∀ γ1, γ2  [ coincide_on(γ1, γ2, Ont)  �  ∀t' [ϕp(γ1, t') ⇔ ϕp(γ2, t')  &  ϕf(γ1, t') ⇔ ϕf(γ2, t') ]] 

follows that  ϕ(γ1, t)  ⇔ ϕ(γ2, t). 

 
Theorem 4.1 
If the executable specification πA(γ, t) refines the external behavioural specification ϕA(γ, t) of 
component A, and ψ(γ, t) is a dynamic interaction property of component A in its environment, 
expressed using the interaction ontology InteractionOnt(A), then 

 [∀γ  [ π A(γ, t)   �  ψ(γ, t) ]  ]  ⇔    [∀γ  [ ϕ A(γ, t)   �  ψ(γ, t) ]  ] 

Proof sketch. 
⇐  is direct:  

from  πi(γ, t) �  ϕi(γ, t)  and   ∧ϕi(γ, t)  �  ψ(γ, t)  it follows  ∧πi(γ, t)  �  ψ(γ, t). 
�  runs as follows:  

Suppose ϕi(γ, t) holds for all i, then since π1(γ) refines ϕ1(γ, t), then according to the definition 
of refinement of an externally observable property exists such a γ1 that π1(γ1) and 
coincide_on(γ, γ1, InteractionOnt (A)).  
Due to Lemma 4.1, this γ1 still satisfies all ϕi(γ1, t) (i.e., ϕi(γ1, t) holds for all i). 
Proceed with γ1 to obtain a γ2 and further for all i to reach a trace γn, for which   
πi(γn)  holds for all i,  
and  
coincide_on(γ, γn, InteractionOnt(A)), 
and 
ϕi(γn) holds for all i. 
 
From   
 ∀γ ∀i [πi (γ)  �  ϕi (γ)], 
and 
 ∀γ   [ ∧πi(γ)  �  ψ(γ, t)  ] 
it follows that ∀γ  ∧ϕi(γ)  �  ψ(γ). 
So it has been proven that  ∀γ  ∧ϕi(γ)  �  ψ(γ) . �  

 
Lemma 5.1 (Normalization lemma) 
Let t be a given time point. If a formula δ(γ, t) only contains temporal relations such as t' < t" and 
t' ≤ t", and atoms of the form state(γ, t)  |=  p for some name of a state formula p, then some state 



 

 91 

formula q(t) can be constructed such that δ(γ, t) is equivalent to the formula δ*(γ, t) of the form 
state(γ, t) |= q(t). 
 
Proof sketch for Lemma 5.1. 
First in the formula δ(γ, t) replace all temporal relations such as t' < t" and t' ≤ t" by state(γ, t) |= t' 
< t" and state(γ, t) |= t' ≤ t" respectively. Then proceed by induction on the composition of the 
formula δ(γ, t). Treat the logical connectives &, |, ¬, �, ∀s, ∃s. 
1) conjunction: δ(γ, t)  is  δ1(γ, t) &  δ2(γ, t)   
By induction hypothesis 
δ1(γ, t)  ⇔  state(γ, t) |= p1  (which is δ1*(γ, t)  ) 
δ2(γ, t)  ⇔  state(γ, t) |= p2  (which is δ2*(γ, t)  ) 
Then 
δ(γ, t)  ⇔  state(γ, t) |= p1  &  state(γ, t) |= p2  ⇔  state(γ, t) |= [ p1 ∧ p2 ]  (which becomes 
δ*(γ, t)) 

2) disjunction: δ(γ, t)  is  δ1(γ, t)  |  δ2(γ, t) 
Again by induction hypothesis 
δ1(γ, t)  ⇔  state(γ, t) |= p1  (which is δ1*(γ, t)) 
δ2(γ, t)  ⇔  state(γ, t) |= p2  (which is δ2*(γ, t)) 
Then 
δ(γ, t)  ⇔  state(γ, t) |= p1  |  state(γ, t) |= p2  ⇔  state(γ, t) |= [ p1 ∨ p2 ]   (which becomes 
δ*(γ, t)) 

3) negation: δ(γ, t)  is  ¬δ1(γ, t) 
δ1(γ, t)  ⇔  state(γ, t) |= p1 
δ(γ, t)  ⇔  ¬state(γ, t) |= p1 
δ(γ, t)  ⇔  state(γ, t) |= not(p1)   (which is δ*(γ, t)) 

4) implication: δ(γ, t)  is  δ1(γ, t)  �  δ2(γ, t) 
Again by induction hypothesis 
δ1(γ, t)  ⇔  state(γ, t) |= p1   (which is δ1*(γ, t)) 
δ2(γ, t)  ⇔  state(γ, t) |= p2   (which is δ2*(γ, t)) 
Then 
δ(γ, t)  ⇔  [state(γ, t) |= p1  �  state(γ, t) |= p2]  ⇔  state(γ, t) |= [p1 → p2]  (which becomes δ*(γ, 
t)) 

5) universal quantifier:  
δ(γ, t)  ⇔ ∀t' state(γ, t) |= p1(t') 
δ(γ, t)  ⇔ state(γ, t) |= ∀∀∀∀u' p1(u') (which is δ*(γ, t)) 

6) existential quantifier: 
δ(γ, t)  ⇔ ∃t' state(γ, t) |= p1(t') 
δ(γ, t)  ⇔ state(γ, t) |= ∃∃∃∃u' p1(u')    (which becomes δ*(γ, t)) 
 
Lemma 5.2 
If time has properties of correctness and uniqueness, then 
 ϕmem(γ, t) ⇔ state(γ, t) |= qmem(t) ⇔ state(γ, t) |= qmem  (1) 
Proof. 
The proof follows directly from Lemma 5.1, definitions of correctness and uniqueness of time 
and the definition of the formula qmem.  
 
Proposition 5.1 
Let ϕp(γ, t) be a past statement for a given t, ϕmem(γ, t) the memory formula for ϕp(γ, t), qmem(t) the 
normalized memory state formula for ϕmem(γ, t), and Tho→m the executable theory from the 
interaction states for ϕp(γ, t) to the memory states. Then,  



 

 92 

Tho→m  |=  [ϕp(γ, t)  ⇔  ϕmem(γ, t)] 
and  
Tho→m  |=  [ ϕp(γ, t)  ⇔  state(γ, t) |= qmem(t) & state(γ, t) |= qmem(t) ⇔ state(γ, t) |= qmem]. 
 
Proof. 
From the definitions of qmem(t) and of Tho→m follows 
 Tho→m  |=  [ ϕp(γ, t)  ⇔  ϕmem(γ, t)  ] 

Further by Lemma 5.2 

Tho→m  |=  [ ϕp(γ, t)  ⇔  state(γ, t) |= qmem(t)  ] �  
 
Lemma 6.1 
If time has properties of correctness and uniqueness, then 
ϕcmem(γ, t, t1) ⇔ state(γ, t1) |= qcond(t, t1) & state(γ, t1) |= qcond(t, t1) ⇔ state(γ, t1) |= qcond(t) (2) 
 
Proof. 
The lemma can be proven in the same manner as Lemma 5.2. 
 
Lemma 6.2 
If time has properties of correctness and uniqueness, then 
 ϕprep(γ, t1)  ⇔  state(γ, t1) |= qprep(t1) & state(γ, t1) |= qprep(t1) ⇔  state(γ, t1) |= qprep        (3) 
 
Proof. 
The lemma can be proven in the same manner as Lemma 5.2. 
 
Lemma 6.3 
If time has properties of correctness and uniqueness, then 
 ϕcprep(γ, t) ⇔ state(γ, t) |= qcprep(t) & state(γ, t) |= qcprep(t) ⇔ state(γ, t) |= qcprep      (4) 

 
Proof. 
The lemma can be proven in the same manner as Lemma 5.2. 
 

Proposition 6.1 
Let ϕf(γ, t) be a future statement for t of the form ∀t1>t [ϕcond(γ, t, t1) � ϕbh(γ, t1)], where ϕcond(γ, t, 
t1) is an interval statement, which describes a condition for one or more actions and/or 
communications and ϕbh(γ, t1) is a (conjunction of) future statement(s) for t1, which describes 
action(s) and/or communications that are to be performed; let ϕprep(γ, t1) be the preparation 
formula, ϕcprep(γ, t) be the conditional preparation formula for ϕf(γ, t), qcprep(t) be the normalized 
conditional preparation state formula for ϕcprep(γ, t), and Thm→p the executable theory for ϕ(γ, t) 
from memory states to preparation states. Then,  

Thm→p  |=  ∀t1>t [ϕcond(γ, t, t1) � ϕprep(γ, t1)]  ⇔  ϕcprep(γ, t)] 
and  

Thm→p  |=  [∀t1>t [ϕcond(γ, t, t1) � ϕprep(γ, t1)]  ⇔  state(γ, t) |= qcprep(t)   &    
state(γ, t) |= qcprep(t) ⇔  state(γ, t) |= qcprep ]. 

 
Proof. 
From the definition of Thm→p , Lemmas 6.1 and 6.2, Definition 6.6 it follows that  
Thm→p  |=  ∀t1>t [ϕcond(γ, t, t1) � ϕprep(γ, t1)]  ⇔  ϕcprep(γ, t)] 

Then, by Lemma 6.3  

Thm→p  |=  [∀t1>t [ϕcond(γ, t, t1) � ϕprep(γ, t1)]  ⇔  state(γ, t) |= qcprep(t) 

and 



 

 93 

state(γ, t) |= qcprep(t) ⇔  state(γ, t) |= qcprep 
�  
 
Proposition 7.1 
Let ϕbh(γ, t1) be a (conjunction of) future statement(s) for t1, which describes action(s) and/or 
communications that are to be performed, ϕprep(γ, t1) be the preparation formula and Thp→o the 
executable theory from preparation states to output states. Then,  
Thp→o  |=  [ ϕprep(γ, t1)  �  ϕbh(γ, t1) ] 
 
Proof. 
Follows directly from the definition of Thp→o 

�  
 
Theorem 8.1 
Every external behavioural specification can be refined into an executable specification. 

 

Proof. 
According to the Definition 4.4 an executable specification π(γ, t) refines an externally 
observable dynamic property  ϕ(γ, t) iff 
(1) ∀γ, t  π(γ, t)  �  ϕ(γ, t) 
(2) ∀γ1, t [ ϕ(γ1, t)  �  [ ∃γ2  coincide_on(γ1, γ2, InteractionOnt(A)) & π(γ2, t) ] ] 

The first condition can be reformulated as Tho→m ∪ Thm→p ∪ Thp→o |= ϕ(γ,t) 

Here ϕ(γ,t) is of the form [ϕp(γ, t) � ϕf(γ, t) ]  with ϕf(γ, t) future statement for t of the form ∀t1>t 
[ϕcond(γ, t, t1) � ϕbh(γ, t1)]. As a basis we use Propositions 5.1, 6.1 and 7.1. These propositions 
relate the past formula to the memory state formula, the preparation formula to the preparation 
state formula, and the preparation formula to the behaviour formula, respectively: 

(1) Tho→m  |=  [ϕp(γ, t)  ⇔  state(γ, t) |= qmem ] 
(2) Thm→p  |=  [ [∀t1>t [ϕcond(γ, t, t1) � ϕprep(γ, t1)]  ⇔  state(γ, t) |= qcprep ] 
(3) Thp→o   |=  [ ϕprep(γ, t1)  �  ϕbh(γ, t1) ] 
Moreover, as this executable rule is included in Thm→p (see Definition 6.7), it holds: 

(4) Thm→p  |=  ∀t' state(γ, t')  |= qmem �  state(γ, t')  |= qcprep 

Based on these four lines, it can be seen that π(γ,t) indeed satisfies the first criterion for 
refinement, by the following steps in the theory π(γ,t) = Tho→m ∪ Thm→p ∪ Thp→o: 

- when ϕp(γ, t) holds, also state(γ, t) |= qmem holds (1) 
- when state(γ, t) |= qmem holds, also state(γ, t)  |= qcprep holds (4) 
- when state(γ, t)  |= qcprep holds, also ∀t1>t [ϕcond(γ, t, t1) � ϕprep(γ, t1)] holds (2) 
- when ∀t1>t [ϕcond(γ, t, t1) � ϕprep(γ, t1)] holds, also ∀t1>t [ϕcond(γ, t, t1) � ϕbh(γ, t1)] 

holds (3) 
- hence ϕp(γ, t) � ∀t1>t [ϕcond(γ, t, t1) � ϕbh(γ, t1)] holds, which is ϕ(γ, t). 

 
For the second criterion of refinement, first of all notice that: 

- the consequents of the executable rules in π(γ,t) always are atoms, never negations 
- these consequent atoms are always internal atoms, except the consequent of the 

executable rule in Thp→o , which is the interaction atom state(γ, t’+c)  |= output(a). 

For any trace γ, let  

diag(γ, Ont) =  { state(γ, t1) |= a |  γ(t1) |= a  &  a literal in Ont } 

Given these observations, let any trace γ be given such that ϕ(γ, t) holds. Construct the trace γ' 
such that γ' is equal to γ for the interaction ontology, and complies to the executable rules for 
the internal atoms, as follows: 



 

 94 

γ'(t1) |= b  ⇔  γ(t1) |= b for any interaction literal b 
γ'(t1) |= a    if  a  is an internal atom and  

diag(γ, InteractionOnt) ∪ π(γ,t)  |=  [ state(γ, t1) |= a ] 
γ'(t1) |= ¬a  if  a  is an internal atom and 

not  diag(γ, InteractionOnt) ∪ π(γ,t)  |=  [ state(γ, t1) |= a ] 

By this construction all executable rules hold for γ', except possibly the rule from Thp→o. This 
last rule is the remaining issue to be addressed. Suppose this rule does not hold for γ'. Then a t1 
exists such that the antecedent holds, but not the consequent: 

state(γ', t1) |= preparation_for(output(t1+c, a))   & 
not   state(γ', t1+c)  |= output(a) 

From the construction of the trace γ' and Definition 6.3 it follows that the preparation atom 
preparation_for(output(t1+c, a)) is based on the occurrence of state(γ, t1+c) |= output(a) in ϕbh(γ, 
t1). Moreover, the preparation atom is derivable from π(γ, t) so it originates from a condition 
formula and a memory state formula that both hold for γ'. By Propositions 5.1 and 6.1 it holds 
that 

ϕp(γ', t) 

ϕcond(γ', t, t1) 
Since these are formula based on InteractionOnt, and γ and γ' coincide on InteractionOnt, by 
Lemma 4.1(2) also 

ϕp(γ, t) 

ϕcond(γ, t, t1) 
hold.  
As ϕ(γ, t) holds, this implies that ϕbh(γ, t1) holds. Moreover, it was found that state(γ, t1+c) |= 
output(a)  occurs in ϕbh(γ, t1). Therefore, state(γ, t1+c) |= output(a) holds, and again, since γ and γ' 
coincide on InteractionOnt, this implies that state(γ', t1+c)  |= output(a) holds, which is a 
contradiction. This shows that the second criterion of refinement is fulfilled, which completes 
the proof of Theorem 8.1 �  



 

 95 

 
 
 
 
 
 
 
 

Chapter 4 

 

Formal Modeling and Analysis of Cognitive Agent 
Behavior 1 

Abstract. From an external perspective, cognitive agent behavior can be 
described by specifying (temporal) correlations of a certain complexity between 
stimuli (input states) and (re)actions (output states) of the agent. From an 
internal perspective the agent's dynamics can be characterized by direct (causal) 
temporal relations between internal, mental states of the agent. The latter type 
of specifications can be represented in a relatively simple, executable format, 
which enables different types of analysis of the agent's behavior. In particular, 
simulations of the agent's behavior under different (environmental) 
circumstances can be explored. Furthermore, by applying verification 
techniques, automated analysis of the consequences of the agent's behavior can 
be carried out. To enable such types of analysis when only given an external 
behavioral specification, this has to be transformed first into some type of 
executable format. An automated procedure for such a transformation is 
proposed in this paper. The application of the transformation procedure is 
demonstrated for a number of cases, showing examples of the types of analysis 
as mentioned for different forms of behavior. 

1   Introduction 

The behavior of a cognitive agent can be considered both from an external and an 
internal perspective. From the external perspective, behavior of the agent can be 

                                                           
1 Part of this chapter appeared as Sharpanskykh, A., Treur, J.: Modeling of Agent Behavior 

Using Behavioral Specifications. In: Fum, D., Missier, F. del, Stocco, A. (eds.): Proceedings 
of the 7th International Conference on Cognitive Modelling, ICCM'06, 280-286 (2006) (the 
names of the authors are ordered alphabetically reflecting the comparable contribution of 
each author). 



 

 96 

described by temporal relationships of a certain complexity between its input (stimuli) 
and output (actions) states over time, expressed in some (temporal) language, without 
any reference to internal or mental states of the agent. Such relationships are called 
input-output correlations by Kim (1996, pp. 87-91). Within Philosophy of Mind such 
a view is considered within the perspective of behaviorism (Kim, 1996). The states of 
the agent are required to be publicly observable and the statements that describe these 
states should be intersubjectively verifiable (Heil, 2000). According to the apologists 
of behaviorism Watson (1913) and Skinner (1953), internal states of the agent (mental 
or inner states) are considered to be methodologically intractable and unnecessary, 
since they are based on a personal subjective experience and evaluations and can not 
be used for analysis and predictions of the agent behavior. Descriptions from an 
external perspective can be successfully used for modeling relatively simple types of 
behavior (e.g., stimulus-response behavior (Skinner, 1935)). For less simple types of 
behavior (e.g., adaptive behavior based on conditioning (Balkenius & Moren, 1999)) 
an external behavioral specification often consists of more complex temporal 
relations, relating behavior at a certain point in time to a possibly large number of 
inputs in the past (e.g., a training program), that can not be directly used for 
simulations or other types of analysis. 

From the internal perspective the behavior of the agent can be characterized by a 
specification of more direct (causal) temporal relations between mental states of the 
agent, based on which an externally observable behavioral pattern is generated. Such 
a perspective is taken within functionalism (Kim, 1996). From this perspective mental 
states are described by their functional or causal roles. These can be specified in 
simple, executable formats. A mental state is characterized by its direct temporal or 
causal relations with input, output and other mental states. Functionalism was 
originally formulated by Putnam in terms of a ‘Turing machine’ (Putman, 1975), an 
abstract machine to give a mathematically precise definition of an algorithm or an 
automatic procedure. However, in general other executable (temporal) languages can 
be applied to specify functional roles.  

From the viewpoint of analysis, executability is an important advantage of an 
internal specification over an external one. By means of executable specifications it is 
possible to perform automated support of the analysis of an agent’s behavior, for 
example, by simulations of different scenarios of the agent’s behavior or by verifying 
certain global properties of an agent in its environment. To enable automated analysis 
of an external behavioral specification, the possibly complex temporal relationships 
between input states and output stats over time have to be reformulated in terms of a 
simpler executable format. In practice, such a reformulation process is by no means 
trivial. For example, it may involve a certain creativity concerning additional 
intermediate states that have to be postulated and direct temporal relations between 
such states that have to be hypothesized. Moreover, to obtain certainty that the 
reformulated specification is equivalent in a certain sense to the original one (and 
does not describe just another process), is hardly possible by human activity only. To 
provide more support for this is the main problem on which this paper is focused. 

The challenge addressed is to obtain a standard method for this reformulation 
process and to provide automated support for this method, with guaranteed outcome 
equivalent to the original specification. As a solution a standard procedure for 
(automated) transformation of the external behavioral specification first into a 



 

 97 

synthetic executable specification using postulated intermediate states, and 
subsequently into a general state transition system format is proposed. The executable 
specification is based on direct executable temporal relations between certain 
(postulated) states. These states play roles comparable to sensory representation 
memory states and preparation states of an agent. The type of internal memory states 
of an agent used (and shown to suffice) are memory states based on the agent sensing 
(observations) of objects and processes in his/her environment and of his/her own 
behavior (e.g., actions). Furthermore, it is postulated that before performing an action 
an agent creates an internal preparation state. While simple types of agent behavior 
(e.g., variants of stimulus-response behavior) are based on a limited number of 
(unrelated) internal states, more complex types (e.g., motivation-based, goal-directed, 
adaptive) require more complex patterns of temporal relations between (multiple) 
internal states. In the approach presented this is addressed by allowing the memory 
states to represent complex temporal relations. So, they are used not only to represent 
world states, but also temporal patterns that occurred in the past. In this way 
reasoning of an agent about his/her previous experience enables to generate proactive, 
motivation-based or goal-directed behavior as well. 

The justification that the proposed transformation method indeed provides an 
executable specification which is equivalent to the original specification, is based on 
the theorem (see Section 4) that an external behavioral specification entails any 
dynamic property if and only if the generated executable internal specification entails 
the same property.  

Based on the generated executable specification, indeed different types of 
(automated) analysis can be performed. First, a developed simulation software tool 
applied to the generated transition system specification of the agent’s behavior can be 
used to generate traces representing changes of internal (mental) states and actions of 
the agent over time, according to different environmental scenarios. Second, the 
generated transition system specification is also useful to analyze the consequences of 
the agent’s behavior under such environmental scenarios. 

For a given specification of externally observable behavior, an interesting but not 
easily solvable problem is how to determine the (logical) consequences of this 
behavior in different environmental circumstances. For example, if an animal has a 
certain behavioral repertoire with respect to different food-related circumstances in 
the environment, in how far will this repertoire be adequate in the sense that it entails 
the animal’s well-being, i.e., in how far the animal will become satisfied and healthy 
due to this behavioral repertoire. Within Computer Science, quite useful and efficient 
model checking techniques have been developed to determine consequences of a 
given system specification; e.g., (Clarke & Grumberg & Peled, 1999). By performing 
model checking it is possible to determine automatically if a system model, usually 
specified in a transition system format, entails some dynamic property, specified by 
more complex temporal formulae. Using model checking techniques this paper 
contributes an automated approach for analyzing the consequences of a behavioral 
specification of an agent in its environment. To be able to use model checking 
techniques, a behavioral specification has to be given in a simple, executable format 
(as a transition system). To address this issue the proposed approach includes an 
automated procedure for the transformation of executable specifications of agent 



 

 98 

behavior into the input format of the SMV model checking tool (McMillan, 1993) that 
is used for the analysis of logical consequences of the agent’s behavior. 

In the next section using the language for formal modeling of agent behavior 
introduced in (Sharpanskykh & Treur 2005) the transformation procedure from an 
external into an executable internal specification and subsequently into a general 
description of a finite state transition system is described in some detail. The 
explanation of the procedure is illustrated by a running example. After that the 
proposed approach is applied for a number of cases concerning different types of 
analysis of agent behavior. More specifically, in Section 3 simulation of different 
scenarios of agent behavior is considered, and in Section 4 an automated approach for 
the analysis of the consequences of an agent’s behavior is described. The paper ends 
with a discussion. 

2   Transformation into Executable Format  

The procedure described in this section achieves the transformation of an external 
behavioral specification for an agent into executable format and subsequently into the 
representation of a finite state transition system.  

Let ϕ(γ, t) be a non-executable dynamic property from an external behavioral 
specification for agent A, expressed using ontology InteractionOnt(A), for which an 
executable representation should be found, then the transformation procedure is 
specified as follows. 

The Transformation Procedure 

(1) Identify executable temporal properties, which describe transitions from 
interaction states to memory states.  

(2) Identify executable temporal properties, which describe transitions from 
memory states to preparation states for performing an action. 

(3) Specify executable properties, which describe the transition from preparation 
states to the corresponding action performance states. 

(4) From the executable properties, identified during the steps 1-3, construct a part 
of the specification π(γ, t), which describes the internal dynamics of agent A, 
corresponding to the property ϕ(γ, t).  

(5) Apply the steps 1-4 to all properties in the external behavioral specification of 
the agent A. In the end add to the executable specification the dynamic 
properties, which were initially specified in executable form using an 
ontology, different than InteractOnt(A). 

(6) Translate the identified during the steps 1-5 executable rules into the transition 
system representation. 

The details of the described procedure are explained by means of an example, in 
which delayed-response behavior of a laboratory mouse is analyzed; e.g., Hunter 
(1912); Allen & Bekoff (1997).  

 



 

 99 

Initial situation 

The initial situation for the conducted experiment is as follows: the mouse is placed in front 
of a transparent screen that separates it from a piece of food that is put behind the screen. 
The mouse is able to observe the position of food and of the screen. At some moment after 
food has been put, a cup is placed covering the food, which makes food invisible for the 
mouse. After some time the screen is raised and the animal is free to go to any position. If 
the mouse comes to the position, where the food is hidden, then it will be capable to lift up 
the cup and get the food. 

The behavioral specification for the conducted experiment consists of 
environmental properties and externally observable behavioral properties of the 
mouse. For the purposes of illustration of the proposed transformation procedure the 
dynamic property that describes the delayed-response behavior of the mouse has been 
chosen. Informally this property expresses that the mouse goes to the position with 
food if it observes that there is no screen and at some point in the past the mouse 
observed food and since then did not observe the absence of food. According to the 
definition of an external behavioral specification the considered property can be 
represented in the form [ϕp(γ, t) � ϕf(γ, t)], where ϕp(γ, t) is a formula  

∃t2<t [state(γ, t2, input(mouse)) |= observed(food) ∧  
             ∀t3, t ≥ t3 > t2 state(γ, t3, input(mouse))|= not(observed(not(food)))] 
and ϕf(γ, t) is a formula  

∀t4 > t [state(γ, t4, input(mouse)) |= observed(not(screen)) �  
              state(γ, t4+c, output(mouse)) |= performing_action(goto_food) ] 
with ϕcond(γ, t, t4) is  

state(γ, t4, input(mouse)) |= observed(not(screen)) 
and ϕact(γ, t4) is  

state(γ, t4+c, output(mouse)) |= performing_action(goto_food) 
where t is the present time point with respect to which the formulae are evaluated. 

Step 1. From interaction states to memory states 
General idea 
The formula ϕmem(γ, t) obtained by replacing all occurrences in ϕp(γ, t) of subformulae of 
the form state(γ, t') |= p by state(γ, t) |= memory(t', p) is called the memory formula for ϕp(γ, 
t).  

Thus, a memory formula defines a sequence of past events (i.e., a history) (e.g., 
observations of an external world, actions) for the present time point t. The time 
interval for generation of an internal memory state of an agent from its observation is 
assumed to be incommensurably smaller than time intervals between external events 
(i.e., stimuli). Therefore, in the proposed model both an observation state and a 
corresponding memory state are created at the same time point. 

By a rewriting process (for the formal details for the considered procedure we refer 
to Sharpanskykh. & Treur (2005)) ϕmem(γ, t) is equivalent to some formula δ*(γ, t) of the 
form state(γ, t) |= qmem(t), where qmem(t) is called the normalized memory state formula for 
ϕmem(γ, t), which uniquely describes the present state at the time point t by a certain 
history of events. Moreover, qmem is the state formula ∀t’ [present_time(t’) � qmem(t’)].  

Example 
For the considered example qmem(t) for ϕmem(γ, t) is specified as: 

∃t2 [ memory(t2, observed(food)) ∧  
              ∀t3, t ≥ t3 > t2 memory(t3, not(observed(not(food))))] 



 

 100 

Additionally, memory state persistency properties are composed for all memory 
atoms. For example, for the atom memory(t2, observed(food)) the corresponding 
persistency property is defined as:   

∀t'' state(γ, t'', internal(mouse)) |= memory(t', observed(food))  �   
         state(γ, t"+1, internal(mouse))  |= memory(t', observed(food)) 

Rules that describe creation and persistence of memory atoms are given in the 
executable theory from observation states to memory states Tho→m. For the considered 
example: 

     ∀t'  state(γ, t', input(mouse)) |= observed(food)  �   
   state(γ, t', internal(mouse))  |= memory(t', observed(food)) 

  ∀t'  state(γ, t', input(mouse)) |= not(observed(not(food)))  �   
       state(γ, t', internal(mouse))  |= memory(t', not(observed(not(food)))) 

      ∀t'  state(γ, t', input(mouse)) |= observed(not(food))  �   
        state(γ, t', internal(mouse))  |= memory(t', observed(not(food))) 

      ∀t''  state(γ, t'', internal(mouse)) |= memory(t', observed(food)) �   
          state(γ, t"+1, internal(mouse))  |= memory(t', observed(food)) 

      ∀t''  state(γ, t'', internal(mouse)) |= memory(t', not(observed(not(food)))) �   
          state(γ, t"+1, internal(mouse)) |= memory(t', 

not(observed(not(food)))) 

      ∀t''  state(γ, t'', internal(mouse)) |= memory(t', observed(not(food))) �   
          state(γ, t"+1, internal(mouse)) |= memory(t', observed(not(food))) 

Step 2. From memory states to preparation states  
General idea 
Obtain ϕcmem(γ, t, t1) by replacing all occurrences in ϕcond(γ, t, t1) of state(γ, t') |= p by state(γ, 
t1) |= memory(t', p). The condition memory formula ϕcmem(γ, t, t1) contains a history of 
events, between the time point t, when ϕp(γ, t) is true and the time point t1, when the 
formula ϕcond(γ, t, t1) becomes true. Again by a rewriting process ϕcmem(γ, t, t1) is 
equivalent to the formula state(γ, t1) |= qcond(t, t1), where qcond(t, t1) is called the normalized 
condition state formula for ϕcmem(γ, t, t1). Moreover, qcond(t) is the state formula ∀t’ [ 
present_time(t’) � qcond(t, t’) ].  

Example 
For the considered example qcond(t, t4) for ϕcmem(γ, t) is obtained as: memory(t4, 

observed(not(screen))) and qcond(t): ∀t' [ present_time(t')  �  memory(t', observed(not(screen)))]. 
Obtain ϕprep(γ, t1) by replacing in ϕact(γ, t1) any occurrence of state(γ, t1+c) |= 

performing_action(a) by state(γ, t1) |= preparation_for(action(t1+c, a)), for some number c and 
action a. The preparation state is created at the same time point t1, when the condition 
for an action ϕcond(γ, t, t1) is true. By Lemma 1 ϕprep(γ, t1) is equivalent to the state 
formula state(γ, t1) |= qprep(t1), where qprep(t1) is called the normalized preparation state 
formula for ϕcond(γ, t1). Moreover, qprep is the state formula ∀t’ [present_time(t’)] � qprep(t’)]. 
For the considered example qprep(t4) is composed as preparation_for(action(t4+c, 
goto_food)). 

Rules, which describe generation and persistence of condition memory states, a 
transition from the condition to the preparation state, and the preparation state 
generation and persistence, are given in the executable theory from memory states to 
preparation states Thm→p. For the considered example: 

∀t'  state(γ, t', input(mouse)) |= observed(not(screen))  �   



 

 101 

 state(γ, t', internal(mouse))  |= [ memory(t', observed(not(screen))) ∧ 
stimulus_reaction(observed(not(screen))) ] 

∀t''  state(γ, t'', internal(mouse)) |= memory(t', observed(not(screen))) �   
 state(γ, t"+1, internal(mouse))  |= memory(t', observed(not(screen))) 

∀t'  state(γ, t') |= ∀t'' [present_time(t'') → ∃t2 [ memory(t2, observed(food)) ∧ ∀t3, t'' ≥ t3 > t2 
memory(t3, not(observed(not(food))))]] �   

  state(γ, t') |= ∀t''' [ present_time(t''') → [∀t4 > t''' [ memory(t4,  observed(not(screen))) → 
preparation_for(action(t4+c, goto_food))]]] 

∀t', t state(γ, t')  |= [∀t''' [ present_time(t''') → [∀t4 > t''' [ memory(t4, observed(not(screen))) → 
preparation_for(action(t4+c, goto_food)) ] ] ] ∧  

 ∀t'' [present_time(t'') → memory(t'', observed(not(screen)))] ∧ 
stimulus_reaction(observed(not(screen))) ] �  

  state(γ, t', internal(mouse))  |= ∀t4 [ present_time(t4) → preparation_for(action(t4+c, 
goto_food)) ] 

∀t'  state(γ, t') |= [ stimulus_reaction(observed(not(screen))) ∧ not(preparation_for(action(t'+c, 
goto_food))) ] � 

  state(γ, t'+1) |= stimulus_reaction(observed(not(screen))) 

∀t' state(γ, t', internal(mouse)) |= [ preparation_for(action(t'+c, goto_food)) ∧ 
not(performing_action(goto_food)) ] �   

         state(γ, t'+1, internal(mouse))  |= preparation_for(action(t'+c, goto_food)).  

The auxiliary atoms stimulus_reaction(a) are used to reactivate agent preparation 
states for generating recurring actions. 

Step 3. From preparation states to action states 
General idea 
The preparation state preparation_for(action(t1+c, a)) is followed by the action state, 
created at the time point t1+c. Rules that describe a transition from preparation to 
action states are given in the executable theory from the preparation to the action 
state(s) Thp→a.  

Example 
For the considered example the following rule holds: 

    ∀t' state(γ, t', internal(mouse)) |= preparation_for(action(t'+c, goto_food))  �   
          state(γ, t'+c, output(mouse))  |= performing_action(goto_food). 

Step 4. Constructing an executable specification 
An executable specification π(γ, t) for agent A is defined by a union of the dynamic 
properties from the executable theories Tho→m, Thm→p and Thp→a, identified during the 
steps 1-3. For the purposes of simulations of agent behavior the non-executable 
external behavioral specification is replaced by the executable behavioral 
specification.  

Step 5. Constructing an executable specification for the whole external behavioral 
specification of an agent 
Other non-executable dynamic properties from the agent behavioral specification are 
substituted by executable ones by applying the same sequence of steps 1-4. In the end 
the executable properties for generating observation states from the states of the 
external world are added: 

    ∀t'  state(γ, t', world) |= [ food ∧ not(cup) ] �  
  state(γ, t', input(mouse))  |= observed(food) 



 

 102 

    ∀t'  state(γ, t', world) |= [ not(food) ∧ not(cup) ] �  
  state(γ, t', input(mouse))  |= observed(not(food)) 

∀t'  state(γ, t', world) |= not(screen)  �   
  state(γ, t', input(mouse))  |= observed(not(screen)) 

∀t'  state(γ, t', world) |= screen  �   
  state(γ, t', input(mouse))  |= observed(screen) 

It is assumed that an observation state is generated at the same time point, when a 
corresponding state of the external world is active. 

Step 6. Translation of an executable specification into a description of a transition 
system  
General idea 
For the purposes of practical analysis (e.g., by performing simulations and 
verification) a specification based on executable temporal logical properties generated 
by the procedure described in the previous section is translated into a finite state 
transition system model. The translation is based on the fact that a computation (in 
our case the execution of temporal logical properties) is essentially an (infinite) 
sequence of states (Vardi, 1996). Therefore, similarly to Vardi (1996), given an 
executable temporal specification one can construct a finite state transition system 
that generates the set of traces (by all possible executions of transition rules) 
equivalent to the set produced by all possible execution of temporal logical properties 
from the specification. 

In computer science a finite state transition system is often described by a tuple �Q, 
Q0, Σ, →�, where  Q is a finite set of states of an agent, Q0

 ⊆ Q  is a set of initial 
states, Σ is a set of labels or events, which trigger the transition and → ⊆ Q x Σ x Q is 
a set of transitions. Such a representation often assumes an explicit denotation for 
every state in a transition system, which can be very numerous. However, a more 
compact representation, close to the production systems style, in the form of a set of 
transition rules with variables is possible (Arnold, 1994).  

Definition (General Representation of a Finite State Transition System) 
Let Ont be a state ontlogy consisting of sorts, constants, functions and predicates. Let 
At(Ont) be the set of (many-sorted predicate logic) atoms over Ont (possibly with 
variables). A general representation for a finite state transition system over Ont 
consists of transition rules of the form [ Ρ →→ Ν ], where Ρ is a proposition based on 
atoms from At(Ont), and N is a conjunction of atoms from At(Ont). The meaning is 
that when a certain instance of P by a certain variable assignment is true in a state, 
then the instance of N by the same variable assignment will be true in the next state; 
here →→ is a symbol for the transition between the two states.  

Such a general representation for a finite state transition system has as an advantage 
that it does not depend on any particular implementation (e.g., verification or 
simulation tools). However, as this generic format describes states and transitions 
between them, it can be relatively easy translated into specialized languages of 
existing tools, based on the finite state transition system representation (e.g., the input 
format of the SMV model checker).  

To translate the executable specification constructed at Step 5 from the theories 
Tho→m, Thm→p and Thp→o into the finite state transition system format, for each rule 



 

 103 

from the executable specification the corresponding transition rule should be created. 
Let us first consider the formulae from the theory Tho→m. To relate states of a transition 
system to the timeline used in these rules the unary predicate present_time is used. The 
atom present_time(t) being true in a given state indicates that t is the time in this state. 
Furthermore, the assumption from Tho→m that an observation state and a corresponding 
memory state are created at the same time point should be preserved. Thus, the time 
increment rules are defined as: 

present_time(0) ∧ ¬p →→  present_time(1) 
present_time(t) ∧ ¬qmem ∧ ¬p →→  present_time(t+1) 

Now, when a relation between states and time points is established, the rules 
defined in the Tho→m can be easily translated into the transition system format as it is 
shown in Table 1. 

Table 1. Translation of the formulae from the executable theory Tho→m into the corresponding 
finite state transition rules 

Rule from the executable theory Tho→→→→m Corresponding transition rules 
Memory state creation rule 
∀t' state(γ, t') |= p  �  state(γ, t')  |= memory(t', 
p) 

present_time(t) ∧ p →→  memory(t, p) 

Memory persistence rule 
∀t'' state(γ, t'') |= memory(t', p) �  state(γ, t"+1)  
|= memory(t', p) 

memory(t, p) →→  memory(t, p) 

Next, let us translate the properties from Thm→p. The time increment rules are 
created similarly to the Tho→m case based on the assumption from Thm→p that a 
preparation state is generated at the same time point, when the condition for an output 
is true. 

present_time(t) ∧ qcprep ∧ ¬qcond(t) ∧ ¬p →→  present_time(t+1) 
present_time(t) ∧ qprep →→  present_time(t+1) 

Then, the rules defined in the Thm→p are translated into the transition system format 
in a straightforward manner as it is shown in Table 2. 

Table 2. Translation of the rules from the executable theory Thm→p into the corresponding 
finite state transition rules 

 
Rule from the executable theory Thm→→→→p Corresponding transition rules 

Memory state creation rule 
∀t' state(γ, t') |= p  �  state(γ, t')  |= [ 
memory(t', p) ∧ stimulus_reaction(p) ] 
 

present_time(t) ∧ p →→ [memory(t, p) ∧ 
stimulus_reaction(p) ] 

Memory persistence rule 
∀t'' state(γ, t'') |= memory(t', p) �  state(γ, t"+1)  
|= memory(t', p) 

memory(t, p) →→  memory(t, p) 

Conditional preparation generation rule 
∀t' state(γ, t')  |= qmem �  state(γ, t')  |= 
qcprep  

qmem →→ qcprep 

Preparation state creation rule present_time(t’) ∧ qcprep ∧ qcond(t) ∧  



 

 104 

∀t', t state(γ, t') |= [qcprep ∧ qcond(t) ∧  

∧ stimulus_reaction(p) ]  
p 
�  state(γ, t')  |= qprep 

∧ stimulus_reaction(p) →→  qprep 

p 
 

Preparation state persistence rule  
∀t' state(γ, t') |= [preparation_for(output(t'+c, a)) 
∧ ¬ output(a)] �  state(γ, t’+1)  |= 
preparation_for(output(t'+c, a)) 

preparation_for(output(t+c, a)) ∧ ¬output(a) →→  
preparation_for(output(t+c, a)) 

Stimulus reaction state persistence rule 
∀t' state(γ, t')  |= [ stimulus_reaction(p) ∧ 

¬preparation_for(output(t'+c, a)) ] �  state(γ, 
t'+1)  |= stimulus_reaction(p) 

present_time(t’) ∧ stimulus_reaction(p) ∧ 
¬preparation_for(output(t'+c, a))  →→  
stimulus_reaction(p) 

 
The executable theory from preparation to output Thp→o contains only one formula 

that relates a preparation state at the time point t' to an output state at the time point 
t'+c; its translation is given in Table 3. 

Table 3. Translation of the rule from the executable theory Thp→o into the corresponding finite 
state transition rule 

Rule from the executable theory Thp→→→→o Corresponding transition rules 
Output generation rule 
∀t' state(γ, t') |= preparation_for(output(t'+c, a))  
�  state(γ, t’+c)  |= output(a) 

preparation_for(output(t+c, a)) ∧ 
present_time(t+c-1) →→  output(a) 

Example 
The executable properties from the executable specification, translated into the 

transition rules for the considered example are given below: 

food ∧ not(cup) →→ observed(food) 

not(food) ∧ not(cup) →→ observed(not(food)) 

screen →→ observed(screen) 

not(screen) →→ observed(not(screen)) 

present_time(t) ∧ observed(food)  →→  memory(t, observed(food)) 

present_time(t) ∧ not(observed(not(food)))  →→  memory(t, not(observed(not(food)))) 

present_time(t) ∧ observed(not(food))  →→  memory(t, observed(not(food))) 

present_time(t) ∧ observed(not(screen))  →→   
memory(t, observed(not(screen))) ∧ stimulus_reaction(observed(not(screen))) 

memory(t, observed(food))  →→  memory(t, observed(food)) 

memory(t, not(observed(not(food))))  →→  memory(t, not(observed(not(food)))) 

memory(t, observed(not(food)))  →→  memory(t, observed(not(food))) 

memory(t, observed(not(screen)))  →→  memory(t, observed(not(screen))) 

present_time(t) ∧ ∃t2 [ memory(t2, observed(food)) ∧ ∀t3, t ≥ t3 > t2 memory(t3, 
not(observed(not(food))))] →→ conditional_preparation_for(action(goto_food)) 

present_time(t) ∧ conditional_preparation_for(action(goto_food)) ∧  
memory(t, observed(not(screen))) ∧  stimulus_reaction(observed(not(screen)))  →→  
preparation_for(action(t+c, goto_food))  



 

 105 

present_time(t) ∧ stimulus_reaction(observed(not(screen))) ∧ not(preparation_for(action(t+c, 
goto_food))) →→ stimulus_reaction(observed(not(screen))) 
preparation_for(action(t+c, goto_food)) ∧ not(performing_action(goto_food)) →→  
preparation_for(action(t+c, goto_food)) 

preparation_for(action(t+c, goto_food)) ∧ present_time(t+c-1) →→  
performing_action(goto_food). 

The described transformation procedure was implemented in Java™, with an input 
(an external behavioral specification) and an output (an executable specification and 
finite transition system descriptions) files specified in textual format. 

The generated finite state transition system representation is used in this paper for 
performing two types of analysis: by running simulations of different types of agent 
behavior, and by analyzing the consequences of the agent behavior by model 
checking techniques. 

3   Analysis of Agent Behavior by Simulation 

In this Section the proposed transformation procedure is applied for simulating the 
delayed response and the adaptive behavior of an agent. For performing simulations a 
special software tool has been developed. Based on a specification of agent behavior 
in form of a transition system and using a sequence of external events (i.e., stimuli) as 
input, the program generates a trace (i.e., a sequence of agent states over time). The 
generated in such way traces can be used for analysis of external and internal 
dynamics of the agent in different experimental settings.  

3.1 Simulation of the Delayed-response Behavior of the Agent 

First, let us consider in more detail the example of the delayed-response behavior of 
the agent (a laboratory mouse), briefly introduced in Section 2. The behavioral 
specification for this case is given below; it consists of environmental properties and 
externally observable behavioral properties of the agent. 

 
Environmental properties: 

EP1: At some time point food has been put at the position p1, after some time a 
cup has been placed upon food and after that the screen is raised 

∃t1, t2, t3 t2>t1 & t2<t3 state(γ, t2) |= cup_at(p1) & state(γ, t1) |= food_at(p1) & state(γ, t3) 
|= not_screen 

EP2: Food stays at the position where it has been put until it has been taken away 
or the agent is satisfied 

∀t4 state(γ, t4) |= [ food_at(X) & not(mouse_sat) & not(food_taken_away_from(X)) ] �  
state(γ, t4+1) |= food_at(X), where X ∈ {p1, p2} 

EP3: After the screen has been raised, it will never be drawn down again 

∀t5 state(γ, t5) |= not_screen � state(γ, t5+1) |= not_screen 



 

 106 

EP4: After placing the cup it will not be removed 

∀t6 state(γ, t6) |= cup_at(X) � state(γ, t6+1) |= cup_at(X), where X ∈ {p1, p2} 

Properties that define the externally observable behavior of the mouse: 

BP1: The mouse is able to observe presence (absence) of screen. 

∀t7 state(γ, t7) |= X � ∃t8 t8>t7 state(γ, t8, input(mouse)) |= observed(X),  
where X ∈ {not_screen, screen}  

BP2: The mouse is always able to observe presence or absence of food if the cup is 
not covering it. 

∀t9 state(γ, t9) |= X & not(cup_at(Y))� ∃t10 t10>t9 state(γ, t10, input(mouse)) |= 
observed(X),  
where X∈ {food_at(Y), not(food_at(Y))} and Y ∈ {p1, p2} 

BP3: The mouse is able to observe that food is taken away if the cup is not 
covering it. 

∀t11 state(γ, t11) |= food_taken_away_from(X) & not(cup_at(X)) �  
∃t12 t12>t11 state(γ, t12, input(mouse)) |= observed(food_taken_away_from(X)),  
where X ∈ {p1, p2} 

BP4: The mouse always arrives at the position where it goes.  

∀t13 state(γ, t13, output(mouse)) |= performing_action(goto(X)) �  
∃t14 t14>t13 state(γ, t14) |= mouse_at(X),  
where X∈ {p1, p2} 

BP5: If the mouse is at the position with food, then it will be eventually satisfied 
(after consuming food).  

∀t15 state(γ, t15) |= mouse_at(X) & food_at(X) � ∃t16 t16>t15 state(γ, t16) |= mouse_sat,  
where X ∈ {p1, p2}  

BP6: The mouse consumes food completely.  

∀t17 state(γ, t17) |= mouse_sat & mouse_at(X) � state(γ, t17+1) |= not(food_at(X)) 

BP7: If mouse found the position with food, it stays there.  

∀t18 state(γ, t18) |= mouse_at(X) & food_at(X) � ∀t19 t19>t18 mouse_at(X) 

BP8: Delayed-response behavior of the mouse 

The mouse goes to the position with food if and only if it observes that there is no 
screen and at some point in the past the mouse observed food and since then did not 
observe the absence of food. 

∀t20 [ state(γ, t20, input(mouse)) |= observed(not_screen) &  
    ∃t21< t20 state(γ, t21, input(mouse)) |= observed(food_at(X)) &  
    ∀t22, t20 ≥ t22 > t21 state(γ, t22, input(mouse))|= not(observed(not(food_at(X))))] �  
∃t23, t23>t20 state(γ, t23, output(mouse)) |= performing_action(goto(X)),  
where X∈ {p1, p2} 



 

 107 

The complete specification of the finite state transition system generated for this 
specification is given in (Sharpanskykh & Treur, 2005). This transition system was 
used to simulate a scenario of the animal’s behavior with the following events in the 
environment: food is put at position p1 (time point 0), the screen separating the 
animal from food is present (time points 0-3), a cup is put at position p1, covering the 
food (time point 2), and the screen is removed (time point 4). The results of the 
simulation in the form of a trace (i.e., a sequence of states) are given in Table 4. 

Table 4. Simulation trace illustrating delayed-response of the agent 

0: present_time(0) 
    world(0,food_at(p1)) 
    world(0,screen) 

9: present_time(4) 
    world(4,not(screen)) 

1: observed(0,food_at(p1)) 
    observed(0,screen) 

10: observed(4,not(screen)) 

2: memory(observed(0,food_at(p1))) 
    memory(observed(0,screen)) 

11: memory(observed(4,not(screen))) 
      stimulus_reaction(observed(not(screen))) 

3: conditional_preparation_for(action(goto(p1))) 12: preparation_for(action(5,goto(p1))) 

4: present_time(1) 13: not(stimulus_reaction(observed(not(screen)))) 

5: present_time(2) 
    world(2,cup_at(p1)) 

14: present_time(5) 
      performing_action(goto(p1)) 

6: observed(2,cup_at(p1)) 15: not(preparation_for(action(5,goto(p1)))) 

7: memory(observed(2,cup_at(p1)) 16: present_time(6) 
      world(6,mouse_at(p1)) 

8: present_time(3) 17: present_time(7) 
      world(7,mouse_sat) 

 
Furthermore, a transition system representation can be used for construction of 

graphical models of agent dynamics. A graphical model for the considered example is 
shown in Figure 1. The state description literals with names started with a capital 
letter denote variables, which allow a concise representation of sets of states. For 
example, the label mem(T, obs(not(screen))) represents the set that includes every 
state corresponding to some time point t, in which the state property mem(t, 
obs(not(screen))) holds. An AND-relation between states requires all state properties 
of the states in the relation to be true in order to carry out the corresponding transition. 
A persistent state once activated, remains active at every time point in the future, i.e. 
the state properties of a persistent state hold for every time point in the future. The 
model in Figure 1 has been built manually. However, there exist tools, as one 
described in van Ham, van de Wetering, and van Wijk (2002), which allow for 
automatic visualization of finite state transition systems and can be used for graphical 
analysis of executable models. The graphical representation is particularly useful for 
the analysis of large transition systems. Usually such systems comprise a large 
number of transition rules specified without any particular order that do not provide a 
clear and ordered overview on the dynamics of a system. A graphical counterpart of a 
transition system makes temporal and causal relations between states of a system 
explicit and allows tracking different development paths of the system. Furthermore, 
the existing tools allow zooming into particular parts of a transition system to 
investigate relations between particular states. 



 

 108 

food
obs(food)

-

obs(not(food))
cup

-

-

screen

-

obs(screen)

obs(not(screen))

present_time(T)

mem(T, not(obs(not(food))))

mem(T, obs(not(screen)))

st_r(obs(not(screen)))

-

present_time(T2)

present_time(T3) mem(T3, obs(not(food)))

mem(T2, obs(food))

T >= T3 > T2

-
cond_prep_for(action(goto_food))

prep_for(act(T+c, goto_food))

-

present_time(T+c-1)

perf_act(goto_food)

-

a state

a persistent state

a transition AND-relation

- negation of an
antecedent state

 

Fig. 1. Graphical model, which describes delayed-response behavior in executable form 

3.2 Simulation of Adaptive Agent Behavior  

In the second simulation example the adaptive behavior of Aplysia Californica (a sea 
hare) is considered. In neurobiology Aplysia has been often used for investigating 
classical and operant conditioning (Carew & Walters & Kandel, 1981). Consider a 
slightly simplified classical conditioning experiment of the Aplysia’s defensive 
withdrawal reflex. Before a learning phase a strong noxious stimulus (an electric 
shock) on the Aplysia’s tail produces a defensive reflex (a contraction), while a light 
tactile stimulus on Aplysia’s siphon does not lead to contraction. Formally: 

∀t9 ≤ t state(γ, t9, input(aplysia)) |= observed(tail_shock)  �   
           state(γ, t9+c, output(aplysia))  |= performing_action(contraction)  

During the learning phase a light tactile stimulus on the Aplysia’s siphon is 
repeatedly paired with an electric shock on its tail. After a few trials (for this example 
three temporal pairings are assumed) the animal reacts by contraction to the light 
tactile stimulus. The property that describes the learning process of the animal from 
the external perspective can be represented in the form [ϕp(γ, t) � ϕf(γ, t)], where ϕp(γ, t) 
is the formula: 

∃t2, t3, t4, t5, t6, t7 [ t2 < t3 & t3 < t4 & t4 < t5 & t5 < t6 & t6 < t7 & t7 < t &  

state(γ, t2, input(aplysia)) |= observed(touch_siphon) &  
state(γ, t3, input(aplysia)) |= observed(tail_shock) &  
state(γ, t4, input(aplysia)) |= observed(touch_siphon) &  
state(γ, t5, input(aplysia)) |= observed(tail_shock) &  
state(γ, t6, input(aplysia)) |= observed(touch_siphon) &  
state(γ, t7, input(aplysia)) |= observed(tail_shock) ] 

and ϕf(γ, t) is the formula  

∀t8  ≥ t [ state(γ, t8, input(aplysia)) |= observed(touch_siphon) �  
state(γ, t8+c, output(aplysia)) |= performing_action(contraction) ] 



 

 109 

with ϕcond(γ, t, t8) is  
∀t8  ≥ t state(γ, t8, input(aplysia)) |= observed(touch_siphon) 

and ϕact(γ, t8) is  
state(γ, t8+c, output(aplysia)) |= performing_action(contracts). 

For this experiment c is assumed to be equal to two time units in a relative time 
scale.  

Using the automated procedure, from the external behavioral specification of 
Aplysia a transition system was generated. This transition system was used to simulate 
a scenario of the animal’s behavior with the following stimuli: touch the siphon (time 
points 0, 5, 9 and 15) and shock on the tail (time points 1, 6 and 10). The results of the 
simulation in form of a partial trace are given in Table 5. 

Table 5. Partial simulation trace illustrating adaptive behavior of Aplysia Californica 

0: present_time(0) 
    world(0,touch_siphon) 

11: not(preparation_for(action(3,contracts))) 

1: not(world(0,touch_siphon)) 
    observed(0,touch_siphon) 

……… 

2: memory(observed(0,touch_siphon)) 
    not(observed(0,touch_siphon)) 
    stimulus_reaction(observed(touch_siphon)) 

39: present_time(15) 
       world(15,touch_siphon) 

3: present_time(1) 
    world(1,tail_shock) 

40: not(world(15,touch_siphon)) 
      observed(15,touch_siphon) 

4: not(world(1,tail_shock)) 
    observed(1,tail_shock) 

41: memory(observed(15,touch_siphon)) 
       not(observed(15,touch_siphon)) 
       stimulus_reaction(observed(touch_siphon)) 

5: memory(observed(1,tail_shock)) 
    not(observed(1,tail_shock)) 
    stimulus_reaction(observed(tail_shock)) 

42: preparation_for(action(17,contracts)) 

6: conditional_preparation_for(action(contracts)) 43: not(stimulus_reaction(observed(touch_siphon))) 
      not(stimulus_reaction(observed(tail_shock))) 

7: preparation_for(action(3,contracts)) 44: present_time(16) 

8: not(stimulus_reaction(observed(touch_siphon))) 
    not(stimulus_reaction(observed(tail_shock))) 

45: present_time(17) 
      performing_action(contracts) 

9: present_time(2) 46: not(preparation_for(action(17,contracts))) 

10: present_time(3) 
      performing_action(contracts) 

47: present_time(18) 

 
In the given trace the process of conditioning starts at the state 0 (time point 0) and 
finishes at the state 36 (time point 12). After that the animal reacts to a light tactile 
stimulus (state 39) by producing a defensive reflex (states 42-45).  
A graphical model for the example of classical conditioning for Aplysia Californica’s 
defensive withdrawal reflex is shown in Figure 2. 



 

 110 

ts

present_time(T)

present_time(T2)

obs(ts)

st
obs(st)

present_time(T3)

present_time(T4)

present_time(T5)

present_time(T6)

present_time(T7)

mem(T2, obs(ts))

mem(T3, obs(st))

mem(T4, obs(ts))

mem(T6, obs(ts))

mem(T7, obs(st))

mem(T5, obs(st))

T2 < T3 T3 < T4 T4 < T5

T5 < T6 T7 < TT6 < T7

cond_prep_for(act(contracts))

present_time(T8)
mem(T8, obs(ts))

s_r(obs(ts))

prep_for(act(T+c, contracts))

present_time(T+c-1)

perf_act(contracts)

--

a state

a persistent state

a transition AND-relation

- negation of an
antecedent state

s_r(obs(st))

present_time(T9)
mem(T9, obs(st))

T9 <= T

-

 

Fig. 2. A graphical model for the example of classical conditioning for Aplysia Californica’s 
defensive withdrawal reflex 

4. Analysis of the Consequences of Agent Behavior by Model 
Checking 

The proposed approach for analysis of the consequences of the agent behavior is 
based on the statement that the logical consequences of a certain external behavior 
specification are the logical consequences of the corresponding internal executable 
specification. This statement is supported by the following theorem.  

 
Theorem1 
If the internal dynamics specification π(γ, t) corresponds (by the transformation 
above) to the external behavioral specification ϕ(γ, t), and ψ(γ, t) is a dynamic 
property of the agent in its environment, then ψ(γ, t) is entailed by ϕ(γ, t) if and only 
if ψ(γ, t) is entailed by π(γ, t): 

   ∀γ  [π(γ, t)  �  ψ(γ, t) ]    ⇔    ∀γ  [ϕ(γ, t)  �  ψ(γ, t) ]   
 
The consequences of the generated executable specification are easier to determine 

because of the simpler format of the internal dynamics specification. Furthermore, the 
process of analysis of such consequences can be automated by model checking 
techniques. For this purpose the SMV model checking tool is used in this paper. The 
SMV uses efficient algorithms to analyze a model of an agent system and the 
Computational Tree Logic (CTL) (McMillan, 1993) is used for properties (e.g., 

                                                           
1 The proof for this theorem is given in Sharpanskykh & Treur (2005) 



 

 111 

properties concerning well-being) to check. CTL is branching-time logic, meaning 
that its model of time is a tree-like structure in which different paths in the future are 
possible, any one of which might be actually realized. A particular use of CTL will be 
demonstrated by an example in this Section. 

Moreover, the language for model specification in the SMV is similar to the 
executable format of agent behavioral specifications, which facilitates the automatic 
translation of the description of a finite state transition system, generated by the 
procedure introduced in Section 2, into the SMV input format. A specification in 
SMV is a plain text file that consists of two main parts: (1) a specification of a 
transition system and (2) a set of properties to be checked on the transition system 
specification expressed in CTL. 

A transition system (or model) specification in SMV consists of a number of 
sections. In the section labeled VAR the names and types of the variables used in the 
model are defined. The type associated with a variable is either Boolean, scalar, or an 
array. In the second section labeled ASSIGN the initial values of variables are defined 
(i.e., the values that the variables have in the initial state) and the transition rules 
between states are specified. The transition rules are specified by case-expressions 
that define the change of values of the variables of the transition system as follows: 

next (var) := case  
boolean_expression: val; 

esac 

All case-expressions are evaluated in every state. When boolean_expression on the 
left-hand side of “:” of some transition rule is evaluated to true in some state, then the 
corresponding variable var will receive the value val in the next state. 

For the translation of an executable specification of agent behavior into a SMV 
specification a dedicated procedure has been developed and implemented. This 
procedure is applied for every dynamic property in an executable behavioral 
specification as follows: First, the normalized memory state formula qmem(t) and the 
normalized condition state formula qcond(t, t1) are processed by applying the steps 1-3 
described below. After that conditional preparation generation rules are added by 
performing the step 4. Finally, the preparation and output state creation rules are 
generated by performing the step 5. 

Step 1. For each occurrence of an existential quantifier of the form ∃t1 P(t1), where 
t1 is a time variable name and P(t1) is some function of the form memory(observed(t1, 

obs_event)), ¬memory(observed(t1, obs_event)), memory(output(t1, act_event)), or 
¬memory(output(t1, act_event)), where obs_event and act_event are some atoms and for 
each occurrence of a universal quantifier of the form ∀t1 P(t1), create an atom (a label) 
t1 and add to the SMV specification the corresponding initialization rules.  

Step 2. For each occurrence of the expression Q t1, t2 R t1 memory(observed(t1, 
obs_event)), where Q is either an existential or a universal quantifier, R is the 
comparison relation for the linear ordered time line: R∈{<, ≤}; t1 and t2 are time 
variables, add to the specification the following rule: 

next(t1):= case 
             t2 & obs_event: 1; //memory state creation 
             !t2: 0; 
             1: t1;  //persistence of memory 



 

 112 

esac; 

 
Similar rules should be added for the expressions Q t1, t2 R t1 memory(output(t1, 

act_event), Q t1, t2 R t1 ¬memory(observed(t1, obs_event)) and Q t1, t2 R t1 
¬memory(output(t1, act_event)). 

Step 3. For each expression of the form ∃t1, t2 ∀t3 [ t3 R t2 AND t1 R t3 AND 
memory(observed(t1, obs_event1)) AND memory(observed(t2, obs_event2)) & P3(t3) ]  if P3(t) 
is of the form memory(observed(t3, obs_event))  

    i. For t3 < t2 and t1< t3 add to the specification the following rules: 

t3t1_eq: boolean ; 
init(t3t1_eq):=0; 
next(t3t1_eq):= case 
            t1: 1; 
             1: 0; 
esac; 
next(t1):= case  
          !obs_event2 & !t2 & 
t3t1_eq & !obs_event3: 0; 
            1: t1; 
esac; 

next(t3):= case 
           !t1: 0; 
           !obs_event2 & !t2 & 
!obs_event3: 0; 
           !obs_event2 & !t2 & 
obs_event3: 1; 
           1: t3;  
esac; 

 
The cases (ii) t3 < t2 and t1≤ t3; (iii) t3 ≤ t2 and t1< t3 and (iiii) t3 ≤ t2 and t1≤ t3  

are dealt similarly. 

Step 4. Add conditional preparation generation rules to the specification: 

next(fmemN):= case //N is a number of a dynamic property in the input specification  
            ∧ti: 1; // conjunction of all labels, created based on ϕp(γ, t) 
            i 
            1: 0; 
esac; 

 
Step 5. For each action and communication a function output(act_event) in a 

formula qbt(t) add to the specification the following rules: 

next(fprep_act):= case  
            fmemN & ∧tj: 1; 
                     j 
                      1: 0; 
esac; 

next(act_event):= case  
                fprep_act: 1; 
                        1: 0; 
esac; 

 
When an executable specification is translated into the SMV input format, the 

checking of a CTL property(ies) on this specification can be automatically performed 
using the SMV. As a result the tool generates an answer, if the specified property(ies) 
are satisfied by the model. If the property is not satisfied, a counterexample is 
provided. A counter-example shows a sequence of states that resulted in a state, in 
which the checked property is not satisfied. In such a way, the reason for the checking 
failure can be determined. 



 

 113 

In this section the proposed analysis method is described and illustrated by an 
example, in which next to the delayed-response behavior (considered in Section 3.1) 
also the motivation-based behavior of the agent is analyzed. The specification for the 
delayed-response behavior (denoted here by ϕ1) is given in Section 3.1. The 
specification for the motivation-based behavior (denoted here by ϕ2) is constructed 
from the properties BP1-BP7, which are defined in Section 3.1, and additional 
properties BP9-BP12 given below. 

BP9: Motivation-based behavior of the mouse (start at position p1) 
If the mouse observes no screen and it is not satisfied, and at some time point in the past it 
observed food at position p1 and since then did not observe food at position p2, then the mouse 
will go to position p1. 

 ∀t24 [ state(γ, t24, input(mouse)) |= observed(not_screen) & state(γ, t24) |= 
not(mouse_sat) &  

∃t25, t25<t24 state(γ, t25, input(mouse)) |= observed(food_at(p1)) &  

∀t26, t26 ≤ t24 & t26 > t25 state(γ, t26, input(mouse)) |= not(observed(food_at(p2)))] �  

  ∃t27, t27>t24 state(γ, t27, output(mouse)) |= performing_action(goto(p1)) 

BP10: Motivation-based behavior of the mouse (start at position p2) 
If the mouse observes no screen and it is not satisfied, and at some time point in the past it 
observed food at position p2 and since then did not observe food at position p1, then the mouse 
will go to position p2. 

 ∀t24 [ state(γ, t24, input(mouse)) |= observed(not_screen) &  

state(γ, t24) |= not(mouse_sat) & ∃t25, t25<t24 state(γ, t25, input(mouse)) |= 
observed(food_at(p2)) &  

∀t26, t26 ≤ t24 & t26 > t25 state(γ, t26, input(mouse)) |= not(observed(food_at(p1)))] 
�  

  ∃t27, t27>t24 state(γ, t27, output(mouse)) |= performing_action(goto(p2)) 

BP11: Motivation-based behavior of the mouse (continue at position p2) 
If the mouse is at position p1 and there is no food at p1 and the mouse is still not satisfied, then 
it will go to position p2 to continue its search for food 

 ∀t28 state(γ, t28) |= mouse_at(p1) & not(food_at(p1)) & not(mouse_sat) �  

  ∃t29, t29>t28 state(γ, t29, output(mouse)) |= performing_action(goto(p2)) 

BP12: Motivation-based behavior of the mouse (continue at position p1) 
If the mouse is at position p2 and there is no food at p2 and the mouse is still not satisfied, then 
it will go to position p1 to continue its search for food 

 ∀t30 state(γ, t30) |= mouse_at(p2) & not(food_at(p2)) & not(mouse_sat) �  

  ∃t31, t31>t30 state(γ, t31, output(mouse)) |= performing_action(goto(p1)) 

Such a specification of behavior can be attributed, for example, to an animal that 
feels hunger. 

Both types of behavior of the agent are analyzed in two different environmental 
experimental settings (E, resp. E') with an identical initial situation, described as 
follows:  



 

 114 

The mouse is placed in front of a transparent screen that separates it from a piece of food 
that is put behind the screen. The mouse is able to observe the position of food and of the 
screen. At some moment after food has been put, a cup is placed covering the food, which 
makes food invisible for the mouse. After some time the screen is raised and the animal is free 
to go to any position. If the mouse comes to the position, where the food is hidden, then it will 
be capable to lift up the cup and get the food. 

By means of the analysis method described below it is determined for each of the 
environmental settings and each type of behavior whether the combination will bring 
the agent well-being.  

The Analysis Method 

(a) By means of the translation procedure described in Section 2, each external 
behavioral specification ϕi is automatically translated into its corresponding 
executable internal dynamics specification πi and its related state transition system 
representation τi.  

(b) The well-being properties ψ and ψ' to be checked are specified in CTL 
(c) Using the state transition system representations τi, verification of each of the 

agent models with respect to properties ψ and ψ' is performed in the SMV model 
checker, resulting in confirmed or rejected entailment relations between the πi and 
ψ and ψ'.  

(d) Based on the theorem introduced at the beginning of this section the confirmed or 
rejected entailment relations between the πi and ψ and ψ' imply corresponding 
confirmed or rejected entailment relations between the ϕi and ψ and ψ'. 

 

The environmental conditions E are defined by dynamic properties EP1-EP4 listed 
in Section 3.1. For this example, ψ is the following conditional well-being property 
(which is expressed conditionally for environmental conditions E):  

for all traces, if the screen is removed and food is hidden under the cup, then the mouse will 
eventually be satisfied.  

This property ψ can be expressed in Computation Tree Logic (CTL) (Clarke & 
Grumberg & Peled, 1999) required for verification in the SMV model checking tool 
as follows: 

         AG (not_screen & food & cup → AF mouse_sat)                  

where A is a path quantifier defined in CTL, meaning “for all computational 
paths”, G and F are temporal quantifiers that correspond to “globally” and 
“eventually” respectively. 

The automatic verification in the SMV model checking tool showed that the 
property ψ expressing well-being under environmental conditions E is entailed by the 
model of the agent delayed-response behavior expressed by ϕ1. The model of agent 
motivation-based behavior ϕ2 also turns out to entail the general property ψ. 

In the second experimental setting, described by environmental conditions E', the 
mouse observed food for some time at the position p1, after that one cup is put 
covering the food and another cup is put at the position p2, which is also behind the 
transparent screen. Thereafter, invisibly for the mouse, food is removed from position 
p1 and put under the cup at position p2. Later the screen is raised and the animal is 



 

 115 

free to go to any position. The environmental conditions E' are formalized by dynamic 
properties BP2-BP4, and by the property BP5: 

EP5: At some time point food had been put at the position p1, after some time one 
cup had been placed upon food and another cup had been placed at the position p2; 
thereafter food has been taken away from p1 and has been put at p2 behind the cup, 
after that the screen is raised 

∃t32, t33, t34, t35, t33>t32 & t33<t34 & t35>t34 state(γ, t33) |= [cup_at(p1) & 
cup_at(p2)] &  
state(γ, t32) |= food_at(p1) & state(γ, t34) |= [food_taken_away_from(p1) & food_at(p2)] &  
state(γ, t35) |= not_screen 

The global property ψ' to be verified in this case expresses well-being under these 
environmental conditions E':  

for all traces if the screen is removed and food is hidden behind the cup at position p2, then 
the mouse will eventually be satisfied,  

or, in CTL:  

       AG (not_screen & food_at(p2) & cup_at(p2) → AF mouse_sat) 

The automated verification in SMV showed that the model of the agent behavior 
ϕ1 for the delayed-response case does not entail property ψ' expressing well-being 
under environmental conditions E'. From the counter-example generated by the model 
checker it is visible that the animal went to the position p1, and did not find food 
there, and after that did not go anywhere else, which caused the failure of the 
property.  

Unlike the external behavior specification ϕ1 that describes the delayed-response 
behavior of the agent, the specification ϕ2 for the motivation-based behavior includes 
behavioral repertoire to deal with invisible food, expressed in the form of properties 
that turn out to ensure the entailment of global property ψ'. More specifically, ϕ2 

expresses the behavior that if the agent could not find food at the position where it has 
seen it before, and the agent is still not satisfied, then the agent will search for food at 
another position p2. Formally this is expressed by: 

∀t5 state(γ, t5) |= mouse_at(p1) & not(food_at(p1)) & not(mouse_sat) �  
 ∃t6, t6>t5 state(γ, t6, output(mouse)) |= performing_action(goto(p2)) 

∀t7 state(γ, t7) |= mouse_at(p2) & not(food_at(p2)) & not(mouse_sat) �  
 ∃t8, t8>t7 state(γ, t8, output(mouse)) |= performing_action(goto(p1)) 

The automated verification in SMV confirmed that the external behavioral 
specification ϕ2 for the case of motivation-based behavior entails property ψ'.  

Table 6. Outcomes of the Example Analysis 

  well-being under different environmental conditions 

  ψ ψ' 
behavior delayed response  ϕ1 + - 

type motivation-based  ϕ2  + + 

 
From the results of verification of the external behavioral specifications ϕ1 and ϕ2 

for both types of behavior in both experimental settings with respect to the entailment 



 

 116 

of properties ψ and ψ' (see Table 6) we draw the conclusion that the agent that 
manifests motivation-based behavior ϕ2 fits more for surviving in the world, described 
by the two types of experimental conditions than the agent that has the delayed-
response behavior ϕ1. 

5   Discussion 

Behavior of organisms comes in a variety of forms and complexities. Simple forms of 
behavior such as stimulus-response patterns can be formalized in relatively simple 
terms, based on direct stimulus-action associations that can be considered as 
associations between an input state and a subsequent output state of the organism. A 
description of an organism’s behavior in terms of such stimulus-action associations 
can directly be used as a basis to model and analyze this behavior. For more complex 
behavior, however, the picture is not so simple. To describe behavior from the 
external perspective, in general, an input-output correlation (cf. Kim, 1996) has to be 
specified which indicates how a pattern of input states over time relates to a pattern of 
output states over time. With increasing complexity of the behavior considered, 
specification of such an input-output correlation will become more complex, and not 
take the form of direct stimulus-action associations anymore. The question arises how 
such more complex descriptions of behavior can be expressed and handled, and, in 
particular, how such behavior can be analyzed, for example, by simulation and 
verification. The answer on this question developed in this paper is twofold. First, a 
formal language is put forward that allows specifying behavior from an external 
perspective in terms of dynamic properties involving input states and output states 
over time. Secondly, it is shown how an external behavior specification expressed in 
such a language can be automatically transformed into an equivalent executable 
specification that easily can be used to perform different types of analysis of agent 
behavior. This transformation creates a specification based on postulated internal 
states (in particular memory states and preparation states), and their direct temporal 
relationships.  

Such a transformation in principle can be done in different manners, making use of 
different types of internal states. For the approach chosen here a main role is played 
by internal memory states of an agent that are based on the agent sensing (i.e., 
observations) of not only his/her environment, but also of his/her own behavior (e.g., 
actions). This relates to a thesis currently recognized in neurobiological research (Di 
Ferdinando & Parisi, 2004) that internal representations of an agent are based not only 
on the properties of the sensory input, but also on the properties of the actions with 
which the agent responds to this sensory input. The internal states can represent world 
states, but may also refer to more complex temporal patterns occurring in the past.  

Sometimes, when a structure of a neurological circuit of an organism is known, it 
is possible to relate postulated internal states to certain real neurological states of an 
organism. The neurological model of Aplysia Californica, suggested by Roberts and 
Glanzman (2003) allows finding some correspondences between the postulated 
internal states described in the example of this paper and the real physical states of the 
organism. The observation states from our model can be related to activation states of 



 

 117 

sensory neurons, whereas the memory states (to some extent) can be put into 
correspondence with an enhancement of the strength of the synaptic connection 
between the sensory and motor neurons and with an associative increase in the 
excitability of the siphon sensory neurons of Aplysia (as followed from a 
correspondence with professor Glanzman). 

However, the rules for the creation of internal states of an agent proposed in this 
approach are based on the idealized assumptions describes above, which may lead to 
internal states that do not correspond in a direct manner to internal states actually 
occurring in certain biological organisms. if such a direct correspondence is aimed 
for, to ensure the biological plausibility of the models constructed using the proposed 
approach for specific forms of organisms (types of agents) the rules for creation of 
intrinsic states may be adjusted correspondingly. 

Also other existing frameworks and approaches that include different types of 
mental states of an agent (e.g., BDI (Rao & Georgeff, 1991), KARO (van Linder & 
van der Hoek & Meyer, 1998), Schweiger Gallo & Gollwitzer (2007)) can be 
considered for internal representation. In particular, these frameworks recognize 
attitudes of agents such as desires, intentions, and goals. More specifically, in 
(Gollwitzer, 1999) it is shown that intentions can be implemented by if-then plans that 
describe when, where and how a set goal of an agent has to be put into action: “if 
situation x is encountered, then the agent will perform behavior y”. However, such if-
then plans can be specified using the approach proposed in this paper by temporal 
relations between externally observable and internal states of an agent. In this case no 
introduction of supplementary internal concepts is required, and the intentional 
aspects of the agent behavior are implicitly realized through the temporal rules in the 
behavioral specification of the agent. However, goal and intention concepts could also 
be considered explicitly by adding them to our ontology in order to get more 
transparency. However, this will add no essential expressivity, as they would be a 
renaming of already available complex expressions over our memory states; see also 
(Jonker, Treur, and Vries, 2002). In future work it will be investigated, which 
alternative or additional attitudes of agents could be included into the internal 
framework in order to more transparently represent complex behavior of an agent. 

In general, the transformation into executable format can be achieved in different 
ways, depending on the format of an external behavioral specification of an agent 
system. For example, for translating agent behavioral specifications expressed in 
modal temporal logics into executable format, procedures described in (Fisher, 1996) 
can be used. This paper exploits a procedure to generate an executable internal 
behavioral specification from a more expressive external specification than is possible 
in modal temporal logics. The executable format introduced in this paper has 
similarities with the production rule representation formats used in existing cognitive 
architectures. For example, in the ACT-R architecture (Anderson, 1996) rules are 
stored in the procedural memory, which is essentially specified by a production 
system and can be easily expressed by formulae from the executable specification 
introduced in this paper. 

The generated executable specification can be used to perform different types of 
analysis, in particular, simulations and the analysis of consequences of agent 
behavior. Several examples to illustrate both these types of analysis are demonstrated 
in this paper. Alternative methods for temporal analysis of reactive systems are 



 

 118 

discussed in (Manna & Pnueli, 1995); also these methods can be applied, once an 
executable behavioral specification has been generated.  

The analysis of consequences of agent behavior is performed by means of model 
checking techniques using the SMV model checker. Notice that an SMV-specification 
comprises constants, variables and state transition rules with limited expressiveness 
(e.g., no quantifiers). Furthermore, for expressing one complex temporal relation a 
large quantity (including auxiliary) of transition rules is needed. Specification of 
agent system behavior in the more expressive predicate-logic-based language TTL is 
much easier. TTL proposes an intuitive way of creating a specification of system 
dynamics, which still can be automatically translated into a state transition system 
description, as shown in this paper. 

References 

Allen, C., and Bekoff, M., (1997). Species of Mind: the philosophy and biology of cognitive 
ethology. MIT Press. 

Anderson, J. R. (1996). ACT: A simple theory of complex cognition. American Psychologist, 
51, 355-365. 

Arnold, A. (1994). Finite transition systems. Semantics of communicating systems. Prentice-
Hall. 

Balkenius, C., & Moren, J. (1999). Dynamics of a classical conditioning model. Autonomous 
Robots, 7, 41-56. 

Carew, T.J. & Walters, E.T., & Kandel, E.R. (1981). Classical conditioning in a simple 
withdrawal reflex in Aplysia Californica. The Journal of Neuroscience, 1(12), 1426-1437. 

Clarke, E.M., & Grumberg, E.M., & Peled, D.A. (1999). Model Checking, MIT Press, 
Cambridge Massachusetts, London England. 

Di Ferdinando, A. & Parisi, D. (2004) Internal representations of sensory input reflect the 
motor output with which organisms respond to the input. In Carsetti A. (ed.): Seeing, 
Thinking and Knowing. Kluwer, Dordrecht, 115-141 

Dudai Y. (1990). The Neurobiology of Memory. Concepts, Findings, Trends. Oxford: Oxford 
University Press. 

Fisher, M. (1996). An Introduction to Executable Temporal Logics, Knowledge Engineering 
Review 11(1), 3-36. 

Fitting, M. (1996). First-order Logic and Automated Theorem Proving, 2nd edition, Springer-
Verlag. 

Hawkins, J. (2004). On Intelligence, Henry Gholt and Co Ltd. 
Heil, J. (2000). Philosophy of Mind. Routledge. 
Hunter, W.S. (1912). The delayed reaction in animals. Behavioral Monographs, 2, 1-85. 
Jonker, C.M., & Treur J., & Wijngaards W.C.A. (2003). A temporal-modelling environment for 

internally grounded beliefs, desires, and intentions. Cognitive Systems Research Journal, 
4(3), 191-210. 

Jonker, C.M., & Treur, J. (2002) Compositional Verification of Multi-Agent Systems: a Formal 
Analysis of Pro-activeness and Reactiveness. International Journal of Cooperative 
Information Systems, 11, 51-92. 

Jonker, C.M., Treur, J., and Vries, W. de, (2002). Temporal Analysis of the Dynamics of 
Beliefs, Desires, and Intentions. Cognitive Science Quarterly (Special Issue on Desires, 
Goals, Intentions, and Values: Computational Architectures), vol. 2, 2002, pp.471-494. 

Kim, J. (1996). Philosophy of Mind. Westview Press 



 

 119 

Kowalski, R., & Sergot, M. (1986). A logic-based calculus of events. New Generation 
Computing, 4, 67-95. 

Manna, Z., & Pnueli A. (1995) Temporal verification of reactive systems, Springer-Verlag, 
Berlin Heidelberg New York. 

Manzano, M. (1996). Extensions of First Order Logic, Cambridge University Press. 
McMillan, K. (1993). Symbolic Model Checking, Kluwer Academic Publishers. 
Priest, S. (1991). Theories of the Mind. Penguin. 
Putman, H. (1975). Mind, Language, and Reality: Philosophical papers, vol.2. Cambridge: 

Cambridge University Press. 
Rao, A. S. & Georgeff, M. P. (1991). Modeling agents within a BDI architecture. In 

Proceedings of the 2nd International Conference on Principles of Knowledge Representation 
and Reasoning (KR ’91). Morgan Kaufmann, Cambridge, MA, 473-484. 

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Implementing 
Dynamical Systems. Cambridge MA: MIT Press. 

Roberts, A.C., & Glanzman, D.L. (2003). Learning in Aplysia: looking at synaptic plasticity 
from both sides. Trends in Neurosciences, 26, 662-670. 

Schweiger Gallo, I., & Gollwitzer, P. M. (2007). Implementation intentions: A look back at 
fifteen years of progress. Psicothema, 19, 37-42. 

Skinner, B.F. (1935). The generic nature of the concepts of stimulus and response. Journal of 
General Psychology, 12, 40-65. 

Skinner, B.F. (1953). Science and human behavior. New York: Macmillan. 
Sharpanskykh, A. & Treur, J. (2005).  Modeling of Agent Behavior Using Behavioral 

Specifications (Tech. Rep. 06-02ASRAI; http://hdl.handle.net/1871/9123). Vrije 
Universiteit, Amsterdam. 

van Ham, F., & van de Wetering, H., & van Wijk, J.J. (2002). Interactive Visualization of State 
Transition Systems. IEEE Transactions on Visualization and Computer Graphics, 8(4), 
IEEE CS Press, 319-329. 

van Linder, B.W., & van der Hoek, & Meyer, J.-J. Ch. (1998). Formalising Abilities and 
Opportunities of Agents, Fundamenta Informaticae, 34(1-2), 53-101. 

Vardi, M.Y. (1996). An automata-theoretic approach to linear temporal logic. In: Proceedings 
of the VIII Banff Higher Order Workshop, in: Lecture Notes in Computer Science, vol. 
1043, Springer-Verlag, 238–266. 

Watson, J. B. (1913). Psychology as the Behaviorist Views It. Psychological review, 20, 158-
177. 

 



 

 120 



 

 121 

 
 
 
 
 
 
 
 

Chapter 5 

 

Specification and Verification of Dynamics in Cognitive 
Agent Models 1 

Abstract. Within many domains, among which biological and cognitive areas, 
multiple interacting processes occur among agents with dynamics that are hard 
to handle. Current approaches to analyse the dynamics of such processes, often 
based on differential equations, are not always successful. As an alternative to 
differential equations, this paper presents the predicate logical Temporal Trace 
Language (TTL) for the formal specification and analysis of dynamic 
properties. This language supports the specification of both qualitative and 
quantitative aspects, and therefore subsumes specification languages based on 
differential equations. A software environment has been developed for TTL, 
that supports editing TTL properties and enables the formal verification of 
properties against a set of traces. The TTL environment proved its value in a 
number of projects within different domains. 

1   Introduction 

In domains such as Biology and Cognitive Science, the dynamics of the multiple 
interacting processes among different agents involved poses modelling challenges. 
Currently, differential equations are among the techniques most often used to address 
this challenge, with partial success. For example, in the area of intracellular processes, 
hundreds or more reaction parameters (for which reliable values are rarely available) 
are needed to model the processes in question. Thus, describing these processes in 

                                                           
1 This chapter appeared as Bosse, T., Jonker, C.M., van der Meij, L., Sharpanskykh, A., Treur, 

J.: Specification and Verification of Dynamics in Cognitive Agent Models. In: C. Butz, N.T. 
Nguyen, Y. Takama (eds), Proceedings of the 6th International Conference on Intelligent 
Agent Technology, IAT'06. IEEE Computer Society Press, 247-255 (2006) (the names of the 
authors are ordered alphabetically reflecting the comparable contribution of each author). 



 

 122 

terms of differential equations can seriously compromise the feasibility of the model. 
Likewise, in the area of Cognitive Science, the Dynamical Systems Theory that is also 
based on differential equations (DST, see e.g., [21]), is well practiced and successful. 
However, the models typically only address lower-level agent cognitive processes 
such as sensory or motor processing. DST has less to offer for modelling the 
dynamics of higher-level processes with a mainly qualitative character, such as agent 
reasoning, complex task performance, and certain capabilities of language processing. 

For formal qualitative modelling of processes at a high level of abstraction, logic-
based methods have proved useful. For example, variants of modal temporal logic [2, 
12, 14, 19, 24] gained popularity in agent technology. However, many of the logic-
based methods lack the quantitative expressivity, needed, e.g., for modelling 
processes for which precise timing relations play an essential role (e.g., biological and 
chemical processes). 

Thus, within several disciplines the need exists for general modelling and analysis 
techniques capable to deal with complex agent systems that comprise both 
quantitative and qualitative aspects. This paper introduces the Temporal Trace 
Language (TTL) as such a technique for the analysis of dynamic properties within 
complex domains, and especially, for the cognitive domain. In Section 2, a novel 
perspective is put forward for the development of such a technique, based on the idea 
of checking dynamic properties on given sets of traces. Section 3 shows how 
dynamics of an agent system can be modelled using the TTL language. Examples of 
the application of TTL are presented in Section 4. Section 5 describes the tools that 
support the TTL modelling environment in detail. In particular, the TTL Property 
Editor and the TTL Checker Tool are discussed. Section 6 is a conclusion. 

2   Perspective of this Paper 

As follows from the discussion above, the demands for dynamic modelling and 
analysis approaches suitable for specifying agent systems in natural domains are 
nontrivial. In particular, the possibility of both discrete and continuous modelling of a 
system at different aggregation levels is demanded. Furthermore, numerical 
expressivity is required for modelling systems with explicitly defined quantitative 
relations best presented by difference or differential equations. Moreover, for 
specifying qualitative aspects of a system, modelling languages should be able to 
express logical relationships between parts of a system.  

Desiderata for analysis techniques include both the generation and formalisation of 
simulated and empirical trajectories or traces, as well as analysis of complex dynamic 
properties of such traces and relationships between such properties. A trace as used 
here represents a temporally ordered sequence of states of an agent system. Each state 
is characterised by a number of state properties that hold. Simulated traces may be 
obtained by performing simulations based on both quantitative (or continuous) and 
qualitative (or discrete) variables. 

Taken together, the desiderata for modelling languages and analysis techniques 
described above are not easy to fulfil. On the one hand, high expressivity is desired, 
on the other hand feasible analysis techniques are demanded. To provide automated 



 

 123 

support for these analyses the expressivity of the modelling language can be limited, 
thereby compromising the desiderata for modelling languages. For example, the 
expressivity may be limited to difference and differential equations as in DST 
(excluding logical relationships), or to propositional modal temporal logics (excluding 
numerical relationships). In the former case, calculus can be exploited to do 
simulation and analysis based on continuous variables only [21]. In the latter case, 
simulation is based on a specific logical executable format, which does not allow 
expressions involving continuous variables (e.g., executable temporal logic [2]). 
Another possibility is to use a number of dedicated formal languages with limited 
expressiveness and related to them analysis techniques for checking different 
particular static and dynamic aspects of a system (e.g., structural consistency of a 
model, dynamic aspects of execution), as proposed in the methodology for the 
development of correct software KORSO [11]. The languages used in this project 
describe different formats of system specifications, relations between them (e.g., by 
refinement based on proof obligations) and the temporal development of these 
specifications for all phases of the software life cycle. However, in order to guarantee 
the overall correctness of a system some properties are required to be expressed using 
more than one language with different types of semantics. Thus, the problem of 
verification across different not related proof systems arises that is not addressed in 
this project. 

The problem of checking relationships between dynamic properties of a system, 
identified above as one of the desiderata for analysis techniques, is essentially the 
problem of justifying entailment relations between sets of properties defined at 
different aggregation levels of a system’s representation. In general, entailment 
relations can be established either by logical proof procedures or by checking 
properties of a higher aggregation level on the set of all theoretically possible traces 
generated by executing a system specification that consists of properties of a lower 
aggregation level (i.e., by performing model checking [12, 19, 24]). To make it 
feasible to check relationships between dynamic properties, expressivity of the 
language for these properties has to be sacrificed to a large extent. However, checking 
properties on a given set of traces of practical size (instead of all theoretically possible 
ones), obtained empirically or by simulation, is computationally much cheaper. 
Therefore, in that case the language for these properties can be more expressive, such 
as the sorted predicate logic temporal trace language TTL described in this paper. 
TTL fulfils all of the identified above desiderata for modelling languages and can be 
used both for formalisation of empirical and simulated traces and for analysis of 
properties on traces. Although TTL cannot be used to generate traces by simulation, 
an executable sublanguage of TTL, such as LEADSTO, cf. [6], may be defined for 
this purpose. Moreover, decidable fragments of TTL may be defined for the analysis 
of relationships between dynamic properties of a system.  

Finally, having a language for simulation and languages for analysis within one 
subsuming language also opens the possibility of having a declarative specification of 
a simulation model, and thus to involve simulation models in logical analyses. 



 

 124 

3   A Language to Model Agent Behaviour 

The Temporal Trace Language (TTL) presented here is developed from the 
assumption that the dynamics of an agent system can be described as evolution of 
states of agents and an environment over time, as for modal temporal logics, see e.g., 
[2, 12, 14, 19, 24]. TTL has some similarities with situation calculus, see [22] and 
event calculus, see [16]. Time in TTL is assumed to be linearly ordered and 
depending on the application, it may be dense (e.g., the real numbers), or discrete 
(e.g., the set of integers or natural numbers or a finite initial segment of the natural 
numbers), or any other form with a linear ordering. An agent interacts with a dynamic 
environment via its input and output (interface) states. At its input the agent receives 
observations from the environment whereas at its output it generates actions that can 
change a state of the environment. 

An agent state at a certain point in time as used here is an indication of which of 
the state properties of the agent and its environment (e.g., observations and actions) 
are true (hold) at that time point. For specifying state properties for the input, output, 
internal, and external states of an agent A, ontologies, named IntOnt(A), InOnt(A),  
OutOnt(A), and ExtOnt(A) respectively, are used which are specified by a number of 
sorts, sorted constants, variables, functions and predicates (i.e., a signature). State 
properties are specified using a standard multi-sorted first-order predicate language 
based on such ontologies. For example, a state property expressed as a predicate pain 
may belong to IntOnt(A), whereas the atom has_temperature(environment, 7) may belong 
to ExtOnt(A). 

To characterize the dynamics of the agent and the environment, dynamic 
properties relate properties of states at certain points in time.  

To enable reasoning about the dynamic properties of arbitrary systems the 
language TTL includes special sorts, such as: TIME (a set of linearly ordered time 
points), STATE (a set of all state names of an agent system), TRACE (a set of all trace 
names; a trace or a trajectory can be thought of as a timeline with for each time point 
a state), and STATPROP (a set of all state property names). Throughout the paper, 
variables such as t, t1, t2, t’, t” stand for variables of the sort TIME; and variables such as 
γ, γ1, γ2 stand for variables of the sort TRACE. 

A state of an agent is related to a state property via the satisfaction relation |== 
formally defined as a binary infix predicate (or by holds as a binary prefix predicate in 
the software environment). For example, “in the output state of agent A in trace γ ��� at time t 
property p holds” is formalized by state(γ , t, output(A)) |== p. If the indication of an agent 
aspect is not essential, the third argument is left out: state(γ, t) |== p.  

Both state(γ , t, output(A)) and p are terms of the TTL language. TTL terms are 
constructed by induction in a standard way for sorted predicate logic from variables, 
constants and functional symbols typed with TTL sorts. Dynamic properties are 
expressed by TTL-formulae inductively defined by: 
(1) If v1 is a term of sort STATE, and u1 is a term of the sort STATPROP, then holds(v1, u1) is an 

atomic TTL formula. 
(2) If τ1, τ2 are terms of any TTL sort, then τ1 = τ2 is an atomic TTL formula.  
(3) If t1, t2 are terms of sort TIME, then t1 < t2 is an atomic TTL formula.  
(4) The set of well-formed TTL-formulae is defined inductively in a standard way based on 

atomic TTL-formulae using boolean propositional connectives and quantifiers.  



 

 125 

For example, the dynamic property 

‘in any trace γ, if at any point in time t1 agent A observes that it is dark in the room, 
whereas earlier a light was on in this room, then there exists a point in time t2 after t1 such 
that at t2 in the trace γ agent A switches on a lamp’ 

is expressed in formalized form as: 

    ∀t1 [ [ state(γ, t1, input(A))  |== observed(dark_in_room) & 
    ∃t0<t1 [ state(γ, t0, input(A))  |== observed(light_on)] 
     �   ∃t2 ≥ t1 state(γ, t2, output(A)) |== performing_action(switch_on_light) ]  

 

As TTL uses order-sorted predicate logic as a point of departure, it inherits the 
standard semantics of this variant of predicate logic. That is, the semantics of TTL is 
defined in a standard way, by interpretation of sorts, constants, functions and 
predicates, and a variable assignment. However, in addition the semantics involves 
some specialised aspects. As a number of standard sorts are present, the elements of 
these sorts are limited to instances of specified terms in these sorts, as is usual, for 
example, in logic programming semantics. For example, for the sort TIME it is 
assumed that in its semantics its elements consist of the time points of the fixed time 
frame chosen. Moreover, for the sort TRACE, it is assumed that in its semantics its 
elements consist of a (limited) number of elements named by constants. Furthermore, 
for the sort STATPROP for state properties it is assumed that in its semantics its 
elements consist of the set of terms denoting the propositions built in a chosen state 
language (this is called reification). A full description of the technical details of TTL's 
semantics is beyond the scope of the current paper. For this purpose, see [23]. 

By executing dynamic properties traces can be generated and visualised, for 
example as in Figure 1. Here, the time frame is depicted on the horizontal axis. The 
names of predicates are shown on the vertical axis. A dark box on top of the line 
indicates that the predicate is true during that time period.  

 
input(A)|observed(light_on)

input(A)|observed(dark_in_room)
output(A)|performing_action(switch_on_lamp)

time 0 0.5 1 1.5 2 2.5 3 3.5  

Fig. 1. Example visualisation of a trace 

4   Application Areas 

The TTL language and its supporting software environment have been applied in 
research projects addressing different topics in cognitive domains, such as human 
reasoning, conditioning, consciousness, psychotherapy, and philosophy of mind. The 
main research goal in these projects was to analyse the behavioural dynamics of the 
agents involved (e.g., [5, 7, 8, 9, 10]). TTL was used to formalise dynamic properties 
of these processes at a high level of abstraction. Next, such properties were 
automatically checked against simulated or empirical traces. Examples of the 
application of TTL in different areas are presented in this section.  



 

 126 

4.1 Modelling and Analysis of Hybrid Systems  

Hybrid systems incorporate both continuous and discrete components. The dynamics 
of the former can be described by differential equations, those of the latter can be 
represented by finite-state automata. Both continuous and discrete dynamics of 
components influence each other. In particular, the input to the continuous dynamics 
is the result of some function of the discrete state of a system; whereas the input of the 
discrete dynamics is determined by the value of the continuous state.  

A modelling method for hybrid systems should be capable of expressing both 
quantitative and qualitative properties of the system and integrating them into one 
model. TTL satisfies this requirement. Systems of differential equations can be 
expressed in TTL using discrete or dense time frames. As an example, Euler’s 
method, see [20], for solving differential equations is modelled in TTL. Euler’s 
method approximates a differential equation dy/dt = f(y) with the initial condition 
y(t0)=y0  by a difference equation yi+1=yi+h*f(yi) (i≥0 is the step number and h>0 is the 
integration step size). This equation can be modelled in TTL in the following way: 

∀γ ∀t ∀v: LVALUEGTERMS state(γ , t) |== has_value(y, v)     �  

state(γ , t+1) |== has_value(y, v + h • f(v)) 

States specify the respective values of y at different time points and the difference 
equation is modelled by a transition rule from the current to the successive state. The 
traces γ satisfying the above dynamic property are the solutions of the difference 
equation. More precise and stable numerical approximation methods (e.g., Runge-
Kutta, dynamic step size, see [20]) can be expressed in TTL in a similar manner.  

4.2 Analysis of Trace Conditioning in TTL 

The example given in this section is taken from [5]. In that paper, TTL is used to 
analyse the temporal dynamics of trace conditioning. In general, research into 
conditioning is aimed at revealing the principles that govern associative learning. An 
important issue in conditioning processes is the adaptive timing of the conditioned 
response to the appearance of the unconditioned stimulus. This feature is most 
apparent in an experimental procedure called trace conditioning. In this procedure, a 
trial starts with the presentation of a warning stimulus (S1, comparable to a 
conditioned stimulus). After a blank interval, called the foreperiod, an imperative 
stimulus (S2, comparable to an unconditioned stimulus) is presented to which the 
participant responds as fast as possible. The reaction time to S2 is used as an estimate 
of the conditioned state of preparation at the moment S2 is presented. In this case, the 
conditioned response obtains its maximal strength, here called peak level, at a 
moment in time, called peak time, that closely corresponds to the moment the 
unconditioned stimulus occurs.  

Machado [18] developed a basic model that describes the dynamics of these 
conditioning processes in terms of differential equations. The structure of this model 
is shown in Figure 2. The model posits a layer of timing nodes and a single 
preparation node. Each timing node is connected both to the next (and previous) 
timing node and to the preparation node. The connection between each timing node 
and the preparation node (called associative link) has an adjustable weight associated 



 

 127 

to it. Upon the presentation of a warning stimulus, a cascade of activation propagates 
through the timing nodes according to a regular pattern. Owing to this regularity, the 
timing nodes can be likened to an internal clock or pacemaker. At any moment, each 
timing node contributes to the activation of the preparation node in accordance with 
its activation and its corresponding weight. The activation of the preparation node 
reflects the participant's preparatory state, and is as such related to reaction time. The 
weights reflect the state of conditioning, and are adjusted by learning rules, of which 
the main principles are as follows. First, during the foreperiod extinction takes place, 
which involves the decrease of weights in real time in proportion to the activation of 
their corresponding timing nodes. Second, after the presentation of the imperative 
stimulus a process of reinforcement takes over, which involves an increase of the 
weights in accordance with the current activation of their timing nodes, to preserve 
the importance of the imperative moment. Machado describes the more detailed 
dynamics of the process by a mathematical model (based on linear differential 
equations), representing the (local) temporal relationships between the variables 
involved. For example, 

dX(t,n)/dt = λX(t,n-1) - λX(t,n) 

expresses how the activation level of the n-th timing node X(t+dt,n) at time point t+dt 
relates to this level X(t,n) at time point t and the activation level X(t,n-1) of the (n-1)-th 
timing node at time point t. Similarly, as another example, 

dW(t,n)/dt = -αX(t,n)W(t,n) 

relates the n-th weight W(t+dt,n) at time point t+dt to this weight W(t,n) at time point t 
and the activation level X(t,n) of the n-th timing node at time point t. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Structure of Machado’s conditioning model 

In [5], a number of dynamic properties relevant for trace conditioning have been 
formalised in TTL. These properties were taken from the existing literature on 
conditioning, such as [17], in which they were mainly expressed informally. TTL 
turned out useful to express these properties in a formal manner. An example of such 
a property (taken from [17], p.372) is given below, both in informal, semi-formal and 
in formal notation: 

 
 

S1 

Timing nodes with 

activation level X 

 
 
Associative links of 
variable weight W 
 
 
Preparation node 
 
 
Response strength R 



 

 128 

Global Hill Preparation 
Informal: ‘The state of conditioning implicates an increase and decay of response-related 
activation as a critical moment is bypassed in time’. 

Semi-formal: ‘In trace γ, if at t1 a stimulus s1 starts, then the preparation level will increase 

from t1 until t2 and decrease from t2 until t1 + u, under the assumption that no stimulus occurs 

too soon (within u time) after t1.’ Formally: 

 
has_global_hill_prep(γ:TRACE, t1,t2:TIME, u:INTEGER) 

�
 

∀t’,t”:TIME ∀p’,p”:REAL  
[ state(γ, t1) |== stimulus_occurs  & ¬ stimulus_starts_within(γ, t1, t1+u)  & 
state(γ, t’) |== preparation_level(p’)  & state(γ, t”) |== preparation_level(p”)  
�  [t1 ≤ t’ < t” ≤ t2  &  t” ≤ t1 + u  �   p’ < p” ]  & 

      [t2 ≤ t’ < t” ≤ t1 + u                 �   p’ > p” ] ] 
 

stimulus_starts_within(γ:TRACE, t1,t2:TIME) 
�
 

∃t:TIME [ state(γ, t) |== stimulus_occurs  & t1 < t < t2 ] 
 

These (and various similar) properties were automatically verified using the TTL 
checker tool against a number of (empirical and simulation) traces. Among these 
properties were also properties that compare different traces, such as: ‘the conditioned 
response takes more time to build up and decay and its corresponding asymptotic value is lower 
when its corresponding critical moment is more remote from the warning signal.’ (cf. [17]) 
Such properties cannot be expressed, for example, in modal temporal logics, just like 
familiar properties such as ‘exercise improves skill’, expressing that the more 
intensive a training history, e.g., of an athlete, the better the skill will be. 

4.3   Application of TTL in Other Areas 

Besides the conditioning area, TTL has been applied in many other domains as well. 
In order to give a representative overview in limited space, below a number of TTL 
formulae used in other domains are presented (both in informal and formal notation): 

 
Proper Rejection Grounding 
From the domain of human reasoning [10]: 
‘In any trace γ, if an assumption is rejected, then earlier on there was a prediction for it that did 
not match the corresponding observation result’.  
 

∀t ∀A:INFO_EL ∀S1:SIGN 
     state(γ, t) |== rejected(A,S1) �  
          [ ∃t’:TIME ∃B:INFO_EL ∃S2,S3:SIGN 
state(γ, t’) |== prediction_for(B, S2, A, S1) & state(γ, t’) |== observation_result(B, S3) & S2 

�
 S3 

& t’ ≤ t1 ] 
 

Representational Content of c 
From a paper about representational content (cf. [15]) for the mental state of an agent that 
intensively interacts with the environment [9]: 
‘In any trace γ, internal state c occurs iff in the past once observation o1 occurred, then action 
a1(1), then o2(1), then a1(2), then o2(2), then a1(3), and finally o2(3)’. 
 



 

 129 

∀t1,t2,t3,t4,t5,t6,t7 [ t1≤t2≤t3≤t4≤t5≤t6≤t7 
 & state(γ, t1, input) |== o1 
 & state(γ, t2, output) |== a1(1) & state(γ, t3, input) |== o2(1) 
 & state(γ, t4, output) |== a1(2) & state(γ, t5, input) |== o2(2) 
 & state(γ, t6, output) |== a1(3) & state(γ, t7, input) |== o2(3) 
� ∃t8 ≥ t7 state(γ, t8, internal) |== c ] 
& ∀t8 [ state(γ, t8, internal) |== c � 
 ∃t1,t2,t3,t4,t5,t6,t7  t1≤t2≤t3≤t4≤t5≤t6≤t7≤t8 
 & state(γ, t1, input) |== o1 
 & state(γ, t2, output) |== a1(1) & state(γ, t3, input) |== o2(1) 
 & state(γ, t4, output) |== a1(2) & state(γ, t5, input) |== o2(2) 
 & state(γ, t6, output) |== a1(3) & state(γ, t7, input) |== o2(3) ] 
 

Learning Behaviour of Aplysia 
From a study [8] of adaptive processes of the sea hare Aplysia Californica [13]: 
‘In any trace γ, if a siphon touch occurs, and at three different earlier time points t1, t2, t3, a 
siphon touch occurred, directly followed by a tail shock, then the animal will contract’. 
 

∀t  [ state(γ, t) |== siphon_touch  & 
∃t1, t2, t3, t4, t5, t6 
t1<t2 & t2<t3 & t3<t4 & t4<t5 & t5<t6 & t6<t & 
state(γ, t1) |== siphon_touch  & state(γ, t2) |== tail_shock  & state(γ, t3) |== siphon_touch  & 
state(γ, t4) |== tail_shock  & state(γ, t5) |== siphon_touch  & state(γ, t6) |== tail_shock  ] 
�  ∃t7   t7≥t & state(γ, t7) |== contraction   

 
Food Delivery Succesfulness 
From an analysis [7] of the domain of ant colony behaviour [4]: 
‘In any trace γ, there is at least one ant that brings food back to the nest’.  
 

∃t ∃a:ANT ∃l:LOCATION ∃e:edge 
state(γ, t) |== is_at_location_from(a, l, e) & state(γ, t) |== nest_location (l) & state(γ, t) |== 
to_be_performed(a, drop_food) 

5   Tools 

This section presents the software environment1 that was built in SWI-Prolog to 
support the process of specification and automated verification of dynamic properties 
on a limited set of traces. Basically, this software environment consists of two closely 
integrated tools: the Property Editor and the Checker Tool.  

The Property Editor provides a user-friendly way of building and editing properties 
in TTL. By means of graphical manipulation and filling in forms a TTL specification 
can be constructed. TTL specifications may also be provided as plain text. When a 
TTL specification is created, the Checker Tool can be used to verify automatically 
whether a TTL property from the specification holds for a given set of traces. User 
interaction with the tools involves three separate actions: 
1. Loading, editing, and saving a TTL specification in the Property Editor (see 

Figure 3). 

                                                           
1 The software can be downloaded from the following URL: http://www.cs.vu.nl/~wai/TTL. 



 

 130 

2. Loading and inspecting traces to be checked by activating the Trace Manager. 
Both, traces produced by simulations (see [6]) and empirical traces can be used 
for verification. Empirical traces provided to the TTL Checker may be obtained 
by formalizing empirical data from log-files produced by information systems or 
from results of experiments. 

3. Checking a property against a set of loaded traces by the Checker Tool. The 
property is compiled and checked, and the result is presented to the user.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The TTL Checking Environment 

The following sections provide more details on implementation of these tools. In 
particular, Section 5.1 describes the implementation of the TTL Editor and Section 
5.2 discusses the verification procedure underlying the TTL checker. 

5.1 Implementation of the TTL Editor 

A TTL specification constructed in the TTL Property Editor consists of a number of 
user-defined property definitions and sort definitions. A property definition consists 
of a header (property name and arguments, i.e., prop_name(v1:s1, v2:s2)) and a body (a 
TTL formula). Arbitrary sorts may be defined by enumerating their elements. 

A TTL formula is constructed from atomic TTL formulae by conjunction, 
(Formula1 and Formula2), disjunction (Formula1 or Formula2), negation (not Formula), 
implication and quantification (forall ([v1:s1, v2:s2], Formula), exists ([v1:s1, v2:s2 < term2], 
Formula)). 

Atomic TTL formulae correspond to user-defined properties, holds atoms (e.g., 
holds(state(trace1, t, output(ew)), a1 ∧ a2) or state(trace1, t, output(ew)) |== a1 ∧ a2), 
mathematical expressions (e.g. term1 = term2, term1 > term2) and built-in properties (i.e., 
complex properties encoded into the implementation language). 

All TTL formulae are constructed from terms that are implemented as Prolog 
terms (e.g., fn(t1,t2) , n1, t1 + t3, 1.3). Constants, variables and functions from which 
terms are constructed should be typed with appropriate sorts. For example, each 
variable should be declared as variable_name: sort. The software supports a number of 
built-in sorts, among which sorts for integer, real and range of integers (i.e., sorts 



 

 131 

integer, real, between(i1:integer,i2:integer)), the sort for the set of all states (STATE) and 
the sort for the set of all traces (TRACE). Furthermore, libraries with predefined 
general purpose and domain-specific sorts and functions are available for creating 
terms. 

5.2 Verification by the TTL Checker 

After a TTL property is specified in the Editor and traces being loaded by the Trace 
Manager, the Checker Tool may be used to determine if the considered property holds 
on the loaded traces. To perform such verification an algorithm has been developed. 

The verification algorithm is a backtracking algorithm that systematically 
considers all possible instantiations of variables in the TTL formula under 
verification. However, not for all quantified variables in the formula the same 
backtracking procedure is used. Backtracking over variables occurring in holds atoms 
is replaced by backtracking over values occurring in the corresponding holds atoms in 
traces under consideration. Since there are a finite number of such state atoms in the 
traces, iterating over them often will be more efficient than iterating over the whole 
range of the variables occurring in the holds atoms. Formulae that contain variables 
quantified over infinite sorts not occurring in a holds atom cannot be checked by the 
TTL Checker. 

As time plays an important role in TTL-formulae, special attention is given to 
continuous and discrete time range variables. Because of the finite variability property 
of TTL traces (i.e., only a finite number of state changes occur between any two time 
points), it is possible to partition the time range into a minimum set of intervals within 
which all atoms occurring in the property are constant in all traces. Quantification 
over continuous or discrete time variables is replaced by quantification over this finite 
set of time intervals. 

In order to increase the efficiency of verification, the TTL formula that needs to be 
checked is compiled into a Prolog clause. Compilation is obtained by mapping 
conjunctions, disjunctions and negations of TTL formulae to their Prolog equivalents, 
and by transforming universal quantification into existential quantification. 
Thereafter, if this Prolog clause succeeds, the corresponding TTL formula holds with 
respect to all traces under consideration. 

The complexity of the algorithm has an upper bound in the order of the product of 
the sizes of the ranges of all quantified variables. However, if a variable occurs in a 
holds atom, the contribution of that variable is no longer its range size, but the number 
of times that the holds atom pattern occurs (with different instantiations) in trace(s) 
under consideration. The contribution of an isolated time variable is the number of 
time intervals into which the traces under consideration are divided. 

The specific optimizations discussed above make it possible to check realistic 
dynamic properties with reasonable performance. In particular, checking the property 
‘Learning Behaviour of Aplysia’ given in Section 4.3 (involving eight different time 
points) against a single trace with three state atoms occurring in the verified formula 
and 28 changes of atom values over time takes 0.76 sec. on a regular PC. With the 
increase of the number of traces with similar complexity as the first one, the 
verification time grows linearly: for 3 traces - 3.9 sec., for 5 traces - 6.59 sec. 



 

 132 

However, the verification time is polynomial in the number of isolated time range 
variables occurring in the formula under verification.  

6   Conclusion 

This paper presents the predicate logical Temporal Trace Language (TTL) for the 
formal specification and analysis of dynamic properties of cognitive agent models. 
Although the language has a logical foundation, it supports the specification of both 
qualitative and quantitative aspects, and subsumes specification languages based on 
differential equations. TTL allows for explicit reference to time points and time 
durations, which enables modelling of the dynamics of continuous real-time 
phenomena. Furthermore, more specialised languages can be defined as a 
sublanguage of TTL. For the purpose of simulation, the executable language 
LEADSTO has been developed [6]. For verification of properties, different decidable 
fragments of predicate logic (e.g., [1]) can be defined as sublanguages of TTL. 

TTL has some similarities with the situation calculus [22] and the event calculus 
[16], which are two well-known formalisms for representing and reasoning about 
temporal domains. However, a number of important syntactic and semantic 
distinctions exist between TTL and both calculi. In particular, the central notion of the 
situation calculus - a situation - has different semantics than the notion of a state in 
TTL. That is, by a situation is understood a history or a finite sequence of actions, 
whereas a state in TTL is associated with the assignment of truth values to all state 
properties (a “snapshot” of the world). Moreover, in contrast to the situation calculus, 
where transitions between situations are described by actions, in TTL actions are in 
fact properties of states. 

Moreover, although a time line has been recently introduced to the situation 
calculus [22], still only a single path (a temporal line) in the tree of situations can be 
explicitly encoded in the formulae. In contrast, TTL provides more expressivity by 
allowing explicit references to different temporally ordered sequences of states 
(traces) in dynamic properties. For example, this can be useful for expressing the 
property of trust monotonicity: 
 ‘For any two traces γ1 and γ2, if at each time point t agent A’s experience with public 
transportation in γ2 at t is at least as good as A’s experience with public transportation in γ1 at t, 
then in trace γ2 at each point in time t, A’s trust is at least as high as A’s trust at t in trace γ1’.  
 

∀γ1, γ2 
[∀t, ∀v1:VALUE  [ state(γ1, t) |== has_value(experience, v1) &  
[∀v2:VALUE state(γ2, t) |== [ has_value(experience, v2) → v1≤ v2 ]]] � 
[∀t, ∀w1:VALUE  [ state(γ1, t) |== has_value(trust, w1) &  
[∀w2:VALUE  state(γ2, t) |== [ has_value(trust, w2)  →  w1≤ w2 ]]]]] 
 

Other examples of such properties, where different histories are compared are 
given in Section 4.2 above on trace conditioning. 

In contrast to the event calculus, TTL does not employ the mechanism of events 
that initiate and terminate fluents. Events in TTL are considered to be functions of the 
external world that can change states of components, according to specified properties 



 

 133 

of a system. Furthermore, similarly to the situation calculus, also in the event calculus 
only one time line is considered. 

TTL can also be related to temporal languages that are often used for verification 
(e.g., propositional temporal logic (PTL) and linear-time logic (LTL) [3, 12, 14]). The 
general idea of translation of a LTL formula into a TTL expression is rather 
straightforward: by replacing the temporal operators of LTL by quantifiers over time. 
E.g., the following LTL formula 

 

G(observation_result(itsraining) → F(belief(itsraining))) 
 

where the temporal operator G means ‘for all later time points’, and F ‘for some 
later time point’ is translated into the following TTL expression:  

 

 ∀t1 [ state(γ, t1) |== observation_result(itsraining) �  
 ∃t2 > t1 state(γ, t2) |== belief(itsraining) ] 

 

Note that the translation is not bi-directional, i.e., it is not always possible to 
translate TTL expressions into LTL expressions. An example of a TTL expression 
that cannot be translated into LTL is again the property of trust monotonicity.  

Furthermore, TTL also allows expressivity provided by different extensions of 
PTL. In particular, the extended temporal logic (ETL) [25] provides a possibility to 
express any property definable by a regular expression on sequences of states, which 
cannot be expressed in PTL. Due to the fact that the syntax of TTL provides 
quantifiers, predicates, and arithmetic functions, such properties can be also expressed 
in TTL. For example, the property “a given proposition p has to be true in every even 
state of a sequence” can be expressed in TTL as follows: ∀t  state(γ, 2•t) |== p. 

To support the formal specification and analysis of dynamic properties in TTL, 
special software tools (the Property Editor and the Checker Tool) have been 
developed. The Property Editor has an intuitive graphical interface for building and 
editing TTL properties, and the Checker Tool employs an efficient algorithm for the 
formal verification of properties against a limited set of traces. Although this form of 
checking is not as exhaustive as model checking (which essentially means checking 
properties on the set of all traces generated by model execution), in return, it allows 
more expressivity in specifying properties.  

The TTL environment has been tested and proved its value in a number of projects 
within different domains; e.g., [5, 7, 8, 9, 10]). During this work, the TTL 
environment has been further developed to provide automated support. 

References 

1. Andreka, H., Nemeti, I., and van Benthem, J. (1998). Modal Languages and Bounded 
Fragments of Predicate Logic. Journal of Philosophical Logic, 27(3): 217-274, 1998. 

2. Barringer, H., M. Fisher, D. Gabbay, R. Owens, & M. Reynolds (1996). The Imperative 
Future: Principles of Executable Temporal Logic, Research Studies Press Ltd. and John 
Wiley & Sons. 

3. Benthem, J.F.A.K., van (1983). The Logic of Time: A Model-theoretic Investigation into the 
Varieties of Temporal Ontology and Temporal Discourse, Reidel, Dordrecht. 

4. Bonabeau, J. Dorigo, M. and Theraulaz, G. (1999). Swarm Intelligence: From Natural to 
Artificial Systems. Oxford University Press, New York. 



 

 134 

5. Bosse, T., Jonker, C.M., Los, S.A., Torre, L. van der, and Treur, J. (2005). Formalisation and 
Analysis of the Temporal Dynamics of Conditioning. In: Mueller, J.P. and Zambonelli, F. 
(eds.), Proceedings of the Sixth International Workshop on Agent-Oriented Software 
Engineering, AOSE'05, pp. 157-168.  

6. Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J. (2005). LEADSTO: a Language and 
Environment for Analysis of Dynamics by SimulaTiOn. In: Eymann, T., et al. (eds.), Proc. 
of the Third German Conference on Multi-Agent System Technologies, MATES'05. LNAI, 
vol. 3550. Springer Verlag, pp. 165-178 

7. Bosse, T., Jonker, C.M., Schut, M.C., and Treur, J. (2004). Simulation and Analysis of 
Shared Extended Mind. Simulation Journal (Transactions of the Society for Modelling and 
Simulation), vol. 81, 2005, pp. 719 - 732.  

8. Bosse, T., Jonker, C.M., and Treur, J. (2006). An Integrative Modelling Approach for 
Simulation and Analysis of Adaptive Agents. In: Proc. of the 39th Annual Simulation 
Symposium. IEEE Computer Society Press, pp. 312-319. 

9. Bosse, T., Jonker, C.M., and Treur, J. (2005). Representational Content and the Reciprocal 
Interplay of Agent and Environment. In: Leite, J., Omincini, A., Torroni, P., and Yolum, P. 
(eds.), Proc. of the Second Int. Workshop on Declarative Agent Languages and 
Technologies, DALT'04. LNAI, vol. 3476. Springer Verlag, pp. 270-288. 

10. Bosse, T., Jonker, C.M., and Treur, J. (2006). Formalization and Analyisis of Reasoning by 
Assumption. Cognitive Science Journal, vol. 30, issue 1, pp. 147-180.  

11. Broy, M., and Jahnichen, S. (1995). KORSO: Methods, Languages, and Tools for the 
Construction of Correct Software - Final Report. LNCS, vol. 1009. Springer Verlag. 

12. Clarke, E.M., Grumberg, O., and Peled, D.A. (2000). Model Checking. MIT Press. 
13. Gleitman, H. (1999). Psychology. W.W. Norton & Company, New York. 
14. Goldblatt, R. (1992). Logics of Time and Computation, 2nd edition, CSLI Lecture Notes 7. 
15. Kim, J. (1996). Philosophy of Mind. Westview Press. 
16. Kowalski, R., and Sergot, M. (1986). A logic-based calculus of events, New Generation 

Computing, 4: 67-95. 
17. Los, S.A. and Heuvel, C.E, van den. (2001). Intentional and Unintentional Contributions to 

Nonspecific Preparation During Reaction Time Foreperiods. Journal of Experimental 
Psychology: Human Perception and Performance, vol. 27, pp. 370-386. 

18. Machado, A. (1997). Learning the Temporal Dynamics of Behaviour. Psychological 
Review, vol. 104, pp. 241-265.  

19. Manna, Z., and Pnueli, A. (1995). Temporal Verification of Reactive Systems: Safety. 
Springer Verlag.  

20. Pearson, C.E. (1986). Numerical Methods in Engineering and Science. CRC Press. 
21. Port, R.F., Gelder, T. van (eds.) (1995). Mind as Motion: Explorations in the Dynamics of 

Cognition. MIT Press, Cambridge, Mass. 
22. Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and 

Implementing Dynamical Systems, Cambridge MA: MIT Press. 
23. Sharpanskykh, A. and Treur, J. (2005). Verifying Interlevel Relations within Multi-Agent 
Systems: Formal Theoretical Basis, Technical Report TR-1701AI. VU Amsterdam, 2005. 
http://hdl.handle.net/1871/9777 
24. Stirling, C. (2001).  Modal and Temporal Properties of Processes. Springer Verlag. 
25. Wolper, P. (1983). Temporal logic can be more expressive. Information and Control, vol. 

56(1-2), pp. 72-99 
 



 

 135 

 

 
 
 

Part III 

Methods for Modeling and 
Analysis of Organizations 



 

 136 

This part presents a detailed description of the proposed organization modeling and 
analysis methods. The methods are described along the modeling views identified in 
the introduction. 

The performance-oriented view is presented in Chapters 1 and 2. Chapter 1 
describes a formal language for modeling organizational performance indicators, 
some related verification techniques and methodological issues of creating and 
revising performance-oriented specifications. In Chapter 2 a formal framework for 
modeling goals based on performance indicators is described. Further, this chapter 
considers methodological and analysis issues related to goals. Both chapters contain 
formal definitions of the concepts and the relations of the performance-oriented view, 
a well as a set of axioms that represent special types of generic constraints and 
describe the rules of the correct use of the identified concepts and relations. 

The process-oriented view described in Chapters 3 and 4 contains information 
about the organizational functions, how they are related, ordered and synchronized 
and the resources they use and produce. Furthermore, it addresses the actual execution 
of processes in organizational scenarios. In Chapter 3 the formal process-oriented 
modeling language LPR is introduced. Furthermore, this Chapter identifies a set of 
generic and domain-specific constraints for the process-oriented view and introduces 
the automated verification techniques for establishing correctness of organizational 
specifications with respect to these constraints. Chapter 4 presents formal techniques 
for analysis of executions of organizational scenarios based on process-oriented 
models of organizations specified using the language LPR. For the formalization of 
executions, a dedicated sorted predicate language LEX is used, which is based on LPR. 
A part of the introduced analysis techniques is dedicated to establishing the 
correspondence between formalized executions (i.e., traces) and process-oriented 
specifications. Other techniques provide the analyst with wide possibilities to analyze 
organizational dynamics and to evaluate organizational performance. The type of 
analysis used in this Chapter is based on the general method of checking dynamic 
properties on a set of traces introduced in Chapter 5 of Part II. 

Note that both constraints defined in the process-oriented view and properties 
checked on executions of organizational scenarios may be specified using concepts 
and relations of other views. For this a number of predicates that relate different views 
are introduced both in the language LPR and in the language LEX. An illustration of 
how the concepts and relations of the process- and performance-oriented views are 
used together for the organizational performance evaluation is given in Chapter 4. 

Chapters 5 and 6 introduce the organization-oriented view. Chapter 5 describes 
structural subrole-relations between roles at different aggregation levels and dynamic 
aspects of interaction between roles. The sorted first-order predicate logic with finite 
sorts is used for the formalization of structural properties of the view, whereas the 
TTL is used for expressing rules of interaction between roles. Furthermore, the 
application of two analysis techniques (trace-based analysis and verification of 
relations between different aggregation levels) introduced in Chapters 4 and 5 of Part 
II in the context of the organization-oriented view is demonstrated in Chapter 5. The 
described analysis concerns domain-specific properties mostly. The generic integrity 
constraints on subrole relations and interaction relations between roles will be 
described in Part IV. Chapter 6 considers formal authority relations on roles that 
include responsibility relations for organizational tasks and resources, superior-



 

 137 

subordinate relations and others. Furthermore, Chapter 6 introduces a set of 
constraints on the concepts and relations both from the organization-oriented view 
and accross multiple views. Moreover, both Chapters 5 and 6 establish relations with 
the agent-oriented view by defining relationships between roles and agents and by 
specifying constraints over agents. 

Chapter 7 describes an approach for modeling the characteristics and behavior of 
agents situated in a formally specified organization. The approach is based on the 
theoretical findings from social science and enables analysis of how different 
organizational and environmental factors influence the behavior and performance of 
agents.  

In Chapter 8 the complexity monotonicity thesis is proposed that establishes a 
relation between the environmental complexity and the behavioral complexity of an 
agent situated in this environment. More specifically, for more complex 
environments, more complex behaviour and more complex mental capabilities of 
agents are needed. This thesis is tested in a number of example scenarios of animal 
behavior. Organizations can be also considered as structures that often have to react 
on and enhance internal complexity of the environment, with which organisms need 
to cope. Therefore, some results presented in Chapter 8 can be also applied in 
organizational context. However, a more detailed investigation is still required. 

 



 

 138 



 

 139 

 
 
 
 
 
 
 
 

Chapter 1 

 

Modeling Organizational Performance Indicators1 

Abstract. Performance measurement and analysis is crucial for steering the 
organization to realizing its strategic and operational goals. Relevant 
performance indicators and their relationships to goals and activities need to be 
determined and analyzed. Current organization modeling approaches do not 
reflect this in an adequate way. This paper attempts to fill the gap by presenting 
a framework for modeling performance indicators within a general organization 
modeling framework. 

1   Introduction 

Measuring and analyzing organizational performance plays an important role in 
turning organizational goals to reality. The performance is usually evaluated by 
estimating the values of qualitative and quantitative performance indicators (e.g., 
profit, number of clients, costs). It is essential for a company to determine the relevant 
indicators, how they relate to the formulated company goals and how they depend on 
the performed activities. In practice such analysis is usually done in an informal, ad-
hoc way. This paper introduces a framework for modeling performance indicators and 
the relationships between them, which constitutes a part of a general framework for 
organization modeling and analysis.  

In the general framework, organizations are considered from different perspectives 
(views). Process-oriented view describes the workflow as well as static structures of 
tasks and resources. Performance-oriented view is characterized by a goal structure, a 

                                                           
1 Part of this chapter appeared as Popova, V., Sharpanskykh, A.: Modelling Organizational 

Performance Indicators. In: Barros, F. et al. (eds.): Proceedings of the International Modeling 
and Simulation Multiconference IMSM'07, SCS Press, 165-170 (2007) (the names of the 
authors are ordered alphabetically reflecting the comparable contribution of each author).  



 

 140 

performance indicators structure, and relations between them as well as relations 
between goals and tasks, performance indicators and processes, goals and roles or 
agents. Organization-oriented view defines the organizational roles, each associated 
with a set of tasks and characterized by authority and responsibility relations on tasks, 
resources and information. Commitment, obligation and power relations and sets of 
competences required for agent allocation to roles are also defined. Agent-oriented 
view identifies different types of agents with their characteristics and behavior, and 
principles for allocating agents to roles based on the matching between agent 
capabilities and competences required for roles.  

The formal language and axiomatic basis for modeling performance indicators 
within the performance-oriented view are described in this paper as well as the 
performance evaluation process and methodological issues of creating and revising 
performance-oriented models. Some verification techniques specific for performance-
oriented organization models are briefly discussed. The presentation is organized as 
follows. The case study used for illustration is described in Section 2. In Section 3 the 
main concepts are defined. The relationships between them are defined in Section 4 as 
well as the semantic aspects of the introduced language with its axiomatic basis. 
Section 5 discusses the evaluation of organizational performance. Methodological 
guidelines are given in Section 6. Section 7 discusses related work on performance 
measurement. Section 8 concludes the paper with a summary and future research 
directions. 

2   Introduction to the Case Study 

The proposed approach is applied for modeling and analyzing an organization from 
the security domain. The main purpose of the organization is to deliver security 
services (e.g., private property surveillance, safeguard) to different types of customers 
(individual, firms and enterprises). The organization has well-defined structure with 
predefined (to a varying degree) job descriptions for employees. The total number of 
employees in the organization is approximately 230.000 persons working in several 
regions. The global management of the organization is performed by the board of 
directors, which includes among others the directors of the different divisions 
(corresponding to the different regions). Within each region a number of areas exist 
controlled by area managers. An area is divided into several units, controlled by unit 
managers. Each unit serves a number of locations, for which the contracts with 
customers have been signed and security officers are allocated. The allocation of 
employees is performed based on plans created by planning groups.  

The model that corresponds to the part of the organization concerned with the 
planning process will be used in this paper to illustrate concepts, relations and 
techniques related to the performance-oriented view. Therefore, the planning process 
is described here in more detail. The planning process consists of forward (or long-
term) planning and short-term planning. Forward planning is the process of creation, 
analysis and optimization of forward plans that describe the allocation of security 
officers within the whole organization for a long term (4 weeks). Forward plans are 
created based on customer contracts by forward planners from the forward planning 



 

 141 

group. During the short-term planning, plans that describe the distribution of security 
officers to locations within a specific area for a short term (a week) are created and 
updated based on the forward plan and the available up-to-date information about the 
security employees. Furthermore, based on short term plans, daily plans are created. 
Within each area short-term planning is performed by the area planning team that 
consists of planners and is guided by a team leader. During the planning process 
short-term planners interact actively with forward planners (e.g., for consultations, 
problem solving). Furthermore, forward planners have a number of supervision 
functions with respect to short-term planners. 

3   Performance Oriented Concepts 

Every organization exists for the achievement of one or more goals. This varies 
depending on the type of organization, e.g. the main goal of a manufacturing 
company can be the realization of maximal profit while the goal of a non-profit 
organization can be to effectively protect wild animals. Being aware of these goals is 
a prerequisite to taking measures for their satisfaction. To ensure continued success, 
the organization should monitor its performance with respect to its goals. The notions 
of a goal and a performance indicator are therefore essential. They are the main 
building blocks of the performance-oriented view of our approach.  

 
Fig. 1. A meta-model for the performance-oriented view. 
 

��	


��

�
�

	����

��������������

����
���������

�	�����
���������

�������������

������

�	��

����	
��	�
��� 

���
	���
�	�����

��	����

!!!!	����	�������

��

�"�������

�������
	�������

��	


�	����

����	������

������������

����

����������

�	�	��
�� 

�������"�������

�������"�������

��	�
 �����
���������

�	��������

�������������

���

��		��������

�������
��������

�	������

�	������

������

���������������



 

 142 

Fig.1 gives a graphical representation of the concepts and relationships of the 
performance-oriented view. This paper describes a modeling approach and a formal 
language for PIs as part of the performance-oriented view. Other concepts and views 
will be considered elsewhere. 

In the following paragraphs, the definitions for performance indicators and 
performance indicator expressions are given with their specific characteristics. 

Performance indicator – quantitative or qualitative indicator that reflects the 
state/progress of the company, unit or individual. The following characteristics can be 
specified for each performance indicator:  

Name;  
Definition;  
Type – continuous or discrete;  
Time frame – (if applicable) for which time frame is the performance indicator 

defined, the length of the time interval for which it will be evaluated, e.g. the indicator 
‘yearly profit’ has time frame ‘year’, ‘number of customers per day’ has time frame 
‘day’;  

Scale – if relevant, the measurement scale for the performance indicator, different 
scales can be predefined and referred to here;  

Min value, Max value – when a predefined scale is used and only a part of this 
scale is relevant for the particular performance indicator;  

Source – which was the internal or external source used to extract the performance 
indicator: company policies, mission statements, business plan, job descriptions, laws, 
domain knowledge, etc. – these sources contain (informal) statements about the 
desired state or behavior of the company and regulations it has to obey;  

Owner – the performance of which role or agent does it measure/describe;  
Threshold – the cut-off value separating changes in the value of the performance 

indicator considered small and changes considered big; used to define the degree of 
influence of between performance indicators (see Section 4);  

Hardness – a performance indicator can be soft or hard where soft means not 
directly measurable, qualitative, e.g. customer’s satisfaction, company’s reputation, 
employees’ motivation, and hard means measurable, quantitative, e.g., number of 
customers, time to produce a plan. 

 
Example: 
PI name: PI5;  
Definition: average correctness of produced plans  
Type: discrete;  
Time frame: month; 
Scale: very_low-low-med-high-very_high; 
Source: mission statement, job descriptions; 
Owner: forward and daily planning departments 
Threshold: 2 units;  
Hardness: soft;  
 
PI name: PI27;  
Definition: time to create a new short-term plan after all operational data is received  
Type: continuous;  



 

 143 

Time frame: month 
Scale: REAL 
Min value: 0;  
Max value: max_time_CSP;  
Unit: hour;  
Source: job descriptions 
Owner: daily planning departments 
Threshold: 24 hours;  
Hardness: hard;  
 
PI name: PI29;  
Definition: efficiency of allocation of security officers to objects;  
Type: discrete;  
Time frame: month 
Scale: very_low-low-med-high-very_high; 
Source: job descriptions 
Owner: forward and daily planning departments 
Threshold: 24 hours;  
Hardness: soft;  
 

Appendix A contains the list of performance indicators identified for the case study 
for the forward and daily planning departments with the corresponding characteristics. 

The set of performance indicators that can be defined for one organization can be 
very large and it is often not feasible to monitor all of them. Therefore the companies 
select a subset of indicators, called key performance indicators, that can give a 
representative picture of the performance and the costs of measuring and monitoring 
are reasonable. It is essential for the company to choose its key performance 
indicators carefully to form a balanced (with respect to the company activities, 
involved parties, etc.) and sufficiently complete set [6]. The key performance 
indicators of the organization should be reflected in its goals.  

The process of extracting the performance indicators from source documents 
involves asking the question: What should be measured / observed to ensure the 
requirements in the document? Performance indicators are often represented by nouns 
in the text; modifiers such as adjectives give information about the type, scale of 
measurement and what is considered a desirable value of the performance indicator 
(used in performance indicator expressions, goal patterns and goals), e.g., the job 
description requires a planner ‘to ensure high accuracy of calculation when creating a 
plan’ then ‘accuracy of calculation in plan creation’ is a performance indicator and 
‘high’ – its desired value. 

Often the performance indicators that can be extracted from documents such as the 
mission statements and policies are soft and difficult to assess. In order to evaluate 
such a performance indicators it is usually beneficial to find a closely related hard 
indicator that can be measured instead and that can give an impression on the state of 
the soft one. For example customer satisfaction cannot be measured directly but it is 
possible to design questionnaires that will be used to collect information on 
customer’s opinion and classify it in predefined ranges (high, medium, etc.). The 
results from such a study give an impression on the actual degree of satisfaction but it 



 

 144 

is important to note that the actual degree of satisfaction might deviate from the 
calculated value and is not directly measurable. The domain knowledge used is that 
for properly designed questionnaires, there is correlation between the degree of 
satisfaction and the results from the study.  

The second concept relevant for modeling performance indicators is the 
performance indicator expression which is defined below. 

Performance indicator expression – a performance indicator or a mathematical 
statement over a performance indicator containing >, ≥, =, < or ≤. A performance 
indicator expression can be evaluated to a numerical, qualitative or Boolean value for 
a time point, for the organization, unit or agent. For example using the above defined 
performance indicators we can formulate performance indicator expressions as 
follows: PI27 ≤ 48h; PI5 = high. 

Within the performance-oriented view also goal patterns and goals are defined 
which are addressed in details in [10]. In the following paragraph a brief overview is 
given.  

Performance indicator expressions are used to define goal patterns which are 
properties that can be checked to be true or false for the organization, unit or 
individual at a certain time point or period. For example a goal pattern based on PI27 
can be GP1:’achieved that PI27 ≤ 48h’. Goals are objectives that describe a desired 
state or development and are defined by adding to goal patterns information such as 
desirability and priority. A goal based on GP1 can be G1:’It is required to achieve that 
PI27 ≤ 48h’. Goals can be hard (satisfaction can be clearly established) or soft 
(satisfaction cannot be clearly established). For soft goals degrees of satisficing are 
defined. Goals can be organizational (i.e., belong to an organization, unit or role) or 
individual (i.e., belong to an agent). Individual goals may comply with, be disjoint or 
conflict with organizational goals. This can be determined by analyzing the relations 
between the performance indicators on which the goals are based (see Section 6). 
Goal can be refined into subgoals forming a goals hierarchy. Information about the 
satisfaction of lower level goals can be propagated to determine satisfaction of high 
level goals (see Section 5 which discusses the evaluation of organizational 
performance).  

The performance-oriented concepts are related to other views in the following way. 
Goals are realized by performing organizational functions described by tasks. 
Processes are specific instances of tasks temporally ordered in a workflow and 
performed by roles. Performance indicators are associated to specific aspects of the 
execution of particular processes. A role represents a predefined set of functionalities 
performed within the organization which can be allocated to agents. Roles and agents 
can be committed to organizational or individual goals respectively. Roles are 
characterized by sets of competences, required to perform a certain task. Competences 
can be credentials (i.e., material or digital objects certifying accomplishments; e.g., 
diplomas, certificates), and skills (i.e., abilities that can be demonstrated, e.g., typing 
speed, flexibility). Skills are formulated as performance indicator expressions over 
individual performance indicators. Agents are autonomous entities, characterized by 
their individual goals and capabilities. Individual goals of agents are based on 
individual performance indicators. Capabilities can be credentials or skills that are 
possessed by agents. Skills are formulated as performance indicator expressions over 



 

 145 

individual performance indicators. An agent can only play a role if it has the 
capabilities to match the competences required for the role.  

4   Modeling Relationships between Performance Indicators 

The formal language used for specifying the meta-model for the performance-oriented 
view is a variant of the first order sorted predicate language. In this language, for each 
concept a special sort is introduced, containing all the names of concept instances 
(e.g., sort PI contains all names of performance indicators). The characteristics 
(attributes) of the concepts are represented by relations (predicates) with arguments: a 
concept name, an attribute name and a value the attribute (e.g., has_attribute_value: 
PI × ATTRIBUTE × VALUE). In the following for readability such predicates are used 
in the more compact form: concept.attribute=value. Specific values that have been 
measured for performance indicators during or after the execution of organizational 
processes can be specified using the predicate PI_has_value: PI × PI_VALUE where 
the sort PI_VALUE includes the sort VALUE together with all possible evaluations of 
soft performance indicators (e.g. low, medium, high). For more details on recording 
and analyzing the execution of organizational processes and on evaluating 
performance indicators the reader is referred to [9]. In the following paragraphs, the 
relations between performance indicators are defined. In order to provide formal 
meaning and to enable formal verification (e.g., consistency or integrity checking), 
the axiomatic basis is also defined. 

causing: PI × PI × {very_pos, pos, neg, very_neg}: The first performance indicator 
causes change in the same direction (positive) or opposite direction (negative) to the 
second performance indicator. Very_positive describes the situation when small 
change in one performance indicator causes big change in the other. Similarly for 
very_negative. The distinction between small and big change can be subjective and 
therefore should be defined carefully by the designer using input from domain 
experts. It is specific for each performance indicator and is specified in the model by 
the threshold values assigned to performance indicators. When the value of a 
performance indicator increases or decreases, positive or negative difference can be 
calculated and compared to the threshold value to determine whether it is considered a 
small or big change. This informal explanation of the causality relation can be 
formalized as follows using the Temporal Trace Language [12] (p1 and p2 are 
variables over sort PI): 

causing(p1, p2, pos) iff: 
∀γ ∀t ∀a,b:PI_VALUE state(γ,t)|= [ PI_has_value(p1, a) ∧ PI_has_value(p2, b) ] �  
∀t1>t [∀c:PI_VALUE state(γ,t1)|= [PI_has_value(p1, c) ∧ c>a ] �  
∃t2≥t1 ∃d:PI_VALUE state(γ,t2)|= [PI_has_value(p2, d) ∧ d>b]] & [∀e:PI_VALUE state(γ,t1)|= 

[PI_has_value(p1, e) ∧ e<a ] �  
∃ t2≥t1 ∃f:PI_VALUE state(γ,t2)|= [PI_has_value(p2, f) ∧ f<b]] 

causing(p1, p2, very_positive) iff: 
∀γ ∀t ∀a,b:PI_VALUE state(γ,t)|= [PI_has_value(p1, a) ∧ PI_has_value(p2, b) ] �  
∀t1>t [∀c:PI_VALUE state(γ,t1)|= [PI_has_value(p1, c) ∧ c>a ∧ c-a<p1.threshold] �  
∃t2≥t1 ∃d:PI_VALUE state(γ,t2)|= [PI_has_value(p2, d) ∧ d>b ∧ d-b>p2.threshold]] & 

[∀e:PI_VALUE state(γ,t1)|= [PI_has_value(p1, e) ∧ e<a ∧ a-e<p1.threshold] �  



 

 146 

∃t2≥t1  ∃f:PI_VALUE state(γ,t2)|= [PI_has_value(p2, f) ∧ f<b ∧ b-f >p2.threshold]] 
 

The causality relations for the negative and very_negative cases are defined in a 
similar manner. 

correlated: PI × PI × {pos, neg}: The first performance indicator is correlated 
positively or negatively to the second performance indicator, i.e., changes in the first 
performance indicator result in changes in the second one in the same (pos) or 
opposite (neg) direction and the other way round. This is defined by the following 
axiom: 

correlated (p2, p1, pn), where pn:{pos, neg} iff: 
causing(p1, p2, pn) & causing(p2, p1, pn) 

aggregation_of: PI × PI: The first performance indicator is an aggregation of the 
second performance indicator. If the aggregation relation exists between performance 
indicators, then these performance indicators are also positively correlated with each 
other. 

∀ p1,p2:PI: aggregation_of(p1, p2) � correlated (p1, p2, pos) 
 

Both performance indicators in the aggregation relation have the same type and 
unit. This is expressed by the following axiom: 

 ∀ p1,p2:PI: aggregation_of(p1, p2) � p1.type=p2.type & p1.unit=p2.unit 

The aggregation relation exists for example between performance indicators of the 
same type with time frame attributes related by the aggregation relation, e.g., 
performance indicator ‘revenue for a year’ is an aggregation for performance 
indicator ‘revenue for a month’. Aggregation relation between performance indicators 
can be defined based on the relations of performance indicators to processes and 
organizational roles. More specifically, the performance indicators of the same type 
are related by aggregation, when their owners (roles, agents) are related by the 
structural aggregation relation is_part_of, e.g., is_part_of(group1,deptA). For example 
performance indicator ‘number of planners in deptA’ is an aggregation of 
performance indicator ‘number of planners in group1’. Similarly if performance 
indicators of the same type measure the same aspect of execution of process instances 
of tasks related by is_subtask_of relation, e.g., is_subtask_of(collect_data, create_plan) then 
often aggregation relation exists between these performance indicators. 

Using the standard procedure from the sorted first-order predicate logic, terms and 
formulae over sort PI can be built, expressing different types of mathematical relations 
between performance indicators. For example, 
organizational_profit=organizational_revenue-organizational_costs; (PI1>3 & PI2=4.5) � PI3 > 
5.2. 

In the following more detailed examples are given in the frames of the case study 
using some of the performance indicators defined in Appendix A. 

 
Examples: 

Name: PI1 
Definition: The level of correctness of plans with respect to the contracts of the 

employees, the laws, the general policy of the company and division 



 

 147 

Type: discrete 
Time frame: month 
Scale: very_low-low-medium-high-very_high 
Source: mission statement, job descriptions 
Owner: forward and daily planning departments 
Threshold: 2 units 
Hardness: soft 
 
Name: PI2 
Definition: the level of knowledge of employees involved in (forward) planning 

about the current contracts of the employees, the laws, the general policy of the 
company and division 

Type: discrete 
Time frame: month 
Scale: very_low-low-medium-high-very_high 
Source: mission statement, job descriptions 
Owner: forward and daily planning departments 
Threshold: 2 units 
Hardness: soft 

 
For these two performance indicators the following relation was discovered: 
causing(PI2, PI1, pos) 
 

Name: PI30  
Definition: average level of optimality of forward, short-term and daily planning 

for efficient allocation of security officers  
Type: discrete 
Time frame: month 
Scale: very_low-low-medium-high-very_high 
Source: job descriptions 
Owner: forward and daily planning departments 
Threshold: 2 units 
Hardness: soft 

 
Name: PI31  
Definition: average level of optimality of every forward plan for efficient allocation 

of security officers  
Type: discrete 
Time frame: month 
Scale: very_low-low-medium-high-very_high 
Source: job descriptions 
Owner: forward planning department 
Threshold: 2 units 
Hardness: soft 

 
For these two performance indicators the following relation was discovered: 
aggregation_of(PI30, PI31) 



 

 148 

 
Figure 2 shows the structure containing the main relationships between the 

performance indicators that were identified for the case study. 
Performance indicators relate to tasks, processes, roles, agents by the following 

relations: 
has_owner: PI × {ROLE, AGENT}: A performance indicator measures/describes 

the performance of a role or agent. Roles can be atomic or composite at any level 
including the level of the organization.  

measures: PI × PROCESS: A performance indicator expresses an aspect of the 
performance of the process execution, e.g. ‘time to produce a daily plan’ measures the 
time performance of the execution of the process ‘produce a daily plan’, ‘production 
costs’ measures the cost performance of the general process ‘production’.  

Environmental conditions influence the execution of processes of an organization, 
thereby, also influence values of performance indicators related to these processes. 
This influence can be positive or negative and is specified by the following relation: 

env_influence_on: ENV_CHARACTERISTIC × PI × {pos, neg}: An environmental 
characteristic of the sort ENV_CHARACTERISTIC influences a performance indicator 
in a positive or negative way (i.e., contributes to the increase/decrease of a 
performance indicator). For example, a large amount of rain contributes negatively to 
the amount and quality of harvest. 

is_defined_over: PI_EXPRESSION × PI: A performance indicator expression is 
defined over a performance indicator. 

Other types of relations between performance indicator, processes and roles, 
related to power, supervision, authorization, etc. will be discussed in the organization-
oriented view.  

5   Performance Evaluation 

Every task in an organization contributes to the satisfaction of one or more 
organizational goals through performing its process instances. Each goal is formed 
based on a certain performance indicator(s) which can be measured (directly or 
indirectly) during or after the process execution depending on the goal evaluation type 
– in the end or during a certain period of time (evaluation period defined as goal 
horizon). The satisfaction (degree of satisficing) of the goal(s) is determined by 
comparing the measured value(s) with the corresponding goal expression(s). Further, 
the obtained goal satisfaction (satisficing) measure is propagated by applying the rules 
defined in [10], upwards in the goal hierarchy for determining the satisfaction (degree 
of satisficing) of higher level goals. Thus, the organizational performance is evaluated 
by determining the satisfaction (degree of satisficing) of key organizational goals. The 
same principles can be applied for evaluation of agent performance.  



 

 149 

Fig. 2: The relationships between the performance indicators identified for the case 
study 
 

As illustration of the proposed performance evaluation procedure consider the 
following example. For estimating the performance of the organization from the case 
study, the satisfaction of the key goal G3.1: ‘It is required to maintain high efficiency 
of the planning process’ has to be determined. One of the goals in its refinement is 
G3.1.1 ‘It is required to achieve that the number of times the planning activities 
(creating and updating of a plan) exceed the allowed durations is equal to 0’. This 
goal is refined into four goals: G3.1.1.1: ‘It is required to achieve that the time to 
update a short-term plan given operational data is at most 48 hours’, G3.1.1.2: ‘It is 
required to achieve that the time to create a daily plan given operational data is at 



 

 150 

most 24 hours’, G3.1.1.3: ‘It is required to achieve that the time to create a short-term 
plan after all operational data is received is at most a week’ and G3.1.1.4: ‘It is 
required to achieve that the time to create a forward plan after all operational data is 
received is at most a week’. These goals are related to tasks: G3.1.1.1 is realized by 
the task ‘update_shortterm_plan’, G3.1.1.2 is realized by the task ‘create_daily_plan’, 
G3.1.1.3 by ‘create_shortterm_plan’ and G3.1.1.4 by ‘create_forward_plan’. By 
measuring the actual execution of the process instances of these tasks, it is determined 
that the values of the related performance indicators of these goals (PI22: ‘time to 
update short term plan’, PI23: ‘time to create daily plan’, PI27: ‘time to create short 
term plan’, and PI28: ‘time to create forward plan’) do not exceed the prescribed 
durations. Thus, goals G3.1.1.1, G3.1.1.2, G3.1.1.3 and G3.1.1.4 are satisfied. Due to 
the refinement relation G3.1.1 is also satisfied and contributes positively to the 
satisfaction of G3.1 and thus to the overall performance evaluation. 

6   Methodological and Analysis Issues 

Methodological issues discussed in this Section concern the construction and the 
revision of the PIs structures. As it was discussed in Section 3, organization’s 
performance indicators can be extracted from different sources. To build a structure of 
performance indicators, relations between them should be identified, for which: (1) 
original documents can be analyzed for finding explicit references to such relations; 
(2) knowledge of domain experts and existing libraries of relations between 
performance indicators may be used; (3) performance indicators attributes and 
relations between these attributes (e.g., relations between time-related attributes and 
attributes that relate performance indicators to the organization and task structures) 
can be exploited (see Section 4); (4) from the existing relations in the performance 
indicators structure new relations may be inferred; (5) data mining techniques may be 
applied to the data collected during the organization operation; (6) intuitions of the 
modeler may be used after testing by domain experts or simulations; (7) relations to 
the task structure and the goal structure may be exploited. 

As it follows from the definitions in Section 4 all the considered types of relations 
between performance indicators can be reduced to causality relations. Technique (4) 
allows inference of some missing causality relations from the existing performance 
indicators structure. In general the inference rules (i.e., the generic constraints on PIs) 
are specified in the form  

causing(p1, p2, s1) & causing(p2, p3, s2) � causing(p1, p3, s3), 

where p1, p2 belong to the sort PI and s1, s2, s3 are of sort SIGN={very_neg, neg, pos, 
very_pos}. More specific (instantiated) inference rules are generated based on Table 1, 
in which s3 values are given in the cells on the intersection of columns containing s1 
values with rows containing s2 values. These inference rules can also be used for the 
verification of integrity of the performance indicators structure.  

 



 

 151 

Table 1. Inference Rules for Causal Relationships 

s2    \     s1 Very neg Neg Pos Very 
pos 

Very neg Very pos 
Very pos Very 

neg 
Very neg 

Neg Very pos Pos Neg Very neg 
Pos Very neg Neg Pos Very pos 

Very pos Very neg Very neg Very 
pos 

Very pos 

 
Examples: 

 
Name: PI1 – as defined earlier 
 
Name: PI10 

Definition: level of correctness of administrative processing of all planning data in 
the system. 

Type: discrete 
Time frame: month 
Scale: very_low-low-medium-high-very_high 
Source: job descriptions 
Owner: forward and daily planning departments 
Threshold: 2 units 
Hardness: soft 
 
Name: PI12  
Definition: level of correctness of administrative processing of short-term and daily 

planning data in the system. 
Type: discrete 
Time frame: month 
Scale: very_low-low-medium-high-very_high 
Source: mission statement, job descriptions 
Owner: daily planning departments 
Threshold: 2 units 
Hardness: soft 
 
For these performance indicators the following relations were identified: 

(1) causing(PI10, PI1, very_pos) 

(2) aggregation_of(PI10, PI12) 

The second relation implies that: 

(3) causing(PI12, PI10, pos) 

Therefore based on relations (1) and (3) and the rules in Table 1 we can conclude 
that: 



 

 152 

(4) causing(PI12, PI1, very_pos) 
Such inferred relations are not shown on Figure 2 in order to simplify the picture. 
Further let us consider technique (7). The task structure of an organization may 

provide insight to discover relations between performance indicators. Often 
refinement relations specified in the task structure correspond to causality relations in 
the performance indicators structure. For example, based on the refinement relation 
between the task ‘create a correct plan’ (related by its process instance to performance 
indicator ‘time for creating a correct plan’) and its subtask ‘check a plan’ (related to 
performance indicator ‘time to check a plan’), the performance indicators ‘time to 
check a plan’ and ‘time for creating a correct plan’ are related by positive causing 
relation. Refinement relations might also be reflected by other types of relations in the 
performance indicators structure.  

Further, as it follows from the goal definition given in [10], goals and performance 
indicators form two highly interrelated structures – changes in one structure almost 
always imply changes in the other structure. Thus, the performance indicators 
structure and the goal structure may be created simultaneously. Usually, high level 
goals of a company are of a strategic (long-term) type. Such goals are often made 
operational by refining them into lower level tactical (short-term) goals. The 
identified in such a way refinement relation, by analogy with the task refinement, can 
be reflected in the performance indicators structure by the corresponding relation 
between performance indicators, on which the considered goals are based. More 
specifically, if goals are related by refinement relation, then the corresponding 
performance indicators are related by a causality relation. Furthermore, if the 
performance indicator expressions for goals related by refinement, contain 
comparison functions (e.g. >,<) or measures of degrees (such as ‘high’, ‘low’), or goal 
patterns are specified by functions such as ‘increased’/‘decreased’, then the specific 
type of causality may be determined (at least if it is positive or negative). For 
example, in the case study both goal expressions for G3.1: “It is required to maintain 
high efficiency of the planning process” and for G3.1.2: “It is required to maintain 
high level of promptness of communication of forward, short-term and daily planning 
data to all concerned employees” contain the equality relation to the value “high”. 
According to the principles explained above, this corresponds to the positive causality 
relation between the PIs “efficiency of the planning process” and “level of 
promptness of communication of forward, short-term and daily planning data to all 
concerned employees”, which is indeed the case in the PI structure. 

In general, the refinement and aggregation of goals can be performed based on 
information about relations in an organization structure, task structure, temporal 
dependencies and relations between performance indicators. 

The identification of conflict relations between goals is of particular importance for 
the design and evaluation of organizations. To identify such conflicts, the goal 
patterns and the performance indicators structure can be used. More specifically, by 
knowing the type of the causality relation between performance indicators and the 
types of the goal patterns, the presence of a conflict between goals can be determined. 
For example, the goal ‘It is required to maximize the time for checking the proposed 
plan for accuracy’ and the goal ‘It is required to minimize the time for producing a 
correct plan’ are in conflict, since the performance indicators ‘time for examining the 
plan for accuracy’ and ‘time for producing an accurate plan’ are related by positive 



 

 153 

causality relation and the corresponding goal patterns are based on opposite types: 
maximize and minimize. If a conflict between high level goals is found, then via the 
refinement the cause of the conflict can be found at the lowest level of the goal 
structure. For this the relations between performance indicators and the domain 
knowledge are exploited. 

7   Related Literature on Performance Measurement 

The area of performance measurement is an active field of research in management 
science attracting interest from both academic and practitioner circles. Researchers 
have been busy identifying and classifying important performance indicators for any 
company (e.g. [6]) and those relevant for different specific domains e.g. logistics, 
production, supply chains, etc. (e.g. [1, 3, 7, 13]).  Results have also been reported on 
real life case studies aimed at giving more insight on the relative importance and 
appropriateness of performance indicators in different situations. Originally only 
numerical, mostly financial, indicators were considered, however, nowadays it is 
believed that non-financial and non-numerical indicators such as customer 
satisfaction, employee motivation, innovation, quality, market share can be very 
informative as well (e.g. [5]).  

Since performance measurement is a central issue for every organization, the 
organization’s model should take it into account. In organization modeling, however, 
this is currently done implicitly at best. We are only aware of one methodology, 
GRAI [2], which explicitly models performance indicators however only in the 
context of decision making and without taking into account the relationships among 
the performance indicators and between the performance indicators and other notions 
such as goals.  

Letier et al., on the other hand, define in [8] quality variables which can be related 
to the performance indicators defined in this approach in order to model partial degree 
of satisfaction of a goal. Based on them objective functions are defined which are 
used in the formulation of goals. A major difference is that in [8] probabilistic 
reasoning is used to determine the partial satisfaction of goals which is reflected in the 
definitions of objective functions and goals.   

It should be noted that sometimes measures such as customer satisfaction, profit, 
production costs, delivery time (typical performance indicators) are visible in other 
models as well – often in the definition of goals but they always remain implicit and 
the relationships between them are usually not discussed.  

8   Conclusion 

This paper presents an approach for modeling performance indicators and the 
relationships between them which constitutes a part of an expressive general 
framework for organizational modeling and analysis. The proposed approach is part 
of the performance-oriented view of the framework which provides formal tools for 
analyzing organizational and individual performance and relating current performance 



 

 154 

to the organizational goals and their satisfaction as well as to tasks and processes of 
the organization. Due to its expressivity and formal basis the framework can be used 
in enterprise information systems. It also allows building structures that can be used 
for complex analysis both within the performance-oriented view and between the 
performance-oriented view and other views of the general framework. Some 
possibilities for analysis are mentioned here but will be elaborated and applied on 
larger case studies elsewhere. Other views and how they are related to each other will 
also be presented separately. 

References 

1. P.C. Brewer and T.W. Speh. “Using the balanced scorecard to measure supply chain 
performance” Journal of Business Logistics 21(1), 2000, 75-93. 

2. G. Doumeingts, B. Vallespir, and D. Chen. “Decisional Modelling using the GRAI Grid”. 
In : Bernus, P., Mertins, K. and Schmidt, G. (Eds): Handbook on Architectures of 
Information Systems, Springer-Verlag (1998) 313-338 

3. F.T.S. Chan. “Performance measurement in a supply chain” International Journal of 
Advanced Manufacturing Technology 21(7), 2003, 534-548. 

4. M.S. Fox. “The TOVE project: towards a common-sense model of the enterprise”. In Petrie, 
C.J., Jr.(Ed): Proceedings of ICIEMT’92, MIT Press (1992) 310-319 

5. C.D. Ittner and D.F. Larcker. “Coming Up Short on Nonfinancial Performance 
Measurement” Harvard Business Review, 81(11), 2003, 88-96. 

6. R.S. Kaplan, and D.P. Norton. “The balanced scorecard – measures that drive performance”, 
Harvard Business Review, January-February 1992, pp. 71-79. 

7. E. Krauth, H. Moonen, V. Popova, and M. Schut. “Performance Measurement and Control in 
Logistics Service Providing”. In: C.-S. Chen, J. Filipe, I. Seruca and J. Cordeiro, editors, 
Proceedings of Seventh International Conference on Enterprise Information Systems, ICEIS 
2005, pp. 239-247. 

8. E. Letier, and A. van Lamsweerde. “Reasoning about partial goal satisfaction for 
requirements and design engineering”, Proceedings of 12th ACM SIGSOFT International 
Symposium on Foundations of Software Engineering, 2004, pp. 53 – 62.  

9. V. Popova and A. Sharpanskykh. “Formal analysis of executions based on process-oriented 
models”, Technical Report 071601AI, Vrije Universiteit Amsterdam, 
http://hdl.handle.net/1871/10545 

10. V. Popova and A. Sharpanskykh. “Formal modelling of goals in agent organisations”. In V. 
Dignum, F. Dignum, E. Matson, B.Edmonds, editors, Proceedings of Agent Organisations: 
Modelling and Simulation Workshop during the 20th International Joint Conference on 
Artificial Intelligence (IJCAI’07), 2007, pp. 74-86. 

11. V. Popova and J. Treur. “A specification language for organisational performance 
indicators”. In: Ali, M., and Esposito, F., editors, Proceedings of 18th International 
Conference IEA/AIE 2005, Lecture Notes on Artificial Intelligence, vol. 3533, Springer, 
2005, pp. 667-677. 

12. A. Sharpanskykh, and J.Treur. "Verifying interlevel relations within multi-agent systems". 
In: Brewka, G., Coradeschi, S., Perini, A., and Traverso, P., editors, Proceedings of the 17th 
European Conference on Artificial Intelligence, ECAI'06, IOS Press, 2006, pp. 290-294. 

13. G. Vaidyanathan. “A Framework for Evaluating Third-Party Logistics” Communications of 
the ACM, January 2005 48, 1: 89-94. 

 



 

 155 

Appendix A. A specification of the performance indicators from 
the case study 

Name: PI1 
Definition: the level of correctness of plans with respect to the contracts of the employees, 

the laws, the general policy of the company and division 
type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: mission statement, job descriptions 
owner: forward and daily planning departments 
threshold: 2 units 
hardness: soft 
 
Name: PI2 
Definition: the level of knowledge of employees involved in (forward) planning about the 

current contracts of the employees, the laws, the general policy of the company and division 
type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: mission statement, job descriptions 
owner: forward and daily planning departments 
threshold: 2 units 
hardness: soft 
 
Name: PI3  
Definition: the level of up-to-dateness of the software system used in (forward and daily) 

planning with respect to the contracts of the employees, the laws, the general policy of the 
company and division 

type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: mission statement, job descriptions 
owner: forward and daily planning departments 
threshold: 2 units 
hardness: soft 

 
Name: PI4  
Definition: effectiveness of allocation of security officers 
type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: mission statement, job descriptions 
owner: forward and daily planning departments, unit manager, security officers 
threshold: 2 units 
hardness: soft 

 
Name: PI5  
Definition: average correctness of produced plans 



 

 156 

type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: mission statement, job descriptions 
owner: forward and daily planning departments 
threshold: 2 units 
hardness: soft 
 
Name: PI6 
Definition: level of correctness of every produced plan 
type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: job descriptions 
owner: forward and daily planning departments 
threshold: 2 units 
hardness: soft 
 
Name: PI7  
Definition: level of correctness of every produced forward plan. 
type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: job descriptions 
owner: forward planning department 
threshold: 2 units 
hardness: soft 

 
Name: PI8 
Definition: level of correctness of every produced daily plan. 
type: discrete 
time frame: day 
scale: very_low-low-medium-high-very_high 
source: job descriptions 
owner: daily planning departments 
threshold: 2 units 
hardness: soft 
 
Name: PI9 
Definition: level of correctness of every produced short-term plan. 
type: discrete 
time frame: week 
scale: very_low-low-medium-high-very_high 
source: job descriptions 
owner: daily planning departments 
threshold: 2 units 
hardness: soft 

 
Name: PI10 

Definition: level of correctness of administrative processing of all planning data in the system. 
type: discrete 
time frame: month 



 

 157 

scale: very_low-low-medium-high-very_high 
source: job descriptions 
owner: forward and daily planning departments 
threshold: 2 units 
hardness: soft 

 
Name: PI11  

Definition: level of correctness of administrative processing of forward planning data in the 
system. 

type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: job descriptions 
owner: forward planning department 
threshold: 2 units 
hardness: soft 
 
Name: PI12  
Definition: level of correctness of administrative processing of short-term and daily planning 

data in the system. 
type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: mission statement, job descriptions 
owner: daily planning departments 
threshold: 2 units 
hardness: soft 

 
Name: PI13  

Definition: average level of deviation from daily plans in their application.  
type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: job descriptions 
owner: daily planning departments, unit manager, security officers 
threshold: 2 units 
hardness: soft 

  
Name: PI14 

Definition: level of deviation from the produced daily plan in its application  
type: discrete 
time frame: day 
scale: very_low-low-medium-high-very_high 
source: job descriptions 
owner: daily planning departments, unit manager, security officers 
threshold: 2 units 
hardness: soft 

 
Name: PI15  

Definition: the number of concerned security officers not informed on time about the produced 
daily plan  

type: discrete 



 

 158 

time frame: day 
scale: INTEGER 
min value: 0 
max value: max_officers 
unit: employees 
source: job descriptions 
owner: daily planning departments 
threshold: 10 
hardness: hard 

 
Name: PI16  

Definition: promptness of data change forms delivery by security officers  
type: discrete 
time frame: day 
scale: very_low-low-medium-high-very_high 
source: job descriptions 
owner: security officers 
threshold: 2 units 
hardness: soft 

 
Name: PI17  

Definition: promptness of data change forms delivery to the planners  
type: discrete 
time frame: day 
scale: very_low-low-medium-high-very_high 
source: job descriptions 
owner: unit manager 
threshold: 2 units 
hardness: soft 

 
Name: PI18  

Definition: level of correctness of data change forms delivered to the planners  
type: discrete 
time frame: day 
scale: very_low-low-medium-high-very_high 
source: job descriptions 
owner: unit manager 
threshold: 2 units 
hardness: soft 

 
Name: PI19 
Definition: efficiency of planning and allocation of security officers  
type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: mission statement, job descriptions 
owner: forward and daily planning departments 
threshold: 2 units 
hardness: soft 

 
Name: PI20 
Definition: efficiency of the planning process 



 

 159 

type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: mission statement, job descriptions 
owner: forward and daily planning departments 
threshold: 2 units 
hardness: soft 

 
Name: PI21 
Definition: the number of times the planning activities (create and update plans) exceed the 

allowed durations  
type: continuous 
time frame: month 
scale: REAL 
min value: 0 
max value: max_time 
unit: hour 
source: job descriptions 
owner: daily planning departments 
threshold: 24 hours 
hardness: hard 

 
Name: PI22  
Definition: the time to update a short-term plan given operational data  
type: continuous 
time frame: month 
scale: REAL 
min value: 0 
max value: max_time_UST 
unit: hour 
source: job descriptions 
owner: daily planning departments 
threshold: 24 hours 
hardness: hard 

 
Name: PI23 
Definition: the time to create a daily plan given operational data  
type: continuous 
time frame: day 
scale: REAL 
min value: 0 
max value: max_time_D 
unit: hour 
source: job descriptions 
owner: daily planning departments 
threshold: 12 units 
hardness: hard 
 
Name: PI24  
Definition: level of promptness of communication of forward, short-term and daily planning 

data to all concerned employees. 
type: discrete 



 

 160 

time frame: month 
scale: very_low-low-medium-high-very_high 
source: job descriptions 
owner: forward and daily planning departments 
threshold: 2 units 
hardness: soft 
 
Name: PI25  
Definition: level of promptness of communication of every produced forward plan to all 

concerned employees. 
type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: job descriptions 
owner: forward planning department 
threshold: 2 units 
hardness: soft 
 
Name: PI26  
Definition: level of promptness of communication of every produced short-term plan to all 

concerned employees. 
type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: job descriptions 
owner: daily planning departments 
threshold: 2 units 
hardness: soft 

 
Name: PI27  
Definition: the time to create a short-term plan after all operational data is received 
type: continuous 
time frame: month 
scale: REAL 
min value: 0 
max value: max_time_CST 
unit: hour 
source: job descriptions 
owner: daily planning departments 
threshold: 24 hours 
hardness: hard 
 
Name: PI28  
Definition: the time to create a forward plan after all operational data is received  
type: continuous 
time frame: month 
scale: REAL 
min value: 0 
max value: max_time_CFP 
unit:  
source: job descriptions 
owner: forward planning department 



 

 161 

threshold: 48 units 
hardness: hard 
 
Name: PI29 
Definition: efficiency of allocation of security officers  
type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: mission statement, job descriptions 
owner: forward and daily planning departments 
threshold: 2 units 
hardness: soft 
 
Name: PI30  
Definition: average level of optimality of forward, short-term and daily planning for efficient 

allocation of security officers  
type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: job descriptions 
owner: forward and daily planning departments 
threshold: 2 units 
hardness: soft 

 
Name: PI31  
Definition: average level of optimality of every forward plan for efficient allocation of 

security officers  
type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: job descriptions 
owner: forward planning department 
threshold: 2 units 
hardness: soft 

 
Name: PI32  
Definition: average level of optimality of every short-term plan for efficient allocation of 

security officers  
type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: job descriptions 
owner: daily planning departments 
threshold: 2 units 
hardness: soft 

 
Name: PI33  
Definition: level of optimality of every daily plan for efficient allocation of security officers  
type: discrete 
time frame: month 
scale: very_low-low-medium-high-very_high 
source: job descriptions 



 

 162 

owner: daily planning departments 
threshold: 2 units 
hardness: soft 

 



 

 163 

 
 
 
 
 
 
 
 

Chapter 2 

 

Formal Modelling of Goals in Organizations 1 

Abstract. Each organization exists or is created for the achievement of 
one or more goals. To ensure continued success, the organization 
should monitor its performance with respect to the formulated goals. In 
practice the performance of an organization is often evaluated by 
estimating its performance indicators. In most existing approaches on 
organization modelling the relation between performance indicators and 
goals remains implicit. This paper proposes a formal framework for 
modelling goals based on performance indicators and defines 
mechanisms for establishing goal satisfaction, which enable evaluation 
of organizational performance. Methodological and analysis issues 
related to goals are discussed in the paper. The described framework is 
a part of a general framework for organization modelling and analysis. 

1   Introduction 

Organizations exist for achieving certain goals by coordinating the execution of 
appropriate activities among actors and by handling the complexity of interactions 
with the environment. Therefore, the viability and success of an organization depend 
on how effectively the organization manages its internal activities and how well its 
behaviour fits with the environmental conditions. The behaviour of an organization is 
usually guided by its strategic and tactical goals that depend on the professional 

                                                           
1 Part of this chapter appeared as Popova, V., Sharpanskykh, A.: Formal Modelling of Goals in 

Agent Organizations. In: V. Dignum, F. Dignum, E. Matson, B. Edmonds (eds.), Proceedings 
of the Workshop on Agent Organizations: Models, and Simulation at IJCAI'07, 74-86 (2007) 
(the names of the authors are ordered alphabetically reflecting the comparable contribution of 
each author). 



 

 164 

orientation (i.e., domain, types of activities) and specific characteristics of the 
organization, interests of concerned stakeholders and on the type of the environment 
(e.g., a market) in which the organization is situated. 

The performance of an organization is often evaluated by estimating the values of 
its qualitative and quantitative performance indicators (e.g., profits, number of 
clients). Therefore, to ensure the effectiveness of an organization, all the principal 
performance indicators (PIs) should be reflected in its goals. While in most existing 
approaches on organization modelling the relation between PIs and goals remains 
implicit, this paper defines a clear and general mechanism for specifying goals based 
on PIs. Then, the performance of an organization can be evaluated by estimating the 
(level of) satisfaction of its goals.  

Different types of goals can be identified in organizations. The satisfaction of some 
of them can be determined in a clear-cut way by evaluating conditions in goal 
expressions (e.g., “ensure that an order is processed within 24 hours”). Such goals are 
sometimes called hard goals. The satisfaction of other goals is difficult to assess (e.g., 
“maximize the customer satisfaction”), since they refer to not directly measurable 
quantities. Such goals are often called soft goals. In this paper both hard and soft 
goals are described and the corresponding mechanisms for establishing the goal 
satisfaction are specified. 

The individuals (agents) assigned to certain positions (roles) in an organization 
have personal goals based on individual PIs that may comply with, be disjoint or 
conflict with organizational goals. The performance of individuals can be determined 
in the same way as the performance of an organization.  

Furthermore, the satisfaction of goals often can only be established in a framework, 
in which goals are related to other concepts (such as tasks, roles and agents). Such a 
framework for the performance-oriented modelling is considered in this paper with 
the main focus on goal modelling. An elaborated description of PIs and the related 
techniques relevant to the framework are given in [16].  

The framework for the performance-oriented modelling constitutes a part of a 
general framework for organization modelling and analysis. In the general 
framework, organizations are considered from other perspectives (or views) as well. 
In particular, the process-oriented view describes static hierarchies of tasks and 
resources, flows of control (or workflows), relations between processes and resources 
and considers the actual execution of organization scenarios. Within the organization-
oriented view organizational roles, their authority, responsibility and power relations 
are defined. In the agent-oriented view different types of agents with their 
characteristics and behavior are identified and principles for allocating agents to roles 
are formulated.  

Note that the identified views are related to each other by means of sets of common 
concepts. For example, the relations between goals and roles are introduced in the 
performance-oriented view. Further these relations are used in the organization-
oriented view to describe mechanisms of goal assignment and delegation, which also 
use power and authority relations from the organization-oriented view. 

In all these views environmental conditions, in which the organization is 
functioning, are taken into account: they influence the specification of organization 
concepts and relations between them (e.g., the formulation of goals and the 
specification of tasks), thus, affecting the structure and behaviour of a particular 



 

 165 

organization model. Furthermore, the type of the environment determines a part of the 
domain knowledge, which is represented by unconditionally valid facts and rules 
about the environment that directly influence all the activities within the organization. 
Another part of the domain knowledge is defined by intrinsic properties of the 
organization itself.  

Concepts and relations within every view are formally described using dedicated 
languages expressive enough to convey structures and processes of organizations of 
most types. To provide the formal meaning for the concepts and to enable different 
specific (for a view) and general (across different views) formal types of analysis of 
organization models (e.g., by simulations and verification), an axiomatic basis is 
defined that establishes formal relations between concepts within one view and across 
different views. Furthermore, the formal definition of organizational models and the 
axiomatic basis enable semantic integration of different ontologies for enterprise 
modelling, implemented in information systems of organizations aiming at 
cooperation or integration. 

The formal language and the set of axioms specific for modelling goals within the 
performance-oriented view are described in this paper. Furthermore, some of the 
verification techniques specific for performance-oriented organization models are 
described as well as some methodological issues related to creating and revising goal 
structures, and the process of organizational performance evaluation based on a goal 
hierarchy. Other views of the general framework will be considered elsewhere.  

The presentation is organised as follows. Section 2 introduces the case study used 
to illustrate modelling and analysis techniques. In Section 3 the main concepts for the 
goal modelling framework are specified. The relationships between them are 
described and formalized using the dedicated logic-based language in Section 4. 
Section 5 discusses how the performance of the organization is evaluated in the 
introduced framework. Some design principles are given in Section 6. In Section 7 the 
related work on goal-oriented modelling is discussed. Finally, Section 8 concludes the 
paper.  

2   Introduction to the Case Study 

The proposed approach was applied for modelling and analyzing an organization from 
the security domain within the project CIM (Cybernetic Incident Management, see 
http://www.almende.com/cim/). The main purpose of the organization is to deliver 
security services to different types of customers. The organization has well-defined 
multi-level structure that comprises several areas divided into locations with 
predefined (to a varying degree) job descriptions for employees (approx. 230.000 
persons). The global management of the organization (e.g., for making strategic 
decisions) is performed by the board of directors, which includes among others the 
directors of the different divisions (regions). Within each region a number of areas 
exist controlled by area managers. An area is divided into several units, supervised by 
unit managers. Within each unit a number of locations are served, for which the 
contracts with customers are signed and security officers are allocated. The allocation 
of employees is performed based on plans created by planning groups.  



 

 166 

The examples given in this paper will be related to the part of the organization 
concerned with the planning of the allocation of security officers to different locations 
of customers. The planning process consists of the forward (or long-term) planning 
and the short-term planning. The forward planning is the process of creation, analysis 
and optimization of forward plans for the allocation of security officers within the 
organization for a long term (4 weeks) based on customer contracts. It is performed 
by forward planners from the forward planning group, managed by the manager of 
planning. During the short-term planning, plans that describe the allocation of security 
officers to locations within a certain area for a short term (a week) are created and 
updated based on the forward plan and up-to-date information about the security 
employees. Based on short term plans, daily plans are created. For each area the short-
term planning is performed by the area planning team that consists of planners and is 
guided by a team leader. During the planning process short-term planners interact 
actively with forward planners (e.g., for consultations, problem solving). Furthermore, 
forward planners have a number of supervision functions with respect to short-term 
planners. 

3   Concepts for Goal Modelling 

Each organization exists for the achievement of one or more goals. This varies 
depending on the type of organization and the environmental conditions, in which the 
organization is situated, e.g. the main goal of a manufacturing company can be the 
realization of maximal amount of profit, whereas the goal of a non-profit organization 
for animal protection can be to rescue maximal number of wild animals. Being aware 
of these goals is a prerequisite to taking measures for their satisfaction. To ensure 
continued success, the organization should monitor its performance with respect to 
the formulated goals. To enable the goal-based performance evaluation, 
organizational goals should be formulated over performance measures (indicators).  

Definition 1. (Performance indicator (PI))  
A performance indicator is defined as a measure, quantitative or qualitative, that can 
be used to give a view on the state or progress of the company, a unit within the 
company or an individual (e.g., time to produce a short-term plan, efficiency of 
allocation of security officers).  

The set of relevant PIs is company-specific. Furthermore, causal and other 
relationships may exist between different PIs.  

Expressions can be formulated over PIs containing >, = or <, for example for 
defining target values: an expression over the PI P1:“efficiency of allocation of 
security officers” is defined as P1 = high. PI expressions are used to define goal 
patterns.  

Definition 2. (Goal pattern) 
A goal pattern is a property over one or more PI expressions that can be checked for a 
given state/time point or interval for the company or an individual agent.  

Goal patterns are characterized by: (1) name; (2) definition; and (3) type.  
Type determines the way the property will be checked:  



 

 167 

(a)  achieved (ceased) – it should be checked whether the property is true (false) 
for a specific time point;  
(b)  maintained (avoided) – it should be checked whether the property is true 
(false) for the duration of a specific time interval;  
(c) optimized (maximized, minimized, approximated) – it should be checked if 
the value of the PI expression has increased, decreased or approached a given 
target value for the duration of a given time interval.  
Achieved, ceased, maintained and avoided are used on PI expressions that are 

evaluated to a Boolean value; optimised is defined over PI expressions that are 
evaluated to value of any type that is ordered (for maximized, minimized) or for 
which a distance measure is defined (approximated). 

Consider the following examples of goals patterns: “maintained efficiency of 
allocation of security officers to objects = high” based on the maintained pattern type 
and “achieved that time to produce a short-term plan given operational data ≤ 48” 
based on the achieved pattern type. 

Goals are formulated by adding to goal patterns information such as desirability 
and priority. 

Definition 3. (Goal)  
Goal is an objective to be satisfied describing a desired state or development of the 
company or an individual.  

For example “it is required to maintain high efficiency of allocation of security 
officers”. A goal is characterized by: (1) name; (2) definition, (3) priority; (4) 
evaluation type; (5) horizon; (6) ownership; (7) perspective; (8) hardness; and (9) 
negotiability. 

Priority is defined by a numerical estimation between 0 and 1; alternatively {very 
high, high, medium, low, very low}. When less information about goal priorities is 
available, a (partial) ordering on goals may be defined. 

Evaluation type determines if a goal is based on goal pattern with type achieved or 
ceased (achievement goal), i.e., it is evaluated for a given state/time point, or if a goal 
is based on goal pattern of type maintained, avoided or optimized (development goal), 
i.e., it is evaluated for a given time interval. 

Horizon specifies within which time interval (for development goals) or at which 
time point (for achievement goals) is the goal supposed to be satisfied: (a) long-term 
goal; (b) mid long-term goal; (c) short-term goal. 

Ownership can be organizational, i.e., belongs to an organization/unit/role, follows 
from the highest level goals of the company, and individual, i.e., belongs to an agent. 
Normally, organizational goals have a high level of priority. Goals of agents may 
comply with organizational goals to a varying degree. The priority of individual goals 
might depend on the company policy: some companies might assign lower priority to 
individual goals than to organizational ones; others might decide to involve and 
motivate the agents by taking into account their goals and avoiding some conflicts 
that might exist between individual and organizational goals.  

Perspective (for organizational goals) defines, which point of view is described by 
the goal: of management; of a supplier; of a customer; or of the society. Even though 
all organizational goals belong to the organization itself, they can reflect the point of 
view of an external party which desires the organization to perform in a certain way. 



 

 168 

For example the society wants the organization to obey society’s norms and values. It 
is sometimes beneficial for the company to adopt goals desired by other parties e.g. to 
conform to the relevant laws. 

It is also important to note that the different points of view will often be 
conflicting, for example while customers might want low prices, the management 
wants high profits, however if the prices are lowered that will decrease the profits. 
Such conflicts should be recognised during the design phase and made explicit in 
order to deal with them. For example priorities can be defined in order to specify 
which goal is more important to satisfy.  

Hardness distinguishes soft and hard goals. The satisfaction of a soft goal cannot 
be clearly established. We use the term satisficing to indicate an acceptable degree of 
satisfaction of a soft goal. Soft goals are given labels that correspond to their degrees 
of satisficing/denial with a natural order between the labels: satisficed > 
weakly_satisficed > undetermined > weakly_denied > denied. Satisfaction of hard 
goal can be established quantitatively. Hard goals also have labels ordered as follows: 
satisfied > undetermined > failed. In the example below goal G3.2 (this and the 
following goals are named by labels from the goal tree constructed for the considered 
case study) is soft, PI “efficiency of allocation of security officers” cannot be 
objectively established to be maintained high or not, instead we use a subjective 
estimation of degree of satisficing. Goal G3.1.1.1 is hard – it can be seen if PI “time 
to update a short-term plan given operational data” is at most 48 hours. 

By negotiability goals are divided into non-negotiable (i.e., need to be satisfied, no 
compromise is possible) and negotiable (negotiation is possible in case of conflicts 
with other goals). This can be used for conflict resolution at the design phase.  

Examples: 
Goal name: G3.2 
Informal definition: It is required to maintain high efficiency of allocation of 
security officers to objects 
Priority: high 
Horizon: long-term 
Evaluation type: development goal (maintain goal pattern) 
Ownership: organizational 
Perspective: management, customer 
Hardness: soft 
Negotiability: negotiable 

 
Goal name: G3.1.1.1 
Informal definition: It is required to achieve that the time to update a short-term 
plan given operational data is at most 48 hours. 
Priority: high 
Horizon: short-term 
Evaluation type: achievement goal (achieve goal pattern) 
Ownership: organizational 
Perspective: management 
Hardness: hard 
Negotiability: negotiable 



 

 169 

Goals are realizable by tasks in an organization. A task represents a function 
performed in an organization by its role(s). A role is characterized by a set of 
functionalities performed by it. Roles are characterized by sets of competences, which 
are required to perform a certain task. Competences can be credentials (i.e., material 
or digital objects certifying accomplishments; e.g., diplomas, patents, certificates), 
and skills (i.e., abilities that can be demonstrated and/or tested; e.g., typing speed, 
flexibility, programming skills). Roles are allocated to agents to perform tasks in an 
organization. Roles and agents are committed to certain goals. An agent can only play 
a particular role if it has the capabilities that match the competences required in the 
role description. In addition to organizational goals, an agent may pursue its own 
individual goals that comply or conflict with organizational goals. These and other 
concepts will only briefly be discussed in this paper and will be extensively 
considered in the descriptions of other views.  

4   Formal Goal Modelling 

In this Section first the concepts and relations introduced previously in Section 3 will 
be formalized using the first-order sorted predicate language (Section 4.1). After that, 
goal structures that comprise both soft and hard goals will be introduced in Section 
4.2. In particular, this Section includes the formal description of relations between 
goals and goal satisfaction principles in goal structures. 

4.1 Formalizing concepts for goal modelling  

The formal language used for specifying the meta-model for the performance-oriented 
view is the first order sorted predicate language [14]. In this language, for each type 
of a concept a special sort is introduced, which contains all the names of concept 
instances (e.g., sort GOAL contains all the names of goals). The semantics for this 
language is defined in a standard way, by interpretation of sorts, constants, functions 
and predicates, and a variable assignment. The characteristics (or attributes) of the 
concepts are represented by corresponding relations (predicates) with arguments: a 
concept name, an attribute name and a value for the attribute (e.g., has_attribute_value: 
GOAL x ATTRIBUTE x VALUE). In the following for better readability such predicates 
will be used in the more compact form: concept.attribute=value. Using this dedicated 
language a number of relations between goals and other concepts are defined that are 
included into the meta-model for the performance-oriented view (the graphical 
representation of the meta-model is given in Figure 1). To provide the formal 
meaning for the introduced relations and to enable formal verification of organization 
models (e.g., consistency and integrity checking), the set of axioms is defined along 
the definitions or relations. 

Goals are constructed based on PIs using the relations introduced below.  
is_based_on: GOAL_PATTERN × PI: The goal pattern in the first argument is defined 

over the PI in the second argument. 
uses: GOAL_PATTERN × PI_EXPRESSION: Goal pattern defined over PI expression. 



 

 170 

In goal patterns the symbols <, >, and = from PI expressions are interpreted as 
functions: PI x {NUM_VALUE, QUALIT_VALUE} → PI_EXPRESSION, where NUM_VALUE is 
a sort containing all numerical values, and QUALIT_VALUE contains all qualitative 
values. 

For example, the goal pattern GP1 “maintained efficiency of allocation of security 
officers to objects = high” is based on the PI P2 “efficiency of allocation of security 
officers to objects” and uses the PI expression PE1 formulated over P2 (P2=high): 
is_based_on(GP1,P2); uses(GP1,PE1). 

is_formulated_over: GOAL × GOAL_PATTERN: The goal in the first argument is 
defined over the goal pattern in the second argument. 

For example, the goal G3.2 defined earlier is formulated over the goal pattern GP1. 
Goals are related to tasks, roles and agents by the following relations: 
 

 

Fig. 1. A Meta-model for the performance-oriented view 
 
is_realizable_by: GOAL x TASK_LIST:  The goal in the first argument is realizable by 

the list of tasks in the second argument. 
is_committed_to: ROLE × GOAL: The goal is an organizational goal and the role is 

committed to the satisfaction of this goal.  
wishes: AGENT × GOAL: The goal is an individual goal of the agent. 
For example, role Planner is committed to goal G3.1.1.1, which is realizable by task 

T4.4.1 “update short-term plan”, i.e., is_committed_to(Planner, G3.1.1.1) & 



 

 171 

is_realizable_by(G3.1.1.1, L41) & is_in_task_list(L41, T4.4.1), where is_in_task_list: TASK_LIST 

x TASK. 

4.2 Modelling of Goal Structures 

A goal structure can be built by refining high level goals (top-down approach) and 
aggregating lower lever goals into higher level goals (bottom-up approach). Since 
goals in the modelling framework can be of two types: hard and soft, different types 
of refinement relations should be considered.  

First consider refinement of hard goals. Hard goals are refined into and-lists of 
hard goals (sort AND_GOAL_LIST), in which the goals are connected by AND relation.  

is_refined_to: GOAL × AND_GOAL_LIST: Defines a refinement of a hard goal into a 
list of hard goals, which contribute to its satisfaction. The refinement means that when 
all the goals in the list are satisfied then the goal in the first argument will be satisfied 
as well. If one or more goals in the list fail and no other refinement exists where all 
goals are satisfied, then the goal in the first argument will fail too. More formally, we 
introduce the predicates satisfied: GOAL and failed: GOAL to express the satisfaction state 
of a goal and these predicates can then be used to formulate the following axioms: 

∀ l: AND_GOAL_LIST is_refined_to(g, l) & (∀gi:GOAL is_in_ goal_list(gi,l) � satisfied(gi))  
� satisfied(g) 

∀ l: AND_GOAL_LIST (is_refined_to(g, l) � ∃gi: GOAL is_in_ goal_list(gi, l) & failed(gi))  
� failed(g) 

where is_in_goal_list: GOAL × GOAL_LIST expresses that a goal is in a goal list. Sort 
AND_GOAL_LIST is a subsort of GOAL_LIST, which contains names of all goal lists. 

is_subgoal_of: GOAL × GOAL: The first argument is a goal which is a subgoal of 
the goal in the second argument, i.e., it takes part in a refinement list of the second 
goal. 

The relation between is_in_goal_list and is_subgoal_of is established by the following 
axiom expressing that if the goal G2 is refined into the list L, and G1 is one of the 
goals in the list L, then G1 is a subgoal of G2: 

∀ G1, G2: GOAL, ∀ L: GOAL_LIST:  is_in_goal_list(G1, L) & is_refined_to(G2, L)  
� is_subgoal_of(G1, G2) 

When more than one refinements are defined, they are considered as alternatives 
connected by OR, i.e., they allow a choice, which measures to take to satisfy the goal.  

The refinement of hard and soft goals will be illustrated in the context of the goal 
structure given in Figure 2. This structure is constructed from the most important and 
relevant goals related to the planning process of the company considered in the case 
study. The detailed description for the goals of this structure is given in Appendix A. 

Example: 

In Figure 2 the hard goal G3.1.1 “It is required to achieve that the number of times the 
planning activities (creating and updating of a plan) exceed the allowed durations is 
equal to 0” is refined into the and-list that consists of goals G3.1.1.1 “It is required to 
achieve that the time to update a short-term plan given operational data is at most 48 
hours”, G3.1.1.2 “It is required to achieve that the time to create a daily plan given 



 

 172 

operational data is at most 24 hours”, G3.1.1.3 “It is required to achieve that the time 
to create a short-term plan after all operational data is received is at most a week”, and 
G3.1.1.4 “It is required to achieve that the time to create a forward plan after all 
operational data is received is at most a week”. This refinement is formally defined by 
the following relations: 

is_in_and_goal_list(G3.1.1.1, L) 
is_in_and_goal_list(G3.1.1.2, L) 
is_in_and_goal_list(G3.1.1.3, L) 
is_in_and_goal_list(G3.1.1.4, L) 
is_refined_to(G3.1.1, L) 
is_subgoal_of(G3.1.1.1, G3.1.1) 
is_subgoal_of(G3.1.1.2, G3.1.1) 

++
++

++ ++ ++
++

++
++++

++
++

++
++

++

++
++ ++

++ ++

G3.1.1.1

G3

G3.1 G3.2

++

G3.1.1.4

++

G3.1.2

++

G3.1.1.3 G3.1.2.1 G3.1.2.2

++
++

G3.2.1

G3.2.1.1

++

G1

G1.1 G1.2 G1.3

G2

G2.1 G2.2 G2.3

G2.1.1

G2.1.1.1 G2.1.1.2 G2.1.1.3

G2.2.1

G2.2.2

G2.3.1

G2.3.1.1

G2.3.1.2

G2.3.1.3

G2.3.1.4

hard goal

soft goal

refinement link

and-list relation

balanced list relation

++ satisfices relation

G3.1.1

G3.1.2.3

++

G3.2.1.3

G3.2.1.2

++++

G3.1.1.2

 
 

Fig. 2. A partial goal structure for the considered case study (for a detailed description of goals 
see Appendix A) 



 

 173 

 
Goal and PIs structures are closely related to each other. In particular, if goals are 

related by the refinement relation, then the corresponding PIs are related by a 
causality relation. This is expressed by the following axiom, where EFFECT = 

{very_negative, negative, positive, very_positive}: 

∀ G1, G2: GOAL, ∀ L: GOAL_LIST ∀ GP1, GP2: GOAL_PATTERN ∀PI1, PI2: PI:  
is_in_goal_list(G1, L) & is_refined_to(G2, L) & is_based_on(GP1, PI1) & is_formulated_over(G1, 
GP1) &  
is_based_on(GP2, PI2) & is_formulated_over(G2, GP2) �   ∃pn: EFFECT causing(PI1, PI2, pn). 

Now let us consider the refinement of soft goals. Since the satisfaction of soft goals 
cannot be established in a clear-cut way, the process of refinement of soft goals also 
differs from the refinement of hard goals. It is more difficult to clearly define 
decomposition for soft goals. Instead we talk about positive contribution from other 
goals in the satisfaction of the goal to be refined. Such contribution can vary in its 
degree (i.e. strength) which is expressed by the following relations, in which the goal 
in the second argument is soft and the goal in the first argument can be soft or hard: 

satisfices: GOAL × GOAL: The first goal strongly contributes in a positive way to the 
satisficing of the second goal. If the first goal is satisfi(c)ed and any other influences 
are ignored then the second goal is considered satisficed.  

contributes_to: GOAL × GOAL: The first goal contributes positively to the satisficing 
of the second goal, however might not be enough to satisfice it.  

The precise meaning of these relations is defined through the propagation rules 
defined for goals related by refinement. These rules are used to determine the degree 
of satisfaction/satisficing of a higher level goal (specified by a label) based on the 
available information about the degrees of satisfaction/satisficing of lower level goals 
in its refinement. To determine the label of a higher level goal, first the propagated 
labels from lower level goals of the refinement list are determined using Table 1. 
Then, the propagated labels are combined depending on the type of the refinement list 
to determine the label of the higher level goal.  

Table 1. The table for determining the propagated labels for a higher level goal based on the 
satisfaction/satisficing labels of lower level contributing goals and types of contributing links. 

Label of  contributing goal    \    
Type of link 

satisfices contributes_to 

satisficed / satisfied satisficed weakly_satisficed 
weakly_satisficed weakly_satisficed undetermined 
undetermined undetermined undetermined 
weakly_denied weakly_denied undetermined 
denied / failed denied weakly_denied 
 
Lower level goals can be combined using and- and balanced contribution relations 

in lists which contribute positively to the satisficing of the higher level soft goal.  
has_influence_from: GOAL × GOAL_LIST: The goals in the list contribute positively 

to the satisficing of the soft goal in the first argument. For each goal in the list it is 
defined separately what the level is of its contribution (the type of the link) using the 
above defined relations satisfices and contributes_to.  



 

 174 

The combination of goals in an and-list implies that if all goals in the list are 
satisfi(c)ed then the higher level goal will also be satisficed. In order to ensure this the 
following constraint is enforced: at least one of the goals in an and-list is connected 
with a link of the type satisfices to the higher level goal. When lower level goals are 
combined in an and-list, the label of a higher level goal is defined by the minimal 
label propagated from the goals in this list using the defined order between the labels.  

Example 
Consider the refinement of the goal G1 “It is required to maintain that the level of 
correctness of plans with respect to the contracts of the employees , CAO, de 
Arbeidstijdenwet (Dutch labor legislation), the general company policy /the policy of 
the business unit Security is very high” in the goal structure (Figure 2). G1 is refined 
into the and-list L that consists of three soft goals G1.1, G1.2 and G1.3. All goals in 
the list L are connected to G1 through a satisfices-link. It means that all subgoals of 
G1 are equally important for the satisfaction of G1. Note that all contribution relations 
of soft goals in the goal structure in Figure 2 are of type satisfices. This is because for 
this case study only the most essential goals, satisfaction of which considerably 
influences the productivity of the organization, have been chosen. The refinement of 
G1 is formalized by the following relations: 

is_in_and_goal_list(G1.1, L) 
is_in_and_goal_list(G1.2, L) 
is_in_and_goal_list(G1.3, L) 
has_influence_from(G1, L) 
satisfices(G1.1, G1) 
satisfices(G1.2, G1) 
satisfices(G1.3, G1) 
 
Furthermore, let us have the levels of satisfycing of G1.1, G1.2 and G1.3 based on 

measurement and observation. They are assessed to be as follows: G1.1 is satisficed, 
G1.2 is weakly satisficed, G1.3 is weakly denied. We can now propagate this 
knowledge taking into account the type of the links using the Table 1 in order to find 
out the level of satisficing of G1. The propagation for G1.1 results in the label 
satisfied, for G1.2 – the label weakly_satisfied, and for G1.3 – the label weakly_denied. 
Taking the minimal label we conclude that goal list L propagates weakly_denied.  

 
Another kind of relation between goals represents balanced contribution which 

gives us the possibility to describe more fine-tuned ways of contributing which favour 
the majority influence. The rule that is used to calculate the exact effect first 
quantifies the propagated labels of lower level goals and then takes the (weighted) 
average which is subsequently discretized again to the closest label, resulting in the 
sought label for the higher level soft goal. The quantification scale for the propagated 
labels may look as follows: satisficed = 2, weakly_satisficed = 1, undetermined = 0, 
weakly_denied = -1, denied = -2. Then, to fine-tune influences that the lower level 
goals from the balanced list (and thus, the propagated labels) have on the 
determination of the label for the higher level goal, weights can be assigned for the 
lower level goals in the list. Let the quantified propagated labels from the goals in the 
balanced list be gi and the weights defined for each goal in the list are wi. Then the 
influence of the balanced list on the higher level goal is calculated using a formula of 
the type: Σi wigi/ Σi wi. 



 

 175 

To specify the weight of a goal in a balanced list the relation has_weight_in_list: 
GOAL × INTEGER × BAL_GOAL_LIST is defined. 

When a goal is refined in one list only then the influence calculated using the 
described above rules defines the satisficing label of the goal. Sometimes a goal is 
refined into alternative influence lists related by OR. This reflects the knowledge that 
these lists are in conflict or competition and if one is satisficed then the probability 
that the rest will also be satisficed is lower. In such situations we use the following 
strategy: first the influences of the and- and balanced lists are calculated separately 
and then the highest among them label is assigned to the higher level goal.  
 
Example  
Consider the refinement of the goal G2 “It is required to maintain high effectiveness 
of allocation of security officers” (see Figure 2). G2 is refined into the balanced list L 
of three soft goals G2.1 “It is required to maintain high average correctness of 
produced plans”, G2.2 “It is required to maintain high level of correctness of 
administrative processing of all planning data in the system”, and G2.3 “It is required 
to maintain low average level of deviation from daily plans in their application”. All 
goals in the list L are connected to G2 through a satisfices link. Furthermore, weights 
for goals in L are defined: 2 for both G2.1 and G2.3, and 1 for G2.2. Formally: 

is_in_goal_list(G2.1, L) 
is_in_goal_list(G2.2, L) 
is_in_goal_list(G2.3, L) 
satisfices(G2.1, G2) 
satisfices(G2.2, G2) 
satisfices(G2.3, G2) 
has_influence_from(G2, L) 
has_weight_in_list(G2.1, 2, L) 
has_weight_in_list(G2.2, 1, L) 
has_weight_in_list(G2.3, 2, L) 
 
Let us assume that the degrees of satisficing of the lower-level goals G2.1, G2.2 

and G2.3 are known. Let G2.1 be satisficed and G2.2 and G2.3 be weakly_satisficed. 
Then, using the Table 1 the propagated labels are obtained: satisficed for G2.1 and 
weakly_satisficed for both G2.2 and G2.3. The labels are quantified so that the degree of 
satisficing of G2.1 is considered 2 and the degree of satisficing of G2.2 and G2.3 is 
considered 1.  

Then, the degree of satisficing of G2 is calculated as (2*2+1+1*2)/5 = 1.4 which 
we round up to 1 (which corresponds to weakly_satisficed in our scale).  

 
Apart from the refinement links discussed so far, we can also define conflicts, 

which represent negative relations between (hard or soft) goals or lists of goals.  
conflicts_with: AND_GOAL_LIST × AND_GOAL_LIST: Represents joint negative effect 

between lists of goals, i.e., the goals in both lists cannot be satisfi(c)ed or weakly 
satisficed at the same time. More precisely, if all goals in one list are satisfi(c)ed then 
at least one goal in the other is failed or denied; if all goals in one list are at least 
weakly satisficed, at least one goal in the other is at most weakly denied.  

weakly_conflicts_with: AND_GOAL_LIST × AND_GOAL_LIST: Represents weak joint 
negative effect between lists of goals, i.e., the goals in both lists cannot be satisfi(c)ed 
at the same time. More precisely, if all goals in one list are satisfi(c)ed then at least 



 

 176 

one goal in the other is at most weakly denied; if all goals in one list are at least 
weakly satisficed then at least one goal in the other is at most weakly satisficed.  

Conflicts can be defined at each two levels of the goal structure, however if the 
hierarchy is sufficiently complete then these conflicts should be propagated through 
the goal refinement to the lowest level at which the sources of these conflict can be 
found. Conflicts can also be used at the analysis and evaluation phases by propagating 
satisfaction labels bottom-up when only partial information is available. For example 
let goals g1 and g2 be in conflict at the lowest level of the goals structure and let g1 be 
known to be satisfied. Then if the satisfaction label of g2 is not known it can be 
assumed to be at most weakly denied if g2 is soft and failed if g2 is a hard goal. If 
however it is known that g2 is satisfi(c)ed then that points at an inconsistency in the 
model. 

In the goal structure given in Figure 2 no conflicts between goals are present. 
However, in the past the considered in the case study organization contained conflicts 
between its general company goals and low level goals of its subdivisions, which 
caused the inefficient operation of the company. For example, the high-level goal of 
the company “It is required to maintain high effectiveness of allocation of security 
officers within the organization” was in conflict with the goal “It is required to 
maintain high level of independency (autonomy) of all area planning teams from each 
other”. The conflict was identified in the refinement of these goals: it is often the case 
that in order to create an effective plan in one area, data about the available and 
scheduled employees from other areas were needed. Without cooperation the 
autonomous area planning teams often created inefficient plans, which suffered from 
the shortage of information. For example, plans for a certain area were created on the 
basis of the shortage of security officers in this area, whereas in other areas available 
(not scheduled) employees were in plenty. 

5   Goal-based Performance evaluation 

The explicit identification of PIs in the structure of goal expressions and the 
satisfaction propagation mechanisms in goal hierarchies described in the previous 
Section 4 provide means for the evaluation of organizational performance, which are 
described in this Section. 

Consider the process of goal-based performance evaluation in detail. Every task 
performed in an organization contributes to the satisfaction of a certain organizational 
goal(s). Each goal is formed based on a PI(s). This PI(s) can be measured (directly or 
indirectly) during or after the task execution depending on the goal evaluation type, in 
the end or during a certain period of time (an evaluation period defined as a goal 
horizon). Then, by comparing the measured value(s) with the goal expression(s), the 
satisfaction (degree of satisficing) of the goal(s) is determined. Further, the obtained 
goal satisfaction (satisficing) measure is propagated by applying the rules defined in 
Section 4, upwards in the goal hierarchy for determining the satisfaction (degree of 
satisficing) of higher level goals. Thus, the organizational performance is evaluated 
by determining the satisfaction (degree of satisficing) of key organizational goals. The 
same principles can be applied for evaluation of agent performance. 



 

 177 

As illustration of the proposed performance evaluation procedure consider the 
evaluation of satisfaction of one of the most important organizational goals from the 
case study – goal G3.1 “It is required to maintain high efficiency of the planning 
process”. Figure 2 shows the refinement of G3.1 into a balanced list of more specific 
goals: the hard goal G3.1.1 and the soft goal G3.1.2. Goal G3.1.1 has the weight 3 in 
the list and G3.1.2 has the weight 2. Furthermore, the goal G3.1.1 is refined into an 
and-list that consists of four hard goals and G3.1.2 is refined into an and-list of two 
soft goals and one hard goal. The lowest level goals (goals corresponding to the 
leaves) of this structure are related to tasks from the task structure created for the 
organization from the case study. Since task modelling is out of scope of this paper, 
only names of some tasks from the task structure will be used here. The lowest level 
goals, their PIs and the corresponding tasks for the considered example are given in 
Table 2.  

Table 2. The relation between goals and tasks, and the level of satisfaction of goals from the 
case study 

Goal 
name 

Goal expression PI Related task 
Level of goal 
satisfaction/sa

tisficing 
G3.1.1.1 
(hard) 

It is required to achieve 
that the time to update a 
short-term plan given 
operational data is at 
most 48 hours 

The time to update 
a short-term plan 
given operational 
data 

update_shor
tterm_plan 

satisfied 

G 3.1.1.2 
(hard) 

It is required to achieve 
that the time to create a 
daily plan given 
operational data is at 
most 24 hours 

The time to create a 
daily plan given 
operational data 

create_daily
_plan 

satisfied 

G 3.1.1.3 
(hard) 

It is required to achieve 
that the time to create a 
short-term plan after all 
operational data is 
received is at most a 
week 

The time to create a 
short-term plan 
after all operational 
data is received 

create_short
term_plan 

satisfied 

G 3.1.1.4 
(hard) 

It is required to achieve 
that the time to create a 
forward plan after all 
operational data is 
received is at most a 
week 

The time to create a 
forward plan after 
all operational data 
is received 

create_forw
ard_plan 

satisfied 

G 3.1.2.1 
(soft) 

It is required to achieve 
high level of 
promptness of 
communication of 
every produced forward 
plan to all concerned 
employees 

The level of 
promptness of 
communication of 
every produced 
forward plan to all 
concerned 
employees 

inform_all_
concerned_a
bout_ 
forward_pla
n 

weakly_satisfi
ced 

G 3.1.2.2 
(soft) 

It is required to achieve 
high level of 

The level of 
promptness of 

inform_all_
concerned_a

weakly_satisfi
ced 



 

 178 

promptness of 
communication of 
every produced short-
term plan to all 
concerned employees 

communication of 
every produced 
short-term plan to 
all concerned 
employees 

bout_ 
shortterm_p
lan 

G 3.1.2.3 
(hard) 

It is required to achieve 
that the number of 
concerned security 
officers not informed on 
time about the produced 
daily plan is zero 

The number of 
concerned security 
officers not 
informed on time 
about the produced 
daily plan 

inform_all_
concerned_a
bout_ 
daily_plan 

satisfied 

 
Furthermore, for each goal in this table the level of satisfaction is identified. This is 

done by measuring the values of the PIs, on which these goals are based, during or 
after the task execution. For most of the hard goals these data can be extracted from 
the log-files and databases of the enterprise management system, and thus the 
satisfaction of the goals can be directly determined. On the contrary, the level of 
satisficing of soft goals is often difficult to identify, since they are based on soft PIs. 
In order to evaluate a soft PI it is usually beneficial to find a closely related hard 
indicator that can be measured instead and that can give an impression on the state of 
the soft one. For example, to estimate the soft PI “The level of promptness of 
communication of every produced forward plan to all concerned employees”, on 
which the goal G 3.1.3.1 is based, for every forward plan the time interval between 
the moment when the plan is created and the moment when it is communicated to all 
concerned employees is measured. In 10-15% of all cases, this interval was longer 
than it is allowed by company’s regulations. By the choice of the designer, this 
corresponds to the weakly_satisficed label for the goal G 3.1.3.1. 

By applying the propagation rules, the label for the goal G3.1.1 is determined as 
satisfied, and for the goal G3.1.2 – as weakly_satisficed. For the calculation of the 
propagated label for the goal G3.1 resulted from the balanced list, the following 
quantification scale is used: satisficed/satisfied = 3, weakly_satisficed = 1, 
undetermined = 0, weakly_denied = -1, denied/failed = -3. Then, the degree of 
satisficing of G3.1 is calculated as (3*3 + 1*2)/5=2.2, which corresponds more 
closely to the label satisficed, which gives a strong positive evaluation of the overall 
organizational performance. 

6   Methodological issues in the Design of Goal Structures 

In this Section some techniques for building a consistent goal hierarchy are described. 
Since in the proposed framework goals are based on PIs and are related to other 
concepts (e.g., roles and tasks), many of the methodological issues with respect to 
goals will be considered in relation to these concepts.  

Usually, high level goals of a company are of a strategic (long-term) type. Such 
goals are often made operational by refining them into lower level tactical (short-
term) goals. In such a way a goal-structure is created by a top-down design process. 
The refinement of goals may proceed until subgoals are found, which could be 



 

 179 

realized by (possibly single) lowest-level tasks from the task hierarchy. In practice, 
the top-down design approach is often combined with the bottom-up approach, which 
is performed by aggregation of goals. For example, in the goal elicitation approach 
described in [4] subgoals are identified by asking “how” questions about the goals 
already determined, and parent goals are identified by asking “why” questions.  

To fine-tune goal and task structures, and relations between them at the design 
phase, backwards reasoning approaches on a goal structure can be used. These 
approaches are particularly useful for the analysis of cases of a soft goal refinement. 
More specifically, given that a higher level soft goal is required to be satisfied to a 
certain degree, and provided the type of a list into which this goal is refined (i.e., and 
or balanced) and types of refinement links between goals, it is possible to determine 
the least degree of satisfaction of the lower level goals from the refinement list. This 
information constitutes constrains on lower-level goals that can be used for the 
revision or (re)formulation of goals and corresponding tasks, and relations between 
them. 

Furthermore, relations between goals can be identified by using relations in the 
corresponding PIs structures [16]. In PIs structures different types of relationships 
between PIs are identified: e.g., causality, correlation and aggregation. A refinement 
relation between goals often corresponds to a causality relation between the 
corresponding PIs on which these goals are based. For example, in the goal structure 
in Figure 2 goals G2.3.1 and G2.3.1.4 are related by refinement, whereas the 
corresponding PIs “the level of deviation from the produced daily plan in its 
application” (for G2.3.1) and “the level of correctness of data change forms delivered 
to the planners” (for G2.3.1.4) are related by a negative causality relation in the PI 
structure developed for this case study. This means that the higher is the level of 
correctness of data change forms delivered to the planners, the less is the level of 
deviation from the produced daily plan in its application. Furthermore, a goal 
refinement relation may also correspond to an aggregation relation in a PI structure. 
For example, goals G2.1 and G2.1.1 are related by refinement and their corresponding 
PIs are related by aggregation. Note that an aggregation relation also assumes a 
positive correlation.  

Since goal and PI structures are closely related, it is important to guarantee 
consistency and correspondence of these structures to each other. For this a dedicated 
consistency check can be performed, based on the following principle. If goals are 
related by the refinement relation, then the PIs corresponding to these goals are 
related by a certain (positive or negative) causality relation. To determine the exact 
type of causality, goal expressions should be analyzed. If the PI expressions for goals 
related by refinement, contain an equality relation (“=”) over comparable (or 
opposite) measures of degrees (i.e., high/ low, maximal/ minimal) of some variables, 
then the corresponding PIs are most probably related by positive (or negative) 
causality relation. Comparison functions (i.e., ‘>’,’<’) or change functions (i.e., 
‘increased’, ‘decreased’) in PI expressions can be treated in a similar way. Furthermore, 
if a precise (mathematical) functional relation between PIs, on which goals in a 
refinement are based, is known, then the type of the causality relation can be easily 
determined and used for identifying inconsistencies in the goal structure. Note that 
since the designer has much of freedom in specifying goal expressions, there is no 
guarantee that inconsistencies identified in a PI structure are valid. Therefore, all 



 

 180 

automatically identified inconsistencies in goal and PI structures still need to be 
confirmed by the designer. 

For example, in the case study both goal expressions for G3.1 and for G3.1.2 
contain the equality relation to “high”. According to the principles explained above, 
this corresponds to the positive causality relation between the PIs “efficiency of the 
planning process” and “level of promptness of communication of forward and short-
term planning data to all concerned employees”, which indeed the case in the PI 
structure. 

The identification of conflict relations between goals is of particular importance for 
the design and the evaluation of organizations. In order to create an effective 
organization, it is often advised at the early design phase to take into consideration 
interests and concerns (expressed as goals) of different stakeholders, who will 
eventually play a role within the organization and will interact with the organization. 
The stakeholders may have conflicting goals that should be reflected in an 
organization model being constructed. Furthermore, conflicts may exist in a goal set 
of a stakeholder. To identify conflicts between goals, the goal patterns and the PIs 
structure can be used: by knowing the type of a causality relation between PIs and the 
types of goal patterns, the presence of a conflict between goals can be determined. 
The goal structure created for the case study does not contain conflicts; therefore, we 
shall illustrate the principle of conflict identification by assuming hypothetical goals 
for the company from the case study: The goal “It is required to maximize the time 
spent on examining the plan proposal for correctness” and the goal “It is required to 
minimize the time spent on producing a correct plan” are in conflict, since the 
corresponding PIs “the time spent on examining the plan proposal for correctness” 
and “the time spent on producing a correct plan” are related by the positive causality 
relation, and the corresponding goal patterns are based on the opposite types of 
functions: maximize and minimize.  

If during the design phase a conflict between high level goals is determined, then 
through the refinement a more precise cause of the conflict can be found at the lowest 
level of a goal structure. For this the relations between performance indicators and the 
available domain knowledge are exploited. 

For those organization models that do not allow conflicts, the consistency of a 
model can be achieved by applying different conflict resolution techniques [11]. The 
common strategy for conflict resolution is based on weakening of goal expressions 
(e.g., by weakening boundary conditions in the PI expressions; by introducing so-
called ‘organizational slacks’). For example, a Planner may have an individual goal to 
minimize his/her overwork, which is in conflict with the organizational goal G3.1.1.2 
“it is required to achieve that the time to create a daily plan given operational data is 
at most 24 hours”. To be able to create a daily plan within 24 working hours, planners 
often need to work overtime (due to some other daily occupations), which contradicts 
his/her own goal. If the company recognizes the importance (i.e., gives a high level of 
priority) of the individual goal of the Planner, the organizational goal G3.1.1.2 could 
be weakened by allowing 28 hours for the accomplishment of a daily plan. 

This example shows the importance of the goal priority attribute for the process of 
conflict resolution. For example, it can be used to determine which goal can be 
modified to a greater degree or even deleted from a model. In general organization 
goals have the higher priority than individual goals of agents. Therefore, in order to fit 



 

 181 

into the organization, an agent sometimes needs to adjust her/his own goals to the 
organizational ones. On the other hand, sometimes priorities of goals of an agent (e.g., 
important customer, government) can be so high that the organization decides to 
revise its goal structure to ensure the satisfiability of agent goals. 

For negotiable goals conflicts can be solved by negotiations among the 
stakeholders, to whom the goals are related [18]. 

7   Related Work on Goal-Oriented Modelling 

Goal-oriented modelling is given a special place in the area of enterprise engineering. 
Often both organizational and individual goals of the involved actors are considered 
and distinctions are made between the goals originating from different stakeholders.  

Some aspects of our definition of a goal are inspired and come close to existing 
state-of-the-art approaches in enterprise modelling and requirement engineering [9, 
10]. There are however significant differences as well which will be pointed out here. 
Our analysis pinpointed the following approaches as most relevant – CIMOSA [2], 
TOVE [5, 6], i* [19], Tropos [1, 7], goal-oriented agent-based models [3, 8, 12], 
KAOS [4], the NFR framework [15] ordered roughly in an increasing degree of 
relevance to this discussion.  

In CIMOSA the notion of objectives is used to represent business goals for a 
particular domain (i.e. a part of the enterprise). No relationships between the 
objectives are defined therefore no hierarchy of objectives is built. No distinction is 
made between hard and soft goals. Also in the TOVE model no distinction is made 
between hard and soft goals. Goals can be decomposed in AND/OR subgoal trees.  

The i* approach focuses on the dependency relationships between the actors. A 
Strategic Rationale model is built on the level of each actor where its internal 
reasoning on the relationships between goals, tasks and resources can be modelled. 
The approach recognises both hard and soft goals and defines a (soft)goal dependency 
relationships between actors w.r.t. (soft)goals expressing that one actor depends on 
another to make a condition in the world come true. The goals are only informally 
specified; no format and unified representation is enforced. The goals hierarchy is 
coupled to the tasks hierarchy as tasks can be decomposed to goals and tasks. Positive 
and negative contribution to a different degree of tasks/goals to soft goals are 
modelled using contribution links. Tropos is a methodology for agent-oriented 
software development based on i* thus goals are treated in the similar way as in i*. 
The extension Formal Tropos [7] uses a temporal specification language inspired by 
KAOS.  

The agent-oriented enterprise meta-model presented in [8] defines a goal as a 
desired or undesired state of the environment which is described by states of objects 
(beliefs, authorisations, resources, etc.). Goals can be refined into alternative sets of 
other goals using AND/OR relationships. Distinction is made between operational and 
soft goals – plans can fulfil operational goals but can only contribute positively or 
negatively to soft goals. Goals can also be organizational or personal. A dependency 
relationship between organizational roles for the fulfilment of organizational goals is 
defined. 



 

 182 

Moreover, the motivational concept of a goal has been often used for specifying 
attitudes of agents in multi-agent systems [3, 12]. Usually agent goals are specified as 
declarative concepts in (modal) logical specifications that describe states of the agent 
system, which are desirable and could be realized (achieved) by the agent. Often goals 
are related to other motivational attitudes of agents, such as beliefs, desires and 
intentions [17]. Moreover, declarative goals are often operationalized in agent 
programming languages by sequences of actions or plans [3, 12]. Then, the distinction 
between goals and tasks, essential for the framework proposed in this paper, is not 
tangible any more. 

The KAOS methodology focuses on requirements elaboration and provides support 
in connecting high-level goals to operations, objects and constraints to be 
implemented by the software. A goal is defined as an objective to be achieved by the 
system while an operational objective is called a constraint. Goals and constraints are 
defined formally using the patterns achieve, cease, maintain, avoid and optimize 
which are reused in our approach in the notion of a goal pattern. A difference is that 
the goal pattern in our approach is based on a PI expression. Soft goals are not 
considered in KAOS. Goals are structured and operationalized to constraints in 
AND/OR graphs. Temporal logic is used to define the goals and their relationships. In 
our approach a wider set of goals is considered, some of which cannot be expressed as 
temporal logic formulae. This reflects the way organizations define their goals in 
practice.  

The NFR framework focuses on the representation of non-functional requirements 
on the designed software system through interrelated goals. Three types of goals are 
defined: NFR, satisficing and argumentation goals. The last two model design 
decisions and arguments resp. and are hence irrelevant for this discussion. The NFR 
goals are soft goals which can be refined using different types of relationships 
describing how the satisficing of the offspring relates to the satisficing of the parent 
goal. A labelling procedure is defined for determining the degree of satisficing of 
each node in the goal structure. The label propagation procedure used in our approach 
is inspired by but different from the one used in the NFR framework. We consider 
only positive refinement links. The negative links are modelled using conflict links. 
Furthermore, we enrich the refinement structure with one more relation in addition to 
AND and OR representing balanced contribution and providing tools for finer 
definition of how a set of goals together contributes to the satisficing of the higher-
level goal.  

8   Conclusions 

This paper presents a formal goal-oriented modelling approach in the context of the 
performance-oriented view on organizations. The proposed approach is based on the 
essential idea that goals expressions should be explicitly defined over performance 
indicators of an organization. In such a way, a clear-cut relation between 
organizational objectives and performance measurements is established. The proposed 
approach includes a diverse vocabulary to express goal-related concepts and relations. 
Goals are classified along different dimensions: in particular, hardness (hard and soft) 



 

 183 

and ownership (organizational and individual). Furthermore, the mechanisms for 
identifying (the level of) satisfaction/satisficing of goals are defined in the paper, 
where a special attention is given to the propagation of satisficing labels for soft 
goals. Often the estimation (evaluation) of soft goals is not straightforward. The paper 
proposes various means for fine-tuned modelling and evaluation of soft goals, among 
which the possibility to define different degrees of satisficing of goals and 
contributions in goal structures (including a balanced list), a variable quantification 
scale used for the performance evaluation. The potential downside of such 
expressivity and design freedom is that some organizational models may suffer from 
the subjectivity of the designer with respect to the choice of scales and types of 
influences. Because of the high domain dependency, it is difficult to formulate 
general design principles to specify soft parts of a model and to verify the correctness 
of certain design choices afterwards. However, some work has been done [13] to 
apply probabilistic reasoning and statistics based on accumulated data about 
organizational processes from the past to justify the correctness of the designed 
model. However, such information is not always available or cannot be used, e.g., 
when new (or modified) organizational structure and processes are considered. One 
reasonable suggestion to decrease the level of subjectivity of a designed model is to 
involve different organizational stakeholders (modellers, domain experts) in the 
process of determining quantitative measures and degrees of influence for soft parts 
of the model. Furthermore, performing simulations based on an organizational model 
with different parameters related to soft goals is helpful for identifying an acceptable 
design. 

Further, the paper presents some guidelines and techniques for building consistent 
goal structures. For this relations to other concepts from the related views (such as 
PIs, tasks) are used. To create a consistent and correct model for an organization for 
any view, interdependencies with other related views should be identified and 
employed already at the early design stage. For example, organizational goals often 
have a great impact on the form of an organizational structure (i.e., choice of roles 
and relations between them), thus this should be reflected in an organization-oriented 
model for an organization. A detailed description of other views as well as design and 
analysis issues that concern relations between views are not considered in this paper 
and will be described elsewhere. 

References 

1. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent 
Systems, 8 (2004) 203-236 

2. CIMOSA – Open System Architecture for CIM. ESPRIT Consortium AMICE, Springer-
Verlag, Berlin (1993) 

3. Cohen, P.R. and Levesque, H.J.: Communicative Actions for Artificial Agents. In: 
Proceedings of the International Conference on Multi-Agent Systems. AAAI Press, 1995. 

4. Dardenne, A., van Lamsweerde, A., Fiskas, S.: Goal Directed Requirements Acquisition. 
Science of Computer Programming, 20 (1993) 3-50 

5. Fox, M.S.: The TOVE Project: Towards a Common-Sense Model of the Enterprise. In Petrie, 
C.J., Jr.(Ed): Proceedings of ICIEMT’92. MIT Press (1992) 310-319 



 

 184 

6. Fox, M.S., Barbuceanu, M., Gruninger M., and Lin, J.: An Organization ontology for 
enterprise modelling. In: M. Prietula, K. Carley and L. Gasser (Eds): Simulating 
Organizational: Computational Models of Institutions and Groups, AAAI/MIT Press (1997) 
131-152 

7. Fuxman, A., Pistore, M., Mylopoulos, J., Traverso, P.: Model Checking Early Requirements 
Specification in Tropos. In: Proceedings of the Fifth IEEE International Symposium on 
Requirements Engineering (RE’01) (2001) 174-181 

8. Jureta I., and Faulkner, S.: An Agent-oriented meta-model for enterprise modelling. In: J. 
Akoka et al (Eds): ER Workshops 2005, LNCS 3770 (2005) 151-161 

9. Kavakli, E., and Loucopoulos, P.: Goal Driven Requirements Engineering: Evaluation of 
Current Methods. Proc. 8th CAiSE/IFIP8.1 International Workshop on Evaluation of 
Modeling Methods in Systems Analysis and Design (EMMSAD '03) (2003) 

10. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: a Guided Tour. In: 
Proceedings of 5th IEEE International Symposium on Requirements Engineering (2001) 
249-263 

11. van Lamsweerde, A., Darimont, R., Letier, E.: Managing Conflicts in Goal-Driven 
Requirements Engineering. IEEE Transaction on Software Engineering, vol. 24(11) (1998) 
908-926 

12.van Linder, B., van der Hoek, W., and Meyer, J.-J. Ch.: Formalising motivational attitudes 
of agents: On preferences, goals and commitments. In: Wooldridge, M., Mueller, J.P., and 
Tambe, M. (eds.), Intelligent Agents Volume II (ATAL'95), vol. LNCS 1037, Springer 
(1996) 17-32 

13. Letier E., and Lamsweerde, A. van: Reasoning about partial goal satisfaction for 
requirements and design engineering. Proceedings of the 12th ACM SIGSOFT International 
symposium on Foundations of software engineering (2004) 53 – 62 

14. Manzano, M.: Extensions of First Order Logic, Cambridge University Press (1996) 
15. Mylopoulos, J., Chung, L., Nixon, B.: Representing and Using Nonfunctional 

Requirements: A Process-Oriented Approach. IEEE Transactions on Software Engineering, 
vol. 18, no. 6 (1992) 483-497 

16. Popova, V. and Sharpanskykh, A., Modelling Organizational Performance Indicators. In: 
Barros, F. et al. (eds), Proceedings of the International Modeling and Simulation 
Multiconference, IMSM'07, SCS Press (2007) 165-170 

17. Rao, A.S.: Decision Procedures for propositional linear-time belief-desire-intention logics. 
In: Wooldridge, M.J., Mueller, J.P. and Tambe, M. (eds.), Intelligent Agents II, vol. LNAI 
1037, Springer (1996) 33-48 

18. Sycara, K.: Resolving Goal Conflicts via Negotiation. In Proceedings of the Seventh 
National Conference on Artificial Intelligence (1988) 245-250 

19. Yu, E.:. Towards Modelling and Reasoning Support for Early-Phase Requirements 
Engineering. 3rd IEEE Int. Symposium on Requirements Engineering (1997) 226-235 

 



 

 185 

Appendix A. A specification of goals for the case study 

name: G1 
informal definition: It is required to maintain that the level of correctness of plans with respect 
to the contracts of the employees, CAO, de Arbeidstijdenwet, the general company policy, the 
policy of the business unit Security is very high. 
priority: very high 
evaluation type: development goal (maintain) 
ownership: organisational 
hardness: soft 
negotiability: non-negotiable 
perspective: society 
 
name: G1.1 
informal definition: It is required to maintain that the level of knowledge of employees 
involved in (forward) planning about the current contracts of the employees, CAO, de 
Arbeidstijdenwet, the general company policy, the policy of business unit Security is very high. 
priority: very high 
horizon: long-term 
evaluation type: development goal (maintain) 
ownership: organisational 
hardness: soft 
negotiability: non-negotiable 
perspective: society 
 
name: G1.2  
informal definition: It is required to maintain that the level of up-to-dateness of the software 
system used in (forward and daily) planning with respect to the contracts of the employees, 
CAO, de Arbeidstijdenwet, the general policy of Falck/the policy of BU Security is very high.  
priority: very high 
horizon: long-term 
evaluation type: development goal (maintain) 
ownership: organisational 
hardness: soft 
negotiability: non-negotiable 
perspective: society 
 
G1.3 = G2.2 
 
name: G2 
informal definition: It is required to maintain high effectiveness of allocation of security officers 
priority: high 
horizon: long-term 
evaluation type: development goal (maintain) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management, customer 
 



 

 186 

name: G 2.1 
informal definition: It is required to maintain high average correctness of produced plans. 
priority: high 
horizon: long-term 
evaluation type: development goal (maintain) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 2.1.1 
informal definition: It is required to achieve high level of correctness of every produced plan. 
priority: high 
horizon: short-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 2.1.1.1 
informal definition: It is required to achieve high level of correctness of every produced 
forward plan. 
priority: high 
horizon: short-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 2.1.1.2 
informal definition: It is required to achieve high level of correctness of every produced daily 
plan. 
priority: high 
horizon: short-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 2.1.1.3 
informal definition: It is required to achieve high level of correctness of every produced short-
term plan. 
priority: high 
horizon: short-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 



 

 187 

 
name: G 2.2 
informal definition: It is required to maintain high level of correctness of administrative 
processing of all planning data in the system. 
priority: high 
horizon: long-term 
evaluation type: development goal (maintain) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 2.2.1 
informal definition: It is required to maintain high level of correctness of administrative 
processing of forward planning data in the system. 
priority: high 
horizon: long-term 
evaluation type: development goal (maintain) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 2.2.2 
informal definition: It is required to maintain high level of correctness of administrative 
processing of short-term and daily planning data in the system. 
priority: high 
horizon: long-term 
evaluation type: development goal (maintain) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 2.3 
informal definition: It is required to maintain low average level of deviation from daily plans in 
their application.  
priority: high 
horizon: long-term 
evaluation type: development goal (maintain) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
  
name: G2.3.1 
informal definition: It is required to achieve low level of deviation from the produced daily plan 
in its application.  
priority: high 
horizon: short-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 



 

 188 

hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 2.3.1.1 
informal definition: It is required to achieve that the number of concerned security officers not 
informed on time about the produced daily plan is zero. 
priority: high 
horizon: short-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: hard 
negotiability: negotiable 
perspective: management 
 
name: G 2.3.1.2 
informal definition: It is required to achieve that the promptness of data change forms delivery 
by security officers is very high 
priority: high 
horizon: short-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 2.3.1.3 
informal definition: It is required to achieve that the promptness of data change forms delivery 
to the planners is very high 
priority: high 
horizon: short-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 2.3.1.4 
informal definition: It is required to achieve that the level of correctness of data change forms 
delivered to the planners is very high 
priority: high 
horizon: short-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 3 
informal definition: It is required to maintain high efficiency of planning and allocation of 
security officers  
priority: high 



 

 189 

horizon: long-term 
evaluation type: development goal (maintain) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 3.1 
informal definition: It is required to maintain high efficiency of the planning process.  
priority: high 
horizon: long-term 
evaluation type: development goal (maintain) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 3.1.1 
informal definition: It is required to achieve that the number of times the planning activities 
(creating and updating of a plan) exceed the allowed durations is equal to 0. 
priority: high 
horizon: long-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: hard 
negotiability: negotiable 
perspective: management 
 
name: G 3.1.1.1 
informal definition: It is required to achieve that the time to update a short-term plan given 
operational data is at most 48 hours. 
priority: high 
horizon: short-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: hard 
negotiability: negotiable 
perspective: management 
 
name: G 3.1.1.2  
informal definition: It is required to achieve that the time to create a daily plan given 
operational data is at most 24 hours 
priority: high 
horizon: short-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: hard 
negotiability: negotiable 
perspective: management 
 
name: G 3.1.1.3 



 

 190 

informal definition: It is required to achieve that the time to create a short-term plan after all 
operational data is received is at most a week. 
priority: high 
horizon: short-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: hard 
negotiability: negotiable 
perspective: management 
 
name: G 3.1.1.4 
informal definition: It is required to achieve that the time to create a forward plan after all 
operational data is received is at most a week. 
priority: high 
horizon: short-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: hard 
negotiability: negotiable 
perspective: management 
 
name: G 3.1.2 
informal definition: It is required to maintain high level of promptness of communication of 
forward, short-term and daily planning data to all concerned employees. 
priority: high 
horizon: long-term 
evaluation type: development goal (maintain) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 3.1.2.1 
informal definition: It is required to achieve high level of promptness of communication of 
every produced forward plan to all concerned employees. 
priority: high 
horizon: short-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 3.1.2.2 
informal definition: It is required to achieve high level of promptness of communication of 
every produced short-term plan to all concerned employees. 
priority: high 
horizon: short-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 



 

 191 

perspective: management 
 
G 3.1.2.3 = G 2.3.1.1 
 
name: G 3.2 
informal definition: It is required to maintain high efficiency of allocation of security officers  
priority: high 
horizon: long-term 
evaluation type: development goal (maintain) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 3.2.1 
informal definition: It is required to maintain high average level of optimality of forward, short-
term and daily planning for efficient allocation of security officers  
priority: high 
horizon: long-term 
evaluation type: development goal (maintain) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 3.2.1.1 
informal definition: It is required to achieve high level of optimality of every daily plan for 
efficient allocation of security officers  
priority: high 
horizon: short-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 

 
name: G 3.2.1.2 
informal definition: It is required to achieve high level of optimality of every forward plan for 
efficient allocation of security officers  
priority: high 
horizon: short-term 
evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 
name: G 3.2.1.3 
informal definition: It is required to achieve high level of optimality of every short-term plan 
for efficient allocation of security officers  
priority: high 
horizon: short-term 



 

 192 

evaluation type: achievement goal (achieve) 
ownership: organisational 
hardness: soft 
negotiability: negotiable 
perspective: management 
 



 

 193 

 
 
 
 
 
 
 
 

Chapter 3 

 

Process-oriented organization modeling and analysis 1 

Abstract. This paper presents a formal framework for process-oriented 
modelling and analysis of organisations. The high expressivity of the sorted 
predicate logic language used for specification allows representing a wide range 
of process-related concepts (e.g. tasks, processes, resources), characteristics and 
relations, which are described in the paper. Furthermore, for every organisation, 
structural and behavioural constraints on process-related concepts can be 
identified. Some of them should always be fulfilled by the organisation (e.g. 
physical world constraints), whereas others allow some degree of organisational 
flexibility (e.g. some domain specific constraints). An organisational 
specification is correct if it satisfies a set of relevant organisational constraints. 
This paper describes automated formal techniques for establishing correctness 
of organisational specifications with respect to a set of diverse constraint types. 
The introduced framework is a part of a general framework for organisation 
modelling and analysis. 

1   Introduction 

Every organisation achieves its goals by performing a set of tasks. Tasks are defined 
as organisational functions and their specification depends on the organisational type. 
For example, in mechanistic organisations (Scott 2001) each task is characterized by a 
detailed procedure that describes every aspect of the task execution, whereas in 

                                                           
1 Part of this chapter appeared as Popova, V., Sharpanskykh, A.: Process-Oriented Organization 

Modeling and Analysis. In: J.C.Augusto, J. Barjis, U. Ultes-Nitsche (eds.), Proceedings of 
the 5th International Workshop on Modelling, Simulation, Verification and Validation of 
Enterprise Information Systems (MSVVEIS 2007), INSTICC Press, 114-126. (2007) (the 
names of the authors are ordered alphabetically reflecting the comparable contribution of 
each author).  



 

 194 

organic organisations (Scott 2001) a task specification may consist only of interface 
(i.e. input and output) characteristics and a general task description. Many modern 
organisations combine different features of both mechanistic and organic 
organisations. For example, management tasks of an organisation are usually 
specified at a high level of abstraction, whereas routine production tasks are often 
defined by detailed procedures. 

The execution of tasks is often specified by dynamic structures called flows of 
control (or workflows), in which tasks are represented by processes. Usually control 
flows are based on a set of temporal ordering rules over processes.  

Mechanistic organisations are often characterized by complex (hierarchical) 
structures of tasks and processes, whereas in organic organisations these structures are 
relatively simple, however, constantly varying. Furthermore, both types of 
organisations include a variety of relations between tasks and processes and other 
organisational concepts (e.g. resources, roles, agents). Therefore, to handle the high 
complexity of modern organisations that often possess features of both mechanistic 
and organic types, automated modelling and analysis techniques are required. 
Furthermore, to enable automation and guarantee the correctness of analysis, both 
modelling and analysis technique should be formal. 

To this end, this paper introduces a formal framework for process-oriented 
modelling and analysis. In this framework, tasks, processes, resources and other 
related concepts are specified in the formal language LPR, based on the sorted first-
order predicate logic (Manzano 1996). The high expressivity of predicate logic allows 
including into LPR a wide range of process-oriented concepts specified by sorts, sorted 
constants, variables, functions and predicates that represent relations on these 
concepts. The domains for sorts are considered to be finite, which allows performing 
effective reasoning and computational analysis on process-oriented specifications of 
organisations in LPR. Such specifications correspond to structures over LPR that are 
defined by the particular interpretations of sorts, constants, functions and predicates, 
and variable assignments.  

For every organisation a set of structural and behavioural constraints expressed 
over its tasks and processes can de identified, which should be satisfied by the 
process-oriented specification. In this paper the set of constraints is represented by the 
logical theory TPR in LPR, i.e. a set of sentences expressed in LPR. This means that all 
concepts and relations defined in LPR may be used for the specification of constraints. 
A process-oriented specification in LPR is correct if TPR is satisfied by this 
specification, i.e. all sentences in theory TPR are true in the logical structure 
corresponding to the specification.  

The constraints in TPR may be of different types: some are dictated by the 
restrictions of the physical world and should be satisfied by any process-oriented 
specification; others depend on the application domain and may be changed by the 
designer. The classification of constraints is described in this paper. Furthermore, this 
paper also introduces automated techniques for establishing the correctness of a 
process-oriented specification by verifying constraints. Interdependences that may 
exist in constraint sets are also handled by the proposed verification techniques. To 
our knowledge there exist no other frameworks that allow the simultaneous 
verification of different (interdependent) types of constraints based on the extensive 
set of concepts and relations as can be found in LPR.  



 

 195 

The framework introduced in this paper constitutes a part of a general formal 
framework for organisation modelling and analysis (Popova and Sharpanskykh 
2007a) in which organisations are considered from other perspectives (or views) as 
well. In particular, the performance-oriented view (Popova and Sharpanskykh 2007c, 
Popova and Sharpanskykh 2007d) describes organisational goal structures, 
performance indicators structures, and relations between them. Within the 
organisation-oriented view (Broek et al. 2006, Sharpanskykh 2007) organisational 
roles, their authority and interaction relations are defined. In the agent-oriented view 
(Popova and Sharpanskykh 2007a) different types of agents with their characteristics 
and behaviour are identified and principles for allocating agents to roles are 
formulated. Concepts and relations within every view are formally described using 
dedicated languages based on the expressive order-sorted predicate logic. 
Furthermore, the views are connected to each other by means of sets of relations. This 
enables different types of analysis across different views. An example of such 
analysis involving the process- and performance-oriented views is the organisational 
performance evaluation considered in (Popova and Sharpanskykh 2007c). The 
relations between processes on the one hand and goals, performance indicators, roles 
and agents on the other hand are introduced in this paper.  

The proposed views and concepts of the framework are similar to the ones defined 
in the Generalized Enterprise Reference Architecture and Methodology (GERAM) 
(Bernus et al. 1998) developed by the IFIP/IFAC Task Force, which forms a basis for 
comparison of the existing enterprise architectures and serves as a template for the 
development of new enterprise modelling frameworks. Although many enterprise 
architectures include a rich ontological basis for creating specifications of different 
views, most of them provide only a limited support for automated analysis of these 
specifications, addressed in the category Enterprise Engineering Tools of GERAM, 
primarily due to the lack of formal foundations in these frameworks. In contrast, the 
proposed framework enables different types of automated analysis both within 
particular views and across different views (Popova and Sharpanskykh 2007a). 

The paper is organized as follows. First, in Section 2, the running example for this 
paper is described. Section 3 introduces the language LPR. Section 4 describes the 
classification of constraints. In Section 5, the methods for verification of constraints 
are given. In Section 6 the related work on process-oriented modelling is discussed. 
Section 7 concludes the paper.  

2   The case study 

To illustrate different aspects of our approach a running example is used that 
describes the operation of a 3PL (third-party logistics) provider. In general, 3PL 
companies provide logistics services to other companies. The considered operation 
cycle begins with the customer order intake process, after which the order is 
processed and depending on the customer (company) is scheduled for some delivery 
type (for different companies different delivery regulations may be applied). During 
the delivery the assigned driver is supervised by the assigned fleet manager. After the 
delivery is finished, the delivery summary report is provided to the customer.  



 

 196 

In the context of this example consider a particular delivery scenario (see Fig. 1): 
The logistics company performs shipments of resources between three bases of some 
manufacturing enterprise (A, B and C), which are located in different regions. The 
base A has the storage facilities for both raw materials delivered by suppliers and for 
finished products of the enterprise prepared for further shipments to customers. The 
raw materials stored at A are required for the production processes of the enterprise’s 
departments located at B and C (the resources of type rt1 - for B and the resources of 
type rt2 - for C) and are transported from A to these departments by trucks. Each 
delivery is preceded by the process of resource loading and is followed by the 
resource unloading process. The 3PL company owns trucks of two types: large trucks 
of the type tr1 with three capacity units each (a capacity unit is a relative spatial 
capacity measure of a truck) and small trucks of the type tr2 with one capacity unit 
each. All deliveries between the bases of the enterprise are performed by two trucks 
of the type tr1 and three trucks of the type tr2. The base C is geographically located 
between A and B, however also a more direct connection between A and B exists. At 
C two types of products are produced: the finished product of type rt4, which should 
be shipped to A, and the intermediate product of type rt3 that is used as an assembling 
part at B. Using raw materials of type rt1 and products of type rt3 the department at B 
produces finished products of type rt5, which should be subsequently shipped to the 
storage facilities at A. 

In the considered scenario initially all trucks are located at the base A. The 
company assigns one truck of type tr1 to the direct delivery d1 of the materials of type 
rt1 from A to B. The delivery d2 of resources of type rt1 from A to B through C starts 
simultaneously with d1. The delivery d2 shares two trucks of the type tr2 with d3, the 
delivery of resources of type rt2 from A to C. The mode of sharing of each tr2 type 
truck is determined by particular weight and spatial restrictions. In particular, the 
weight limitations prescribe that at most 70% of the capacity unit of a tr2 truck can be 
filled with resources of type rt2, whereas the remaining 30% should be left empty. 
When a tr2 truck is shared between resources of types rt1 and rt2 (or of types rt1 and 
rt3), then the resources of type rt1 may occupy at most 50% of the truck’s space. 
Moreover, one more tr2 type truck is assigned to d3. When d3 is finished and the 
resources of type rt2 are unloaded, this truck is scheduled to be loaded with resources 
of type rt4 and to return back to A (the delivery d6). After the resources of the type rt2 
are unloaded at C from two trucks of the type tr2, the emptied space in these trucks 
will be promptly filled with products of type rt3, which are scheduled to be delivered 
to the base B (delivery d4). The deliveries d2 and d4 again share the tr2 trucks 
equally. After both d4 and d2 are finished, both tr2 trucks will be unloaded and loaded 
with finished products of the type rt5, which are scheduled to be delivered to A (the 
delivery d7). Similarly, the truck used for d1, after being unloaded at B, will be 
loaded with products of type rt5 that are required to be delivered to A (delivery d5). 

3   Process-oriented modelling 

Process-oriented specifications in the proposed framework are specified using the 
sorted predicate language LPR. In this Section, a general overview of LPR is given.  



 

 197 

A task represents a function performed in the organisation and is characterized by a 
name and by a maximal and a minimal durations. The sort TASK contains the names 
of all tasks. The characteristics of the tasks are specified by the following predicate: 
task: TASK × TASK_PROPERTY × VALUE ∪ STRING. We sometimes use the following 
short notation for specifying these characteristics: t.p = v, where t∈TASK, 
p∈TASK_PROPERTY and v∈ VALUE ∪ STRING. Characteristics of other concepts defined 
below are formalized in a similar way. For example, the task Order_intake has minimal 
duration 1 hour and maximal duration 2 hours depending on the experience and the 
efficiency of the agent performing the task: Order_intake.min_duration=1h, 
Order_intake.max_duration=2h.  

Tasks can range from very general to very specific. General tasks can be 
decomposed into more specific ones using AND- and OR-relations thus forming 
hierarchies. It is specified using the following predicates: 

is_in_task_list: TASK × TASK_LIST specifies a task is a member of a task list 
is_decomposed_to: TASK × TASK_LIST specifies that a task is decomposed into an 

AND-list of tasks meaning that all tasks in the task list together are necessary and 
sufficient in order to perform the decomposed task. Sometimes alternative 
decompositions of a task are possible which are connected by an OR-relation. They 
are specified as separate decompositions of the same task. For example the task 
DeliveryComp1 which encompasses all deliveries for Company 1, as described in 
Section 2, can be decomposed in several types of deliveries, modelled as more 
specific tasks in the task hierarchy of DeliveryComp1, which are all necessary for 
fulfilling the agreements with the client such as: delivery from A to B (DeliveryAB), 
from B to A (DeliveryBA), from A to C (DeliveryAC), from C to B (DeliveryCB) and from 
C to A (DeliveryCA). Therefore they should be modelled as an AND-decomposition list 
of task DeliveryComp1:  

is_decomposed_to(DeliveryComp1, L) 
is_in_task_list(DeliveryAB, L) 
is_in_task_list(DeliveryBA, L) 
is_in_task_list(DeliveryAC, L) 
is_in_task_list(DeliveryCB, L) 
is_in_task_list(DeliveryCA, L). 
These deliveries can be executed in different ways. For example DeliveryAB, which 

should transport 4 capacity units of resource type rt1, can be performed by two big 
trucks (DeliveryAB20) or by one big and two small trucks (DeliveryAB12) or by four 
small trucks (DeliveryAB04). Such information can be represented as alternative 
decompositions of the task DeliveryAB: 

is_decomposed_to(DeliveryAB, L1) 
is_in_task_list(DeliveryAB20, L1) 
is_decomposed_to(DeliveryAB, L2) 
is_in_task_list(DeliveryAB12, L2) 
is_decomposed_to(DeliveryAB, L3) 
is_in_task_list(DeliveryAB04, L3). 
These alternative subtasks can be decomposed further using the information that 

there are two possible routes between A and B – direct and via C. For example, for 
DeliveryAB12 it was decided to split the trucks so that one big truck travels directly from 
A to B and two small trucks travel via C. 

A workflow is defined by a set of (partially) temporally ordered processes. Each 
process, except for the special ones with zero duration introduced below, is defined 



 

 198 

using a task as a template and all characteristics of the task are inherited by the 
process. This is specified using the predicate: is_instance_of: PROCESS × TASK, e.g. 
is_instance_of(d1, DeliveryAB). Decisions are also treated as processes that are associated 
with decision variables taking as possible values the possible decision outcomes. 

Definition 1 (A workflow): A workflow with the name w is defined by a tuple <w, P, 
C> with a set of processes P and a set of ordering relations C on processes from P.  

 

BEGIN
Order_
intake

Order_
processing

begin_or
(or1)

Order_ delivery1
begin_and

(and10) Supervision_
delivery1

begin_and
(and20)

Order_ delivery2

Supervision_
delivery2

end_and
(and20)

end_and
(and10)

end_or
(or1)

Provide_
delivery_

report
END

Company 1

Company 2

 
 

(a) 
 

BEGIN
begin_and

(and1)

begin_and
(and2)

d1

d2

d3

d4
end_and
(and2)

d5

begin_and
(and3)

end_and
(and3)

d6

d7 end_and
(and1)

l2

u1l1 u5l5

u2

u3l3

u6

l4

l6

u4

l7 u7 END

 
 

(b) 
 

Fig. 1. The generalized workflow that illustrates the operation of a 3PL delivery company (a) 
and the detailed workflow for the deliveries for a specific company (b). 

 
Fig.1 is a graphical representation of the workflow built for the running example. It 

shows the processes at two different aggregation levels. Fig.1a shows the overall 
workflow for processing and executing an incoming order. Fig.1b is a more detailed 
description of the workflow corresponding to process Order_delivery1 for the orders of 
Company 1. Analogous detailed workflow can be built for the deliveries to Company 
2 using relevant information (left out of the case study for simplicity).  

A workflow starts with the process BEGIN and ends with the process END; both 
have zero duration. The (partial) order of execution of processes in the workflow is 
defined by sequencing, branching, loop and synchronization relations (referred to as 
ordering relations) specified by the designer. 

A sequencing relation is specified by the predicate starts_after: PROCESS × 
PROCESS × VALUE expressing that the process specified by the first argument starts 
after the process specified by the second argument with the delay expressed by the 
third argument, e.g. starts_after(Order_processing, Order_intake, 0) represented 
graphically by solid arrows between the processes. For each process p, different from 
BEGIN and END at least two sequencing constraints are defined, which specify the 
process that precedes p and the process which follows after p.  

By specifying sequencing constraints different paths of a workflow are formed. 
A path is a sequence of processes (p1, p2, …, pn-1, pn), where n>1 and starts_after(p2, p1) ∧ 



 

 199 

starts_after(p3, p2) ∧ … ∧ starts_after(pn, pn-1). A path in a workflow, in which p1= pn is 
called a cycle. No cycles are allowed in the workflow structures. 

Synchronization relations define temporal relations between processes that are 
executed in parallel (e.g. starts_with, finishes_with, starts_during: PROCESS × PROCESS). 
An example of such a relation is shown by a dashed line between the beginnings or 
endings of the processes in Fig. 1, meaning that the connected processes should start 
or finish simultaneously. For example: starts_with(d2,d3), finishes_with(d2,d4) which 
comes from the fact that these deliveries share trucks and therefore it is impossible to 
have them start / finish at different times. Taken together, synchronization and 
sequencing relations allow specifying all cases of interval relations defined in (Allen 
1983). 

Branching relations are defined over and- and or-structures. An and(or)-structure 
with name id, starts with the zero-duration process begin_and(id) (begin_or(id)) and 
finishes by the zero-duration process end_and(id) (end_or(id)). These special processes 
are represented graphically by rhombuses. Our treatment of AND-structures is similar 
to the parallel split pattern combined with all types of the merge pattern from (van der 
Aalst et al. 2003), represented in our case by an and-condition. The first processes in 
every branch of an and-structure start at the same time. For each and-structure a 
condition is defined (and_cond: AND_STRUCTURE × CONDITION_EXPRESSION), which 
determines when the process p following after the and-structure may start. The 
following types of conditions may be used: (1) constant any: meaning that as soon as 
all processes of one of the branches finish, the process p starts; (2) constant all: 
meaning that as soon as all processes of all branches finish, the process p starts; (3) a 
condition expressed by a logical formula constructed from the functions finished, 

not_finished: PROCESS → {true, false} using Boolean connectives ∨ and ∧. In Fig.1a the 
and-structures contain the condition value all, meaning that only when all processes in 
the and-structure are finished, the process specified after the end of the and-structure 
is allowed to start. This is represented formally as: and_cond(and0, all). In Fig.1b AND-
structure and3 contains condition finished(u4) therefore the execution of the workflow 
will continue only when process u4 finishes irrespective of whether the last process of 
the other branch (u6) is finished or not. The reason for this is that the branch of d6 
(corresponding to the delivery from C to A) does not influence the processes after the 
AND-structure, thus, they can start theirs execution without waiting.  

For every or-structure a condition is defined (or_cond: OR_STRUCTURE × 
CONDITION_EXPRESSION), based on which it is determined which branches of the or-
structure will start. The condition may consist only of a condition variable or it may 
be a disjunction of conjunctions of expressions in the form condition_variable [OP value], 
where OP∈{=,  �, <, >}, and value belongs to the domain of the condition variable. The 
following types of condition variables can be used: (1) a decision variable; (2) a 
variable over the sort that includes all states of a certain object in the environment, 
e.g. market conditions, customer demand, taxes, weather conditions, etc.; (3) a 
variable over the sort that includes all values of certain characteristic of an object in 
the environment. For an or-structure branches are specified that correspond to all 
possible values of the condition expression, using the predicate or_branch: 
OR_COND_VALUE × PROCESS, which expresses that the branch of the or-structure that 
begins with the process specified in the second argument corresponds to the value of 
the condition expression specified in the first argument. An or-branch may correspond 



 

 200 

to the constant other, which should be interpreted as all other values from the domain 
of the condition variable. Our treatment of or-structures allows realizing both 
exclusive and multiple-choice patterns from (van der Aalst et al. 2003). The or-
structure in the running example, Fig.1a specifies the exclusive choice between two 
types of delivery depending on the company name. Here the company name is the 
characteristic company of the environmental object incoming_order and takes two 
possible values, Company1 and Company2. Therefore the condition of the OR-structure 
can be represented in the following way:  

or_cond(or1, incoming_order.company)  
or_branch(Company1, begin_and(and1)) 
or_branch(Company2, begin_and(and2)) 
Loop relations are defined over loop-structures with conditions that realize cycle 

patterns from (van der Aalst et al. 2003). A loop-structure with name id, starts with 
the zero-duration process begin_loop(id) and finishes by the zero-duration process 
end_loop(id). For every loop-structure a Boolean condition (loop_cond: LOOP × 
CONDITION_EXPRESSION) and the maximal number of times of the loop execution 
(loop_max: LOOP × VALUE) are specified. No cycles were identified for the running 
example. 

Tasks use, consume and produce resources of different types. Resource types 
include tools, supplies, components and other material or digital artefacts. Also data 
are considered as a special resource type. The predicates task_uses, task_consumes, 
task_produces: TASK × RESOURCE_TYPE × VALUE indicate resource types that are input 
or output of tasks with their prescribed amounts. Resource types are characterized by: 
name; category – discrete or continuous; measurement_unit; expiration_duration – 
the length d of the time interval for which a resource type can be used. Specific 
resources represent instances of particular resource types and inherit their 
characteristics. The resources have, in addition to the inherited characteristics, also 
name and amount. Every resource in the workflow has to be produced by a process of 
this workflow or be available in the organisation before the beginning of the 
workflow execution.  

For the running example, 5 resource types were identified rt1 to rt5 corresponding 
to the raw materials, components and products described in Section 2 as well as tr1 
and tr2 corresponding to the two types of trucks available for the deliveries. For each 
task which uses a resource type, the corresponding necessary amount can be specified 
e.g. task_uses(deliveryAB12, tr1, 1), task_uses(deliveryAB12, tr2, 2), task_uses(deliveryAB12, 
rt1, 3). Furthermore no resource type is consumed or produced by a task in the 
example since the operations of the client company are considered out of the scope 
and are not part of this workflow.  

Resource types can sometimes be functionally divisible, i.e. they can be divided in 
parts in such a way that a part can have a different purpose, therefore is a different 
resource type. For example a car can be decomposed to its components which do not 
have the same purpose as the car. This is specified by the following predicate: 

is_func_part_of: RESOURCE_TYPE × RESOURCE_TYPE where the second resource 
type is functionally divisible and the first resource type is its functional part. For 
example computer might be defined as a functionally divisible resource since its parts 
have different purpose than the whole computer.  



 

 201 

Some resources can be shared (used simultaneously) by a set of processes (e.g. 
storage facilities, transportation vehicles, some computers). The predicate 
resource_sharable: RESOURCE_TYPE × PROCESS_LIST defines that the resource type 
can be used (but not consumed!) by the processes in the list (or a sub-list of this list) 
at the same time. The shared amount of the resource type should be sufficient for the 
execution of every process in the process list. Alternative sharing of the same 
resource type can be specified as well. Our representation of shared resources is 
different from (Barkaoui and Petrucci 1998) in several aspects: (1) the shared 
resource amount is used by processes simultaneously; (2) alternative sets of processes 
that are allowed to share a resource can be defined; (3) different amounts of a 
resource can be shared simultaneously; (4) specific conditions (requirements) for 
resource sharing can be defined. In the running example, trucks may be considered as 
shared resources. Delivery processes d2, d3 and d2, d4 are required to share trucks of 
type tr2:  

resource_sharable(tr2, L1) 
resource_sharable(tr2, L2) 
is_in_process_list(d2, L1) 
is_in_process_list(d3, L1) 
is_in_process_list(d2, L2) 
is_in_process_list(d4, L2) 

Every resource in the workflow has to be produced by a process of this workflow. 
This is specified using the predicate: process_output: PROCESS × RESOURCE. In this 
way the end time point of the process producing the resource is taken as creation time 
for this resource and the time when it will expire is calculated with respect to this 
creation time. A process can produce only one resource instance of the same resource 
type. In some situations, resources could be available in the organisation before the 
beginning of the workflow execution, for example machines and other durable tools, 
materials already purchased, etc. In these cases such resources that will be used in the 
workflow are specified as output of its process BEGIN. For the running example, the 
used resources are considered available at the beginning of the workflow i.e. 
produced by the BEGIN process:  

process_output(BEGIN, r1) 
r1.amount = 4 
is_instance_of(r1, rt1) 
etc. 
For some application areas it is important to keep track of where the resources are 

at certain time points. For modelling such information the concept of a location is 
used which for example can represent the available storage facilities. Processes can 
add or remove resource types from locations which can be specified using the 
predicates: process_adds_resource_type_to: PROCESS × RESOURCE_TYPE × LOCATION × 
VALUE and process_rem_resource_type_from: PROCESS × RESOURCE_TYPE × LOCATION 
× VALUE where the last argument specifies the amount of the added or removed 
resource type. Resources are considered removed at the starting time point of the 
corresponding process and are added at the ending time point of the process. 

For the running example we define three locations corresponding to the storage 
facilities of A, B and C. Only delivery processes are expected to add or remove 
resource types from locations (during loading and unloading the resources are 
considered to be still at the same location). Therefore we can specify that: 



 

 202 

process_rem_resource_type_from(d2, rt1, A, 2)  
process_adds_resource_type_to(d2, rt1, B, 2) 
etc. 
The process-oriented view is related to the organisation-oriented and the agent-

oriented views through the sorts ROLE and AGENT. Each object of the sort ROLE 
describes a set of functionalities realized by organisational processes in a certain 
specification, which are assigned together to individuals who will be performing 
them. These individuals are objects of the sort AGENT. An agent can be allocated to 
one or more roles if it satisfies the requirements for performing these roles. For 
example, role_performs_process(Driver,d1) and agent_plays_role(Allan, Driver). For more 
details the reader is referred to (Popova and Sharpanskykh 2007e). 

The process-oriented view is also related to the performance-oriented view through 
the sorts GOAL and PI (performance indicator). Objects of sort GOAL are organisational 
objectives and are defined as expressions based on performance indicators (objects of 
sort PI). The performance-oriented view is discussed in detail in (Popova and 
Sharpanskykh 2007c, Popova and Sharpanskykh 2007d). It relates to the process-
oriented view through the following predicates: 

is_realizable_by: GOAL × TASK_LIST – the goal can be realized by the tasks in the list 
measures: PI × PROCESS – the performance indicator expresses an aspect of the 

performance of the process.  

4 Constraints 

Constraints are expressed as formulae in theory TPR that are constructed from terms of 
LPR in a standard way (Manzano 1996) using Boolean connectives and quantifiers over 
variables. The constraints are divided in two groups: (1) generic constraints need to 
be satisfied by any specification built using this framework; (2) domain-specific 
constraints are dictated by the application domain of the specification. Two types of 
generic constraints are considered: (1) structural constraints used to ensure 
correctness of the workflow, task and resource hierarchies; (2) constraints imposed by 
the physical world. Both types of generic constraints are described in Sections 4.1. 
Section 4.2 discusses the domain-specific constraints.  

4.1 Generic constraints 

The language allows building three types of structures: the workflow, the task 
hierarchy and the resource hierarchy. For each of them structural constraints are 
defined. 

Workflow structural constraints 
With respect to the workflow we define a set of structural constraints: structural 
correctness, temporal correctness and condition correctness constraints.  

Structural correctness of the workflow 
First let us introduce reachability and complete reachablitity relations. 



 

 203 

Definition 2 (Reachability relation): The process p2 is reachable from the process p1 
in the workflow w (reachable_from_in(p2, p1, w)) if there exists a sequence of processes 
constructed using the sequencing relations that starts at p1 and includes p2. 

On Fig.1b, for example, process l7 is reachable from process u3 through two 
sequences of processes, one of which is: u3, begin_and(and3), l4, d4, u4, end_and(and3), 
end_and(and2), l7. However process u3 is not reachable from process l7. Also, for 
example, process u3 is not reachable from process u2 and process u2 is not reachable 
from process u3.  

The truth value of the relation reachable_from_in(p2, p1, w) is determined as follows: 

1. Initial settings: Let L be an empty queue and A be an empty set. Put p1 into L.  
2. Until L becomes empty perform steps 3-6. 
3. Dequeue L and assign the obtained process name to the variable curr_process. 
4. Identify the set A = {a | starts_after(a, curr_process)} 
5. If p2∈A, then return true. 
6. Enqueue all elements of A in L. 
7. Return false. 

 
To investigate the correctness and the computational properties of this algorithm, a 

workflow <w, P, C> is represented as a unidirected graph G = (V, E), in which each 
vertex v ∈ V represents some organizational process p ∈ P, and each edge e ∈ E with 
the initial vertex representing the process x and the terminal vertex representing the 
process y corresponds to the relation starts_after(y, x). Note that loops represented in 
the process-oriented language by sequences of processes do not introduce cycles in 
the corresponding graph representation. The algorithm considers gradually all vertices 
in the graph that belong to the paths beginning from the vertex that represents the 
process p1, until it finds the process p2. Since each path in a workflow finishes with 
the vertex corresponding to the process END, any execution of the algorithm 
eventually terminates. Such type of algorithms is called breadth-first search and its 
correctness and computational properties are well established (cf., Cormen et al, 
2001).  

The time complexity of the proposed algorithm is estimated for the worst case 
under the assumption that each primitive operation (e.g., assignment of a value, 
extracting/placing from/into a queue) takes one time unit: The step 1 of the algorithm 
is performed only once and takes 1 time unit. The steps 2-6 in the worst case can be 
repeated |P|-1. The step 2 takes 1 time unit each time it is executed. The step 3 takes 2 
time units each time when it is executed. All executions of the step 4 taken together in 
the worst case may take |P-1|⋅(|E|+1) time units. The step 5 does not take more than 
|P|-2 time units. The step 6 for all its executions taken together in the worst case may 
take |P|-2 time units. Thus, the overall time complexity of the algorithm for the worst 
case is O(|P|*(|E|+|P|). However, in most practical cases the time complexity is less 
than O(|P|*(|E|+|P|), since often subsets of |P| are considered. 

Definition 3 (Complete reachability relation): The process p2 is completely reachable 
from the process p1 in the workflow w (completely_reachable_from_in(p2, p1, w)) if all 
process sequences built using the sequencing relations that start at p1 include p2. 



 

 204 

For example, the process Provide_delivery_report from the running example, Fig.1a, 
is completely reachable from the process Order_intake but process Order_delivery1 is not 
completely reachable from the process Order_intake.  

The truth value of the complete reachability relation completely_reachable_from_in(p2, 

p1, w) is determined by the following algorithm: 

1. Initial settings: Let L be an empty queue and A be an empty set. Put p1 into L.  
2. Until L is empty perform steps 3-5. 
3. Dequeue L and assign the obtained process name to the variable curr_process. 
4. Identify the set A={a | starts_after(a, curr_process)} 

5. If A=∅, then return false. 
    else if A�{p2}, then enqueue all elements of A in L. 

6. Return true. 
 
Using the same type of representation of a workflow as in the previous algorithm 

(i.e., as a graph), it is easy to see that this algorithm is also a variation of breadth-first 
search. In contrast to the previous algorithm, this algorithm checks by the gradual 
consideration of the vertices, if each path that begins with the vertex corresponding to 
p1 also includes the vertex corresponding to p2. If one (or more) of the paths does not 
include p2, the condition in the line 5 of the algorithm will eventually become true 
(i.e., the vertex corresponding to the process END will eventually be reached, for 
which ¬∃a starts_after(a, END), and therefore A = ∅).  

The time complexity of this algorithm is calculated in a similar way as for the 
previous algorithm and is estimated for the worst case as O(|P|*(|E|+|P|). 

Definition 4 (A well-formed and-structure): An and-structure with the name and_id 
defined in the workflow <w, P, C> is well-formed if the following constraints hold:  
(1) ∃p∈P such that p = begin_and(and_id); ∃p∈P such that p = end_and(and_id); 
(2) completely_reachable_from_in(end_and(and_id), begin_and(and_id), w) is true. 
(3) each path of the and-structure is free of cycles. 

Well-formed or- and loop-structures are defined similarly. Both and- and or-
structures defined in the running example in Section 2 are well-formed. 

Set of processes P(id) of an and-structure with the name id is constructed by the 
following procedure: 

1. Initial settings: Let L be an empty queue and P(id) be an empty set. Put begin_and(id) 
into L.  
2. Until L is empty perform steps 3-5. 
3. Dequeue L and assign the obtained process name to the variable curr_process. 
4. Identify the set A = {a | starts_after(a, curr_process)}   
5. If A � { end_and(p2)}, then put all the elements of A into P(id) and enqueue them in L. 
6. Return P(id). 

 
If the graph representation of a workflow is used as in the algorithms above, then 

the set of processes P(and1) of the and-structure and1 corresponds to the set of all 
vertices of the corresponding graph that belong to the paths beginning with the vertex 
representing the process begin_and(and1) and finishing with the vertex representing 



 

 205 

the process end_and(and1). The vertices that belong to the considered paths are 
processed in the order as in the breadth-first search algorithm, therefore the time 
complexity is estimated for the worst case as O(|P|*(|E|+|P|). 

Sets of processes for or- and loop-structures are defined in a similar way. 
Now, the structural correctness property for a workflow can be introduced.  

Definition 5 (A structurally correct workflow): A workflow <w, P, C> is structurally 
correct if the following constraints are satisfied: 
(1) A workflow contains only one BEGIN (the first process), followed by one process 

and only one END (the last process) preceded by one process. Formally: 

 (a) ∃s∈P ∃s1∈P s=BEGIN ∧ starts_after(s1, s) ∧ (∀s2∈P starts_after(s2, s) � s2=s1) 
 (b) ∃s∈P ∃s1∈P s=END ∧ starts_after(s, s1) ∧ (∀s2∈P starts_after(s, s2) � s2=s1) 

 (c) ∀s∈P (¬starts_after(BEGIN, s)) ∧  (¬starts_after(s, END)) 

 (2) For every process p, different from BEGIN, END, and the starting and ending 
processes for and- and or-structures, exactly two sequencing relations should be 
defined that identify the process that precedes p and the process that follows after p: 

 (a) ∃s∈P starts_after(p, s) ∧ (∀s1∈P starts_after(p, s1) � s1=s) 
 (b) ∃s∈P starts_after(s, p) ∧ (∀s1∈P starts_after(s1, p) � s1=s) 

(3) Loops should be introduced only by loop-structures, no other cycles are allowed:  

       ∀p1, p2∈P reachable_from_in(p1, p2, w) � ¬reachable_from_in(p2, p1, w)  

(4) Processes, over which a synchronization constraint is specified, should not belong 
to the same or-structure. Formally: for each constraint from C in the form 
starts_with(p1, p2), finishes_with(p1, p2), starts_during(p1, p2): 

 ¬∃id:OR_STRUCTURE p1∈P(id) ∧ p2∈P(id) 

(5) All and-, or- and loop-structures in w are well-formed and each process p∈P can be 
reached from the BEGIN, and the END can be reached from each process: 

  ∀p∈P reachable_from_in(p, BEGIN, w)  ∧ reachable_from_in(END, p, w) 

(6) All and- and or-structures of a loop-structure should begin and finish within the 
loop. Formally: 

For each loop-structure l from the workflow 

∀a ∈ AND_STRUCTURE [ reachable_from_in(begin_and(a), begin_loop(l), w)  ∧ 
reachable_from_in(end_loop(l), begin_and(a), w) ]  
� [ reachable_from_in(end_and(a), begin_loop(l), w)  ∧ reachable_from_in(end_loop(l), 
end_and(a), w) ] 

Similarly for OR-structures. 
 
(7) Each path of the workflow is free of cycles. 
 

The workflow defined by the running example in Section 2 is structurally correct. 

Temporal correctness of the workflow 
The duration of each process in a workflow may vary in actual executions and, 
because of the temporal ordering of processes in the workflow, each process may 
have different starting points in different executions. Among all starting points the 



 

 206 

earliest (estp) and the latest starting time (lstp) for each process p can be identified. 
Before describing a procedure for calculation these time parameters, let us introduce 
sets of relevant processes and relevant ordering relations, and an algorithm for their 
construction. 

Let PR(p) be a set of relevant processes with respect to p∈P in the workflow <w, P, 
C>, i.e. PR(p) ⊂ P, such that each process in PR(p) influences the starting time of p. 

Let CR(p) be a set of relevant ordering relations with respect to p∈P in the 
workflow <w, P, C>, i.e. CR(p) ⊂ C, such that each relation in CR(p) influences the 
starting time of p. 

Sets of relevant processes and relevant ordering relations with respect to p∈P in the 
workflow <w, P, C> are constructed by the following algorithm: 

1. Initial settings: Let L be an empty stack, and PR(p) and CR(p) be empty sets. Put p 
into L.  
2. Repeat the steps 3-8 until L is empty, then exit. 
3. Remove the element from the top of L and assign its name to the variable 
current_name. 
4. Identify the set C’= { c∈C | ∃s∈P [ c=starts_after(current_name, s) ∨  
                                          c=starts_with(current_name, s) ∨ c=starts_with(s, current_name) ∨   
                                          c=finishes_with(current_name, s) ∨ c=finishes_with(s, current_name) ∨   
                                           c=starts_during(current_name, s)]} 
5. CR(p) = CR(p) ∪ C’ 
6. Identify the set P’= {p∈P | ∃c∈C’ c= starts_after(current_name, p) ∨  
                                         c=starts_with(current_name, p) ∨ c=starts_with(p, current_name) ∨   
                                    c=finishes_with(current_name, p) ∨ c=finishes_with(p, current_name) ∨   
                                         c=starts_during(current_name, p)]}   
7. P’ = P’\ {p | p∈ PR(p) ∧ p∈P’}   
8. If P’ � {START}, then PR(p) = PR(p)∪ P’ and add all elements of P’ to L in any order. 

 
In the graph representation of a workflow, this procedure traces back all paths that 

include the vertex corresponding to the process p, starting from p. The processes 
represented by the vertices that belong to the considered paths are included into the 
set PR(p). Furthermore, the set PR(p) also includes the processes that are not 
represented by vertices on the considered paths, however are related to these 
processes by synchronisation relations. The set CR(p) consists of the ordering 
constraints, formulated over the processes from PR(p). Each execution of this 
procedure will eventually terminate, since each considered path begins with the vertex 
representing the process BEGIN. When BEGIN is encountered on some path, no 
further vertices along this path will be added to the stack L.  

The time complexity of this procedure is estimated for the worst case as follows: 
Given the workflow <w, P, C>, the internal cycle (steps 3-8) may be repeated |P| 
times at most. The steps 4 and 6 take |C|2⋅|P| and |C|⋅|P|2 time units respectively for all 
executions of the cycle. The step 5 can be performed |C| time units for all executions 
of the cycle taken together in the worst case. The execution of the step 7 takes |P|2 
+2⋅|P| time units for all executions of the cycle taken together. The execution of the 
step 8 takes 3⋅|P| time units for all executions of the cycle taken together. The overall 
time complexity of the procedure is estimated for the worst case as: |C|2⋅|P|+ |C|⋅|P|2 + 
|C| + |P|2+ 8⋅|P|+1. 



 

 207 

The procedure of calculation of estp and lstp 
The earliest (latest) starting time of a process p in the workflow <w, P, C> is calculated 
under the assumption that all relevant processes in PR(p) have minimal (maximal) 
durations specified in their characteristics. Furthermore, estBEGIN= lstBEGIN= 0. 

To calculate estp and lstp in the workflow <w, P, C>: 

1. Identify the relevant sets PR(p) and CR(p). 
2. Assume that the duration of every p∈P is defined by its property min_duration 
(max_duration). 
3. The duration of every or-structure in PR(p) is equal to the duration of its shortest 

(longest) branch, calculated as the sum of minimum durations of processes that 
belong to the branch as follows. For the or-structure with the name or_struct: 
a) Initialization: Let ST be an empty stack, and min_duration=0, curr_duration=0.    
b) Put all elements of the set {a | starts_after(a, begin_or(or_struct))} into ST in any 

order. 
c) Until ST is not empty perform steps d)-h). 
d) Remove the element from the top of ST and assign its value to the variable 

curr_process. 
e) Until curr_process � end_or(or_struct), perform steps f) and g). 
f) curr_duration= curr_duration + curr_process.min_duration   
g) curr_process= {a | starts_after(a, curr_process) }   
h) If min_duration=0 ∨ curr_duration < min_duration, then min_duration= curr_duration    
i) Return min_duration 

4. The duration of every and-structure in PR(p) depends on its end-condition: 
a) in case the condition is ‘any’ the duration is determined by the shortest branch 

of the and-structure; 
b) in case the condition is ‘all’ the duration is determined by the longest branch of 

the and-structure; 
c) in case of a more complex condition defined by an and/or-list of processes, the 

duration is determined by processing the list recursively starting from the most 
nested parts of a condition:  
− the or-list is replaced by the process with the shortest duration in this list; 
− the and-list is replaced by the process with the longest duration in this list. 

The duration of the process obtained in the end is the duration of the and-structure. 
5. To calculate the earliest starting point of the process p the duration of every loop-

structure in PR(p) is counted as the sum of minimum durations of processes that 
belong to the loop. To calculate the latest starting point of the process p the duration 
of every loop-structure in PR(p) is counted as the product of the sum of maximum 
durations of processes that belong to the loop and the maximum amount of loop 
execution times. 
 
The time complexity of this procedure can be estimated as follows: As it has been 

shown above, the execution of the step 1 takes |C|2⋅|P|+ |C|⋅|P|2 + |C| + |P|2+ 8⋅|P|+1 in 
the worst case. The complexity of processing of every or-structure is calculated under 
the assumption that each or-structure contains m << |P(or1)| branches, where P(or1) is 
the set of processes of the or-structure calculated as shown above. Then, the execution 
of the step 3a for an or-structure with the id or1 takes 2 time units. The execution of 
the step 3b does not take more than m⋅|C| time units. The internal cycle 3d)-h) can be 



 

 208 

repeated m times at most. The step 3d) takes 2 time units. The execution of the steps 
3f)-g) takes in the worst case O(|P(or1)|2 ⋅|C|) time units. The overall time complexity 
for processing the or-structure with the id or1 is estimated as O(|P(or1)|2 ⋅|C|). The 
processing of an and-structure is performed using a similar sequence of steps, as for 
an or-structure, therefore the complexity of processing of an and-structure with the id 
and1 under the assumption that each and-structure contains m<<|P(and1)| branches, is 
also O(|P(and1)|2 ⋅|C|). 

At step 5 each loop of a workflow can be considered as a sequence of processes, in 
which each and- and or-structure is replaced by a single composite process. When the 
earliest and latest starting and ending time points of the and- and or-structures 
included into a loop have been calculated, the corresponding temporal parameters of 
the whole loop structure can be identified by gradual processing of the sequence of 
the processes of the loop. Thus, the time complexity of processing a loop with the id 
l1 is O(|P(l1)| ⋅|C|).  

As one can see, the time required for the execution of each step of the procedure is 
polynomial in number of the processes of corresponding structures of a workflow and 
in the number of constraints. The time complexity of the procedure for the whole 
workflow <w, P, C> for the worst case is not greater than O(|P|2 C). 

 
The earliest (latest) ending time point of the process p (eetp (letp)) is calculated as 

estp + p.min_duration (lstp + p.max_duration). Then, the earliest (latest) creation time of the 
resource r (ectr (lctr)) produced by p are defined as: ectr = eetp and lctr = letp, and the 
earliest (latest) expiration time of r (eetr (letr)) is calculated as: eetr = ectr + 
r.expiration_duration (letr = lctr + r.expiration_duration). 

For the example on Fig.1a process Order_intake starts immediately after the zero-
time process BEGIN therefore estOrder_intake = lstOrder_intake = 0 (the first time point of the 
execution of the workflow). As it was mentioned earlier Order_intake.min_duration = 1, 
Order_intake.max_duration = 2. Therefore eetOrder_intake = 1 and letOrder_intake = 2. If we model 
the new order as a resource (data) produced by this process, then ectorder = eetOrder_intake = 
1 and lctorder = letOrder_intake = 2. If, for simplicity, we assume that the order will only be 
valid for 8 hours then order.expiration_duration = 8h, therefore eetorder = 9 and letorder = 10. 

Synchronization relations defined in a specification may influence the starting time 
of processes in this specification. Moreover, some sequencing/branching/cycle 
relations of the specification may be in conflict with synchronization relations 
introduced by the designer. Let us define [t1, t2] = [estp, lstp] ∩ [ests, lsts] and [t3, t4] = 

[eetp, letp] ∩ [eets, lets] for processes p and s. A conflict occurs in following cases: (a) if 
starts_with(p, s) is introduced and [t1, t2] = ∅; (b) if starts_during(p, s) is introduced and [t1, 
t2] = ∅; (c) if finishes_with(p, s) is introduced and [t3, t4] = ∅. 

In the workflow in Fig.1b process d1 should start at the same time as process d2, 
starts_with(d1, d2). Let us assume that l1.min_duration = 1h, l1.max_duration = 2h, 
l2.min_duration = 3h, l2.max_duration = 4h and no delays are modelled in the relevant 
part of this workflow. Then, for d1 and d2, [t1, t2] = [estd1, lstd1] ∩ [estd2, lstd2] = [1, 2] ∩ [3, 

4] = ∅ which indicates a conflict. If however it was modelled that l2.min_duration = 2h 
then [t1, t2] = [1, 2] ∩ [2, 4] ' ∅ which is a temporally correct assignment. 

Definition 6 (A temporally correct workflow): A workflow <w, P, C> is temporally 
correct in the specification M if the set of ordering relations in M is not conflicting. 



 

 209 

If a workflow is temporally correct, starting points of processes influenced by the 
introduced synchronization relation are updated, using the values t1, t2, t3 and t4 
defined above: (a) in case of starts_with(p, s) assign estp=t1; ests =t1; lstp =t2; lsts=t2; (b) in 
case of starts_during(p, s) assign estp =t1 and lstp=t2; (c) in case of finishes_with(p, s) assign 
eetp=t3; eets=t3; lets=t4; lets=t4. Then, update the values of the earliest (latest) starting 
points for the processes reachable from p and for the processes reachable from s. 

Condition correctness 
Definition 7 (A correct condition): A condition of the or-/loop-structure is correct 

iff the following two constraints are satisfied: 
A condition of the or-/loop-structure is correct iff: 
a) all values of condition variable(s) considered in the structure belong to the 

domain of this (these) variable(s); 
b) all elements from the domain of condition variable(s) are taken into 

consideration in the structure. 
Values of condition variables considered in or- and loop-structures are identified 

by the following procedure: 
a) for or-structures if a condition is expressed by one condition variable, then the 

condition values are obtained from the corresponding or_branch predicates; if one of 
the identified values is equal to OTHER, then the domain of the condition variable 
should contain at least one more element different from other extracted values. 

b) if the condition expression is complex, i.e. built using the Boolean connectives, 
then it is divided into basic expressions in form condition variable OP value, where 
OP∈{=,  ', <, >} and each basic expression is analysed as follows: 
1. If OP is ‘=’ or ‘'’, then the domain of the condition variable should contain both 

the value and at least one more value different from value. 
2. If OP is ‘>’ or ‘<’, then the domain of the condition variable should contain at least 

one element greater than value and at least one element smaller than value. 
If these conditions are satisfied then the whole complex expression is checked 

whether it is not always true and not always false. This is performed as follows: 
1. For each conjunction: if more than one expression on the same variable is present 

then the intersection of the sets of domain values defined by these expressions 
contains at least one value; 

2. For each disjunction of conjunctions containing expressions over the same 
variables: at least one of the intersections of the sets of values defined by the 
expressions on the same variables should be non-empty. 

Tasks and resource inter-level consistency constraints  
Tasks form hierarchies based on decomposition relations between them. When 
building such hierarchies, consistency should be maintained by making sure the set of 
inter-level constraints is satisfied. Here only some examples of inter-level constraints 
are given (for the complete list of these and other types of constraints (the reader is 
referred to Popova and Sharpanskykh 2007e): 

‘For every and-decomposition of a task, the minimal duration of the task is at least the 
maximal of all minimal durations of its subtasks’. 

Formally, ∀ t:TASK, t1:TASK, L:TASK_LIST is_decomposed_to(t, L) ∧ is_in_task_list(t1, L) � 
t.min_duration � t1.min_duration  



 

 210 

‘If a task uses certain resource type as input then there exists at least one subtask in at least 
one and-decomposition of this task that uses this resource type.’ 

‘For every and-decomposition of a task, if one subtask uses a resource type as input which in 
not an input for the composite task then there exists another subtask that produces such resource 
type.’ 

‘If a task produces certain resource type as output then there exists at least one subtask in at 
least one and-decomposition of this task that produces this resource type.’ 

‘For every and-decomposition of a task, if one subtask produces a resource type as output 
which in not an output for the composite task then there exists another subtask that uses such 
resource type as input.’ 

Functionally divisible resource or data types also form hierarchies. Due to the wide 
variety of possible situations, only one consistency constraint can be formulated, 
which should be satisfied for data types: 

‘If data type dt2 is a functional part of data type dt1, then the expiration duration of dt1 is at 
most the expiration duration of dt2.’  

Physical world generic constraints  
Generic constraints come from the physical world irrespective of the application 
domain. Here several examples of such constraints are given.  

GC1: ‘No role executes more than one process at the same time’ 

Formally:  

∀ r:ROLE, p1, p2:PROCESS, tp1, tp2, tp3, tp4:TIME_POINT role_performs_process(r, 
p1) ∧ role_performs_process(r, p2) ∧ estp1 = tp1 ∧ letp1 = tp2 ∧ estp2 = tp3 ∧ letp2 = tp4 
 � ((tp2 < tp3) ∨ (tp4 < tp1)) 

 

GC2: ‘Not consumed resources become available after all processes are finished’ 

GC3: ‘For every process that uses certain amount of a resource of some type as input, without 
consuming it, either at least that amount of resource of this type is available or can be shared with 
another process at every time point during the possible execution of the process’ 

GC4: ‘Non-sharable resources cannot be used by more than one task at the same time’ 

GC5: ‘For all resource types, if a resource of this type is used by a process then the process 
starts before all resource instances of this type expire’  

4.2 Domain-specific constraints 

Domain-specific constraints are imposed by the application domain in which the 
specific specification will be used and can be classified according to their sources.  

Constraints imposed by the organisation have been chosen (e.g. by the 
management of the company) as necessary and need to be satisfied by any 
specification for the particular organisation. Such constraints can often be found in 
company policy documents, internal procedures descriptions, etc. For example: 

‘At every time point, the amount of available resources is at least a pre-specified minimum 
amount and/or is at most a pre-specified maximum amount.’ (company policy on minimal and 
maximal amount of resource necessary to store) 



 

 211 

‘The duration of the execution of the workflow should not exceed a specified maximum 
duration.’  

‘Certain information types cannot be used by certain tasks.’ (security/privacy) 

‘If at some time point the amount of a resource at a certain location is below a pre-specified 
minimal amount then within a pre-specified time interval this amount will become more than the 
minimal amount’. (company policy on replenishing a resource on time) 

Constraints coming from external parties are enforced by an external party such as 
the society or the government and can contain rules about working hours, safety 
procedures, emissions, and so on. Sources for such constraints can be laws, 
regulations, agreements, etc. Examples of specific constraints of this group that might 
be relevant in some situations can be: 

‘Specific type of information should be used within a pre-specified time interval after it is 
created.’ (e.g. news items should be communicated only when they are recent) 

‘A driver should not drive more than 6 hours per day.’ 
 

Constraints of the physical world come from the physical world with respect to the 
specific application domain and should be satisfied by any specification in this 
domain. This is in contrast to the generic physical constraints which should be 
satisfied by any specification irrespective of the application domain. For example, 
‘there is always a break of at least 15 minutes between two consecutive lectures’ (follows from 
the limitation of most humans to stay concentrated on a lecture for a very long time) 
or ‘a location cannot store more than a certain prespecified amount of resource’ (storage 
capacity). 

For all these types of constraints there are predefined templates, which can be 
selected and customized by the designer by assigning specific values to the 
parameters of the template without the need to express logical formulae. Examples of 
such templates with their parameters in brackets are:  

DC1(p1:PROCESS, p2:PROCESS, d:VALUE): ‘If the same agent executes both processes, 
then there is a delay of duration at least d between the end of the first process and the beginning 
of the second one’ (can also be formulated for a specific agent as additional parameter) 

Formally: 

∀ r1, r2:ROLE, tp1, tp2, tp3, tp4:TIME_POINT: (∃a:AGENT: (agent_plays_role(a,r1) ∧ 
agent_plays_role(a,r2) ∧ role_performs_process(r1,p1) ∧ role_performs_process(r2,p2) ∧ 
estp1 = tp1 ∧ letp1 = tp2 ∧ estp2 = tp3 ∧ letp2 = tp4)  

� ((tp2 < tp3) ∧ (tp3 – tp2 �d)) ∨ ((tp4 < tp1) ∧ (tp1 – tp4 � d))) 

DC2(rt:RESOURCE_TYPE, min_am:VALUE): ‘At every time point the amount of resource of 
type rt available is at least min_am amount’ 

DC3(t:TASK, dr:VALUE): ‘For every agent performing processes of this task the sum of the 
durations of these processes should not exceed dr’  

DC4(rt:RESOURCE_TYPE, min_am:VALUE): ‘At the end of the workflow there is at least 
min_am amount of resource of type rt’ 

DC5(d:VALUE): ‘The duration between the first and the last tasks is at most d’ 

DC6(rt:RESOURCE_TYPE):  ‘Data of type rt is created by a task during the workflow’ 

DC7(rt:RESOURCE_TYPE, t:TASK): ‘Resource of type rt cannot be used by task t’ 



 

 212 

DC8(p1, p2:PROCESS): ‘No agent can play roles that perform p1 and p2’ 

DC9(a:AGENT, rt:RESOURCE_TYPE): ‘Agent a has no access to resource of type rt’ 

DC10(r:ROLE, rt:RESOURCE_TYPE): ‘Role r has no access to resource of type rt’ 

DC11(rt1, rt2:RESOURCE_TYPE): ‘Resources of types rt1 and rt2 can not be used together 
for the same task’ 

DC12(t:TASK, dr:VALUE): ‘For every agent performing processes of this task the sum of the 
durations of these processes should not exceed dr’  

DC13(l:LOCATION, rt:RESOURCE_TYPE, m:VALUE): ‘At every time point the amount of 
resource of type rt at location l is at most m’ 

DC14(l:LOCATION, rt:RESOURCE_TYPE, m:VALUE, dr:VALUE): At every time point t, if the 
amount of rt at location l is less than m then there exists a future time point t1� t + dr at which the 
amount of rt at l is at least m’ 

DC15(ag_list: AGENT_LIST, dr:VALUE): ‘The amount of working hours of each agent from the 
ag_list should not exceed dr’  

DC16(a: AGENT, t: TASK): ‘Agent a should not be allocated to task t’ 

For the case study, a number of relevant domain-specific constraints can be 
formulated. The first example is a special case of the constraint DC15, which is 
imposed by the labour legislation (a constraint coming from an external party): 

DC15(DRIVERS, 6): The amount of driving hours for each agent driver should not exceed 6 
hours per day. 

Another agent-related constraint is a special case of the constraint DC16, comes 
from the organisation and prevents assigning some drivers for certain types of 
deliveries (e.g. because of the employee’s preferences or some geographical factors): 

DC16(ag5, DeliveryAB): The agent ag5 should not be allocated to any delivery of type 
deliveryAB. 

One more constraint imposed by the organisation describes the resource integrity 
before and after each delivery: 

DC17: For each delivery the amount of resource being loaded on a truck should be equal to 
the resource amount being unloaded from the truck after the delivery has finished. 

Another constraint comes from the physical world and describes the conditions of 
loading of resources of type rt2 on a truck of type tr2 determined by the weight 
limitations: 

DC18(tr2, rt2, 0.7): Maximum 0.7 capacity units of a truck of type tr2 can be used for a delivery 
of the resource type rt2, whereas 0.3 remaining units should be left empty. 

For shared deliveries of resources of type rt2 with some other resource types, 
special regulations are formulated as constraints. 

The following constraint comes from the customer - Company 1 and is determined 
by its technological process: 

DC19: The difference between the finishing time points of the deliveries d1 and d4 should be 
less than 2 hours. 



 

 213 

The last example identifies the constraint that comes from the external parties 
(Company 1 and its customers): 

DC20: For all time points the amount of resources of type rt5 at the base A should be greater 
than 25. 

5   Correctness verification of a process-oriented specification 

The verification of the correctness of a process-oriented specification is performed 
during or at the end of the design of the specification, depending on the verified types 
of constraints. In particular, some domain-specific constraints might not (yet) be 
satisfied for incomplete specifications. The designer can choose the moment when 
they should be checked. The syntactical check of the specification for a specification 
and the verification of generic constraints are performed at every design step. Note 
that often only the set of relevant generic constraints is verified. This set is identified 
based on the type of the change made by the designer in the specification. For 
example, if the minimal or maximal duration of a task or a decomposition relation 
between tasks is changed, then the corresponding task inter-level consistency 
constraint(s) expressed over these tasks should be checked. Changes in resource 
structures are dealt with similarly. If the designer changes the set of ordering relations 
or the (minimum or maximum) duration of a task of which an existing process is an 
instance, then first the structural constraints of the workflow are checked, and after 
that physical world and domain specific constraints. 

For all other types of changes, the set of constraints that should be checked is 
formed from physical world and domain specific constrains from TPR expressed over 
objects involved into relations affected by the change. For the checking, it is assumed 
that each process p in the workflow <w, P, C> can be active (executed) at any time 
point during the interval [estp, letp]. Therefore, it will be checked with respect to the 
whole interval [estp, letp], even though the actual execution of p may take less time. 
Thus all possible intervals of the execution of p are taken into account. If the 
constraint is not satisfied in some possible execution, it can be discovered without 
checking all executions separately. This dedicated verification is computationally 
much cheaper than the general-purpose state-based analysis of all possible executions 
of a specification (e.g. by model checking, i.e., by trying one by one all possible 
combinations of durations of processes (Clarke, Grumberg and Peled. 2000)) however 
still allows establishing correctness of the model. 

Here three example algorithms are given for checking the satisfaction of 
constraints GC1, DC1 and GC3 defined in Section 4. The first and second algorithms 
are typical for the verification of constraints over processes, roles and agents, and the 
third one illustrates the verification of constraints over resource amounts related to 
processes.  

 

 

 



 

 214 

Algorithm for verification of GC1 

1. Let L be an empty queue and N be an empty set. Enqueue in L all roles defined in 
the specification. 
2. Until L is empty perform steps 3-5. 
3. Dequeue L and assign the obtained value to the variable curr_role. 
4. Put into N all processes assigned to curr_role in the specification. 
5. For each processes p1,p2∈N determine if they can be executed at the same time: 
 if   ¬((letp1 � estp2 ) ∨ (letp2 � estp1)), then GC1 is not satisfied, exit; else empty N  
6. GC1 is satisfied.  

 
The proof of the correctness of this algorithm is straightforward. The algorithm 

processes one by one all pairs of the processes allocated to a role and identifies if the 
processes in each pair can be executed at the same time. Two arbitrary chosen 
processes p1 and p2 cannot be executed simultaneously when either letp1 < estp2 or 
letp2 < estp1. Both these conditions are checked at step 5. Thus, if there is a 
possibility for some of the processes allocated to a role can be executed at the same 
time, it will be discovered by the algorithm. 

The time complexity of this algorithm is estimated as follows: The internal cycle 
that includes the steps 3-5 is performed |ROLE| times, where ROLE is the set of all 
roles defined in the organizational specification. In the worst case, all executions of 
the step 4 together take |CS|⋅|ROLE| + |P| time units, assuming that each process of the 
workflow <w, P, C> is allocated to one role and CS is the complete set of constraints 
defined for the organization. The execution time of the step 5 is calculated as |P|!/2⋅ 
(|P|-2)! or (|P|2-|P|)/2. Thus, the overall time complexity of the algorithm is estimated 
as O(|ROLE|⋅(|P|2 +  |CS|)).  

 

Algorithm for verification of DC1 

1. Let L and N be empty sets. Put into N all roles allocated to A by instantiated 
constraints in CS’. 
2. Put into L all processes assigned to roles in N in the specification. 
3. If p1 ∉ N or p2 ∉ N, then DC1 is satisfied, exit. 
4. Determine if there is a delay of duration at least d between the processes p1 and 
p2: 
 if (p1.est>p2.est ∧ p1.let+d � p2.est) ∨ (p2.est>p1.est ∧ p2.let+d � p1.est), then DC1 is 
satisfied; 

1.  otherwise DC1 is not satisfied. 
 
The proof of the correctness of the algorithm is straightforward and follows 

directly from the structure of the formula representing the constraint.  
The time complexity of the algorithms is estimated as O(|CS|), where CS is the 

complete set of constraints defined for the organization. 
Before describing an algorithm for checking GC3 let us introduce a definition of a 

workflow segment and a labelling procedure for workflow segments. 

Definition 7 (A workflow segment): A segment SG of the workflow <w, P, C> is a 
set of processes from P ordered by C that are executed under the same set of values of 



 

 215 

or-conditions from w. This set of values is dynamically formed from the values of 
conditions of or-structures, from which the processes of SG can be reached. The set 
SEGMENTS contains all segments of the workflow. 

Each segment has a label, assigned according to the following rules: 
• the segment that contains processes that are executed independent of any 

condition values has the label ‘1’. 
• the label for a segment that corresponds to a branch of a certain or-structure 

is formed from three parts that follow each other: 
(1) the prefix defined by the label L of the segment, to which the beginning 

process of the or-structure belongs; 
(2) the index of the branch in the or-structure obtained incrementally starting 

from 1;  
(3) the sequential index of the or-structure in the segment with the label L, 

put in square brackets.  
For example, the process Order_intake from the example introduced in Section 2 

belongs to the segment labelled by ‘1’, whereas the process Order_delivery2 belongs to 
the segment labelled by 1.2[1].  

Further the algorithm is given for checking the satisfaction of GC3 with respect to 
the process p and the resource r. In this algorithm the following notations are used: 

res_produced_by(r, p, am) for is_instance_of(p, t) ∧ task_produces(t, r, am) 
res_used_by(r, p, am) for is_instance_of(p, t) ∧ task_uses(t, r, am) 
res_consumed_by(r, p, am) for is_instance_of(p, t) ∧ task_consumes(t, r, am) 

Algorithm for verification of GC3 

1. Identify the set of time points TP within the duration of p (estp � t < letp), at which 
the amount of some resource(s) of type r changes (i.e. time points at which other 
processes that use/consume/produce a resource of type r may start or finish). For 
every time point t ∈ TP perform steps 2-7. 

2. Determine the set RS of segments that contain finished before or executed 
simultaneously with p processes, which execution may influence the amount of 
resources of type r:  

 
RS = {s ∈ SEGMENTS | ∃a a ∈ s ∧ [leta < t ∧ [ am1 > 0 ∨ am3 > 0] ] ∨ [ leta > t ∧ esta  ≤ t ∧ [ 

am1 > 0 ∨ am2 > 0 ∨ am3 > 0 ], where am1, am2, and am3 are specified in 

res_consumed_by(r, a, am1), res_used_by(r, a, am2) and res_produced_by(r, a, am3). 

 
3. The labels of segments in RS that correspond to the branches belonging to the 

same or-structure are grouped.  
4. The n-ary Cartesian product of all obtained groups is generated (n is the number 

of groups): g1 ×… × gn. Each tuple in the obtained product set corresponds to a 
possible combination of segments in the workflow. In such a way all possible 
execution of processes in the workflow, which use/produce/consume r and have 
latest ending time � letp are considered. 

5. For every tuple in the product set identify the set of processes PS that 
corresponds to the tuple. If two or more processes from the same segment 
related by a sequencing relation may be executed at the same time in different 
instances of the workflow, replace PS by a number of sets, each of which will 



 

 216 

contain only one from these processes.  
6. For every set of processes PS corresponding to the tuple, identify the set of 

resources RPS of type r produced by processes in PS.  
7. For every process a ∈ PS that consumes some amount of the resource of type r 

identify if this amount of not expired resource(s) from RPS is available. Update 
RPS after every iteration: 
7.1 Initial settings: Let temp_amount = am, where am is defined by 

res_consumed_by(r, a, am)     
7.2 Until temp_amount > 0 and RPS is not empty perform 7.3 and 7.4 
7.3 Identify resource res ∈ RPS with the smallest earliest expiration time, which 

did not expire yet. It is assumed that such resource will be used first by a. 

7.4 If        res.amount  ≥ temp_amount,  
        then update the amount of the resource as res.amount = res.amount - 

temp_amount and set temp_amount = 0. 

        else  update temp_amount = temp_amount - res.amount and delete res from the  

        RPS. 

7.5 If       temp_amount > 0,  

        then GC3 is not satisfied with respect to the process p and resource type r, 
exit. 

8. For every process a ∈ PS that uses a certain amount of the resource of type r at 
time point t identify, if this amount of not expired resource(s) from RPS is 
available. Update RPS after every iteration: 
8.1 Initial settings: Let temp_amount= 0. 

8.2 From the specification identify process lists that may share a resource of 
type r and that contain as least one process from PS. For each process a ∈ PS at 
most one list will be chosen from the identified lists. Furthermore, any list 
that contains a may be selected, since the choice of the list does not influence 
the amount of available resources in RPS. 

8.3 For every chosen process list L update temp_amount = temp_amount + am, where 

am is defined in res_used_by(r, s, am) and s is some process from L. Delete all 
processes that belong to L from PS. 

8.4 For every process a ∈ PS update temp_amount = temp_amount + am, where am is  
defined in res_used(r, a, am). Then perform the same calculations as on steps 
7.2-7.5. 

9. GP3 is satisfied with respect to the process p and resource type r.   
 

The informal explanation and the proof of correctness of the algorithm 
For the following explanation the notation avail_res_amount (t, r, am) will be used, 

meaning that at the time point t the total amount of available resources (i.e., not used 
and not consumed) of the type r equals am. 

To check the satisfaction of the constraint GP3 for process p that requires the 
amount am_req of the resource type r, it is needed to verify that: 

(1) avail_res_amount (estp, r, am) ∧ am ≥ am_req (i.e., the available resource amount of 
type r is sufficient for the execution of the process p) or ∃p1:PROCESS 
∃l:PROCESS_LIST estp > estp1 ∧ letp1 ≥ estp ∧ resource_sharable(r, l) ∧ is_in_list(p1, l) ∧ 
is_in_list(p, l) (meaning that there exists another process p1 being executed at estp, with 
which p may share the resource type r) 



 

 217 

(2) for all t∈ (estp, letp], at which the amount of available resources of the type r 
changes: avail_res_amount (t, r, am) ∧ am ≥ am_req or ∃p1:PROCESS ∃l:PROCESS_LIST t > 
estp1 ∧ letp1 ≥ t ∧ resource_sharable(r, l) ∧ is_in_list(p1, l) ∧ is_in_list(p, l) 

 
In the following also this notation is used: 
res_produced_by(r, p, am) for is_instance_of(p, t) ∧ task_produces(t, r, am) 
res_used_by(r, p, am) for is_instance_of(p, t) ∧ task_uses(t, r, am) 
res_consumed_by(r, p, am) for is_instance_of(p, t) ∧ task_consumes(t, r, am) 
 
The amount of the resource type r in (2) may change due to the following events: 

(a) beginning of some process that uses/consumes the resource amount amt of type r, 
in this case if no sharing possibilities exist for the process, then avail_res_amount (tb, r, 
am - amt), where tb is the beginning time point of the process and am is the available 
resource amount of type r at the time point before tb; (b) finishing of some process 
that uses the resource amount amt1 or produces the resource amount amt2 of the type 
r, in this case avail_res_amount (te, r, am + amt1) if no other processes share the resource 
being used or avail_res_amount (tb, r, am + amt2); here te is the finishing time point of the 
process and am is the available resource amount of type r at the time point before te. In 
the proposed modelling framework it is assumed that during the execution of a 
process the amount of the resources that it uses does not change. Therefore, the set of 
time points TP identified at the first step of the algorithm is defined as: {t ∈ TIME | ∃p1: 
PROCESS ∃am1, am2, am3:VALUE (res_produced_by(r, p1, am1) ∨ res_produced_by(r, p1, 
am2) ∨ res_produced_by(r, p1, am3)) ∧ estp ≤ estp1 ≤ letp ∧ t = estp1} ∪ {t ∈ TIME | ∃p1: 
PROCESS ∃am1, am2, am3:VALUE (res_produced_by(r, p1, am1) ∨ res_produced_by(r, p1, 
am2) ∨ res_produced_by(r, p1, am3)) ∧ estp ≤ letp1 ≤ letp ∧ t = letp1}.  

For all t∈TP the value am in avail_res_amount (t, r, am) is calculated based on the 
amounts of resources of the type r produced and consumed before t, and based on the 
resource amounts of type r consumed, produced and used at t. The sets of processes 
that produce, consume and use these resources may be different for different 
executions of the workflow. Alternative execution paths of the workflow are formed 
from different executions of the or-structures of the workflow. Furthermore, processes 
that form these paths may have different duration in different executions. To 
guarantee the satisfaction of the constraints (1) and (2) for every possible execution of 
the process p, all execution paths of the workflow that differ in the resource amount 
am in avail_res_amount (t, r, am) at least at one time point t ∈TP, should be checked. 

First such paths should be identified. This is performed by the steps 2-6 of the 
algorithm. An important, though obvious, observation here is that different branches 
of the same or-structure cannot be executed at the same time, whereas different 
branches of different or-structures often can be executed simultaneously in various 
combinations, thus forming different execution paths of the workflow. To identify 
these paths all branches of the or-structures of the workflow that form segments 
containing finished before or executed simultaneously with p processes, which 
execution may influence the amount of resources of type r, are labelled using the 
procedure described above. Further, the introduced labels of the segments are put into 
the set RS (step 2). Note that a segment may contain (nested) and-structures. The 
processes of segments, with labels that have the same prefix and the same sequential 
index cannot be executed simultaneously. Such segments are combined into groups at 
step 3. Thus, each group contains alternative partial execution paths. Then, the 



 

 218 

Cartesian product of all obtained groups is determined at step 4, thus, defining all 
possible execution paths of the workflow for the time period [0, letp] that contain 
processes that use and/or consume and/or produce resources of type r.  

At step 5 of the algorithm for each tuple in the product the set of processes PS is 
identified that belong to the segments in the tuple and that use and/or consume and/or 
produce resources of type r. If two or more processes from the same segment related 
by a sequencing relation may be executed at the same time in different instances of 
the workflow, i.e., for processes p1 and p2: [estp1, letp1] ∩ [estp2, letp2] ≠ ∅ PS is replaced 
by a number of sets, each of which will contain only one from these processes. This is 
needed because at most one from the processes related by a sequencing relation can 
be executed at any time point in any instance of the workflow. 

Then, each execution path is processed separately. For each path the set of 
resources of the type r produced by the processes of the path during the interval [0, 
letp] is determined (step 6). Then, for each process of the path that consumes some 
amount amt of the resource type r, the value of the available resources(s) of the type r 
with the earliest expiration time decreases by amt at the earliest starting time point of 
the process (step 7). If no such resource(s) is (are) available, the constraint is not 
satisfied. After that it is checked if the remaining resource amounts related to time 
points suffice for the execution of the processes of the path that use some amounts of 
the resource type r and which execution interval has a non-empty intersection with the 
interval [estp, letp] (step 8). Now let us consider the steps 6-8 in detail. 

First, at step 6 the set RPS of resources of the type r produced by the processes of 
the path is identified. These resources are used and consumed by other processes of 
the path. Each resource is allowed to be used or consumed before its expiration. 
Furthermore, it is assumed that resources with the earliest expiration time will be used 
or consumed first by processes of the path.  

Then, at step 7 for each process of the path that consumes some amount of the 
resource type r it is identified if this amount of not expired resource(s) from RPS is 
available. Each time when a process that consumes the amount amt of the resource 
type r is identified, the amount of the resource r1 with the earliest expiration duration 
decreases: r1.amount = r1.amount - amt. In case amt > r1.amount, then the difference 
amount amt-r1.amount is taken from another resource(s) that has (have) the earliest 
expiration time after r. If no such resource is available, the constraint GP3 is not 
satisfied.  

Finally, at step 8 for all time points t∈TP for every process of the path that uses a 
certain amount of the resource type r it is identified if this amount of not expired 
resource(s) from RPS is available. Note that only the processes being executed at time 
points t∈TP should be checked, since all processes that finished before estp also 
released the resources that they had used. Note that some processes from PS may 
share the same resource amount of the type r if they belong to the same process list l 
such that resource_sharable(r, l). For each process a∈PS at most one list is chosen. 
Furthermore, any list that contains a may be selected, since the choice of the list does 
not influence the amount of available resources in RPS. When the total used resource 
amount is calculated at each time point t∈TP, the resource amount of the type r shared 
by a list of processes being executed at t is taken to be equal to the resource amount of 
the type r used by any process from this list (step 8.3). To the obtained amount is 
added the sum of all amounts of resources of type r used by the processes from PS 



 

 219 

being executed at t that cannot share resource type r (step 8.4). Then, it is determined 
if the obtained total used resource amount does not exceed the total available amount 
of resources of type r at the time point t calculated by the execution of the steps 7 and 
8. If it does not exceed, the constraint GC3 is satisfied, otherwise, GC3 is not 
satisfied. 

In order to reduce the number of tuples generated at step 4 and to improve the 
computational properties, the introduced verification algorithm is extended with tuple 
reduction steps (the extended version of the algorithm can be found in (Popova and 
Sharpanskykh 2007e)). This algorithm performs the local elimination of segments 
within each group that do not contribute to the worst case situation. More specifically, 
in each group all segments are eliminated, except for the segment that uses the largest 
amount of resources of type r. This allows reducing the number of execution paths 
that have to be checked significantly. 

 
Some discussions about the time complexity for the considered algorithm are given 

below.  
The execution of the step 1 takes O(|P|), where P is the set of processes of the 

workflow <w, P, C>. The execution time of the step 2 depends on the number of or-
structures of the workflow and the number of branches in each or-structure and takes 
O(b), b is the overall number of all branches in all or-structures of the workflow. The 
execution of the step 3 takes also not more than O(b). The time complexity of the 
execution of the step 4 is dependant on the number of or-structures of the workflow, 
on the number of branches in each or-structure and on the level of nesting of the or-
structures. For the worst case, in a workflow that contains k or-structures with the 
overall number of branches b, the execution of step 4 takes (b/k)k time points. For 
workflows that have nested or-structures, the execution time required for the step 4 is 
less than (b/k)k, because of workflows with such structures have a smaller number of 
segments. The steps 5-9 may be repeated (b/k)k times in the worst case. Each 
execution of the step 5 in the worst case may take O(|P|⋅|C|). Each execution of the 
step 6 in the worst case take not more than O(|P|). Each execution of the steps 7 and 8 
may take not more than O(|P|2). Thus, from the performed complexity analysis it 
follows that the time complexity of the proposed algorithm is polynomial in the 
number of the processes and the ordering constraints of a workflow, however 
exponential in the number of or-structures and segments formed based on these or-
structures. An approach to decrease the number of segments, and thus, to decrease the 
complexity of the proposed algorithm significantly, is briefly described above; more 
specific details of this extension can be found in (Popova and Sharpanskykh 2007e).  

The proposed verification algorithm is computationally much cheaper than 
standard model checking procedures, which time complexity for analysing 
specifications in the proposed process-oriented language would be exponential, not 
only in the number of or-structures and in the number of branches of these structures, 
but also in the number of the processes in these branches. Furthermore, during model 
checking, the set of time points TP’ for which the satisfaction of the constraint GC3 
for the process p should be checked always includes every time point from the 
interval [estp, letp]. The set TP’ contains in most cases much more elements in 
comparison to the set TP, obtained by an execution of the proposed algorithm. 

 



 

 220 

6   Related literature 

Different aspects of process-oriented modelling and analysis have been investigated 
in different areas, such as enterprise modelling, artificial intelligence, operations 
research and others. The following aspects of the process-oriented modelling are 
usually considered in these areas: functional, behavioural, information-, resource- and 
organisation-related. Let us briefly discuss each of these aspects. 

The functional aspect is usually represented by static task structures (Fox 1992, 
Menzel and Mayer 1998, Malone, Crowston and Herman 2003), in which 
characteristics of tasks (activities) (such as input, output and function) and relations 
between them are defined. Task structures usually serve as templates for process 
execution structures. To reduce the complexity and to provide means for process-
oriented modelling at different levels of abstraction, tasks are structured in hierarchies 
built on refinement relations as in (Fox 1992, Malone, Crowston and Herman 2003) 
and in the framework proposed here. Furthermore, in the approach proposed here, 
special verification means based on constraints are provided, in order to guarantee the 
correctness of built hierarchical structures, which are absent in other mentioned 
frameworks.  

The behavioural aspect is realized by process execution structures, which are often 
called control flows. Currently a great variety of languages and frameworks for 
process-oriented modelling exist. Some of the proposed languages are purely 
graphical (Menzel and Mayer 1998, Yang and Zhang 2003), whereas others have 
formal foundations (Fox 1992, van der Aalst 1998). Although process-oriented 
languages differ in their specification means and expressivity, many of them realize 
similar control patterns of process execution (or of workflows). In (van der Aalst et 
al. 2003) an extensive overview and a classification of different types of workflow 
patterns is presented. The graphical process specification languages such as BPMN, 
BPML, UEML, YAWL (van der Aalst and ter Hofstede 2005) realize these templates 
to a different extent. Also the process-oriented language presented in this paper 
supports the most essential and commonly used templates, which are identified in the 
introduction of the language. Furthermore, more specific templates described in (van 
der Aalst et al. 2003) not addressed in this paper can be easily implemented by an 
extension of the introduced language. The proposed language allows temporal 
numerical expressivity for the specification of control flows (e.g. durations of 
processes and delays, real time constraints), which is deficient in a number of other 
frameworks (e.g. BPMN, CIMOSA (1993), IDEF3 (Menzel and Mayer 1998)). 
Furthermore, many of the existing process modelling languages are not formally 
grounded, and, therefore, can not be used for formal analysis. Although some 
frameworks propose automated techniques for analysis of process-oriented 
specification even without properly defined semantics of the modelling language, still 
the results of such analysis are not completely reliable. Furthermore, the behaviour of 
such process-oriented specifications may be unpredictable. For example, in the ARIS 
framework (Scheer and Nuettgens 2000) the control flows are modelled using 
informal Event-driven Process Chains (EPCs), which limits the possibilities for 
analysis and its reliability. Similar observations can be made with respect to the 
frameworks described in (CIMOSA 1993, Yang and Zhang 2003). 



 

 221 

However, also a number of formal methods have been applied for modelling and 
analysing of control flows: process algebra, Petri nets and their extensions and 
modifications (such as Workflow Nets), and different types of logics.  

In (Singh 1996) process algebra is used to represent ordering constraints on 
processes, however it lacks the expressivity to represent global constraints on 
processes and (real) numbers (i.e. durations). 

Petri-nets and their modifications have been extensively used for formal modelling 
and analysis of workflows (van der Aalst 1998). This formalism is useful for 
specifying ordering constraints, however it is difficult to express global constraints 
over multiple objects, characteristics and relations of the organisation (e.g. many 
physical world and domain-specific constraints considered in this paper) using Petri 
Nets. For example, the constraint ‘the breaks between the processes allocated to some 
role should be at least one hour’. In (Adam, Atluri and Huang 1998) it is shown that 
one can manually construct a Petri net that satisfies a certain set of global constraints, 
however, then such a representation does not include the information about the 
constraints themselves. Furthermore, Petri Nets are difficult in use for non-
professionals, whereas the introduced approach proposes an intuitive, close to the 
natural, predicate language, which can be represented graphically.  

Different types of logics have been used for modelling and analysis of control 
flows. One of them is the propositional temporal logic (Attie et al. 1993). Although 
temporal logic is highly suitable for specifying ordering constraints, it has a number 
of expressivity limitations, e.g. numbers cannot be expressed, in most cases variables 
and composite structures (such as predicates) cannot be used. Furthermore, most of 
the existing general-purpose algorithms for checking properties expressed as temporal 
logic formulae on flow specifications (e.g. model checking (Clarke, Grumberg and 
Peled. 2000)) have a high computational cost.  

The first-order predicate logic has been used for designing ontologically rich 
process-oriented specifications in (Fox 1992). However, analysis issues of such 
specifications are not addressed. Different variations of transaction logics (Bonner 
and Kifer 1998) have been applied for modelling, executing (scheduling) and 
analysing control flows. Originally, the transition logic has been developed as an 
extension of the first-order logic for the representation of state changes in databases 
and logical programs. Therefore, although it allows designing correct flows and 
performing effective analysis, it still lacks the ontological expressivity to represent the 
variety of objects and relations that exist in organisations.  

A number of dedicated formal techniques have been developed for checking 
temporal constraints on processes in workflows (Bettini, Wang, and Jajodia 2002, Lu 
et al. 2006). 

Information- and resource-related aspects are modelled in a number of informal 
and semi-formal frameworks as separate flows and in relation to processes (BPML, 
BPMN, Fox 1992, Barkaoui and Petrucci 1998, Menzel and Mayer 1998, Yang and 
Chen 2004). In particular, a number of workflow resource patterns are introduced in 
(Russell et al. 2004) that aim to capture the various ways in which resources are 
represented and utilized in workflows. Whereas these patterns provide an aggregated 
view on the resource allocation that includes authority-related aspects and the 
characteristics of roles, the framework proposed in this paper distinguishes different 
types of organisational aspects into separate views and establishes relations between 



 

 222 

these views. Thus, the models of resources and their relations to tasks and processes 
are specified separately from the role- and authority-related aspects. However, if 
needed, particular domain-specific constraints can be specified that are based on 
information from different organisational views to describe different modes of 
creation/use of resources. 

Furthermore, not many frameworks address the verification aspects of resource-
based models. Often in formal analysis only a very limited number of aspects of 
resources and information related to process-oriented models are addressed (Barkaoui 
and Petrucci 1998, Li, Yang and Chen 2004). In the proposed framework resources 
are characterized by a type, an expiration time, an amount that may be used, 
consumed or produced by a process. Furthermore, a process may share a certain 
amount of some resource with other process(es) and a physical replacement of 
resources can be specified. Our representation of shared resources is different from 
(Barkaoui and Petrucci 1998) in three aspects: (1) a certain specified amount of the 
resource can be shared among processes at the same time; (2) sets of processes that 
are allowed to share a certain resource can be predefined; (3) different amounts of the 
same resource can be shared (at the same time). Information is treated as a special 
kind of a resource. The algorithm for verification of the resource related constraints 
takes into account all characteristics and modes of use of resources at the same time. 
To our knowledge there exist no other frameworks that represent and verify all the 
specified resource characteristics and dependences simultaneously.  

Organisational aspects are modelled in many frameworks from the area of artificial 
intelligence (Horling and Lesser 2005) and enterprise systems (CIMOSA 1993, 
Bernus et al. 1998, Scheer and Nuettgens 2000). Often such models specify (different 
types of) relations between tasks (processes) and agents (roles, actors). However, a 
specification of processes (tasks) and relations between them is often kept simple to 
enable computationally effective agent-(role-) oriented analysis. The proposed 
framework establishes relations between concepts from the process-oriented view and 
the concepts form the organisation-oriented view (e.g. roles and agents), as well as the 
concepts from the performance-oriented view (e.g. goals, performance-indicators), 
while keeping the complete ontological expressiveness of each of the views. By doing 
this different sophisticated methods of analysis across views can be performed. 

7   Conclusions 

This paper introduces a formal framework for process-oriented modelling and 
analysis. The framework is based on an expressive sorted predicate logic language 
LPR, which allows specifying a wide range of concepts and relations of the process-
oriented view on organisations. In particular, LPR provides means for the detailed 
modelling of resources, including different modes of sharing that are distinct from 
other existing modelling frameworks. Moreover, since the process-oriented view is 
related to other organisational views, process-oriented specifications may include 
relations between tasks, processes, resources and other organisational concepts (e.g. 
roles, goals, agents). Furthermore, LPR is used for the specification of different types of 
organisational constraints that should be satisfied by process-oriented specifications. 



 

 223 

These constraints may express both local (i.e. related to individual objects) and global 
(i.e. related to multiple objects) properties of an organisation. Also, the paper 
proposes efficient dedicated analysis techniques for checking the correctness of 
process-oriented specifications with respect to different sets of constraints, all of 
which are implemented. The proposed verification algorithms are more (time- and 
resource-) efficient than general-purpose logical analysis techniques (e.g. model 
checking and theorem proving), as they do not require checking of properties along 
all the possible execution paths of process-oriented specifications. To our knowledge 
there exist no other frameworks that allow the simultaneous verification of different 
(interdependent) types of constraints based on the extensive set of concepts and 
relations as can be found in LPR. 

The proposed approach differs from constraint satisfaction methods developed in 
(Tsang 1993). Whereas the main focus of the latter techniques is on finding (optimal) 
solutions given a consistent and stable set of constraints, our approach addresses both 
design of a specification and of constraints that should be satisfied by the 
specification. The designer is free to vary both the specification and the constraint 
specifications. The designer is supported by the automated tool that allows identifying 
sources of inconsistencies and mistakes both in the specification and the constraint 
specifications. 

The developed approach allows scalability by performing compositional design of 
specifications. Using task hierarchies specifications can be built at different levels of 
abstraction. General constraints defined for high level processes are refined into more 
specific ones that should be satisfied by processes of lower levels. In such a way, to 
decrease complexity, specifications of different abstraction levels can be analysed 
separately keeping relations with each other through task hierarchies and the 
constraint refinement. 

Furthermore, although the introduced predicate language is very intuitive, still a 
graphical interface for creating and changing specifications would be of help. Such an 
interface is currently being developed. However, graphics would provide only a little 
help in the specification of constraints. For this property templates can be used as 
shown in this paper. 

The formal methods discussed in the paper are dedicated for the verification of 
process-oriented specifications, however, also a number of formal techniques for the 
analysis of actual execution based on the introduced process-oriented specification, 
have been developed. These techniques are discussed in (Popova and Sharpanskykh 
2007b). 

References 

Allen, J.F., Maintaining knowledge about temporal intervals. Communications of the ACM, 
1983, 26, pp. 832–843.  

Adam, N.R., Atluri, V., Huang, W.-K., Modeling and analysis of workflows using Petri Nets. 
Journal of Intelligent Information Systems, 1998, 10, pp. 131–158. 

Attie, P., Singh, M., Sheth, A., Rusinkiewicz, M., Specifying and enforcing intertask 
dependencies. In Proceedings of the 19th VLDB Conference, 1993. 



 

 224 

Barkaoui, K., Petrucci L., Structural analysis of workflow nets with shared resources. In 
Workflow Management: Net-based Concepts, Models, Techniques and Tools, edited by 
W.M.P. van der Aalst, G. De Michelis, C. A. Ellis, 1998, 98, pp. 82–95. 

Bernus, et al. (eds.), Handbook on architectures of information systems, Heidelberg, 1998 
(Springer-Verlag). 

Bettini, C., Wang, X., Jajodia, S., Temporal reasoning in workflow systems. Distributed and 
Parallel Databases, 2002, 11(3), pp. 269–306. 

Bonner, A. J., Kifer, M., A logic for programming database transactions. In Logics for 
Databases and Information Systems, edited by J. Chomicki, G. Saake, pp. 117–166, 1998 
(Kluwer). 

Broek, E., Jonker, C., Sharpanskykh, A., Treur, J., and Yolum, P., Formal modeling and 
analysis of organizations. In: O. Boissier, J. Padget, V. Dignum, G. Lindemann, E. Matson, 
S. Ossowsk, J. Sichman and J. Vazquez Salceda (eds.), Coordination, Organization, 
Institutions and Norms in Agent Systems I, LNAI 3913, pp. 18-34, 2006 (Springer) 

Business Process Modeling Language (BPML).http://www.bpmi.org. 
Business Process Modeling Notation (BPMN) http://www.bpmn.org/ 
CIMOSA – Open system architecture for CIM, ESPRIT Consortium AMICE, 1993 (Springer-

Verlag, Berlin). 
Clarke, E.M., Grumberg, O., Peled, D.A., Model checking, 2000 (MIT Press). 
Cormen, T.H., Leiserson, C. E., Rivest, R. L., Stein, C., Introduction to Algorithms, 2001 (MIT 

Press) 
Fox, M.S., The TOVE project: towards a common-sense model of the enterprise. In 

Proceedings of ICIEMT’92, edited by C.J. Petrie Jr., pp. 310–319, 1992 (MIT Press). 
Horling, B., and Lesser, V., A Survey of multi-agent organizational paradigms. The Knowledge 

engineering review, 19(4), pp. 281–316, 2005 (Cambridge University Press). 
Li, H., Yang, Y., Chen, T.Y., Resource constraints analysis of workflow specifications. Journal 

of Systems and Software, 2004, 73(2), pp. 271–285. 
Lu, R., Sadiq, S., Padmanabhan, V., Governatori, G., Using a temporal constraint network for 

business process execution. In Proceedings of 17th Australasian Database Conference, 
Australian Computer Science Association, ACS, pp. 157-166, 2006. 

Malone, T., Crowston, K., Herman, G. (eds.): Organizing business knowledge: The MIT 
Process Handbook, 2003 (MIT Press, Cambridge, MA). 

Manzano, M., Extensions of First Order Logic, 1996 (Cambridge University Press). 
Menzel, C., Mayer, R.J., The IDEF family of languages. In Handbook on Architectures of 

Information Systems, edited by P. Bernus et al., pp. 209–241, 1998 (Springer-Verlag, 
Heidelberg). 

Popova, V. and Sharpanskykh, A. (2007a), A Formal framework for modeling and analysis of 
organizations. In Proceedings of the Situational Method Engineering Conference, ME'07; 
edited by Ralyte, J., Brinkkemper, S., Henderson-Sellers, B. (eds.) 2007 (Springer Verlag). 

Popova V., and Sharpanskykh, A. (2007b). Formal analysis of executions of organizational 
scenarios based on process-oriented models. In I. Zelinka, Z. Oplatkova and A. Orsoni 
(eds.), Proceedings of 21st European Conference on Modelling and Simulation ECMS’07, 
pp. 36-44, 2007 (SCS Press). 

Popova, V., and Sharpanskykh, A. (2007c), Formal modelling of goals in agent organizations. 
In: Proceedings of AOMS workshop joint with IJCAI’07 edited by V. Dignum, F. Dignum, 
E. Matson, B.Edmonds, 2007, pp.74-86. 

Popova, V., and Sharpanskykh, A. (2007d), Modelling organizational performance indicators, 
In Proc. of IMSM’07 conference, edited by F. Barros et al., 2007, pp. 165–170. 

Popova, V., and Sharpanskykh, A. (2007e), Process-oriented organization modeling and 
analysis based on constraints, Technical Report 062911AI, VUA, 
http://hdl.handle.net/1871/10545. 



 

 225 

Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P. Workflow Resource 
Patterns. BETA Working Paper Series, WP 127, Eindhoven University of Technology, 
Eindhoven, 2004. 

Scheer, A.-W., Nuettgens. M., ARIS Architecture and reference models for business process 
management. In LNCS 1806, edited by W.M.P. van der Aalst et al., pp. 366–389, 2000 
(Springer-Verlag, Berlin). 

Scott, W.R., Institutions and organizations. 2nd edn, 2001 (SAGE Publications, Thousand 
Oaks London New Delhi). 

Sharpanskykh, A., Authority and its implementation in enterprise information systems. In 
Proceeding of the 1st International Workshop on Management of Enterprise Information 
Systems, MEIS 2007, 2007 (INSTICC Press). 

Singh, M. P., Synthesizing distributed constrained events from transactional workflow 
specifications. In Proc. of the 12th IEEE Intl. Conf. on Data Engineering, 1996, pp. 616–
623. 

Tsang, E., Foundations of Constraint Satisfaction. 1993 (Academic Press). 
Van der Aalst, W. M. P., The application of Petri Nets to workflow management, The Journal 

of Circuits, Systems and Computers, 1998, 8(1), pp. 21–66. 
Van der Aalst, W.M.P., and Ter Hofstede, A.H.M., YAWL: Yet another workflow language, 

Information Systems , 2005, 30(4), pp. 245-275. 
Van der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., and Barros, A.P., Workflow 

patterns, Distributed and Parallel Databases, 2003, 14(3), pp. 5–51. 
Yang, D., and Zhang, S., Modeling workflow process models with statechart. In Proc. of ECBS, 

2003, pp. 55–61. 
 



 

 226 



 

 227 

 
 
 
 
 
 
 
 

Chapter 4 

 

Formal Analysis of Executions of Organizational 
Scenarios Based on Process-Oriented Models 1 

Abstract. This paper presents formal techniques for analysis of executions of 
organizational scenarios based on process-oriented models of organizations. A 
part of these techniques is dedicated to establishing the correspondence between 
formalized executions (i.e., traces) and process-oriented models. Other 
techniques provide the analyst with wide possibilities to analyze organizational 
dynamics and to evaluate organizational performance. For the proposed formal 
analysis the order-sorted predicate Temporal Trace Language (TTL) is used. 
The analysis is supported by the dedicated software tool TTL Checker. The 
analysis approaches are illustrated by a case study in the context of an 
organization from the security domain. 

1   Introduction 

Process management in many modern organizations is supported by dedicated 
software systems, such as Workflow Management Systems (WfMS). WfMSs are used 
to guide/control the execution of organizational scenarios based on certain internal 
models. These models describe/prescribe ordering and timing relations on processes, 
modes of use of resources, allocations of actors to processes etc. WfMS models are 
expressed using different formalisms: Petri-Nets, Workflow Nets, process algebra, 
logical specifications. An approach proposed in this paper makes use of models 

                                                           
1 Part of this chapter appeared as Popova, V., Sharpanskykh, A.: Formal Analysis Of 

Executions Of Organizational Scenarios Based On Process-Oriented Models. In: I. Zelinka, 
Z. Oplatkova and A. Orsoni (eds.), Proceedings of 21st European Conference on Modelling 
and Simulation ECMS 2007, SCS Press, 36-44 (2007) (the names of the authors are ordered 
alphabetically reflecting the comparable contribution of each author).  



 

 228 

specified in an expressive order-sorted predicate language LPR described in (Popova 
and Sharpanskykh 2006). The actual execution of organizational scenarios may 
diverge from the dynamics (pre)defined by a process-oriented model. To capture this 
difference many WfMSs record data about actual executions (e.g., starting and 
finishing time points of processes, types and amounts of resources 
used/consumed/produced/broken, names of actors who perform processes). 

To guarantee the correct operation of an organization supported by a WfMS (1) a 
correct formal process-oriented model should be provided and (2) actual executions of 
organizational scenarios should correspond to this formal model. For establishing the 
correctness of process-oriented (or workflow) models a number of formal verification 
techniques exist (e.g., Aalst and Hee 2002) aimed at identifying errors and 
inconsistencies in models, irrespectively of actual executions of these models. The 
verification techniques related to models used in this paper are described in (Popova 
and Sharpanskykh 2006). However, not many formal techniques and tools exist for 
establishing if the organization actually behaves as it is specified by the model (i.e., 
for validating a model). In (Barjis et al. 2002; Desel et al. 2003) validation is 
performed by simulation of organizational scenarios. Although simulation techniques 
can provide useful insights into relationships and dynamics of an organization, they 
often abstract from the complexity of dynamics of real organizations. To perform 
analysis based on the actual organizational execution, data gathered by a WfMS can 
be used. For example, in (Aalst et al. 2005) it is shown how the analysis based on 
linear temporal logic (LTL) can be used for establishing the correspondence between 
the observed and the expected organizational behavior. In this paper different types of 
formal, automatically supported analysis of actual executions based on process-
oriented models will be described. These types include checking the conformity to a 
formal process-oriented model and to the formal organization, analysis of 
organizational emergent properties and organizational performance evaluation. The 
analysis is based on the predicate-based Temporal Trace Language (TTL), which 
allows more expressivity than LTL used in (Aalst et al 2005). 

The presentation is organized as follows. First, the overview of the proposed 
analysis framework is given. Then, the specification of process-oriented models is 
briefly discussed and a language used for formalizing executions is introduced. Next, 
TTL and the dedicated software environment TTL Checker are considered. Finally, 
different types of trace-based analysis are discussed and illustrated by a case study 
from the security domain. The paper concludes with a discussion. 

2   Trace-based Analysis: Overview 

In (Popova and Sharpanskykh 2007a) a general organization modeling and analysis 
framework is introduced including different views on organizations. In particular, the 
performance-oriented view describes organizational goal structures, performance 
indicators structures, and relations between them. Within the organization-oriented 
view organizational roles, their authority, responsibility and power relations are 
defined. In the agent-oriented view different types of agents with their capabilities are 
identified and principles for allocating agents to roles are formulated. Finally, 



 

 229 

process-oriented view describes static structures of tasks and resources, the flow of 
control, and addresses the actual execution of organization processes. The views are 
related to each other by means of common concepts, which enables different types of 
analysis across views. This paper describes a part of the process-oriented view related 
to actual execution of organizational scenarios based on process-oriented models 
formalized in LPR. Data about actual executions are structured in the form of a trace - 
a formal structure that consists of a time-indexed sequence of states. Each state is 
characterized by a set of organizational and environmental events that occur in the 
state. Events are specified by atoms in a sorted predicate language LEX, described in 
this paper. The formal analysis of actual executions is performed by checking 
organizational properties expressed in TTL on traces using the TTL Checker tool. The 
TTL Checker has a graphical interface, using which TTL formulae can be inputted 
and traces that represent organization executions can be loaded and visualized (see for 
example Fig.1). The tool generates a positive answer, if the specified property is 
satisfied by the execution model (i.e., holds w.r.t. the loaded trace(s)). If a formula is 
not satisfied, a counterexample is provided. The tool also allows performing statistical 
analysis on multiple traces. More details on the TTL and the tool are given further in 
the paper. Here we identify the types of trace analysis that can be performed using the 
TTL Checker. 

Each process-oriented model (pre)defines a set of scenarios of organization 
behavior. The actual execution of an organization may diverge from scenarios 
described by the model. In some organizations a certain degree of deviation is 
allowed, whereas other organizations require a strict adherence to the model (e.g., 
military organizations, nuclear power plants). In the second case the verification of 
the conformity of an actual execution to a formal organization model is of special 
importance. This is the first type of analysis considered in this paper.  

Every correct process-oriented model guarantees the satisfaction of a set of 
(global) constraints over processes, resources and agents identified in the 
organization. These constraints are usually specified based on different organizational 
and general normative documents (e.g., a strategy description, laws, policies, etc.). In 
general, if a trace conforms to the corresponding process-oriented model, then all 
constraints imposed on and satisfied by the model are also satisfied by the trace. 
However, when the checking of the conformity of the trace to the model fails, then the 
satisfaction of the constraints by the trace is not guaranteed any more. In this case the 
analysis of the conformity of a trace to a formal organization (i.e., organizational 
constraints) should be performed, which is the second type of analysis considered in 
this paper. Often process-oriented models allow (different degrees of) autonomy of 
agents in executing organizational scenarios. For example, in many organic 
organizations processes are defined loosely to ensure flexibility. To analyze the 
functioning of such organizations, an approach called analysis of the emergent 
organizational behavior is proposed in the paper. 

Finally, the paper proposes a method for the evaluation of organizational 
performance based on checking the satisfaction of organizational goals related to 
processes.  

The types of analysis described above may be performed both during the execution 
and after the execution of organizational scenarios. 

 



 

 230 

3   The Specification of the Process-Oriented Model 

Process-oriented models are expressed using the LPR language, which is briefly 
described in this section. For more details see (Popova and Sharpanskykh 2006). The 
model describes the following objects (represented by sorts in LPR): tasks, processes 
(particular instances of tasks in control flows), resource types describing information 
and material artifacts, resources (specific instances of resource types having specified 
amounts), agents, roles (sets of functionalities that can be assigned to agents), goals, 
performance indicators (measures based on which the goals are defined). Each object 
has a number of characteristics. For example, a task is characterized by a minimum 
duration (denoted by task_name.min_duration); a resource type has a characteristic 
expiration duration; resources are characterized by an amount. Furthermore, relations 
are defined over the objects. For example, the relation task_produces(t:TASK, 
rt:RESOURCE_TYPE, v:VALUE) specifies that task t produces amount v of resource type 
rt. Resource types that can be shared by several processes are specified in 
resource_sharable(rt:RESOURCE_TYPE, L:PROCESS_LIST). 

The set of specified processes together with the set of ordering relation defined on 
them form a workflow. An example of an ordering relation is starts_after(p1: PROCESS, 
p2:PROCESS). It defines that process p1 starts after process p2. Furthermore, three 
types of structures specifying the flow of control between processes are defined: and-, 
or- and loop-structures. Branches of and-structures start simultaneously and are all 
executed. Only one branch of an or-structure can be executed depending on the or-
condition. Loop structures contain processes that can be repeated depending on the 
loop-condition within a maximum number of iterations. Relations between roles, 
agents and processes are defined as follows: role_perfoms_process(r:ROLE, p:PROCESS) 
and agent_plays_role(a:AGENT, r:ROLE). Relations to goals and PIs are defined as 
follows: is_realized_by(g:GOAL, L:TASK_LIST) defining that goal g can be realized by 
performing tasks in list L and measures(i:PI, p:PROCESS) specifying that performance 
indicator i is a measure over some aspect of the performance of process p. 

4   Execution Language LEX 

For the formalization of a trace, a dedicated sorted predicate language LEX is used, 
which is based on LPR. Each sort included into LEX represents a set of individual 
objects of a certain type that occur in the trace (e.g., the sort PROCESS_EX contains all 
names of processes that have been executed in the trace). To distinguish the names of 
sorts of LEX from the names of sorts in LPR, all sort names of LEX finish with the EX 
postfix.  

The following sorts are included into LEX: 
PROCESS_EX – a set of all process names in a trace; 
RESOURCE_EX - a set of all resource names; 
RESOURCE_TYPE_EX – a set of all resource types names; 
ROLE_EX – a set of all role names; 
AGENT_EX – a set of all agent names; 
PI_EX – a set of all performance indicators names; 



 

 231 

VALUE_EX – an ordered set of numbers; 
PROCESS_LIST_EX – a set of all names of process lists; 
DECISION_VARIABLE_EX – a set of all names of decision variables; 
DECISION_VAR_VALUE_EX – a set of all values of decision variables; 
ENV_OBJECT_EX – a set of all environmental objects names; 
OBJ_STATE_EX – a set of all names of states of objects; 
OBJ_CHAR_EX – a set of all names of object characteristics. 

 
To define events a number of relations are introduced into LEX (see Table 1). 

Table 1. Relations defined in LEX 

Predicate specification Informal description 

process_started: PROCESS_EX A process has started 

process_finished: PROCESS_EX A process has finished 

resource_used_by: RESOURCE_EX x 
PROCESS_LIST_EX x VALUE 

A certain resource amount is used by a 
process 

resource_consumed_by: RESOURCE_EX 
x PROCESS_EX x VALUE 

A certain resource amount is consumed 
by a process 

resource_produced_by: RESOURCE_EX x 
PROCESS_EX x VALUE 

A certain resource amount is produced 
by a process 

resource: RESOURCE_EX x 
RESOURCE_TYPE_EX 

Identifies a resource of a certain 
resource type 

resource_expired: RESOURCE_EX A resource is expired 

resource_invalid: RESOURCE_EX x 
VALUE 

A certain resource amount became 
invalid (e.g. broken) 

available_resource_amount: 
RESOURCE_EX x VALUE 

Specifies the available amount of the 
resource 

pi_has_value: PI_EX x VALUE Identifies the value of a PI 

agent_is_assigned_to_role: AGENT_EX x 
ROLE_EX 

Specifies the assignment of an agent to a 
role 

agent_performs_process: AGENT_EX x 
PROCESS_EX 

Identifies that an agent performs a 
certain process 

env_object_changed_state_into: 
ENV_OBJECT_EX x OBJ_STATE_EX 

Specifies a changed state of an 
environmental object 

env_object_changed_char_into: 
ENV_OBJECT_EX x OBJ_CHAR_EX x 
VALUE 

Specifies the value of a certain 
characteristic of an environmental object 

decision_taken: 
DECISION_VARIABLE_EX x 
DECISION_VAR_VALUE_EX 

Identifies the value of a decision 
variable 



 

 232 

5   Language TTL and TTL Checker Tool 

To analyze traces the language TTL is used. TTL is a variant of order-sorted predicate 
logic, which allows reasoning about dynamic properties of systems. TTL properties 
considered in this paper are specified based on state properties expressed as formulae 
in LEX. For enabling dynamic reasoning, TTL includes special sorts: TIME (a set of 
linearly ordered time points), STATE (the set of all state names of a system), TRACE 
(the set of all trace names), STATPROP (the set of all state property names). In TTL, 
formulae of the state language (LEX in this case) are used as objects. Further we shall 
use t with subscripts and superscripts for variables of the sort TIME; and γ with 
subscripts and superscripts for variables of the sort TRACE. A state of a system in a 
trace is denoted using a function symbol state of type TRACE x TIME → STATE. The set 
of function symbols of TTL includes:  

∧, ∨, →, ↔: STATPROP x STATPROP→ STATPROP,  
not: STATPROP→ STATPROP,  
∀∀∀∀, ∃∃∃∃: VARS x STATPROP→ STATPROP,  

which are counterparts to the Boolean propositional connectives and quantifiers.  
The states of a system are related to names of state properties via the satisfaction 

relation denoted by the infix predicate |= (or by the prefix predicate holds): state(γ,t)|= p 
(or holds(state(γ,t)), which denotes that the state property with a name p holds in trace 
γ at time point t. For example, state(trace1,10)|= process_started(p2) denotes that the 
process p2 has started in the trace1 at the time point 10. Both state(γ,t) and p are terms 
of TTL. All other TTL terms are constructed by induction in the standard predicate 
logic way. 

Transition relations between states are described by dynamic properties, which are 
expressed by TTL-formulae. The set of atomic TTL-formulae is defined as: 

(1) If v1 is a term of sort STATE, and u1 is a term of the sort STATPROP, then holds(v1,u1) 
is an atomic TTL formula. 

(2) If τ1, τ2 are terms of any TTL sort, then τ1=τ2 is an atomic TTL formula.  
(3) If t1, t2 are terms of sort TIME, then t1<t2 is an atomic TTL formula.  

The set of well-formed TTL-formulae is defined inductively in a standard way 
using Boolean propositional connectives and quantifiers. TTL has semantics of the 
order-sorted predicate logic. A more detailed specification of the syntax and the 
semantics for the TTL is given in (Sharpanskykh and Treur 2006). 

The analysis based on checking of TTL formulae on (one or more) traces is 
supported by the TTL Checker tool. Besides the logical analysis the tool allows 
statistical post-processing of the verification results. For this the following functions 
are used: 

case(logical_formula, value1, value2): if logical_formula is true, then the case function is 
mapped to value1, otherwise – to value2. 

sum([summation_variables], case(logical_formula, value1, 0)):  logical_formula is evaluated 
for every combination of values from the domains of each from the 
summation_variables; and for every evaluation when the logical formula is evaluated to 
true, value1 is added to the resulting value of the sum function.  



 

 233 

To provide support for analysts not skilled in logics, the tool allows defining 
parameterized templates (macros), which can be instantiated in different ways. 
Further details about the TTL Checker can be found in (Bosse et al. 2006). Examples 
of analysis cases that also include statistical processing will be given further in this 
paper. 

6   Trace Conformity to a Model 

As described earlier the process-oriented model consists of objects, characteristics and 
relations defined in LPR. Every such model can be translated to a set of constraints that 
should be satisfied by actual execution traces. The constraints are represented as 
properties in TTL using LEX as a state language. Each property is based on a specific 
combination of language constructs (ordering relations, and-/or-/loop-structures, 
object characteristics, etc.) In the following we define rules on how to translate 
different parts of the model specification to TTL properties.  

The first property we consider represents the restriction that only processes 
specified in the model are allowed to be performed. It is formalized in TTL as 
follows. For specific process names p1, ..., pn: 

C1: ∀t, p:PROCESS_EX state(γ, t) |= process_started(p) � p = p1 | ... | p = pn 

The next properties represent the constraints that processes not part of any or-
structure  start and finish in the trace. For p1 a process not in any or-branch: 

C2: ∃t1 state(γ, t1) |= process_started(p1) 
C3: ∃t1 state(γ, t1) |= process_finished(p2) 

The execution of processes in or- and loop-structures depends on the evaluation of 
conditions defined for these structures. In this case it needs to be checked whether the 
processes that have started also finish in the trace: For p1 a process in a loop-
structure/or-branch: 

C4: ∃t1 state(γ, t1) |= process_started(p1)  
       � ∃t2: state(γ, t2) |= process_finished(p1) 

Additionally for processes not in loop-structures: 
C5: ∃t1 state(γ, t1) |= process_started(p1)  
       � (∀t3 t3 � t1 � state(γ, t3) |= ¬process_started(p1) 

The next property checks if the actual duration of a process is within the range 
defined by the corresponding task. For a process p1, a task tk, durations d1 and d2 
such that [is_instance_of(p, tk), tk.min_duration=d1, tk.max_duration=d2]: 

C6: ∃t1, t2 state(γ, t1) |= process_started(p1) & state(γ, t2) |= process_finished(p2) � d1 � t2-
t1 & t2-t1 � d2 

Ordering relations are translated to constraints in the following way. For p1, p2 
such that starts_with(p1, p2): 

C7: ∃t1 state(γ, t1) |= process_started(p1) � state(γ, t1) |= process_started(p2) 

C8: ∃t1 state(γ, t1) |= process_started(p2)  � state(γ, t1) |= process_started(p1) 

C9: ∃t1 state(γ, t1) |= process_finishes(p1) � state(γ, t1) |= process_finishes(p2) 



 

 234 

C10: ∃t1 state(γ, t1) |= process_finishes(p2) � state(γ, t1) |= process_finishes(p1) 

For p1, p2 such that starts_during(p1, p2): 
C11: ∃t1 state(γ, t1) |= � process_started(p1)  
        � ∃t2, t3 t2 

�
 t1 & t1 

�
 t3 ∧ state(γ, t2) |= process_started(p2) &  

             state(γ, t3) |= process_finished(p2) 

For p1, p2, d such that starts_after(p2, p1, d) except for beginning and ending of and-, 
or-, or loop-structures: 

C12: ∃t1 state(γ, t1) |= process_finished(p1)  
        � ∃t2: state(γ, t2) |= process_started(p2) & d = t2-t1 

Next, and-structures are considered. Firstly, specifications such as [starts_after(p, 
begin_and(id), d), starts_after(begin_and(id), p1), ..., starts_after(begin_and(id), pn)] are treated 
as [starts_after(p1, p, d), ..., starts_after(pn, p, d)]. Furthermore the end of the structure 
should be considered [starts_after(end_and(id), p1), ..., starts_after(end_and(id), pn), 
starts_after(p, end_and(id))] and it should be checked whether the order of execution at 
the end of the and-structure matches the specified and-condition. 

For p1, ..., pn, p, d such that [starts_after(end_and(id), p1), ..., starts_after(end_and(id), pn), 

starts_after(p, end_and(id), d), and_cond(id, any)]: 

C13: ∃t1 state(γ, t1) |= [process_finished(p1) ∨ ... ∨ process_finished(pn)] & (∀t2: t2 
�
 t1 � 

state(γ, t2) |= [¬process_finished(p1) ∧ ... ∧ ¬process_finished(pn)] 
� ∃t3 state(γ, t3) |= process_started(p) & d = t3-t1 

For p1, ..., pn, p, d such that [starts_after(end_and(id), p1), ..., starts_after(end_and(id), pn), 
starts_after(p, end_and(id), d), and_cond(id, all)]: 

C14: ∃t1, ..., tn, tp state(γ, t1) |= process_finished(p1) & ...  
          & state(γ, tn) |= process_finished(pn) & tp �  t1 & ... & tp �  tn & (tp = t1 | ... | tp = tn) �  
         ∃tt state(γ, tt) |= process_started(p) & d = tt-tp 

And-conditions with other expressions are treated similarly taking into account 
which processes should finish so that the next process can start, for example: 
[starts_after(end_and(id), p1), ..., starts_after(end_and(id), pn), starts_after(p, end_and(id), d), 
and_cond(id, finished(p1)∧finished(p2))] can be checked as follows: 

C15: ∃t1, t2, t state(γ, t1) |= process_finished(p1) & state(γ, t2) |= process_finished(p2) &  
          t1 

�
 t & t2 

�
 t & (t = t1 | t = t2)  

        � ∃t3 state(γ, t3) |= process_started(p) & d = t3-t 

For or-structures it should be checked if exactly one of the branches is executed 
and it matches the specified or-condition. An or-condition is an expression based on a 
decision variable (related to a decision process), state or a characteristic of an 
environmental object. For p, p1,..., pn, d, and a condition based on the decision 
variable dv such that [starts_after(begin_or(id),p,d),starts_after(p1, begin_or(id)), ..., 
starts_after(pn, begin_or(id)),  or_cond(id, dv), or_branch(p1, val1),..., or_branch(pn, valn)] 
(similarly for other conditions): 

C16: ∃t1 state(γ, t1) |= � process_finished(p) � ∃t2 (state(γ, t2) |= process_started(p1) & ∀t3 
state(γ, t3) |= [¬process_started(p2) ∧ ... ∧ ¬process_started(pn)] & ∃t4 state(γ, t4) |= 
decision_taken(dv, val1) & t4 

�
 t2 & (∀t5 t5 �  t4 & t5 

�
 t2 & state(γ, t5) |= decision_taken(dv, val) 

� val = val1) | ... | (state(γ, t2) |= process_started(pn) & ∀t6 state(γ, t6) |= [¬process_started(p1) ∧ 
... ∧ ¬process_started(pn-1)] &  ∃t7 state(γ, t7) |= decision_taken(dv, valn) & t7 

�
 t2 & (∀t8 t8 �  t7 & 

t8 
�
 t2 & state(γ, t8) |= decision_taken(dv, val) � val = valn)) & d = t2-t1 



 

 235 

In a similar way, formulations can be given for the case of a condition based on the 
state of an environmental object or a characteristic of an environmental object. 

Furthermore, it should be checked that the processes in the branches that did not 
start also are not executed. For every or-branch such that [starts_after(p1, begin_or(id)), 
starts_after(p2, p1), ..., starts_after(pn, pn-1), starts_after(end_or(id), pn)] the following 
property should be checked: 

C17: ∀t1 state(γ, t1) |= ¬process_started(p1)  
        � ∀t2 state(γ, t2) |= [¬process_started(p2) ∧ ... ∧ ¬process_started(pn)] 
Furthermore it should be checked that the process after the or-structure starts 

correctly:  

For p1, ..., pn, p, d such that [starts_after(end_or(id), p1), ..., starts_after(end_or(id), pn), 
starts_after(p, end_or(id), d)]: 

C18: ∃t1 state(γ, t1) |= [process_finished(p1) ∨ ... ∨ process_finished(pn)] � ∃t2 state(γ, t2) |= 
process_started(p) & d = t2-t1 

Next, loop-structures are considered. Specifications such as 
[starts_after(begin_loop(id), p1), starts_after(p2, begin_loop(id))] are treated as starts_after(p2, 
p1). Furthermore for every process in a loop-structure the corresponding sequencing 
relations are checked in a similar way. For the last process p2 in a loop-structure with 
a condition expression dv = val for a decision variable dv such that [starts_after(p1, 
begin_loop(id)), ..., starts_after(end_loop(id), p2, d2), starts_after(p3, end_loop(id), d3), 
loop_cond(id, dv = val), loop_max(m)] the correct execution order w.r.t. a loop condition 
and a maximal number of iterations should be checked: 

C19: ∃t1 state(γ, t1) |= process_finished(p2) �  
∃t2 (state(γ, t2) |= process_started(p1) & ∃t3 state(γ, t3) |= decision_taken(dv, val) & t3 � t2  
& (∀t4 t4 � t3 & t4 � t2 & state(γ, t4) |= decision_taken(dv, val1) � val = val1) &  
 ¬max_iter(p2) & t2-t1 = d2) & (state(γ, t2) |= process_started(p3) & t2-t1 = d2+d3 &  
(∃t3 state(γ, t3) |= decision_taken(dv, val1) & val1 � val & t3 � t2 & (∀t4 t4 � t3 & t4 � t2 &  
 state(γ, t4) |= decision_taken(dv, val2) � val2 = val1) | max_iter(p2))) 
 
Property max_iter(p2) can be defined as follows where m is the maximal number of 

iterations: 
∃t1, ..., tm t1 � t2 ∧ ... ∧ t1 � tm ∧ ... ∧ tm-1 � tm ∧ state(γ, t1) |=  process_started(p2) & ... & 

state(γ, tm) |= process_started(p2) 

Different types of conditions are treated similarly taking into account the specific 
condition variable. 

The following properties concern resources and resource types and how they are 
used/consumed/produced/shared by processes.  

For resource type rt, task tk, amount v and process p such that [is_instance_of(p, tk), 
task_consumes(tk, rt, v)]: 

C20: sum([r:RESOURCE_EX], case(∃t1, t2 state(γ, t1) process_started(p) &  
             state(γ, t2) |= process_finished(p) & ∃t3 t1 � t3 & t3 � t2 ∧ state(γ, t3) |=  
                               resource_consumed_by(r, p, v1) & ∃t4 state(γ, t4) |= resource(r, rt), v1, 0)) = v 

For resource type rt, task tk, amount v and process p such that [is_instance_of(p, tk), 
task_uses(tk, rt, v)] for every time point t in the trace it will be checked that the resource 
that is used matches the specification: 



 

 236 

C21: sum([L:PROCESS_LIST_EX], case(∃t1, t2 state(γ, t1) |= process_started(p) & state(γ, t2) 
|= process_finished(p) & t1 � t & t � t2 & state(γ, t) |= resource_used_by(r, L, v1) & is_in_list(p, L) 
& ∃t4 state(γ, t4) |= resource(r, rt), v1, 0)) = v 

For resource type rt, task tk, amount v and process p such that [is_instance_of(p, tk), 
task_produces(tk, rt, v)]: 

C22: ∃t1, t2 state(γ, t1) |= process_started(p) & state(γ, t2) |= process_finished(p) �  
         ∃t3 t1 � t3 & t3 � t2 & state(γ, t3) |= resource_produced_by(r, p, v) &  
         ∃t4 state(γ, t4) |= resource(r, rt) 

In the model, the resources available at the beginning of the workflow are 
represented as produced by the BEGIN process. Thus it should be checked if the 
available amount at the beginning of the trace matches the amount produced by the 
BEGIN process. For resource r such that [process_output(BEGIN, r), is_resource_type(r, rt), 
r.amount=v]: 

C23: sum([r:RESOURCE_EX], case(state(γ, 0) |= [available_resource_amount(r, v1) ∧ 
resource(r, rt)], v1, 0)) = v 

It should also be checked whether the resources are shared between lists of 
processes for which this is allowed. For resource type rt and list of processes L such 
that [resource_sharable(rt, L)]: 

C24: ∃t1 ∃L1:PROCESS_LIST_EX state(γ, t1) |= resource_used_by(r, L1, v) & ∃t2 state(γ, t2) 
|= resource(r, rt) � is_sublist_of(L1, L) 

Finally it should be checked if role/process assignments to agents are correct. For 
role r, agent a, process p such that [role_performs_process(r,p),agent_plays_role(a, r)]: 

C25: ∃t1, t2 state(γ, t1) |= process_started(p) & state(γ, t2) |= process_finished(p) � ∀t3  t1 � 
t3 & t3 � t2 & state(γ, t3) |= [agent_performs_role(a, r) ∧ agent_performs_process(a, p)] 

The above listed properties are general and can be checked in any order on the 
execution trace. However in many cases it would be beneficial to enforce certain 
order of checking. Often when one constraint is violated that causes the violation of 
others but finding all of them might not add much more information on what went 
wrong. For example, when one process fails to produce a resource necessary for 
another process this might cause changes or even failures in the rest of the execution 
trace. However these are only consequences of the first failure – the production of the 
resource. It is therefore useful to alert the analyst of the first time point at which a 
violation of a constraint occurs. The approach proposed here is to consider the events 
of the trace in their natural temporal order. For each event that represents a starting or 
finishing point of a process only a selection of the relevant general constraints 
instantiated for a specific time point(s) and a specific event(s) are checked.  

In the following we define the sets of relevant constraints w.r.t. the type of event 
occurring in the trace. The first constraints to be checked are C23 (available resource 
at the first time point) and C2 (checks if a process starts) for the first process(es) in 
the workflow that should start at the first time point unconditionally. If at the first 
time point an or-structure begins then it should be checked that only one branch is 
executed and it matches the evaluation of the condition (C16). Afterwards the 
(partially) ordered list of starting and finishing points of processes is considered. For 
every starting point the following types of constraints are considered (in this order): 



 

 237 

(1) the process is defined in the model (C1); 
(2) the process has not been executed before if not in loop-structures (C5); 
(3) constraints w.r.t. the conditions for and-structures (C13, C14, C15); 
(4) constraints related to starts_with and starts_during (C7, C8, C11);  
(5) the process finishes (C3, C4). 
For every finishing point the following constraints are checked (in this order):  
(1) resource-related constraints (C20, C21, C22, C24);  
(2) agent-/role-related constraints (C25); 
(3) durations (C6); 
(4) constraints related to finishes_with (C9, C10); 
(5) constraints on the next process (C12, C16, C17, C18, C19).  
From all types of considered constraints those are selected that refer to the specific 

process to which the starting or finishing point belongs. When more events coincide 
finishing points are considered before starting points. 

The above described approach assumes the availability of the whole execution 
trace at the beginning of the analysis. In some situations it might be necessary to 
perform such analysis while the trace is being generated. This gives the possibility to 
react as soon as an event in the execution deviates from the model and take 
appropriate measures.  

With some adjustments, the generic properties can be used here as well. The 
analysis process works as follows. The information about events from the trace 
become available following the order of the time points at which they occur and all 
events happening at the same time point become available all at once. Depending on 
the type of the current considered event specific types of constraints are checked or 
assigned to be checked at specific time points in the future. The system gives a 
warning when a constraint is violated by the trace. At the first time point again the 
available resource (C23) and the starting of the first processes is checked (C2, C16). 
Then for every starting point of a process that appears in the trace the following types 
of constraints are considered:  

(1) the process is defined in the model (C1); 
(2) the process has not been executed before in the part of the trace up to the 

current event (C5); 
(3) constraints with respect to the conditions for the end of and-structures (C13, 

C14, C15); 
(4) constraints related to synchronizations starts_with and starts_during (C7, C8, 

C11); 
(5) existence of a finishing point for the process (based on C3, C4) – as this 

information is not yet available in the trace, the corresponding properties are 
scheduled to be checked for every time point until such a finishing point 
occurs. When the maximal duration specified by the model is passed and no 
finishing point has yet occurred a warning is given that the process exceeds 
its allowed duration. A warning is also generated if the process finishes 
before its minimal duration specified by the model has passed; 

(6) resource-related constraints of the following types are checked for every time 
point until the process finishes: resource sharability (C24), resource used by 
a process (C21), resource produced (C22) or consumed (C20) by the process 



 

 238 

up to the current time point is checked not to exceed the specified amount in 
the model; 

(7) agent- and role-related constraints are checked for every time point until the 
process finishes. 

For every finishing point the following types of constraints are considered (in this 
order): 

(1) resource produced (C22) or consumed (C20) by the process for its whole 
duration is checked to be equal to the pre-specified amount in the model; 

(2) constraints related to synchronizations finishes_with (C9, C10); 
(3) constraints with respect to the process which should start next (C12, C16, 

C17, C18, C19) – since the necessary information is not yet available in the 
trace, the properties are scheduled to be checked in the following way. For 
every time point it is checked if the expected process has started until 
information about its starting point arrives. If this starting point is before the 
pre-specified delay a warning is issued. A warning is also issued when the 
delay has passed and the process has not started yet. C16 is checked until the 
starting point of the first process in a branch of the or-structure. Afterwards it 
is checked for the rest of the incoming trace that none of the other first 
processes of other branches of this structure start at any later point (C17). At 
the end of the or-structure a property is scheduled for checking if the process 
after the or-structure starts for every time point until the process actually 
starts. For loop-structures a counter is kept for the current number of 
iterations. It is used to determine the next process together with the current 
evaluation of the condition. Based on that the appropriate property is 
scheduled to be checked until the correct process starts. 

 
For most types of constraints the following rule is used: when a specific constraint 

is checked or scheduled for checking it is marked and is not considered any more at 
the events occurring later. Exception is made for the loop-related constraints which 
might need to be considered multiple times.  

7   Conformity to a Formal Organization 

A formal organization is specified by a fixed set of rules that define (prescribe) 
organizational structure and behavior and are formalized as predicate logic constraints 
imposed on a process-oriented model. These rules are usually described in different 
organizational and general normative documents (e.g., an organizational mission 
statement, a strategy description, laws, organizational normative acts, different 
policies, job and procedure descriptions) and are formalized as predicate logic 
constraints imposed on a process-oriented model. 

In (Popova and Sharpanskykh 2006) different types of constraints are described 
(e.g., domain-specific, physical world constraints). Some of these constraints are strict 
and should not be violated in any organizational scenario; e.g., “all employees 
involved in a certain process, which has a risk factor for human health, should be 
provided with the necessary safety means”. Other rules are less strict and can be 



 

 239 

(temporally) violated; e.g., “the average amount of a certain resource produced by an 
organization is required to be greater than a certain number”.  

In general, if a trace conforms to the corresponding organization model (i.e., a 
trace is in the set of possible executions of the model), then all constraints imposed on 
and satisfied by the model are also satisfied by the trace. However, when the checking 
of the conformity of a trace to an organization model fails, then the satisfaction of the 
constraints by the trace is not guaranteed any more. In this case the analysis of the 
conformity of a trace to a formal organization should be performed by checking 
organization-specific properties. Such properties are based on dependencies and 
characteristics defined in (implied by) an organizational model, or correspond to 
different types of constraints (e.g., domain-specific, physical world constraints) 
defined for the model. 

In the following several examples of formal organization properties that can be 
checked on traces are considered. 

P1: In the trace γ1 the process p1 is executed (after some time) after the process p2 has 
finished: 

∃t1, t2 t1�t2 state(γ, t1) |= process_finished(p2) & state(γ, t2) |= process_started(p1) 

For example, it is required that a product produced by an organization should be 
eventually delivered to the customer. Other properties expressing ordering relations 
between processes (also including references to real time) are specified in a similar 
manner. 

P2: For the specified set of traces TR the average overall amount of resources of type r 
produced by an organization up to a time point t should be at least n: 

sum([γ:TR, t’:between(0, t), r’:RESOURCE_EX], case(∃a’:PROCESS_EX ∃am:VALUE_EX 
state(γ, t’)|= [ resource_produced_by(r’, a’, am) ∧ resource(r’, r)], am, 0)) / sum([γ:TR], case(true, 
1, 0)) ≥ n,  

here between(0, t) represents a set of all natural numbers in the interval [0, t]. 

P3: In the trace γ1 the amount of loss of resources of type r caused by the consumption, 
usage, and invalidation evaluated at the time point t should be less than m. 

sum([t’: between(0, t), r’:RESOURCE_EX], case(∃a’:PROCESS_EX ∃am1:VALUE state(γ1, t’)|= [ 
resource_produced_by(r’, a’, am1) ∧ resource(r’, r)], am1, 0)) – sum([t’:between(0, t), 
r’:RESOURCE_EX], case(∃a’:PROCESS_EX ∃am2:VALUE_EX state(γ1, t’)|= [ 
resource_consumed_by(r’, a’, am2) ∧ resource(r’, r)], am2, 0)) – sum([t’:between(0, t), 
r’:RESOURCE_EX], case(∃am4:VALUE_EX state(γ1, t’) |= [ resource_invalid(r’, am4) ∧ 
resource(r’, r)], am4, 0)) - sum([r’:RESOURCE_EX], case(∃l:PROCESS_LIST_EX 
∃am2:VALUE_EX state(γ1, t)|= [ resource_used_by(r’, l, am3) ∧ resource(r’, r)], am3, 0)) < m 

P4: In the trace γ1 a resource r produced by an organization required by some other 
organizational processes should be used or completely consumed before its expiration date. 

∃t ∃p:PROCESS_EX ∃am:VALUE_EX state(γ1, t)|= resource_produced_by(r, p, am) & [∀t’ t’>t 
state(γ1, t’)|= resource_expired(r)  
� ∃t’’ ∃pl: PROCESS_LIST_EX ∃am2 t’>t’’& t’’>t resource_used_by(r, pl, am2)] 

P5: In the trace γ1 the overall amount of working hours of an agent a at time point t (e.g., a 
time point in the end of some working period) should not exceed n: 



 

 240 

(sum([t’: between(0, t), p’:PROCESS_EX], case(state(γ1, t’)|= [ agent_performs_process(a, p’) ∧ 
process_finished(p’) ], t’, 0)) – sum([t’’: between(0, t), p’: PROCESS_EX], case(state(γ1, t’)|= [ 
agent_performs_process(a,p’) ∧ process_started(p’)], t’’,0))) � n 

P6: In the trace γ1 no agent executes more than one process at the same time: 

∀p1:PROCESS_EX ∀t1 state(γ1, t1) |= [ agent_performs_process(a, p1) ∧ 
##process_started(p1) ]   

� ∃t2 state(γ1, t2) |= process_finished(p1) & ∀t’ t’�t2 & t’�t1 ∀p’≠p1 state(γ1, t’)|= 
(¬process_started(p’) ∧ ¬agent_performs_process(a, p’)) 
 

P7: In the trace γ1 at the time point t the amount of available resources of type r is at least a 
pre-specified minimum amount min. 

sum([r’:RESOURCE_EX], case(∃am1:VALUE_EX state(γ1, t)|= [ available_resource_amount(r’, 
am1) ∧ resource(r’, r)], am1, 0)) > min 

8   Analysis of Emergent Properties 

Emergent properties are not specified and not implied by an organizational model and 
are related only to (result from) an actual execution(s) of an organization. Such 
properties may be checked for different reasons: e.g., to optimize the organizational 
operation by discovering and eliminating bottlenecks. Many emergent properties 
include a post-processing of the checking results by applying different statistical 
functions: e.g., sum, average, minimum, maximum, and are often expressed over 
multiple traces. Consider several examples:  

E1: For the specified set of traces TR, determine a frequency of finishing the process p on 
time (i.e., duration should be within the interval [min_duration, max_duration]). 

sum([γ:TR], case(∃t1,t2 state(γ, t1)|= process_started(p) & state(γ, t2)|= process_finished(p) & (t2-
t1) � max_duration & (t2-t1) ≥ min_duration], 1, 0)) / sum([γ:TR], case(∃t1 state(γ, t1)|= 
process_started(p), 1, 0)) 

 
E2: In the trace γ1 at the time point t calculate the average workload of agents of an 

organization: 

(sum([t1: between(0, t), p’:PROCESS_EX, a’:AGENT_EX], case(state(γ1, t1) |= [ 
agent_performs_process(a’, p’) ∧ process_finished(p’) ], t1, 0) – sum([t2: between(0, t), 
p’:PROCESS_EX, a’:AGENT_EX], case(state(γ1, t2)|=  

[ agent_performs_process(a’, p’) ∧ process_started(p’) ], t2, 0))) / sum([a’:AGENT_EX], 
case(true, 1, 0)) 

 
E3: Maximum duration of a process p in all executions: 

∃γ1, t1, t2 state(γ1, t1)|= process_started(p) & state(γ1, t2)|= process_finished(p) & ∀γ’≠γ1 ∀t1’, t2’ 
[ state(γ’, t1’) |= process_started(p) & state(γ’, t2’)|= process_finished(p) & (t2’-t1’)<(t2-t1)] 

 
E4: In all executions the delay between the end of the process p1 and the beginning of the 

process p2 should be less than n 

∀γ ∀t1, t2 state(γ, t1) |= process_finished(p1) & state(γ, t2) |= process_started(p2) �  (t2-t1)< n 



 

 241 

9   Performance Evaluation 

The performance of an organization at a certain time point (for a certain period) is 
evaluated by determining the satisfaction of key organizational goals. These goals 
range from high-level abstract goals to very specific ones. High-level goals are 
decomposed to more specific goals which are easier to measure, thus, forming goal 
decomposition structures. Goals are defined and discussed in (Popova and 
Sharpanskykh 2006) as part of the performance-oriented view on organizations. 
Example of goals are: ‘It is desired to maintain high degree of product quality’, ‘It is 
desired to achieve high customer satisfaction’, ‘It is desired to maintain number of 
work-related accidents per year to less than 3’, etc.  

Goals are formulated based on performance indicators (PIs), which are associated 
with certain organizational processes. Examples of PIs are: product quality, customer 
satisfaction, number of accidents, productivity, etc. The values of these PIs are 
measured (directly or indirectly) during or after the process execution depending on 
the goal evaluation type and in the end or during a certain period of time (goal 
horizon). Then, by comparing the measured values with the corresponding goal 
expressions, the satisfaction of the goals is determined. Further, the obtained goal 
satisfaction measure is propagated by applying the rules defined in (Popova and 
Sharpanskykh 2006), upwards in the goal hierarchy for determining the satisfaction of 
high level goals. An example of this type of analysis is given further in the frames of 
the case study.  

10 Case Study 

The application of different types of analysis will be illustrated in the context of an 
organization from the security domain. The main purpose of the organization is to 
deliver security services to different types of customers. The organization has well-
defined multi-level structure that comprises several areas serving groups of locations 
(security objects) and has predefined (to a varying degree) job descriptions for 
employees (approx. 230.000 persons). The allocation of employees to security objects 
is based on plans created by planning groups.  

The planning process consists of the forward (or long-term) planning and the short-
term planning. The forward planning is a process of creation of plans describing the 
allocation of security officers within the whole organization for a long term (4 
weeks). Forward plans are created based on customer contracts by forward planners. 
During the short-term planning, plans that describe the allocation of security officers 
to locations within an area for a short term (a week) are created and updated based on 
the forward plan and up-to-date information about the security employees. Based on 
short term plans, daily plans are created. Within each area the short-term planning is 
performed by the area planning team that consists of planners and is guided by a team 
leader.  

The position of the forward planners in the organizational structure has changed as 
a result of a reorganization in the past. Before the reorganization each planning team 
had a forward planner who was mainly responsible for the creation of long-term plans 



 

 242 

for the area. After the reorganization the forward planners were combined into a 
centralized forward planning group. A number of reasons for such a change are 
identified in the reorganization reports. In the following it will be shown how the 
proposed analysis techniques could be used for automated justification of the 
identified performance bottlenecks and other problems in the organization.  

(1) Uneven workload of forward planners in different area planning teams.  
This statement can be checked by calculating the workload for the forward 

planners in different areas and comparing the results. For this the following property 
can be used with a – the agent name, for whom the workload is calculated, and t – the 
time point up to which the workload is calculated: 

sum([t1: between(0, t), p’:PROCESS_EX], case(state(γ1, t1) |= [agent_performs_process(a, 
p’) ∧ process_finished(p’)], t1, 0)) - sum([t2: between(0, t), p’:PROCESS_EX], case(state(γ1, t2)|= 
[agent_performs_process(a, p’) ∧ process_started(p’)], t2, 0)), 

here a is an agent name 

If multiple traces are available, the average workload of every agent can be 
calculated as it is demonstrated in property E2. A side-effect of high workload could 
be the undue execution of some processes assigned to the forward planner. This can 
be established by verifying the correspondence of the actual execution to the model. 

(2) Certain forward planning tasks require collaboration with other forward planners. 
In the previous organization this has been achieved by informal (i.e., not specified by 
a formal organizational model) cooperation between forward planners from different 
areas. 

This statement can be justified in two steps. First by performing the analysis of the 
correspondence of a trace to the model, it can be established that in the trace exist 
processes performed by agents that are not allocated to the roles, to which these 
processes are assigned. Then, the number (or frequency) of such processes until the 
time point t for each role r can be calculated as follows:  

sum([p’:PROCESS_EX], case(∃t1<t ∃a:F_PLANNER  
state(γ1, t1) |= [agent_performs_process(a,p’) ∧  ¬agent_performs_role(a1, r)], 1, 0))  

For multiple traces (a set TR), the average number of such processes for role r can 
be calculated as follows: 

sum([γ:TR, p’:PROCESS_EX], case(∃t1<t ∃a:F_PLANNER state(γ, t1) |= 
[agent_performs_process(a, p’) ∧ ¬agent_performs_role(a1, r)], 1, 0)/sum([γ:TR], case(true, 1, 0)) 

(3) Planning activities within each area were isolated from each other. Sometimes this 
led to situations, when customer requests in one area were not satisfied due to lack of 
security officers, whereas in other areas available employees were in plenty.  

Such situations could be identified by calculating the (average) number of 
customer requests that were not accomplished by the organization until the time point 
t: 

sum([t1: between(0, t)), r’: CUSTOMER_REQUEST], case(state(γ1, t1) |= 
env_object_changed_state_into(r’, active) & ∀t2 t2>t1 state(γ1, t2) |= 
¬env_object_changed_state_into(r’, satisfied), 1, 0))  



 

 243 

In the following section we illustrate in more detail the different types of analysis 
of execution traces using the activities of the short-term planners after the 
reorganization of the planning departments. 

11   Examples of Trace Analysis 

Based on company documents such as job descriptions, company policy, procedures, 
etc., a process-oriented model was created for the planning departments. Part of this 
model dedicated to the creation of daily plans and short-term plans within one day is 
considered here. In the first half of the day security employees should provide their 
data change forms (requests for changes in the allocation schedule) to the unit 
manager (defined as process p3) who then checks and improves the data (p4) and puts 
it in the system (p5). At the same time the planners are working on other tasks, for 
example during the last week of the month they create a new short-term plan (STP) 
for the next month (p1). In the second half of the day they work on creating a daily 
plan (p6) for the next day (using the data change information in the system), inputting 
it in the system (p7) and informing all concerned (p8). Then they update the current 
short-term plan if necessary (p9) and so on. Part of the specification of the model is 
shown below: 

 
starts_after(begin_and(and1), BEGIN, 0) 
starts_after(begin_or(or1)  
begin_and(and1), 0) 
starts_after(p3, begin_and(and1), 0) 
starts_after(p4, p3, 0) 
starts_after(p5, p4, 0) 
starts_after(p2, begin_or(or1), 0) 
or_cond(or1,week_state) 
or_branch(last,p1) 
or_branch(other,p2) 
starts_after(end_or(or1), p1, 0)  
starts_after(end_or(or1), p2, 0) 
starts_after(begin_and(and1), p5, 0) 
starts_after(begin_and(and1), end_or(or1), 0) 
and_cond(and1, all)  
starts_after(p6, end_and(and1), 0.5)  
... 
role_performs_process(sec_officer, p3) role_performs_process(planner, p1)  
... 
is_instance_of(p1, t1) 
task_produces(t1, STP, 1)  
t1. min_duration = 3.5h  
t1.max_duration = 4h  
... 
Based on this specification constraints are generated (as discussed earlier). For 

example, the first few lines of the specification generate the following constraints for 
the first time point of an execution trace: 

state(γ, 0) |= process_started(p3) (based on C2) 
state(γ, 0) |= process_started(p2) & (∀t3 state(γ, t3) |= ¬process_started(p1)) & state(γ, 0) |= 

¬env_object_changed_state_into(week, last) | (state(γ, 0) |= process_started(p1) & (∀t3 state(γ, 



 

 244 

t3) |= ¬process_started(p2)) & state(γ, 0) |= env_object_changed_state_into(week, last) (based 
on C17) 

∀p:PROCESS_EX state(γ, 0) |= process_started(p) � p = p1 | p = p2 | p = p3 (based on C1) 

Also based on company documents traces were created corresponding to this 
model. One such trace is used to illustrate the analysis of whether an execution trace 
agrees with the model. The trace represents a day from the last week of the month. 
Part of this trace is shown in Fig. 1. In the left part the atoms are listed and in the right 
part the time line is shown consisting of 12 hours. The time line is relative to the trace 
and not expressed in absolute date and time stamps. The absolute time line can always 
be calculated given the time stamp of the beginning of the trace. For each atom, the 
time interval for which it is true is displayed by a dark-grey bar while a light-grey bar 
designates that the value is false. For example for the whole duration of the trace 
agent a1 is assigned to play the role of a security officer and process_started(p1) is only 
true for time point 0. 

The trace in Fig. 1 contains a process that is not in the model, p12. It is executed 
instead of process p3. According to p3, the security officers should deliver the change 
forms to the unit manager however on that day the unit manager was unavailable and 
the forms were brought directly to the planners (p12) who then had to check and 
improve them and input them in the system. These extra tasks prevented the planners 
from finishing their work on creating a short-term plan on time. Therefore all other 
processes during the rest of the day were shifted later than the model specified.  

 

 

Fig. 1. The execution trace used for illustration 
 



 

 245 

The trace is considered time point by time point taking into account the starting 
and finishing points of processes. We assume that the analysis is performed in real 
time, i.e. only the part of the trace up to the current time point is available. At time 
point 0 the three constraints given above are checked. They are satisfied since the 
only two processes starting are p3 and p1 and at this time point the state of the object 
week is indeed ‘last’. Next the following properties are scheduled to be checked at 
every time point t until satisfied: 

state(γ, t) |= process_finished(p1) 
state(γ, t) |= process_finished(p3) 
 
If that does not happen before the end of the trace then it is considered that this 

constraint is violated. Also the minimal and maximal duration of the processes should 
be according to the model: 

state(γ, t) |= process_finished(p1) � t � 3.5 
state(γ, t) |= process_finished(p1) � t � 4 
state(γ, t) |= process_finished(p3) � t = 1 

Next resource-related constraints are considered. The only relevant resource is the 
collection of data change forms DCF which is considered as a whole and only one 
collection can be produced. Thus C22 is not relevant.  

Also agent-/role-related constraint C25 is scheduled for checking at every time 
point t until the process finishes. 

state(γ,t) |= ¬process_finished(p1)  
 � state(γ,t) |= [agent_plays_role(a2,planner) ∧ agent_performs_process(a2, p1)] 
state(γ,t) |= ¬process_finished(p3)  
� state(γ,t) |= [agent_plays_role(a1,sec_officer) ∧ agent_performs_process(a1, p3)] 

From all the scheduled constraints one fails at time point 0.5 when process p3 
finishes – its duration is below the specified minimal duration of 1 hour. At this step 
the analysis stops – the trace does not agree with the model and the first process that 
violates the constraints is p3. Then, at this point it can be checked whether and which 
important organizational properties are satisfied (i.e., conformity to the formal 
organization). One of the properties extracted from the organizational documents of 
the company is that a daily plan for the next day is available before the end of the 
current working day, expressed as follows: 

∃t, p:PROCESS_EX, r:RESOURCE_EX  
state(γ,t) |= [resource_produced_by(r, p) ∧ resource(r, daily_plan)] 

This property is satisfied by the trace. 

Another property says that if the planners need to update the short-term plan then 
this should be performed only after the daily plan is available: 

∃t1, t2, p:PROCESS_EX, r:RESOURCE_EX  
state(γ, t1) |= [resource_produced_by(r, p) ∧ resource(r, daily_plan)] & state(γ, t2) |= 

#process_started(p9) � t1 � t2 

This property is also satisfied.  



 

 246 

Analyzing this trace it can be seen that the reason why the planners get overloaded 
is because the unit manager was not available to perform the processes assigned to 
him. Based on this, the analyst might decide to check in what percentage of the traces 
it happens that the work load of the unit manager is less than 3 hours. This can be 
checked by the following emergent property: 

sum([p:PROCESS_EX], case(∃t1, t2 state(γ, t1)�  |=�  [process_started(p) ∧ 
agent_performs_process(a, p) ∧ agent_performs_role(a, unit_manager)] & state(γ, t2)�  |=�  
process_finished(p), t2-t1, 0)) < 3  

Also it can be determined if the events specified in the trace had an impact on the 
organizational performance. One of the high-level goals of the organization 
considered in the case study is the goal G1: ‘It is required to maintain good level of 
satisfaction of the employees’. This general goal is decomposed into more specific goals 
among which is the goal G1.1: ‘It is required to maintain that the level of work load is 
moderate’. This is again decomposed into even more specific goals among which is the 
goal G1.1.1: ‘It is required to achieve that the number of working hours per day for each 
employee is not more that 8’. This goal is based on the performance indicator P1: 
‘working hours per day per employee’ which can be evaluated for every trace for the last 
point t of the trace.  

∀v:VALUE state(γ, t) |= pi_has_value(P1, v) � v 
�
 8 

For the trace in Fig. 1 it will be calculated and included at the end of the trace that 
pi_has_value(P1, 11) which is more than 8. Thus goal G1.1.1 is not satisfied and 
contributes negatively to the satisfaction of G1.1 which is propagated upwards in the 
goals structure.  

12   Discussion 

This paper introduces automated techniques for manifold formal analysis of actual 
executions based on process-oriented models of organizations. On the one hand these 
techniques allow identifying errors and inconsistencies in executions of organizational 
scenarios, on the other hand they provide means for the evaluation and improving of 
organizational performance.  

In order to check the conformity of a trace to the process-oriented specification, the 
translation of the specification to properties in the language of the execution traces is 
required. This step is necessary since the trace is specified using a language different 
from the language of the process-oriented specification (e.g., a time-indexed sequence 
of events in a log-file). We consider it a necessary step for every process-oriented 
approach. It might be done implicitly within an algorithm. In this paper, however, all 
translated properties are formulated explicitly which allows precise feedback on 
which from these properties are satisfied and which not. The translation is performed 
only once and the resulting properties can be checked on every new-coming trace. 
Also, the translation is based on clear translation rules therefore the process can be 
automated. 

Furthermore, for the proposed analysis techniques the TTL language and the 
environment TTL Checker are used, which allow high expressivity in specification of 



 

 247 

properties, including precise timing relations, references to multiple states (execution 
histories), arithmetical operations and checking properties on multiple traces. All 
these possibilities make TTL more expressive language than the standard modal 
logics (e.g., LTL, CTL, ATL) and calculi. Although TTL is an intuitive, close to the 
natural language, to define complex properties some skills in logics are needed. To 
support designers (e.g., managers) not skilled in logics, the used tool allows defining 
parameterized templates (macros) for TTL formulae, which can be instantiated in 
different ways which can also be used. 

The analysis techniques introduced in this paper can be applied to both mechanistic 
and organic organizations. In particular, since many mechanistic organizations are 
characterized by a high stability and a large number of routine processes that can be 
specified with high precision, the verification of the conformity of actual executions 
of such organizations to a formal process-oriented model is of special importance. At 
the same time organic organizations are highly dynamic and their processes are very 
flexible, variable and often unpredictable. Therefore, models for such organizations 
can be specified only at a high abstraction level, sometimes defining only interface 
states (i.e., inputs and outputs) of high-level processes, and then the analysis 
techniques for the evaluation of emergent organizational processes and performance 
can be applied. 

In the proposed approach traces are based on the actual execution of organizational 
scenarios. Such traces can be obtained in different ways: (1) automatically generated 
by a WfMS; (2) if data about the execution are represented in the form of informal 
logs obtained based on a process-oriented model in LPR, they can be formalized 
(manually or automatically) using the language LEX; (3) in case data about the 
execution are represented in some other formal language, the translation between this 
language and LEX (if possible) is performed. Note that the translation and further 
analysis of traces obtained by (3) is possible only if a model based on which an 
original trace is generated can be related to an equivalent model in LPR. Traces can be 
also generated based on a process-oriented model by performing simulations. Such 
traces can be used for diagnosis of inconsistencies, redundancies and errors in 
organizational structure and behavior. This type of analysis and the dedicated 
software are described in (Broek et al. 2006). 

In the future it will be investigated how the proposed techniques can be applied for 
the analysis of inter-organizational processes. Also more analysis cases supported by 
the proposed techniques will be performed in the context of real organizations. 

References 

1. Aalst, W. van der; Beer, H.; and Dongen, B. van. 2005. “Process Mining and Verification of 
Properties: An Approach based on Temporal Logic”. In On the Move to Meaningful 
Internet Systems. Springer-Verlag, Berlin. 

2. Aalst, W. van der and Hee, K.M van. 2002. Workflow Management: Models, Methods, and 
Systems. MIT press, Cambridge, MA. 

3. Barjis, J; Shishkov, B and Dietz, J. 2002. “Validation of Business Components via 
Simulation”. In Proceedings of the 2002 Summer Computer Simulation Conference. 



 

 248 

4. Bosse, T.; Jonker, C.M.; Meij, L. van der; Sharpanskykh, A. and Treur, J. 2006. 
“Specification and Verification of Dynamics in Cognitive Agent Models” . In Nishida, T. 
(ed.), Proceedings of the Sixth International Conference on Intelligent Agent Technology, 
IAT'06. IEEE Computer Society Press, pp. 247-254 

5. Broek, E.; Jonker, C.; Sharpanskykh, A.; Treur, J. and Yolum, P. 2006. Formal Modeling 
and Analysis of Organizations. In O. Boissier, J. Padget, V. Dignum, G. Lindemann, E. 
Matson, S. Ossowsk, J. Sichman and J. Vazquez Salceda (eds.), Coordination, 
Organization, Institutions and Norms in Agent Systems I, LNAI 3913, Springer, 18-34 

6. Desel, J.; Juhas, G.; Lorenz, R. and Neumair, C. 2003. „Modelling and Validation with 
VipTool” . LNCS 2678, 380-389. 

7. Popova, V. and Sharpanskykh, A. 2006. “Process-Oriented Organization Modeling and 
Analysis Based on Constraints” . Technical Report 062911AI, VUA, 
http://hdl.handle.net/1871/10545 

8. Popova, V. and Sharpanskykh, A. 2007a. “Formal Modelling of Goals in Agent 
Organizations” . In V. Dignum, F. Dignum, E. Matson (eds.), Proceedings of the AOMS 
Workshop (joint with IJCAI 2007), 74-86 

9. Popova, V. and Sharpanskykh, A. 2007b. “Formal analysis of executions of organizational 
scenarios based on process-oriented models” . Technical Report 071601AI, VUA, 
http://hdl.handle.net/1871/10643 

10. Sharpanskykh, A. and Treur, J. 2006. “Verifying Interlevel Relations within Multi-Agent 
Systems”. In Brewka, G., Coradeschi, S., Perini, A., and Traverso, P. (eds.), Proceedings of 
the 17th European Conference on Artificial Intelligence, ECAI'06. IOS Press, 290-294 



 

 249 

 
 
 
 
 
 
 
 

Chapter 5 

 

A Framework for Formal Modeling and Analysis of 
Organizations 1 

Abstract. A new, formal, role-based, framework for modeling and analyzing 
both real world and artificial organizations is introduced. It exploits static and 
dynamic properties of the organizational model and includes the (frequently 
ignored) environment. The transition is described from a generic framework of 
an organization to its deployed model and to the actual agent allocation. For 
verification and validation of the proposed model, a set of dedicated techniques 
is introduced. Moreover, where most computational models can handle only 
two or three layered organizational structures, our framework can handle any 
arbitrary number of organizational layers. Henceforth, real-world organizations 
can be modeled and analyzed, as illustrated by a case study, within the DEAL 
project line.  

1   Introduction 

Recently computational modeling and analysis of organizations received a special 
attention in the areas of social science and artificial intelligence. In particular, 
organizations have proven to be a useful paradigm for analyzing and designing multi-
agent systems [7, 10, 42]. Representation of a multi-agent system as an organization 
consisting of roles and groups can tackle major drawbacks concerned with traditional 
multi-agent models; e.g., high complexity and poor predictability of dynamics in a 
system [10]. As has been shown in [19], organizational structure can be used to limit 

                                                           
1 This chapter appeared as Jonker, C.M., Sharpanskykh, A., Treur, J., Yolum, P.: A Framework 

for Formal Modeling and Analysis of Organizations, Applied Intelligence, 27(1), 49-66 
(2007) (the names of the authors are ordered alphabetically reflecting the comparable 
contribution of each author).  



 

 250 

the scope of interactions between agents, reduce or explicitly increase redundancy of 
a system, formalize high-level system goals, of which a single agent may be not 
aware, or enforce certain coordination mechanisms for efficient task execution.  

Moreover, organizational research in social science has recognized the advantages 
of computational models; e.g., for analysis of structure and dynamics of real 
organizations. In particular, distributed simulation models were created for analyzing 
organizational adaptation processes [5, 34], social networks [38] and dynamic 
processes in different organization types. However, in general formal theories, 
approaches, and tools for designing computational models of organizations are still 
rare and most of them are dependant of specific social theoretical background (cf. the 
OrgCon tool for organizational design based on the contingency theory [4]). In this 
paper, we propose a new modeling approach for analyzing and formal modeling of 
real or artificial organizations (e.g., agent-based organizations), independent of any 
organizational theory from social science. This approach is based on a generic 
representation of organizations that comprises sets of interrelated roles, which are 
intentionally organized to ensure a desired (or required) pattern of activities. The 
approach has the following distinct features: (1) it addresses both organization 
structure and dynamics; (2) the approach has its formal foundation in an expressive 
order-sorted predicate language with properly defined syntax and semantics; (3) it 
allows multiple aggregation levels in an organization model; (4) the environment is 
explicitly incorporated in an organization model; (5) the approach provides formal 
techniques and tools for different types of analysis of organization models (by 
performing simulations and verification). 

In the next Section, main principles for modeling and analyzing organizations are 
discussed and related with the new modeling approach. In Section 3, the basic 
concepts used for specifying an organization model are introduced. Section 4 
discusses how an organization model can be specified in a formal manner. In Section 
5, a set of dedicated validation and verification techniques are described. The 
proposed modeling and verification techniques will be illustrated by a running 
example from the area of logistics. The paper ends with a discussion in Section 6.  

2 Principles for modeling and analyzing organizations 

Modern organizations are characterized by their complex structure, dense information 
flows, and incorporation of information technology. To a large extent, the underlying 
organization model is responsible for how efficiently and effectively organizations 
carry out their tasks. In literature on organization theory, a range of theories and 
guidelines concerning the modeling and design of organizations are present [28, 30]. 
However, no operational general theories or formal models exist that are known to the 
authors. Scott [39] even stated that no general principles applicable to organizational 
modeling can be formulated. However, for certain specific organizational types 
standard modeling and design techniques may still be identified and formalized. In 
particular, Minzberg proposed a set of guidelines for modeling mechanistic types of 
organizations [28]. This type of organizations comprises systems of hierarchically 
linked job positions with clear responsibilities that use standard well-understood 



 

 251 

technology and operate in a relatively stable (possibly complex) environment. In 
contrast to mechanistic (or functional) organizations, a substantial group of modern 
organizations are characterized by a highly dynamic, constantly changing, organic 
structure with non-linear behavior [29]. Although the structure and behavioral rules 
for such organizations can be hardly identified and formalized, nevertheless by 
performing agent-based simulations with changing attitudes of proactive agents useful 
insights into functioning of such organizations can be gained.  

2.1   Two perspectives 

In this subsection, we will briefly discuss two perspectives from which organizations 
are analyzed. The first perspective emerges from social sciences and the second 
originates from computational organization theory and artificial intelligence.  

In social science theories, the structure of organizations is frequently specified as 
informal or semi-formal graphical representations [28, 30]. They can provide a 
detailed organization structure at an abstract level considered from a certain 
perspective (e.g., information flows, power and authority relations, allocation of 
resources). The disadvantages of such models are: (1) lack of generality and relations 
between different specific types of models, and (2) graphically depicted data can not 
be effectively processed, combined and analyzed. Furthermore, such approaches lack 
the means to represent the more detailed dynamics and to relate them to the structures 
present. 

A class of models built based on the system dynamics theory allows formal 
representation of different aspects of organizational behaviour [12]. Organizational 
models specified in system dynamics are based on numerical variables and equations 
that describe how these variables change over time. Although such models can be 
computationally effective (i.e., used for simulations and computational analysis), 
nevertheless they still lack the ontological expressivity and the possibility for higher 
abstract (and, e.g., non-quantitative) representations that are needed to conceptualize 
wide range of relations and phenomena that exist in different types of organizations. 

From computational organization theory and artificial intelligence, approaches 
have been developed that are able to capture both structural and dynamic aspects of 
organizations. Some of them are dedicated for analyzing particular aspects of an 
organization considered from a certain viewpoint (e.g., Petri-nets techniques used for 
modelling and analyzing business processes [8]). Although such approaches can be 
useful and efficient, the scope of their application is limited to a particular view on an 
organization, based on a limited number of concepts. Furthermore, techniques from 
the area of artificial intelligence have been applied for modelling and analyzing multi-
agent organizations [3, 7]. In such organizational models (software, hardware or 
human) agents are allocated to roles that stand in certain relations to each other and 
often are described by sets of functionalities performed by an organization. Such 
models can be used for example for coordinating tasks execution in a multi-agent 
system [19], or for enforcing certain behaviours (e.g., normative systems) upon an 
agent system [41]. However, many of such models can handle only two or three levels 
of abstraction; i.e., the level of an individual role, to which an agent(s) will be 
eventually allocated, the level of a group composed of roles, and the overall 



 

 252 

organization level, as in GAIA [42], MOISE [16, 20], MOCA [1], TOVE [13], 
Aaladin [11] and OperA [7]. In contrast, multiple levels and relations between them 
need to be described for the representation of complex hierarchical structures of 
modern organizations; e.g., mechanistic type of organizations [30]. One of the few 
exceptions known to authors as capable of representing hierarchical structures is a 
framework for modeling social structures in UML proposed in [33]. This framework 
allows the possibility of the iterative inclusion of groups represented by holonic agent 
structures into other groups as their members, thus building hierarchical structures. 
However, the framework does not provide a general mechanism for handling 
interactions between roles and groups of different aggregation levels that often occur 
in such hierarchical structures. Furthermore, there is no possibility to identify and 
formally specify how dynamics of a composite group is related to the dynamics of its 
members, which is a prerequisite for the (formal) analysis of behavior of such 
composite systems. Another framework that supports the hierarchical representation 
of a multi-agent system is based on teams of agents [17]. A team is a composite 
component, similar to a group in [33], which is characterized by a number of roles, 
enacted by agents and other teams. However, this framework lacks means for 
elaborated conceptual modeling of social structures, probably because its main focus 
is on the technical side of programming and implementation of multi-agent systems. 
By introducing for example a (formal) language for specifying dynamics of individual 
roles and teams in this framework, different interesting types of analysis of system 
dynamics could be enabled. 

Some models (ISLANDER [9], OperA, [26]) consider organizations as electronic 
institutions; i.e., norms and global rules that govern an organization are explicitly 
defined. However, in many modern organic organizations with much individual 
autonomy, the normative aspects do not play a central role and are of minor 
importance for the prosperity of an organization. Furthermore, a temporary violation 
of certain norms is inevitable and even necessary in certain organizations. 

Independent of the previous distinction in approaches, the importance of explicit 
modeling of interactions between agents and the environment is recognized (explicitly 
considered in SODA [32] and AUML [31]). Since most of the modern organizations 
are open systems that actively interact with the environment, both an organizational 
structure and behavior are contingent on the environmental conditions.  

Moreover, for modeling in general, verification and validation of the models used 
or generated is of the utmost importance. This is no different for modeling 
organizations. However, this aspect of modeling organizations is frequently ignored; 
two of the exceptions are TROPOS [3] and ISLANDER. 

2.2   A new perspective 

In this paper, we propose an approach for formal modeling and analysis of 
organizations. It is highly suitable for mechanistic types of organizations with the 
explicitly defined structure and behavior (i.e., machine and professional bureaucracy), 
and divisionalized forms of organizations that consist of autonomous units with 
specialized and formalized inputs and outputs. Furthermore, this approach can also be 



 

 253 

applied for modeling organic types of organizations, when extended with 
organizational change techniques. 

The proposed, formal approach can capture both structural and dynamic aspects of 
the organization and, subsequently, has four advantages: 

(1) Representation of organization structure (including specifications of actors (or 
roles), relations between them, and information flows) and dynamics by 
generalized (template) models and more specific instantiated (deployed) 
models. 

(2) The means for simulations of different (agent-based) scenarios on the basis of 
a model and observing their results. 

(3) Organization analysis by means of verifying static and dynamic properties 
(e.g., based on organizational performance indicators) against (formalized) 
empirical data, taken from real organizations, or against simulated scenarios. 

(4) Diagnosis of inconsistencies, redundancies, conflicts, and errors in an 
organizational model by means of formal verification techniques (e.g., based 
on model checking [6]). 

In the proposed model, organizations are specified as composite roles that can be 
refined iteratively into a number of (interacting) composite or simple roles, 
representing as many aggregation levels as needed. The refined role structures 
correspond to different types of organization constructs (e.g., groups, units, 
departments). By considering only role hierarchies we achieve the uniform 
representation of an organization structural model, which is still able to reflect all the 
major types of organization constructs. The proposed framework provides formal 
means for specifying structural relations between roles of the same and different 
aggregation levels. 

Behaviour of roles at each aggregation level is defined by sets of dynamic 
properties specified using an expressive temporal logical language. In the proposed 
approach different types of dynamic properties are distinguished, which are capable to 
capture different aspects of organizational dynamics. Note that the behaviour of a 
composite role is not simply defined as a list of all dynamic properties of its subroles. 
The dynamics of a composite role may be characterized by properties that emerge 
from the dynamics of its subroles or represent a more abstracted view on the lower-
level dynamics. Therefore, particularly in the design phase when role dynamic 
properties are identified and specified, inconsistencies and conflicts between the 
properties of roles of adjacent aggregation levels may occur. Mechanisms to deal with 
these conflicts can be found in Section 5 and are further developed in the context of 
the proposed approach. 

It is important to stress that the organizational model can be specified, depicted and 
analyzed at each aggregation level separately. For example, since the whole 
organization is considered as one composite role, it can be used as a “black box” with 
formally specified input and output interfaces for modelling and analyzing of high-
level inter-organizational processes. In such a way the scalability of an organization 
model and the proposed approach is achieved. 

Moreover, global normative aspects of an organization that are usually specified by 
organizational policies are defined by static and dynamic properties of the role at the 
highest aggregation level, without recognizing them as special concepts and placing 
them on top of an organization.  



 

 254 

In addition, the environment is considered as a special component of the 
organization model. The environment is populated by agents that under certain 
conditions may be allocated to organizational roles. Furthermore, the environment 
serves as a source of events for an organization. 

The modeling method introduced in this paper incorporates two types of 
verification and validation techniques: role-centered and agent-centered, as will be 
discussed in Section 5. The introduction of these techniques is preceded by the 
introduction of the model itself in the next section and its formal specification in 
Section 4. 

3   Organization Modeling Concepts 

In this section, the concepts are introduced on which the organization modeling 
approach is founded. First, the specification of the organizational structure is 
described. A template model is generated, which encapsulates the structure of the 
organization. On all existing levels of aggregation, the behavior of an organization 
can be described. Taken together, this provides description of the behavior of an 
organization. In Section 3.2, it will be explained how such dynamic behavior can be 
specified. In Section 3.3, the transition from template model to deployed model will 
be discussed. The introduced modeling concepts will be gradually used to represent 
different aspects of the organizational structure and behavior of an organization from 
the area of logistics.  

3.1   Organization structure 

An organization structure reflects patterns of interactions in an organization and is 
described by relationships between roles at the same and at adjoining aggregation 
levels and between parts of the conceptualized environment and roles. The 
specification of an organization structure that constitutes a template model uses the 
following elements:  

(1) A role represents a subset of functionalities, performed by an organization, 
abstracted from specific agents (or actors) who fulfill them.  

Each role can be composed by several other roles, until the necessary detailed level 
of aggregation is achieved, where a role that is composed of (interacting) subroles, is 
called a composite role. At the highest aggregation level, the whole organization can 
be represented as one role. Such representation is useful both for specifying general 
organizational properties and further utilizing an organization as a component for 
more complex organizations. Each role has an input and an output interface, which 
facilitate in the interaction (communication) with other roles. Graphically, a role is 
represented as an ellipse with white dots (the input interfaces) and black dots (the 
output interfaces).  

(2) An interaction link represents an information channel between two roles at the 
same aggregation level. Graphically, it is depicted as a solid arrow, which denotes the 
direction of possible information transfer.  



 

 255 

(3) The conceptualized environment represents a special component of an 
organization model. The environment can be defined by a set of objects with certain 
properties and states and by causal relations between objects. On the one hand, agents 
allocated to organization roles are capable of observing states and properties of 
objects in the environment; on the other hand, they can act or react and, thus, affect 
the environment. We distinguish passive and active observation processes. For 
example, when some object is observable by an agent playing a role and the agent 
continuously keeps track of its state, changing its internal representation of the object 
if necessary, passive observation occurs. For passive observation, no initiative of a 
role or an agent is needed. Active observation is always concerned with the agent’s 
(or role’s) initiative. Similarly to roles, the environment has input and output 
interfaces, which facilitate in the interaction with roles of an organization. 
Graphically, the environment is depicted as a rectangle with rounded corners. For 
particular purposes the internal specification for the environment can be 
conceptualized using one of the existing world ontologies (e.g., CYC, SUMO, 
TOVE). However, despite the richness and the extensiveness of these ontological 
bases, more specific and refined types of concepts and relations are required for 
modeling particular types of organizations and environments.  

(4) An environment interaction link represents an information channel between a 
role of a certain aggregation level and (a part of) the conceptualized environment 
represented at this aggregation level. Graphically, it is depicted as a dotted arrow, 
which denotes the direction of possible information transfer. 

(5) An interlevel link connects a composite role with one of its subroles. It 
represents information transition between two adjacent aggregation levels. 
Graphically, it is depicted as a dashed arrow, which shows the direction of the 
interlevel transition.  

To illustrate the introduced concepts to model the organizational structure and all 
the following components of an organization model consider a running example based 
on a case study from the area of logistics. This case study was done within the project 
DEAL (Distributed Engine for Advanced Logistics). For the project description, we 
refer to http://www.almende.com/deal/. A template organizational model was created, 
based on the informal description of the structure and functioning of the large Dutch 
logistics company. Only relevant to the actual delivery process actors (roles) and their 
properties are specified in this model. To secure anonymity of the company, the real 
names of the organizational units were substituted by general ones. 

 

 

Fig. 1. Representation of the organization at abstraction level 1, which consists of role 
Transport Company (TC) and role Customer Interaction (CI) 

At the highest aggregation level (level 0) the whole organization is represented as 
one role. At aggregation level 1, the organization consists of two interacting roles: TC 
and CI (see Fig.1; explanation for this and the following abbreviations and functional 



 

 256 

descriptions are given in Table 1). Note, that the organizational model is depicted in a 
modular way; i.e., components of every aggregation level can be visualized and 
analyzed both separately and in relation to each other. Consequently, scalability of 
graphical representation of an organizational model is achieved. 

Table 1. Role names, abbreviations, and descriptions for the organizational model in the case 
study 

Role name Abbreviation Description 
Transport Company TC Provides logistic services to customers 
Customer Interaction CI Identifies interaction rules between a customer 

and the transport company 
Strategy and Tactical 
Department 

ST Performs analysis and planning of company 
activities; considers complaints from customers; 
analyses the satisfaction level of a customer by 
means of surveys and questionnaires 

Custom Relations 
Department 

CR Handles requests from customers 

Operational 
Department 

OP Responsible for direct fulfillment of the order 
from a customer 

Transport Company 
Representative 

TCR Mediator role between a customer and the 
transport company 

Customer C Generates an order for the transport company; 
sends inquiries about the delivery status 

Sales Person SP Assigns an order to a certain load manager, based 
on the type and the region of a delivery 

Load Manager LM Assigns orders to suitable trucks and available 
drivers; assigns fleet managers to drivers; 
provides CR department with up-to-date 
information about delivery; provides a driver with 
instructions in case of a severe problem; informs 
CR department about possible delays with 
delivery 

Fleet Manager FM Keeps constant contact with the assigned drivers; 
updates automatic support system with actual 
data on the delivery status; provides consultations 
for drivers in case of minor problems in transit 

Driver D Delivers goods; informs a superior fleet manager 
about the delivery status; interacts (by means of 
observations and actions) with the conceptualized 
part of the environment 

Environment Env Represents the conceptualized environment; in 
this example only a driver interacts with it 

 

At aggregation level 2 role TC can be refined into three interacting roles: ST, CR, 
and OP (see Fig.2). All interactions with a customer are conducted within CI role. At 
aggregation level 2 it consists of two roles: TCR and C (see Fig. 2). Role TCR 
produces at its output messages from CR and ST departments of the transport 
company, i.e., CR and ST roles stand as company representatives in certain 



 

 257 

interactions with a customer. Therefore, the input state of role TCR has influence on 
the output state of role CR and vice versa. The same holds for role ST.  

TCR C

CI

(b)

ST

CR

(a)

TC

OP

 

Fig. 2. Representation of (a) the Transport Company (TC) and (b) the Customer Interaction role 
(CI) at abstraction level 2 

 

The structure of the operational department that is responsible for the direct 
fulfillment of the order from a customer is depicted at aggregation level 3 in Figure 3. 
It consists of interacting roles LM, FM, SP and D. Roles LM and SP are able to 
receive (or transmit) information from (or to) roles outside of role OP by means of 
interlevel links. Furthermore, in this model only role D interacts with the 
conceptualized environment.  

LM

D

OP

FM

SP

Env

Legend

Interaction link

Interlevel link

Environment
interaction link

Input interface

Output interface

Env
Conceptualized
part of the
environment

 

Fig. 3. Representation of the operational department at abstraction level 3 

3.2   Organizational dynamics 

At each aggregation level, it can be specified how the organization’s behavior is 
assumed to be. To this end, organization dynamics are described by a dynamic 
representation, for each of the elements in an organization structure. The level of 
detail for specifying dynamics of an organization depends on its organizational type. 
Since the behavior of most mechanistic organizations is deterministic, dynamics for 
such organizations can only be modeled by a set of dynamic properties with high 
level of detail. In contrast, behavior of many organic organizations is defined loosely. 
Consequently, the dynamics of models for such organizations can be specified only 
partially; hence, actors (agents) can act autonomously.  

The dynamics of each structural element are defined by the specification of a set of 
dynamic properties. We define five types of dynamic properties: 



 

 258 

(1) A role property (RP) describes the relationship between input and output states 
of a role, over time. For example, in the settings of the logistics company from the 
running example, a role property of a truck driver (role D) can be defined as: if role 
Driver receives a request from his Fleet Manager to provide his coordinates, then role 
Driver will generate this data for his Fleet Manager. 

(2) A transfer property (TP) describes the relationship of the output state of the 
source role of an interaction link to the input state of the destination role. Again, in 
the settings of the logistic company an example of a transfer property is the following: 
if role Customer generates an order to role Transport Company, then Transport 
Company will receive this order. 

(3) An interlevel link property (ILP) describes the relationship between the input 
or output state of a composite role and the input or output state of its subrole. Note 
that an interlevel link is considered to be instantaneous: it does not represent a 
temporal process, but may give a different view on the same information state. 
Consider an example of such property: if role TCR obtains the customer order data at 
its input, then at the same time point role CI generates at its output a number assigned 
to the customer order in the automated information system. 

(4) An environment property (EP) describes a temporal relationship between 
states or properties of objects of interest in the environment. Consider an environment 
property from the running example: If a severe incident happens with the truck 
involved in the delivery process, then it will cease the delivery. 

(5) An environment interaction property (EIP) describes a relation either between 
the output state of the environment and the input state of a role (or an agent) or 
between the output state of a role (or an agent) and the input state of the environment. 
For example: if the information about a traffic jam on the way of role D is generated 
at the output of the environment, then role D will receive (observe) this information at 
its input.  

3.3   Deployed model and agent allocation 

The generic or template model of an organization provides abstracted information 
concerning its structure and functioning. However, for a more detailed analysis, a 
deployed model is needed. It is based on both unfolded generic relations between 
roles, as defined in the template model, and on creating new role instances. In such a 
way, role instances from the deployed model can be related to generic roles from a 
template model by means of the generalization relations. Moreover, different 
deployed models may be specified using the same template model of an organization 
for different purposes.  

In the deployed model for the considered running example, all roles specified at 
abstraction levels 1 and 2 have one-to-one mapping to the role instances. While roles 
LM, FM, and D (defined at abstraction level 3) have multiple instances; e.g., LM and 
FM are represented differently in different geographical regions and, subsequently, 
different types of trucks and professional skills of drivers are required for different 
kinds of deliveries. The deployed model for the considered example (see Fig. 4) is 
created based on the template model by unfolding assigned_to and in_region relations 
between roles. For example, assigned_to(D2, FM1) denotes that a middle-size truck and his 



 

 259 

driver (D2) are assigned to the fleet manager in eastern Europe (FM1) and the relation 
in_region(D1, LM1) specifies that both a big-size truck driver (D1) and a load manager 
(LM1) should belong to the same region in eastern Europe.  
 

 

Fig. 4. The operational department of the transport company represented at abstraction level 3, 
with (a) the template model (b) the deployed model, and (c) agent allocation 

The deployed model abstracts from the actual agent allocation but provides the 
detailed specifications for the behavior of role instances. Based on these 
specifications, a set of requirements is formulated for each role instance. These 
requirements (by restricting and defining behavior) are imposed onto the agents, who 
will eventually enact these roles. In the context of the running example one of the 
requirements imposed on a driver is that the agent should have a driver license of a 
certain type and acceptable results of medical tests. 

Each agent is characterized by a set of capabilities that describe skills and 
credentials of an agent. An agent can be allocated to a role only when agent 
capabilities match the set of role requirements. For example, in order to enact role 
LM, an agent should have working experience as a senior manager in logistics for at 
least 3 years.  

If, for some reason, an allocated agent is not capable of enacting a certain role 
anymore, dynamic reallocation of another agent will take place.  

In some scenarios, a complex role can act as a single aggregated role and, thus, 
representing its constituting subroles. In such cases, an (aggregated) agent can be 
assigned to the complex role. In the literature [36, 37] aggregated (or composite) 
agents are often called holons. A holon is defined by a recursive model of agent 



 

 260 

groups and appears as a single entity to the outside world. A holon may impose 
certain structures (i.e., types of relations) and behaviors on its agents, thus limiting 
their autonomy in certain aspects. Furthermore, a holon may be allocated to a simple 
(not composite) role, when the joint set of capabilities of agents of the holon satisfies 
the role requirements. 

4   Formal Specification of the Organization Model 

In the previous section, the elements of the organizational model were introduced. 
The current section provides the formal specification of them. 

4.1   Structural properties  

Structural properties describe elements of an organization structure introduced in 
Section 3.1 and relations between them. 

As it has been shown above, in an organization model roles interact with other 
roles and the environment by means of input and output interfaces. These interfaces 
are described in terms of interaction (input and output) ontologies: a vocabulary or a 
signature specified in order-sorted logic that comprises finite sets of sorts, constants 
within these sorts, and relations and functions over these sorts. Generally speaking, an 
input ontology determines what types of information are allowed to be transferred to 
the input of a role (or of the environment), and an output ontology predefines what 
kinds of information can be generated at the output of a role (or of the environment). 
Roles and relations between them and the environment defined in a template model, 
as well as role instances and relations between them and the environment defined in a 
deployed model are specified using sorts and predicates from the structure ontology. 
This ontology includes sorts for all structural elements of an organization model (such 
as roles, different types of links, environment). The predicates for specifying 
organizational structure are defined over these sorts in Table 2. For example, in the 
settings of the logistics company from the running example, subroles Fleet Manager 
(FM) and Load Manager (LM) belong to the same composite role Operational 
department (OP). Formally: has_subrole(OP, FM)  &  has_subrole(OP, LM). Note that input and 
output ontologies of role instances are constructed by limiting and refining the 
ontologies of template roles based on which these role instances have been created. 

In order to enable interaction between roles at the same aggregation level it is 
required that the ontologies of interacting roles contain common (or shared) elements 
(e.g., to specify the speech act s_act (e.g., inform, request, ask) from role-source r1 to 
role-destination r2 with the content message the predicate communicate_from_to(r1:ROLE, 

r2:ROLE, s_act:SPEECH_ACT, message:STRING) may be defined as a part of ontologies for 
both roles).  

However, ontologies of roles connected by an interlevel link may not contain 
common elements. In this case the interlevel link is described by an ontology 
mapping between the corresponding elements of ontologies. Moreover, an ontology 
mapping associated with an interlevel link may be used for representing mechanisms 
of information abstraction. These mechanisms can be applied for transmitting (or 



 

 261 

generating) partial, aggregated or generalized information to the input (or from the 
output) of a role.  

Table 2. Ontology for formalizing organizational structure 

Predicate Description 

is_role: ROLE Specifies a role in an organization 

has_subrole: ROLE x ROLE For a subrole of a composite role  

source_of_interaction: ROLE x 
INTERACTION_LINK 

Specifies a source role of an interaction 

destination_of_interaction: ROLE x 
INTERACTION_LINK 

Specifies a destination role of interaction 

interlevel_connection_from: ROLE x 
INTERLEVEL_LINK 

Identifies a source role of an interlevel link 

interlevel_connection_to: ROLE x 
INTERLEVEL_LINK 

Identifies a destination role of an interlevel link 

initiator_env_interaction: ROLE x 
ENVIRONMENT_INTERACTION_LINK 

Specifies a role-initiator in interaction with the 
environment 

recipient_env_information: ROLE x  
ENVIRONMENT_INTERACTION_LINK 

Identifies a role-recipient of information from 
the environment 

part_of_env_in_interaction: ENVIRONMENT x 
ENVIRONMENT_INTERACTION_LINK 

Identifies the conceptualized part of the 
environment involved in interaction with a role 

has_input_ontology: ROLE x ONTOLOGY Specifies an input ontology for a role 

has_output_ontology: ROLE x ONTOLOGY Specifies an output ontology for a role 

has_input_ontology: ENVIRONMENT x 
ONTOLOGY 

Specifies an input ontology for the environment 

has_output_ontology: ENVIRONMENT x 
ONTOLOGY 

Specifies an output ontology for the 
environment 

has_interaction_ontology: ROLE x ONTOLOGY Specifies an interaction ontology for a role 

has_interaction_ontology: ENVIRONMENT x  
ONTOLOGY 

Specifies an interaction ontology for the 
environment 

has_onto_mapping: INTERACTION_LINK x 
ONTO_MAPPING 

Identifies an ontology mapping 

to_be_observed: STATE_PROPERTY 
Describes a state property that will be observed 
in the environment 

observation_result: STATE_PROPERTY x 
BOOLEAN_VALUE 

Determines if a certain state property holds in 
the environment  

to_be_performed: ACTION 
Specifies an action that will be performed in the 
environment 

 
Often, structural properties are valid during the whole period of organization 

existence and can be considered as static. But in rapidly developing and adapting 
organizations, structural change processes gain special importance. Structural 
properties for such organizations get a temporal dimension and can be considered as a 
subclass of dynamic properties. 



 

 262 

4.2   State and dynamic properties 

The dynamics of an organization are defined by the specification of dynamic 
properties of its components that are formalized using the dynamic ontology (see 
Table 3) and belong to the following five classes: role properties, transfer properties, 
interlevel link properties, environment properties, and environment interaction 
properties. Each dynamic property represents a relation in time either between (input 
or output) states of roles or a (input or output) state of a role and a (input or output) 
state of the environment. States of roles and the environment are defined based on the 
corresponding ontologies for roles and the environment. More precisely, a state for 
ontology Ont is an assignment of truth-values to the set At(Ont) of ground atoms 
expressed in terms of Ont. The set of all possible states for state ontology Ont is 
denoted by STATES(Ont).  

Table 3. Dynamics ontology for formalizing properties of an organization 

Sort Description 

DYNPROP Sort for the name of a dynamic property 

DPEXPR Sort for the expression of a dynamic property 

Predicate Description 

has_dynamic_property:  ROLE x 
DYNPROP 

Specifies a role dynamic property 

has_dynamic_property:  
INTERACTION_LINK x DYNPROP 

Identifies a dynamic property for an interaction link 

has_dynamic_property:  
ENVIRONMENT x DYNPROP 

Identifies a dynamic property for the 
conceptualizedpart of the environment 

has_dynamic_property:  
ENVIRONMENT_INTERACTION_LINK 
x DYNPROP 

Identifies a dynamic property for an environment 
interaction link 

has_expression: DYNPROPx DPEXPR Specifies an expression for a dynamic property 

 
A state property is defined by a formula over a state ontology. For example, 

communicate_from_to(TCR, customer, inform, order_state(ON, delay, customer_report)) is a state formula 
expressing the informative speech act in form of a customer report from role TCR to 
role Customer about the delay state of the order with the number ON. 

Dynamic properties (e.g., for roles, environment, and links) are specified in the 
Temporal Trace Language (TTL) [22, 40], which is a variant of order-sorted predicate 
logic [27], and in the classification in Galton [14, 15] falls in the class of reified 
temporal logic. 

TTL has some similarities with situation calculus [35] and event calculus [24]. To 
enable reasoning about the dynamic properties the language TTL includes special 
sorts, such as: TIME (a set of linearly ordered time points), STATE (a set of all state 
names of a system), TRACE (a set of all trace names; a trace or a trajectory can be 
thought of as a timeline with for each time point a state), and STATPROP (a set of all 
state property names).  



 

 263 

Role or environment states are related to state properties via the satisfaction 
relation |=, formally defined as a binary infix predicate (or by holds as a binary prefix 
predicate): state(γ, t, output(r)) |= p (or holds(state(γ, t, output(r)), p)), which denotes that state 
property p holds in trace γ at time t in the output state of role r.  

Both state(γ, t, output(r)) and p are terms of the TTL language. Here p is used not as a 
statement, but as a term for an object in the language which refers to a state 
proposition; this is called reification; cf. Galton [14, 15]. TTL terms are constructed 
by induction in a standard way for sorted predicate logic from variables, constants and 
functional symbols typed with TTL sorts. Dynamic properties are expressed by TTL-
formulae inductively defined by: 
(1) If v1 is a term of sort STATE, and u1 is a term of the sort STATPROP, then holds(v1, u1) is an 

atomic TTL formula. 
(2) If τ1, τ2 are terms of any TTL sort, then τ1 = τ2 is an atomic TTL formula.  
(3) If t1, t2 are terms of sort TIME, then t1 < t2 is an atomic TTL formula.  
(4) The set of well-formed TTL-formulae is defined inductively in a standard way based on 

atomic TTL-formulae using boolean propositional connectives and quantifiers.  

In the context of the running example consider the information distribution 
property defined for role OP called RP1(OP), specified at abstraction level 2. 
Informally, when a severe problem with some delivery occurs, OP should generate a 
message to CR about possible delay. Formally specified in TTL: 
∀γ:TRACE ∀t1:TIME ∀T:TRUCK_TYPE ∀D:DRIVER ∀ON:ORDER_NUM state(γ, t1, environment))|= [ 
truck_state(T, incident, severe_incident) ∧  truck_property(T, operated_by, D) ∧ order_property(ON, 
assigned_to, D) ] �  
∃t2:TIME t2>t1 state(γ, t2, output(OP))|=communicate_from_to(OP, CR, inform, order_state(ON, delay, 
severe_incident)), 

where Table 4 provides the description of the predicates. 
More examples of dynamic properties formalized in TTL will be given in Section 

5.1. 
The specification of both structural and dynamic properties in TTL is supported by 

a dedicated editor [2, 23]. The organizational model for the running example that 
comprises both static and dynamic aspects has been specified in this software. 
Furthermore, the software tool enables model execution (simulation) under different 
environmental conditions (i.e., temporal sequences of events). As a result of 
simulation, a trace can be generated and visualized. A fragment of the trace generated 
for the organizational model constructed for the running example is illustrated in 
Figure 5. Here, the time frame is depicted on the horizontal axis. The names of 
predicates are shown on the vertical axis. A dark box on top of the line indicates that 
the predicate is true during that time period.  

Table 4. Predicates for formalizing the dynamic properties used in the examples 

Predicate Description 
communicate_from_to(r1:ROLE, r2:ROLE, 
s_act:SPEECH_ACT, message:STRING) 

Specifies the speech act s_act (e.g., inform, request, 
ask) from role-source r1 to role-destination r2 with 
the content message 
 

deliverable_object(on: ORDER_NUM, 
desc:STRING) 

Assigns the order number on with the description 
desc to the object that has to be delivered  

truck_property(trt:TRUCK_TYPE, 
operated_by, d:DRIVER)  

Assigns the driver d to a truck of the type trt  



 

 264 

order_property(on:ORDER_NUM, 
assigned_to, d:DRIVER ) 

Assignes the order on to the driver d 

order_property(on:ORDER_NUM, deadline, 
d_value:INTEGER ) 

Identifies the deadline d_value for the order on 

truck_state(trt:TRUCK_TYPE, st:STATE, 
descr:STATE_DESCRIPTION) 

Denotes the state st with the state description descr of 
a truck of the type trt  

order_state(on:ORDER_NUM, st:STATE, 
descr:STATE_DESCRIPTION) 

Specifies the state st with the state description descr 
of the order with the number on  

 
output(op)|communicate_from_to(op, cr, inform, problem(delay, order1), 1)

output(load_manager_1)|communicate_from_to(load_manager_1, fleet_manager_1, inform, solution(drive_around), 1)
input(fleet_manager_1)|communicate_from_to(load_manager_1, fleet_manager_1, inform, solution(drive_around), 1)

input(cr)|communicate_from_to(op, cr, inform, problem(delay, order1), 1)
output(fleet_manager_1)|communicate_from_to(fleet_manager_1, truck_and_driver_1, inform, solution(drive_around), 1)

output(vos)|communicate_from_to(vos, c, inform, problem(delay, order1), 1)

input(truck_and_driver_1)|communicate_from_to(fleet_manager_1, truck_and_driver_1, inform, solution(drive_around), 1)
input(c)|communicate_from_to(vos, c, inform, problem(delay, order1), 1)

output(vr)|communicate_from_to(vr, crp, inform, problem(delay, order1), 1)
input(crp)|communicate_from_to(vr, crp, inform, problem(delay, order1), 1)

delivered(truck_and_driver_1, order1)
time 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

Fig. 5. An example of a visualized trace for the running example 

4.3   Formalizing agent allocation principles 

The formalization of agent allocation principles is performed in line with the 
formalization of the template and the deployed models, using the predicates specified 
in Table 5. 

Table 5. Predicates for formalizing agent allocation principles 

Predicate Description 
has_allocation_requirement: ROLE x 
REQUIREMENT 

Specifies an allocation requirement for a role 

has_capability: AGENT x CAPABILITY Specifies a capability for an agent 
allocated_to: AGENT x ROLE Specifies an agent allocated to a role 
corresponds_to: CAPABILITY x 
REQUIREMENT 

Specifies an agent capability that corresponds to a 
role requirement 

 
Generally, it is assumed that role requirements and agent capabilities are 

formulated using the same ontology, i.e., REQUIREMENT = CAPABILITY. However, if these 
ontologies are different, a necessary ontology mapping should be defined.  

An agent can be allocated to a role if for every allocation requirement defined for 
the role the corresponding (equal in case of the same ontology) agent capability can 
be found. Formally: 
 
allocated_to(a:AGENT, r: ROLE) ≡ ∀req:REQUIREMENT has_allocation_requirement(r, req) � [ 
∃c:CAPABILITY has_capability(a, c) & corresponds_to(c, req) ] 

 
If after being allocated to the role, the agent looses one of his/her capabilities that 

correspond to the role requirements, then according to the rule above the current agent 
allocation will become false and the agent reallocation will be performed.  



 

 265 

5   Verification and Validation 

The model as introduced in this paper offers the means for both role-centered and 
agent-centered verification and validation. Role-centered verification techniques are 
dedicated for checking consistency and integrity of role-based organization models 
without allocating agents to roles. These techniques are considered in Section 5.1. 
Whereas agent-centered verification approaches are applied for checking certain 
(general) dynamic properties on execution of different scenarios with roles of an 
organization model allocated to (human) agents. These techniques are described in 
Section 5.2. Both role- and agent-centered verification techniques are illustrated by 
applying them for checking the organizational model from the running example. 

5.1   Role-centered verification techniques 

In this paper two types of role-centered verification techniques are considered: (1) 
verifying consistency of an organizational model by checking relations between 
dynamic properties of different aggregation levels using model checking techniques 
[6] and (2) checking if an organizational role-based model complies with certain 
general requirements (expressed as dynamic properties) in different role-based 
simulation scenarios. Let us consider these techniques more in detail. 

 
Checking interlevel relations between dynamic properties of different 

aggregation levels 
 
When an organization model is specified including dynamic properties at different 

aggregation levels, it is not automatically guaranteed that the properties defined at 
adjacent aggregation levels fit to each other. A verification process that addreses 
interlevel relations between properties at one aggregation level and properties of 
adjacent aggregation level (e.g., as in compositional verification) can reveal 
incompleteness or inconsistencies in an organization model. The verification 
approach based on model checking techniques proposed in [40] can be used for 
justifying such relations. According to this approach dynamic properties of the lower 
aggregation level components (i.e., roles, links and the environment) expressed in 
TTL form a model that by means of the techniques described in [40] can be translated 
into the input format of one of the existing model checkers, and can be further used 
for automated verification. For practical verification the model checker SMV [6] has 
been chosen. A property of the higher aggregation level is required by SMV to be 
represented as a temporal formula in CTL [6]. This property will be automatically 
checked against all the possible executions of the translated model of the lower 
aggregation level by performing model checking. In such a manner, it can be proven 
that a property of the higher aggregation level is a logical consequence of the model 
that comprises properties of a lower aggregation level.  

Let us illustrate this technique by applying it to the running example. The 
information distribution property RP1(OP) of role OP defined at aggregation level 2 
and specified in Section 4.2 is used as a property of the higher aggregation level. For 
the purpose of verification, this property is expressed in CTL as follows: 



 

 266 

AG (truck_state_T_incident_severe_incident & truck_property_T_operated_by_D & 
order_property_A20_assigned_to_D �   
AF 
performing_action_preparation_output_OP_communicate_from_to_OP_CR_inform_order_state_A20_delay_se
vere_incident) 

where A is a path quantifier defined in CTL, meaning “for all computational paths”, G 
and F are temporal quantifiers that correspond to “globally” and “eventually” 
respectively. 

The higher level property RP1(OP) can be logically related to the conjunction of 
dynamic properties of components at the lower aggregation level 3 in the following 
way: 
EP1(Env, T, severe_incident) & EP2(Env, T) & EIP1(Env, D) & RP1(D) & TP1(D, FM) & RP2(FM) & TP2(FM, 
LM) & RP3(LM) & RP4(LM) & ILP1(LM, OP)  �   RP1(OP)  (1) 

The abbreviations for the dynamic properties and their arguments conform to the 
specification provided in Section 3. Let us consider the informal and formalized 
expressions for some of the properties from the relation (1) that hold for any trace γ 

(the complete specification for the dynamic properties in (1) is given in Appendix A 
and in [21]): 
 
EP1(Env, T, severe_incident)  Incident occurrence 
Informal description: 
In the environment a severe incident with the truck T occurs 

Formalization: 
∃t1:TIME state(γ, t1, environment)|= truck_state(T, incident, severe_incident) 

 
EIP1(Env, D)  Incident observation 
Informal description: 
If an incident happens with a truck, then a driver responsible for this truck will observe this 
incident 

Formalization: 
∀t1:TIME ∀T:TRUCK_TYPE ∀D:DRIVER ∀ins:INCIDENT state(γ , t1, environment))|= [ truck_state(T, 
incident, ins) ∧ truck_property(T, operated_by, D)] �  ∃t2 t2>t1 state(γ , t2, input(D)) |= 
observation_result(truck_state(T, incident, ins), true) 

 
RP1(D)  Request for incident solution 
Informal description: 
If a driver observes an incident with his truck, then s/he will react by generating a request for 
advice to his fleet manager 

Formalization: 
∀t1:TIME ∀T:TRUCK_TYPE ∀D:DRIVER ∀ins:INCIDENT ∀FM: FLEET_MANAGER state(γ , t1, input(D)) 
|= observation_result(truck_state(T, incident, ins), true) & state(γ, t1, environment) |=  assigned_to(D, FM) 
�  ∃t2 t2>t1 state(γ , t2, output(D)) |= to_be_performed(communicate_from_to(D, FM, ask, 
solution_for_problem(ins, T))) 

 
ILP1(LM, OP)  Generation of information about the state change of a delivery order object 
Informal description: 
If a load manager communicates information about the change of a delivery status to the 
customer relation role, then the operational department role transmits this information to the 
customer relation department role. 

Formalization: 
∀t1:TIME ∀LM: LOAD_MANAGER ∀ON:ORDER_NUM ∀st: STATE_TYPE ∀r: REASON state(γ, t1, 
output(LM))|= to_be_performed(communicate_from_to(LM, CR, inform, order_state(ON, st, r))) 
�  ∃t2 t2>t1 state(γ, t2, output(OP))|= to_be_performed(communicate_from_to(OP, CR, inform, 
order_state(ON, st, r))) 

 



 

 267 

By applying the algorithms and the dedicated software described in [40] to the 
specification that comprises all identified above properties defined at aggregation 
level 3 is transformed into the finite state transition system format required for 
performing model checking. Such a format consists of transition rules of the form [ Ρ 

→ Ν], where Ρ is a set of (predicate logic) atoms that are true in a current state and Ν is a 
set of atoms that will be true in the next state. For example, one of the transition rules 
from the obtained specification describes the generation of the memory state based on 
the observation of driver D at the time point t of the state property expressing that a 
severe incident happened with truck T:   
 
present_time(t) & observed(input_D_truck_state_T_incident_severe_incident) →→  
                                             memory(t, observed(input_D_truck_state_T_incident_severe_incident)) 

 
The following transition rule expresses the persistency of the created memory state: 
 
memory(t, observed(input_D_truck_state_T_incident_severe_incident)) →→  
                                                     memory(t, observed(input_D_truck_state_T_incident_severe_incident)) 

 
The complete specification of the obtained finite state transition system for the 
considered example is given in Appendix B. The details of the procedure for 
transformation of a behavioral TTL specification into the finite state transition system 
format, and its application to the considered example are given in [21]. 
 

The automatic verification in the SMV model checking tool of the property 
RP1(OP) on the considered model showed that the previously identified logical 
relation (1) indeed holds. In general, the formal verification method of logical 
relations between dynamic properties of adjacent aggregation levels is useful for 
revealing missing premises or other shortcomings such as inconsistencies. 

 
Checking global organizational properties with respect to a simulated role-based 

model 
 
Another role-centered verification method is based on checking global 

organizational properties (or requirements) with respect to different executions of a 
role-based model by means of dedicated software. Such global organization properties 
are usually based on performance indicators of an organization, i.e., quantitative 
indicators that reflect the state, progress or performance of an organization (e.g., 
delivery time, customer notification time). By performing such verification 
inconsistencies and bottlenecks in an organization model can be detected. 

Different executions (or execution traces) of a formally defined role-based 
organization model are obtained by performing simulations of different scenarios 
using a dedicated software environment [2]. Further the generated traces can be 
loaded into the verification environment, in which the formalized TTL properties can 
be checked on these traces. 

Based on the formal organization model for the running example a simulation trace 
has been generated (given in Figure 5 partially), then the customer notification 
property has been checked on this trace. 

 



 

 268 

Customer notification 
Informal description: 
Always if a severe problem occurs with the truck and the driver, who was fulfilling the order of 
some customer, then this customer should be notified about possible delay with delivery.  
Formalization: 

∀γ:TRACE ∀t1:TIME ∀T:TRUCK_TYPE ∀D:DRIVER ∀ON:ORDER_NUM state(γ, t1, environment))|= 
truck_state(T, incident, severe_incident) ∧ truck_property(T, operated_by, D) ∧ order_property(ON, 
assigned_to, D) � ∃t2:TIME t2>t1 ∃TCR:ROLE state(γ, t2, input(customer))|=communicate_from_to(TCR, 
customer, inform, order_state(ON, delay, customer_report)) 

An automatic verification confirmed that this property holds on the simulation 
trace. 

5.2   Agent-centered verification technique 

In this section an agent-centered verification technique is considered that is based on 
checking dynamic properties on a formalized empirical trace obtained by executing a 
particular scenario with roles of an organization model allocated to (human) agents. 
An empirical trace may be obtained from log-files of a company. If an empirical trace 
is given informally, the first step is to formalize it (by hand), using formal state 
ontologies. If it is already given in a formal form, the first step is to translate (e.g., 
automatically) the formal representation into one based on ontologies used in the 
organization model. Once such a trace is in the right formal form, it is possible to 
verify dynamic properties of the organization (including structural properties), using 
dedicated checking software as in the second role-centered verification technique.  

As input for the verification software, a formalized trace and a formalized property 
have to be provided. Given such input, after automatic verification of the given 
property against the given trace, the software will generate a result (positive or 
negative). The positive decision confirms that the property holds with respect to the 
given trace. In case of a negative decision, the software explains why the property 
does not hold. In order to illustrate this method of verification, let us briefly consider 
the scenario reconstructed from empirical data of the transport company from the case 
study:  

(1) A Customer places an order by means of a contact with TCR (CR department in this case) in CI.  
(2) Inside TC this order is being transmitted from CR to OP.  
(3) Within OP the order is distributed by SP to LM1.  
(4) LM1 assigns the order to D1, D1 is associated with FM1 (see Fig. 4).  
(5) D1 starts delivery, then after some time a severe incident occurs with his truck.  
(6) D1 asks for help FM1, who is incapable of making a decision in this case.  
(7) FM asks for a solution LM1, who decides to send another truck to proceed with delivery.  
(8) Now D1 is reallocated to another truck and driver, who picks up goods and continues delivery.  
(9) At the same time LM1 informs CR about possible delay with delivery.  
(10) CR, who shares the same knowledge with TCR, informs the Customer about possible delay.  
(11) D1 successfully finishes delivery and the Customer is being informed about that. 
Using formal state ontologies (see Tables 2 and 3), we formalized this trace in the 

dedicated software environment. After that we identified several properties of interest 
that can be automatically verified against the trace. Let us consider two of them. 
 
Delivery successfulness 
Informal description: 
The order has been fulfilled. 



 

 269 

Formalization: 

∃t:TIME ∃O:ORDER_NUM state(γ, t, environment)|= order_state(O, delivered, final_report) 

An automatic verification confirmed that this property holds against the formalized 
empirical trace. 
 
Delivery accuracy 
Informal description: 
The order has been fulfilled on time.  
Formalization: 
∃t:TIME ∃O:ORDER_NUM ∃d_value:integer state(γ, t, environment)|= order_state(O, delivered, final_report) ∧ 
order_details(O, deadline, d_value) ∧ d_value ≥ t 

 
This property does not hold with respect to the trace. The next logical step in analysis 
of the causes for property failing would be to check if some incident occurred in 
transit. In case that a severe incident happened with the truck and the agent (a truck 
driver) was incapable of performing his role any more, the next step would be to 
verify whether or not enough time is available for a role reallocation. Subsequently, 
analysis of organization functioning can be continued until all inquiries about delivery 
are satisfied.  

If an agent allocated to a role possesses individual attitudes and behavioral 
characteristics that are not explicitly identified in role requirements, however which 
may influence the execution of functions associated with the role, then dedicated 
analysis techniques for determining consequences of different agent architectures for 
role performance can be applied. These techniques are not considered in this paper 
and will be described elsewhere.  

6   Discussion 

Both in human society and for software agents, organizational structure provides the 
means to make complex, composite dynamics manageable. To understand and 
formalize how exactly organization structure constrains composite dynamics is a 
fundamental challenge in the area of organizational modeling. The modeling approach 
presented in this paper addresses this challenge. It concerns a method for formal 
specification of organizations, which can capture both structural and dynamic aspects 
of organizations and provides the means for (i) representation of organization 
structure, (ii) simulations of different scenarios, (iii) analysis of organization, 
verifying static and dynamic properties against (formalized) empirical data or 
simulated scenarios, (iv) diagnosis of inconsistencies, redundancies, and errors in 
structure and functioning. Additionally, the environment is integrated as a special 
component within the organization model. 

Specification of organization structure usually takes the form of pictorial 
descriptions, in a graph-like framework. These descriptions often abstract from 
detailed dynamics within an organization. Specification of the dynamic properties of 
organizations, on the other hand, usually takes place in a completely different 
conceptual framework; these dynamic properties are often specified in the form of a 
set of logical formulae in some temporal language. The logical relationships express 



 

 270 

the kind of relations between dynamics of parts of an organization, their interaction, 
and dynamic properties of the organization as a whole, which were indicated as 
crucial by Lomi and Larsen [25] in their introduction.  

This paper shows how pictorial descriptions, in a graph-like framework, and a set 
of logical formulae in some temporal language can be combined in one organization 
modeling approach. Inspection can be done on the abstraction level preferred and both 
the pictorial and formal specifications of the dynamic properties can be inspected. 
Five essential types of dynamic properties characterizing behavior of main structural 
components of an organization model (including environment) are identified.  

Due to the high expressivity of the introduced modeling (structural and behavioral) 
languages, the proposed framework creates the formal fundament for developing 
more specific types of models that describe certain particular aspects of organizations 
(e.g., goals and tasks). Such models can be built by introducing new particular 
specifications for these aspects in terms of sorts, predicates, and properties, which 
represent instantiations of general types of static and dynamic properties described in 
this paper. In future work different particular perspectives on organizations (e.g., 
performance-orients, goal-oriented, process-oriented) will be elaborated. 

Furthermore, the approach proposed here supports formal specification and 
verification for both static and dynamic properties. This possibility is especially 
useful for diagnosis of inconsistencies, redundancies, and errors in structure and 
functioning of real organizations and providing recommendations for their 
improvement (e.g., by way of evaluating of performance indicators). Compared to 
most organization-oriented, multi-agent system, design approaches [1, 10, 11, 42], our 
model allows any number of aggregation levels in the organization model, which 
makes it more suitable for modeling and analyzing real organizations. While a role 
aggregation relation is considered to be crucial for representing an organizational 
model, other types of relations between roles should also be taken into account. For 
example, a role specified in a template model and its corresponding role instances 
defined in a deployed model are related by means of a generalization relation. 
Furthermore, even more general role templates (or classes), which possess essential 
characteristics of roles of a certain type (e.g., seller, vendor, customer), independent 
of any application domain, can be created. Different types of relations between such 
roles can be identified (e.g., aggregation, generalization, interaction). Then, based on 
roles classes and their relations libraries can be created that can be used for the 
specification of a template organizational model. Moreover, such libraries may be 
employed for constructing templates of different types of organizations. Both 
structural and dynamic aspects of different types of organizations should be reflected 
in such templates; for this formal languages introduced in this paper can be used. To 
identify the distinctive features of different organization types, agent-based models 
identified in [36] and the literature from organization theory [28, 30] are useful to 
consider.  

Let us now consider a case in which agents show autonomous behavior, 
independent of (or sometimes conflicting to) organizational rules and goals. To tackle 
the forthcoming problems from such settings, further investigation of the relationships 
between formally predefined organizational model and agent autonomous behavior in 
settings of different types of organizations will be undertaken. The work on holonic 
structures [36, 37] may be relevant for further investigations on this question. By 



 

 271 

applying the approach introduced in this paper the specifications of a (hierarchical) 
structure and dynamics can be developed, which describe a certain holon, or are 
imposed on agents within a holon. The specification of autonomous agent behavior 
takes place in a different conceptual framework, which, nevertheless, can be related 
(at least in ontological sense) to the modeling framework introduced in this paper. 
Then, by varying the types and flexibility of the (imposed) structures and behaviors 
(using for example the types described in [36]), and the level of agent autonomy, 
different types of organizations represented by multi-agent systems can be 
investigated. Furthermore, by applying analysis methods described in this paper the 
behavior of holons can be checked for compliance with the prescribed norms and 
other (global) properties of an organization. 

In the case of highly dynamic organizations (e.g., self-organizing and organic 
organizations), organizational change is a crucial and frequent process. Due to their 
high complexity, such organizations are difficult to investigate. However, different 
simulation techniques can help in providing further insights into mechanisms of 
functioning of such organizations. For the latter purpose, research has been conducted 
based on the introduced formal model [18].  

In conclusion, this paper introduced a new, formal, fully traceable method on 
modeling and analyzing (multi-agent) organizations. It comprises both static and 
dynamic aspects as well as environment representation. Hence, it provides the basis of 
a formal framework, which provides the means for both the design and for the 
automatic validation and verification of organizations. 

Acknowledgments 

This research was partially supported by the Netherlands Organization for Scientific 
Research (NWO) under project number 612.062.006. SenterNovem is gratefully 
acknowledged for funding the projects Cybernetic Incident Management (CIM) and 
Distributed Engine for Advanced Logistics (DEAL) that also funded this research 
partially. Further, we thank the reviewers for their detailed comments on the original 
manuscript. 

References 

1. M. Amiguet, J.-P. Mueller, J.-A. Baez-Barranco, and A. Nagy, “The MOCA Platform”, in 
Proc. of MABS, 2002, pp. 70-88. 

2. T. Bosse, C.M Jonker, L. van der Meij and J.Treur “A Language and Environment for 
Analysis of Dynamics by Simulation, International Journal of Artificial Intelligence Tools”, 
16: pp. 435-464, 2007. 

3. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini, “Tropos: An Agent- 
 Oriented Software Development Methodology”, Journal of Autonomous Agent and Multi- 

Agent Systems, vol. 8(3), pp. 203-236, 2004. 
4. R. M. Burton and B. Obel, Strategic Organizational Diagnosis and Design: Developing 

Theory for Application, Kluwer Academic Publishers: Dordrecht, 2004. 



 

 272 

5. K. Carley and J.-S. Lee, “Dynamic Organizations: Organizational Adaptation in a Changing 
Environment”, Disciplinary Roots of Strategic Management Research, vol. 15, pp. 267-295, 
1998. 

6. E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking. MIT Press, 2000. 
7. M. Dastani, J. Hulstijn, F. Dignum, and J-J. Meyer, “Issues in Multiagent System 

Development”, in Proc. of the Third International Joint Conference on Autonomous Agents 
and Multi Agent Systems AAMAS'04, 2004, pp. 922-929. 

8. R. David and H. Alla, Discrete, Continuous, and Hybrid Petri Nets. Springer-Verlag, 2005. 
9. M. Esteva, D. Cruz, and C. Sierra, “ISLANDER: an electronic institutions editor”, in Proc. 

of the 1st International Conference on Autonomous Agents and Multiagent systems, 2002, 
pp. 1045-1052. 

10. J. Ferber and O.Gutknecht, “A meta-model for the analysis and design of organizations in 
multi-agent systems”, in Proc. of Third International Conference on Multi-Agent Systems 
(ICMAS'98), IEEE Computer Society, 1998, pp. 128-135. 

11. J. Ferber, O. Gutknecht, and F.Michel, “From Agents to Organizations: an Organizational 
View of Multi-Agent Systems”, in Proc. of 4th International Workshop AOSE, 2003, pp. 
214-230. 

12. J.W. Forrester, Industrial dynamics, Waltham, MA: Pegasus Communications, 1961. 
13. M. Fox, M. Barbuceanu, M. Gruninger, and J. Lin, “An Organization Ontology for 

Enterprise Modelling”, in Simulating Organizations: Computational Models of Institutions 
and Groups, edited by M. Prietula, K. Carley and L. Gasser, Menlo Park CA: AAAI/MIT 
Press pp. 131-152, 1997. 

14. A. Galton, Temporal Logic, in Stanford Encyclopedia of Philosophy, 2003. URL: 
http://plato.stanford.edu/entries/logic-temporal/#2. 

15. A. Galton, “Operators vs Arguments: The Ins and Outs of Reification”, Synthese, vol. 150, 
pp. 415-441, 2006. 

16. M. Hannoun, J.S. Sichman, O. Boissier, and C. Sayettat, “Dependence Relations between 
Roles in a Multi-Agent System: Towards the Detection of Inconsistencies in Organization”, 
in Proc. of MABS, 1998, pp. 169-182. 

17. A. Hodgson, R. Roennquist, P. Busetta, and N. Howden, “Team Oriented Programming with 
SimpleTeam”, in Proc. of SimTecT 2000, Sydney, Australia, 2000, pp. 115-122. 

18. M. Hoogendoorn, C.M. Jonker, M. Schut, and J. Treur, “Modelling the Organisation of 
Organisational Change”, in Proc. of the Sixth International Workshop on Agent-Oriented 
Information Systems, 2004, pp. 29-46. Extended version: Jounal of Computational and 
Mathematical Organisation Theory. In press, 2006. 

19. B. Horling, V. Lesser, “A Survey of multi-agent organizational paradigms”, The Knowledge 
Engineering Review, Vol. 19(4), pp. 281-316, 2005.  

20. J.F. Hubner, J.S. Sichman, O. Boissier, “A Model for the Structural, Functional and Deontic 
Specification of Organizations in Multiagent Systems”, in Proc. of SBIA, 2002, pp. 118-
128. 

21. C.M. Jonker, A. Sharpanskykh, J. Treur, and P. Yolum, “Verifying Interlevel Relations 
within Organizational Models”, Technical Report #TR-061909AI, Vrije Universiteit 
Amsterdam, 2006. URL: http://hdl.handle.net/1871/10210 

22. C.M. Jonker and J. Treur, “A temporal-interactivist perspective on the dynamics of mental 
states”, Cognitive Systems Research Journal, 4(3), pp. 137-155, 2003. 

23. C.M. Jonker, J. Treur, and W.C.A. Wijngaards, “A temporal-modelling environment for 
internally grounded beliefs, desires, and intentions”, Cognitive Systems Research Journal, 
4(3), pp. 191-210, 2003. 

24. R. Kowalski and M. Sergot, “A logic-based calculus of events”, New Generation 
Computing, 4, pp. 67-95, 1986. 

25. A. Lomi and E.R. Larsen, Dynamics of Organizations: Computational Modeling and 
Organization Theories, AAAI Press, Menlo Park, 2001. 



 

 273 

26. F. Lopez y Lopez, M. Luck, and M. d'Inverno, “A Normative Framework for Agent-Based 
Systems”, Computational and Mathematical Organization Theory, 12(2-3), pp. 227-250, 
2005. 

27. M. Manzano, Extensions of First Order Logic, Cambridge University Press, 1996. 
28. H. Mintzberg, The Structuring of Organizations, Prentice Hall, Englewood Cliffs, 1979. 
29. R.E. Miles, C.C. Snow, J.A. Mathews, and H.J. Coleman, “Organizing in the knowledge 

age: Anticipating the cellular form”, Academy of Management Executive, 11(4), pp. 7-20, 
1997. 

30. G. Morgan, Images of organizations, SAGE Publications, Thousand Oaks London New 
Delhi, 1996. 

31. J. Odell, H.V.D. Parunak, and B. Bauer, “Extending UML for Agents” , in Proc. of Agent-
Oriented Information Systems Workshop at the 17th National conference on Artificial 
Intelligence, 2000, pp. 3-17. 

32. A. Omicini, “SODA: Societies and infrastructures in the analysis and design of agent-based 
systems”, in Proc. of AOSE, 2000, pp. 185–193. 

33. H.V.D. Parunak and J. Odell, “Representing Social Structures in UML”, in Proc. of Agent-
Oriented Software Engineering II Workshop, edited by M. Wooldridge, G. Weiss, and P. 
Ciancarini, Lecture Notes on Computer Science, vol. 2222, Springer-Verlag, Berlin, pp. 1-
16, 2002. 

34. M. Prietula, L. Gasser, K. Carley, Simulating Organizations, MIT Press, 1997. 
35. R. Reiter, Knowledge in Action: Logical Foundations for Specifying and 

Implementing Dynamical System, Cambridge MA: MIT Press, 2001. 
36. M. Schillo, “Self-Organization and Adjustable Autonomy: Two Sides of the Same 

Coin?” , Connection Science, vol. 14 (4), 2003, pp. 345-360. 
37. M. Schillo and D. Spresny, “Organization: The Central Concept for Qualitative 

and Quantitative Scalability” , in Socionics: Contributions to the Scalability of 
Complex Social Systems edited by K. Fischer and M. Florian, Lecture Notes in 
Artificial Intelligence, Berlin, vol. 3413, Springer, 2005, pp. 84-103. 

38. J. Scott, Social Network Analysis: A Handbook, 2nd Ed. Newberry Park, CA: Sage, 2000. 
39. W.R. Scott, Institutions and organizations, SAGE Publications, Thousand Oaks London 

New Delhi, 2001. 
40. A. Sharpanskykh and J. Treur, “Verifying Interlevel Relations within Multi-Agent 

Systems”, in Proc. of the 17th European Conference on Artificial Intelligence, ECAI'06. 
IOS Press, 2006, pp. 290-294. 

41. J. Vázquez-Salceda, H.M. Aldewereld, and F.P.M. Dignum, “Norms in multiagent systems: 
From theory to practice” , International Journal of Computer Systems Science & 
Engineering, vol. 20(4), pp. 225-236, 2005. 

42. F. Zambonelli, N. R. Jennings, M. Wooldridge, “Developing multiagent systems: the Gaia 
Methodology” , ACM Transactions on Software Engineering and Methodology, vol. 12 (3), 
2003, pp. 317-370. 

 



 

 274 

Appendix A. The complete specification of dynamic properties 
from the running example 

 
EP1(Env, T, severe_incident)  Incident occurrence 
Informal description: 
In the environment a severe incident with the truck T occurs 
Formalization: 
∃t1:TIME state(γ, t1, environment)|= truck_state(T, incident, severe_incident) 
 
EP2(Env, T)  Stable information about the environnent 
Informal description: 
Role D (a driver) operates the truck T and is assigned to deliver the order A20; role D is 
assigned to the fleet manager FM, and FM is in the region of the load manager LM 
Formalization: 
∀t1:TIME state(γ, t1, environment) |= [ truck_property(T, operated_by, D) ∧ order_property(A20, assigned_to, 
D) ∧ assigned_to(D, FM) ∧ in_region(FM, LM) ] 
 
EIP1(Env, D)  Incident observation 
Informal description: 
If an incident happens with a truck, then a driver responsible for this truck will observe this 
incident 
Formalization: 
∀t1:TIME ∀T:TRUCK_TYPE ∀D:DRIVER ∀ins:INCIDENT state(γ , t1, environment))|= [ truck_state(T, incident, 
ins) ∧ truck_property(T, operated_by, D)] �  ∃t2 t2>t1 state(γ , t2, input(D)) |= observation_result(truck_state(T, 
incident, ins), true) 
 
RP1(D)  Request for incident solution 
Informal description: 
If a driver observes an incident with his truck, then s/he will react by generating a request for 
advice to his fleet manager 
Formalization: 
∀t1:TIME ∀T:TRUCK_TYPE ∀D:DRIVER ∀ins:INCIDENT ∀FM: FLEET_MANAGER state(γ , t1, input(D)) |= 
observation_result(truck_state(T, incident, ins), true) & state(γ, t1, environment) |=  assigned_to(D, FM) 
�  ∃t2 t2>t1 state(γ , t2, output(D)) |= to_be_performed(communicate_from_to(D, FM, ask, 
solution_for_problem(ins, T))) 

 
TP1(D, FM)  Request transfer to Fleet Manager 
Informal description: 
If a driver sends a request to his fleet manager, the fleet manager will receive this request 
Formalization: 
∀t1:TIME ∀D:DRIVER ∀FM: FLEET_MANAGER ∀req: REQUEST state(γ, t1, output(D)) |= 
to_be_performed(communicate_from_to(D, FM, ask, req)) & state(γ, t1, environment) |= assigned_to(D, FM) 
�  ∃t2 t2>t1 state(γ , t2, input(FM)) |= observation_result(communicate_from_to(D, FM, ask, req)) 
 
RP2(FM)  Request for solution propagation 
Informal description: 
If a fleet manager receives a request from a driver for advice to solve a severe problem, then 
s/he will propagate this request further to the regional load manager  
Formalization: 
∀t1:TIME ∀D:DRIVER ∀T:TRUCK_TYPE ∀FM: FLEET_MANAGER ∀LM: LOAD_MANAGER state(γ , t1, 
input(FM)) |= observation_result(communicate_from_to(D, FM, ask, solution_for_problem(severe_incident, T))) 
& state(γ, t1, environment) |=  in_region(FM, LM) 



 

 275 

�  ∃t2 t2>t1 state(γ , t2, output(FM)) |= to_be_performed(communicate_from_to(FM, LM, ask, 
solution_for_problem(severe_incident, T))) 

 
TP2(FM, LM)  Request transfer to Load Manager 
Informal description: 
If a fleet manager sends a request to a regional load manager, the regional load manager will 
receive this request 
Formalization: 
∀t1:TIME ∀FM: FLEET_MANAGER ∀LM: LOAD_MANAGER ∀req: REQUEST state(γ ,t1, output(FM)) |= 
to_be_performed(communicate_from_to(FM, LM, ask, req))  
�  ∃t2 t2>t1 state(γ , t2, input(LM)) |= observation_result(communicate_from_to(FM, LM, ask, req)) 
 
RP3(LM)  Change of a delivery status 
Informal description: 
If a load manager receives a request from a fleet manager for advice to solve a severe problem, 
then s/he officially identifies the incident as severe and changes into “delay” the state of the 
corresponding delivery order in the information system. 
Formalization: 
∀D:DRIVER ∀t1:TIME ∀FM: FLEET_MANAGER ∀T:TRUCK_TYPE ∀LM: LOAD_MANAGER 
∀ON:ORDER_NUM state(γ , t1, input(LM)) |= observation_result(communicate_from_to(FM, LM, ask, 
solution_for_problem(severe_incident, T))) & state(γ, t1, environment) |= [ order_property(ON, assigned_to, D) 
∧ truck_property(T, operated_by, D) ] 
�  ∃t2 t2>t1 state(γ , t2, output(LM)) |= to_be_performed(change(order_state(ON, delay, severe_incident))) 
 
RP4(LM)  Informing CR about a delivery status 
Informal description: 
If a load manager changes a state of a delivery order object, then the information about this 
change is generated at the output of the load manager role for the customer relation role. 
Formalization: 
∀t1:TIME ∀LM: LOAD_MANAGER ∀ON:ORDER_NUM ∀st: STATE_TYPE ∀r: REASON state(γ , t1, 
output(LM)) |= to_be_performed(change(order_state(ON, st, r))) 
�  ∃t2 t2>t1 state(γ, t2, output(LM))|= to_be_performed(communicate_from_to(LM, CR, inform, 
order_state(ON, st, r))) 
 
ILP1(LM, OP)  Generation of information about the state change of a delivery order object 
Informal description: 
If a load manager communicates information about the change of a delivery status to the 
customer relation role, then the operational department role transmits this information to the 
customer relation department role. 
Formalization: 
∀t1:TIME ∀LM: LOAD_MANAGER ∀ON:ORDER_NUM ∀st: STATE_TYPE ∀r: REASON state(γ, t1, 
output(LM))|= to_be_performed(communicate_from_to(LM, CR, inform, order_state(ON, st, r))) 
�  ∃t2 t2>t1 state(γ, t2, output(OP))|= to_be_performed(communicate_from_to(OP, CR, inform, 
order_state(ON, st, r))) 
 



 

 276 

Appendix B. The complete specification of the transition system 
from the running example 

present_time(t) & 
¬performing_action(preparation(output_LM_communicate_from_to_LM_CR_inform_order_state_A20_delay_se
vere_incident)) →→ present_time(t+1) 
truck_state_T_incident_severe_incident & truck_property_T_operated_by_D →→ 
observed(input_D_truck_state_T_incident_severe_incident) 
present_time(t) & observed(input_D_truck_state_T_incident_severe_incident) →→ memory(t, 
observed(input_D_truck_state_T_incident_severe_incident)) 
memory(t, observed(input_D_truck_state_T_incident_severe_incident)) →→ memory(t, 
observed(input_D_truck_state_T_incident_severe_incident)) 
present_time(t) & memory(t, observed(input_D_truck_state_T_incident_severe_incident)) & assigned_to_D_FM 
→→ qcprep1 
present_time(t) & qcprep1 →→ 
preparation(output_D_communicate_from_to_D_FM_ask_solution_for_problem_severe_incident_T) 
preparation(output_D_communicate_from_to_D_FM_ask_solution_for_problem_severe_incident_T) →→ 
performing_action(output_D_communicate_from_to_D_FM_ask_solution_for_problem_severe_incident_T) 
performing_action(output_D_communicate_from_to_D_FM_ask_solution_for_problem_severe_incident_T) →→ 
observed(input_FM_communicate_from_to_D_FM_ask_solution_for_problem_severe_incident_T) 
present_time(t) & 
observed(input_FM_communicate_from_to_D_FM_ask_solution_for_problem_severe_incident_T) →→ 
memory(t, observed(input_FM_communicate_from_to_D_FM_ask_solution_for_problem_severe_incident_T)) 
memory(t, observed(input_FM_communicate_from_to_D_FM_ask_solution_for_problem_severe_incident_T)) 
→→ memory(t, 
observed(input_FM_communicate_from_to_D_FM_ask_solution_for_problem_severe_incident_T)) 
present_time(t) & memory(t, 
observed(input_FM_communicate_from_to_D_FM_ask_solution_for_problem_severe_incident_T)) & 
in_region_FM_LM →→ qcprep2 
present_time(t) & qcprep2 →→ 
preparation(output_FM_communicate_from_to_FM_LM_ask_solution_for_problem_severe_incident_T) 
preparation(output_FM_communicate_from_to_FM_LM_ask_solution_for_problem_severe_incident_T) →→ 
performing_action(output_FM_communicate_from_to_FM_LM_ask_solution_for_problem_severe_incident_T) 
performing_action(output_FM_communicate_from_to_FM_LM_ask_solution_for_problem_severe_incident_T) 
→→ observed (input_LM_communicate_from_to_FM_LM_ask_solution_for_problem_severe_incident_T) 
present_time(t) & observed 
(input_LM_communicate_from_to_FM_LM_ask_solution_for_problem_severe_incident_T) →→ memory(t, 
observed(input_LM_communicate_from_to_FM_LM_ask_solution_for_problem_severe_incident_T)) 
memory(t, observed(input_LM_communicate_from_to_FM_LM_ask_solution_for_problem_severe_incident_T)) 
→→  
memory(t, observed(input_LM_communicate_from_to_FM_LM_ask_solution_for_problem_severe_incident_T)) 
 
present_time(t) & memory(t, 
observed(input_LM_communicate_from_to_FM_LM_ask_solution_for_problem_severe_incident_T)) & 
order_property_A20_assigned_to_D & truck_property_T_operated_by_D →→ qcprep3 
present_time(t) & qcprep3 →→ preparation(change_order_state_A20_delay_severe_incident) 
preparation(change_order_state_A20_delay_severe_incident) →→ 
performing_action(preparation(change_order_state_A20_delay_severe_incident)) 
performing_action(preparation(change_order_state_A20_delay_severe_incident)) →→ 
performing_action(preparation(output_LM_communicate_from_to_LM_CR_inform_order_state_A20_delay_sev
ere_incident)) 
performing_action(preparation(output_LM_communicate_from_to_LM_CR_inform_order_state_A20_delay_sev
ere_incident)) →→ 
performing_action(preparation(output_OP_communicate_from_to_OP_CR_inform_order_state_A20_delay_sev
ere_incident))  
 



 

 277 

 
 
 
 
 
 
 
 

Chapter 6 

 

Authority and its Implementation in Enterprise 
Information Systems 1 

Abstract. The concept of power is inherent in human organizations of any type. 
As power relations have important consequences for organizational viability 
and productivity, they should be explicitly represented in enterprise information 
systems (EISs). Although organization theory provides a rich and very diverse 
theoretical basis on organizational power, still most of the definitions for 
power-related concepts are too abstract, often vague and ambiguous to be 
directly implemented in EISs. To create a bridge between informal organization 
theories and automated EISs, this paper proposes a formal logic-based 
specification language for representing power- (in particular authority) 
relations. The use of the language is illustrated by considering authority 
structures of organizations of different types. Moreover, the paper demonstrates 
how the formalized authority relations can be integrated into an EIS. 

1   Introduction 

The concept of power is inherent in human organizations of any type. Power relations 
that exist in an organization have a significant impact on its viability and productivity. 
Although the notion of power is often discussed in the literature in social studies [1, 2, 
4, 5, 6, 7, 12, 13], it is only rarely defined precisely. In particular, power-related terms 
(e.g., control, authority, influence) are often used interchangeably in this literature. 
Furthermore, the treatment of power in different streams of sociology differs 
significantly. One of the first definitions for power in the modern sociology was given 

                                                           
1 This chapter appeared as Sharpanskykh, A.: Authority and its Implementation in Enterprise 

Information Systems. In: Sadiq, S., Reichert, M., Schulz, K., Trienekens, J., Moller, C., and 
Kusters, J. (eds.), Proceeding of the 1st International Workshop on Management of 
Enterprise Information Systems, MEIS 2007, INSTICC Press, 33-43 (2007) 



 

 278 

by Max Weber [20]: Power is the probability that a person can carry out his or her 
own will despite resistance. Weber and his followers (Dahl, Polsby) considered power 
as an inherently coercive force that implied involuntary submission and ignored the 
relational aspect of power. Other sociologists (Bierstedt, Blau) considered power as a 
force or the ability to apply sanctions [2]. Such view was also criticized as restrictive, 
as it did not pay attention to indirect sources and implications of power (e.g., informal 
influence in decision making) and subordinate’s acceptance of power. Parsons [12] 
considered power as “a specific mechanism to bring about changes in the action of 
organizational actors in the process of social interaction”.  

Most contemporary organization theories explore both formal (normative, 
prescribed) and informal (subjective, human-oriented) aspects of power [4, 13, 17]. 
Formal power relations are documented in many modern organizations and, therefore, 
can be explicitly represented in models on which enterprise information systems 
(EISs) are based. The representation of formal power in EISs has a number of 
advantages. First, it allows a clear definition of rights and responsibilities for 
organizational roles (actors) and a power structure. Second, based on the role 
specifications, corresponding permissions for information, resources and actions can 
be specified for each role. Third, explicitly defined rules on power enable the 
identification of violations of organizational policies and regulations. Fourth, data 
about power-related actions (e.g., empowerment, authorization) can be stored in an 
EIS for the subsequent analysis. 

For modeling of power relations the rich theoretical basis from social science can 
be used. Notably many modern EISs implement no or very simplified representations 
of power relations and mechanisms [3, 16]. One of the reasons is that concepts and 
definitions provided in social theories are often not operational and, therefore, cannot 
be directly used in automated information systems (EISs). To make use of these 
theoretical findings in EISs, power-related concepts should be formally grounded.  

The first step to make the concept of power operational is to provide a clear and 
unambiguous meaning for it (or for its specific aspects). In this paper this is done by 
identifying the most essential characteristics and mechanisms of power described in 
different approaches and by integrating them into two broad categories: formal power 
(or authority) and informal power (or influence), which are described in Section 2. 
Further this paper focuses on the formal representation of authority, for which a 
formal language is described in Section 3. Moreover, Section 3 illustrates how the 
introduced formal language can be used to model authority systems of different types 
of organizations. Section 4 discusses the integration of formal authority relations into 
an automated EIS. Finally, the paper concludes with a discussion in Section 5. 

2   Power, authority and influence 

As in many contemporary social theories [4, 13], we assume that power can be 
practiced in an organization either through (formal) authority or through (informal) 
influence relations. Authority represents formal, legitimate organizational power by 
means of which a regulated normative relationship between a superior and a 
subordinate is established. Usually authority is attached to positions in organizations. 



 

 279 

For example, authority of some managerial positions provides power to hire or to fire; 
to promote or to demote; to grant incentive rewards or to impose sanctions. In many 
approaches it is assumed that authority implies involuntary obedience from 
subordinates. Indeed, as authority has a normative basis that comprises formal, 
explicitly documented rules, it is expected that subordinates, hired by the 
organization, should be aware of and respect these rules, which implies the voluntary 
acceptance of authority.  

All manifestations of power that cannot be explained from the position of authority 
fall into the category of influence. In contrast to authority, influence does not have a 
formal basis. It is often persuasive and implies voluntary submission. Some of the 
bases of influence are technical knowledge, skills, competences and other 
characteristics of particular individuals. Influence is often exercised through 
mechanisms of leadership; however, possession of certain knowledge or access to 
some resources, as well as different types of manipulation may also create influence. 
Influence may be realized in efforts to affect organizational decisions indirectly.  

Although authority and influence often stem from different sources, they are often 
interrelated in organizations. For example, the probability of the successful 
satisfaction of organizational goals increases, when a strong leader (meaning a leader 
that has a great value of influence) occupies a superior position of authority. 
Furthermore, sometimes patterns of influence that frequently occur in an organization 
may become institutionalized (i.e., may become authority relations).  

Modeling methods for authority and influence are essentially different. While 
authority relations are often prescriptive and explicitly defined, influence relations are 
not strictly specified and may vary to a great extent. Therefore, whereas authority 
relations can be generally represented in EISs, the specification of influence relations 
is dependant on particular (cognitive) models of agents that represent organizational 
actors. Relations between authority and influence can be studied by performing 
simulation with different types of agents situated in different organizational 
environments. The focus of this paper is on modeling of formal authority relations. 
Influence relations and relations between authority and influence will be considered 
elsewhere. 

3. Authority: a Formal Approach 

First, in Section 3.1 a formal language for specifying authority-related concepts and 
relations is introduced. Then, Section 3.2 discusses how the introduced language can 
be used for representing authority structures of organizations of different types.  

3.1 A Formal Language 

Simon [19] describes three contributions of authority for an organization: (1) the 
enforcement of responsibility, (2) the specialization of decision-making, and (3) the 
coordination of activity. Based on this and other theoretical findings that describe 
power, duties and responsibilities of organizational positions [11], a number of 
relations for the specification of formal authority can be identified. These relations are 



 

 280 

defined on positions (or roles), without considering particular agents (individuals). 
The relations are formalized using the order sorted-predicate language [10]. 

We represent all activities of an organization (including decision making and 
personnel-related activities) by processes. Each organizational role is associated with 
one or more process. Roles may have different rights and responsibilities with respect 
to different aspects of the process execution. Furthermore, often several roles may 
potentially execute or manage certain processes. This is represented by the relation 

is_authorized_for: r:ROLE x aspect: ASPECT x a:PROCESS, where aspect has one of the 
values {execution, monitoring, consulting, tech_des (making technological decisions), 
manage_des (making managerial decisions), user_defined_aspect}.  

All types of decisions with respect to a particular process can be divided into two 
broad groups: technological and managerial decisions (inspired by [1]). 
Technological decisions concern technical questions related to the process content 
and are usually made by technical professionals. Managerial decisions concern 
general organizational issues related to the process (e.g., the allocation of employees, 
process scheduling, the establishment of performance standards, provision of 
resources, presenting incentives and sanctions). Managers of different levels (i.e., 
from the lowest level line managers to strategic apex (top) managers) may be 
authorized for making different types of managerial decisions varying from in scope, 
significance and detail. A particular decision type is specified as an aspect in the 
is_authorized_for relation. The same holds for technological decisions. Whereas 
consulting has a form of recommendation and implies voluntary acceptance of 
advices, decisions imposed on a role(s) that execute(s) the process are considered as 
imperatives with corresponding implications.  

Authorization for execution implies that a role is allowed to execute the process 
according to existing standards and guidelines. Whenever a problem, a question or a 
deviation from the standard procedures occurs, the role must report about it to the 
role(s) authorized for making technological/managerial (depending on the problem 
type) decisions and must execute the decision(s) that will follow. 

Monitoring implies passive observation of (certain aspects of) process execution, 
without intervention.  

Notice that other aspects of process execution described in the managerial 
literature (e.g., control, supervision) can be represented as a combination of already 
introduced aspects. In particular, control can be seen as the conjunction of monitoring 
and making technological and/or managerial decisions aspects; supervision can be 
defined as the combination of consulting and control. Furthermore, the designer is 
given the possibility to define his/her own aspects and to provide an interpretation to 
them.  

Although several roles in an organization may be authorized for a certain aspect 
related to some process, only one (or some) of them will be eventually (or are) 
responsible for this aspect. For example, the responsibility of a certain role with 
respect to the process execution means that the role is actually the one who will be 
performing the process and who holds accountability of the process execution. 
Furthermore, responsibility for the process execution implies allowance to use 
resources required for the process performance. The responsibility relation is 
specified as:  



 

 281 

is_responsible_for: r:ROLE x aspect:ASPECT x a:PROCESS: process a is under 
responsibility of role r with respect to aspect (defined as for authorized_for) 

Some roles are authorized to make managerial decisions for 
authorizing/disallowing other roles for certain aspects with respect to process 
execution. The authorization/ disallowance actions are specified by the following 
relations:  

authorizes_for: r1:ROLE x r2:ROLE x aspect: ASPECT x a:PROCESS: role r1 gives the 
authority for aspect of process a to role r2. 

disallows: r1:ROLE x r2:ROLE x aspect: ASPECT x a:PROCESS: role r1 denies the 
authority for aspect of process a for role r2. 

However, to make a role actually responsible for a certain aspect of the process, 
another role besides the authority to make managerial decisions should also be the 
superior of the role with respect to the process. Superior-subordinate relations with 
respect to organizational processes are specified by: is_subordinate_of_for: r1: ROLE x r2: 
ROLE x a:PROCESS. Then, responsibility is assigned/retracted using the following 
relations:  

assigns_responsibility_to_for: r1: ROLE x r2:ROLE x aspect: ASPECT x a:PROCESS: role r1 
assigns the responsibility for aspect of process a to role r2. 

retracts_responsibility_from_for: r1: ROLE x r2:ROLE x aspect: ASPECT x a:PROCESS: role 
r1 retracts responsibility from role r2 for aspect of process a. 

Using these relations superiors may delegate/retract (their) responsibilities for 
certain aspects of processes execution to/from their subordinates, and may restrict 
themselves only to control and making decisions in exceptional situations.  

In [7] control over resources is identified as an important source of power. 
Therefore, it is useful to identify explicitly which roles control resources by means of 
the relation has_control_over: r1: ROLE x res:RESOURCE. In the proposed modeling 
framework the notion of resource includes both tangible (e.g., materials, tools, 
products) and abstract (information, data) entities.  

Our treatment of authority is different from both formal approaches that consider 
authority as an attribute or a property inherent in an organization [6, 20] and from the 
human-relation view that recognizes authority as an informal, non-rational and 
subjective relation (e.g., Follett, Mayo [4]). As many representatives of converging 
approaches (e.g., C.I. Barnard, Simon [19]) we distinguish between the formal 
authority prescribed by organizational policies and actual authority established 
between a superior and his/her subordinate in the course of social interactions. In the 
latter case a special accent lies on the acceptance of authority by a subordinate. In [4] 
different cases of the authority acceptance are discussed: orders anticipated and 
carried out (anticipation); acceptance of orders without critical review; conscious 
questioning but compliance (acceptance of authority); discusses but works for 
changes; ignores, evades, modifies orders (modification and evasion); rejection of 
authority (appeals to co-workers or higher rank for support). Depending on the 
organizational type, varying administrative sanctions may be applied in case an 
employee does not accept an authoritative communication, when he/she: (a) correctly 
understands/interprets this communication; (b) realizes that this communication 
complies with formal organizational documents and/or is in line with organizational 
goals; (c) is mentally and physically able to perform the required actions. In many 



 

 282 

modern organizations rewards and sanctions form a part of authority relation, thus, 
explicitly defined: 

grants_reward_to_for: r1: ROLE x r: REWARD x r2: ROLE x reason: STRING: role r1 grants 
reward r to role r2 for reason 

imposes_saction_on_for:  r1: ROLE x s: SANCTION x r2: ROLE x reason: STRING: role r1 
imposes sanction s to role r2 for reason 

Specific conditions (e.g., temporal, situational) under which authority relations 
may be created/maintained/dissolved are defined by executable rules expressed by 
logical formulae. The format and specification of these rules will be discussed in 
Section 4. 

3.2 Modeling Authority Relations in Different Types of Organizations 

Authority is enforced through the organizational structure and norms (or rules) that 
govern the organizational behavior. In general, no single authority system can be 
equally effective for all types of organizations in all times. An organizational 
authority system is contingent upon many organizational factors, among which 
organizational goals; the level of cohesiveness between different parts of an 
organization, the levels of complexity and of specialization of jobs, the level of 
formalization of organizational behavior, management style (a reward system, 
decision making and coordination mechanisms), the size of an organization and its 
units. Furthermore, the environment type (its uncertainty and dynamism; the amount 
of competitors), as well as the frequency and the type of interactions between an 
organization and the environment exert a significant influence upon an organizational 
authority structure. 

In the following it will be discussed how authority is realized in some types of 
(mostly industrial) organizations and how it can be modeled using relations 
introduced in the previous Section 3.1.  

Authority in small firms of the early industrial era was completely exercised by 
their owners through mechanisms of direct personal control. Firm owners were 
managers and technical professionals at the same time, and, therefore, had authority 
and responsibility for all aspects related to processes, except for their execution, 
responsibility for which was assigned to hired workers. The owners controlled all 
resources. Currently similar types of organizations can be found in family business 
and small firms. 

With the growth of industry, which caused joining of small firms into larger 
enterprises, owners were forced to hire subcontractors, who took over some of their 
managerial functions. This can be modeled as assigning responsibility to 
subcontractors by the owner for some managerial and technological decisions, as well 
as monitoring and consulting of workers with respect to some processes execution. 
The owner reserved often the right to control for himself, which included granting 
rewards and imposing sanctions to/on subcontractors and workers, realized through 
superior-subordinate relations. Organizational resources were usually controlled by 
the owner.  

Large industrial enterprises of XX century are characterized by further increase in 
number of managerial positions structured hierarchically by superior-subordinate 



 

 283 

relations. Such organizations are often defined as mechanistic [17] and have the 
following typical characteristics: strong functional specialization, a high level of 
processes formalization, a hierarchical structure reinforced by a flow of information 
to the top of the hierarchy and by a flow of decisions/orders from the top. 
Responsibilities were clearly defined for every position in a hierarchy. In most 
organizations of this type responsibility for execution was separated from 
responsibilities to make decisions. Managerial positions differed in power to make 
decisions depending on the level in the hierarchy. Often, technological decisions were 
made by managers of lower levels (or even by dedicated positions to which also 
execution responsibilities were assigned), whereas managerial decisions were made 
by managers at the apex. In many of such organizations managers at the apex shared 
responsibility for making (some) decisions with lower-level managers. Therefore, 
decisions that were usually proposed by lower level managers had to be approved by 
the apex managers. Initially such enterprises operated in relatively stable (however, 
sometimes complex) environmental conditions that reinforced their structure. 
However, later in the second half of XX century to survive and to achieve goals in the 
changed environmental conditions (e.g., a decreased amount of external resources; 
increased competition; diversification of markets) enterprises and firms were forced 
to change their organizational structure and behavior. In response to the increased 
diversity of markets, within some enterprises specialized, market-oriented 
departments were formed. Such departments had much of autonomy within 
organizations. It was achieved by assigning to them the responsibility for most aspects 
related to processes, which created products/services demanded by the market. 
Although department heads still were subordinates of (apex) manager(s) of the 
organization, in most cases the latter one(s) were restricted only to general 
performance control over departments. Often departments controlled organizational 
resources necessary for the production and had the structure of hierarchical 
mechanistic type.  

Although a hierarchical structure proved to be useful for coordination of activities 
of organizations situated in stable environments, it could cause significant 
inefficiencies and delays in organizations situated in dynamic, unpredictable 
environmental conditions. For example, in the domain of incident management 
unforeseen environmental circumstances may require a quick reaction from roles at a 
lower level of a power hierarchy without involvement of the established authority 
channels. Furthermore, the formalization and excessive control over some (e.g., 
creative and innovative) organizational activities often can have negative effects on 
productivity. Nowadays, large enterprises often create project teams or task forces 
that are given complex, usually innovative and creative tasks without detailed 
descriptions/prescriptions. As in the case with departments, teams are often assigned 
the responsibility to make technological and (some) managerial decisions and are 
given necessary resources to perform their tasks. Usually teams have highly cohesive 
plain structures with participants selected from different organizational departments 
based on knowledge, skills and experience required for the processes assigned to 
these teams. Although many teams implement informal communication and 
participative decision making principles [9], also formal authority relations can be 
found in teams. In particular, in some project teams superior-subordinate relations 
exist between the team manager and team members. In this case, whereas 



 

 284 

responsibility for making technological decisions is given to team members, the 
responsibility for most managerial decisions is assigned to the team manager. Then, 
the members of such teams, being also members of some functional departments or 
groups, have at least two superiors. In other teams the team manager plays the 
integrator role and does not have formal authority over team members. In this case the 
responsibility for decisions made by a team lies on all members of the team. 
Sometimes to strengthen the position of a team manager, s/he is given control over 
some resources (e.g., budgets) that can be used, for example, to provide material 
incentives to the team members. 

The principles on which teams are built come close to the characteristics of the 
organic organizational form [17]. Some of such organizations do not have any formal 
authority structure, other allow much flexibility in defining authority relations 
between roles. In the former case formal authority is replaced by socially created 
informal rules. In the latter case, authority may be temporally provided to the role that 
has the most relevant knowledge and experience for current organizational tasks. In 
many organic organizations formal control and monitoring are replaced by informal 
mutual control and audit. For the investigation of dynamics of organic organization, 
informal aspects such as influence, leaderships, mental models of employees are 
highly relevant, which will be discussed elsewhere. Often interactions between 
organic organizations (e.g., of network type) are regulated by contracts. Usually 
contracts specify legal relationships between parties that explicitly define their rights 
and responsibilities with respect to some processes (e.g., production, supply services). 
Several organizations may be involved in the process execution (e.g., supply chains 
for product delivery); therefore, it is needed to identify particular aspects of 
responsibility in contracts for such processes. The introduced language may be used 
for specifying such responsibilities and their legal consequences through 
reward/sanctions mechanisms. 

4. Integration of Authority Relations into an EIS 

In our previous work a general framework for formal organizational modeling and 
analysis is introduced [15]. It comprises several perspectives (or views) on 
organizations. In particular, the performance-oriented view [15] describes 
organizational goal structures, performance indicators structures, and relations 
between them. The process-oriented view [14] describes task and resource structures, 
and dynamic flows of control. In the agent-oriented view different types of agents 
with their capabilities are identified and principles for allocating agents to roles are 
formulated. Concepts and relations within every view are formally described using 
dedicated formal predicate-based languages. The views are related to each other by 
means of sets of common concepts. The developed framework constitutes a formal 
basis for an automated EIS. 

To incorporate the authority relations introduced in this paper into this framework, 
both syntactic and semantic integration should be performed. The syntactic 
integration is straightforward as the authority relations are expressed using the same 
formal basis (sorted predicate logic) as the framework. Furthermore, the authority 



 

 285 

relations are specified on the concepts defined in the framework (e.g., tasks, 
processes, resources, performance indicators). For the semantic integration rules (or 
axioms) that attach meaning, define integrity and other types of organization 
constraints on the authority relations should be specified. A language for these rules is 
required to be (1) based on the sorted predicate logic; (2) expressive enough to 
represent all aspects of the authority relations; (3) executable, to make constraints 
(axioms) operational. Furthermore, as authority relations are closely related to 
dynamic flows of control that describe a temporal ordering of processes, a temporal 
allocation of resources etc., a language should be temporally expressive. A language 
that satisfies all these requirements is the Temporal Trace Language (TTL) [8]. In 
[18] it is shown that any TTL formula can be automatically translated into executable 
format that can be implemented in most commonly used programming languages.  

TTL allows specifying a temporal development of an organization by a trace. A 
trace is defined as a temporally ordered sequence of states. Each state corresponds to 
a particular time point and is characterized by a set of state properties that hold in this 
state. State properties are formalized in a standard predicate logic way [10] using state 
ontologies. A state ontology defines a set of sorts or types (e.g., ROLE, RESOURCE), 
sorted constants, functions and predicates.  

States are related to state properties via the formally defined satisfaction relation |=: 
state(γ, t) |= p, which denotes that state property p holds in trace γ at time t. Dynamic 
properties are specified in TTL by relations between state properties. For example, the 
first axiom on the authority relations expresses that roles that are responsible for a 
certain aspect related to some process should be necessarily authorized for this: 

Ax1: ∀r ROLE ∀a:PROCESS ∀aspect:ASPECT ∀γ:TRACE ∀t:TIME  state(γ, t) |= [ 
responsible_for(r, aspect, a)   �  authorized_for(r, aspect, a) ] 

Another axiom expresses the transitivity of the is_subordinate_of_for relation: r1: ROLE 
x r2: ROLE x a:PROCESS: 

Ax2: ∀r1, r2, r3: ROLE ∀a:PROCESS ∀γ, t  state(γ, t) |= [ is_subordinate_of_for(r2, r1, a) ∧ 
is_subordinate_of_for(r3, r2, a)] � is_subordinate_of_for(r3, r1, a)] 

One more axiom (Ax3) that relates the interaction (communication) structure of an 
organization with its authority structure based on superior-subordinate relations 
expresses that there should be specified a communication path between each superior 
role and his/her subordinate(s). Such a path may include intermediate roles from the 
authority hierarchy and may consist of both interaction and interlevel links. 

The following axiom expresses that only roles that have the responsibility to make 
managerial decisions with respect to some process are allowed to authorize other roles 
for some aspect of this process: 

Ax4: ∀r1,r2:ROLE ∀a:PROCESS ∀asp:ASPECT ∀γ, t  state(γ, t) |=  
          [ authorizes_for(r1, r2, asp, a)   � is_responsible_for(r1, manage_des, a) ] 

In general, rules that describe processes of authorization, assigning/retracting of 
responsibilities may have many specific conditions. However, to assign responsibility 
for some aspect of a process a role should necessarily have at least the responsibility 
to make managerial decisions and be the superior (with respect to this process) of a 
role, to which the responsibility is assigned. All other conditions may be optionally 
specified by the designer. Responsibility may be assigned on a temporal basis. To 



 

 286 

specify that the responsibility of role r1 for aspect asp of process a assigned by role r2 
holds in all states that correspond to time points in the time interval limit, a 
responsibility persistency rule should be defined: 

C1: ∀asp: ASPECT ∀r1,r2:ROLE ∀a:PROCESS ∀γ, ∀t1, t2:TIME state(γ, t1) |= 
is_responsible_for(r1, asp, a) & state(γ, t2) |= assigns_responsibility_to_for(r2, r1, asp, a) & (t1-t2) 
< limit  
� state(γ, t1+1) |= is_responsible_for(r1, asp, a) 

Using concepts and relations from other organizational views, more complex 
constraints related to formal authority can be described. For example, “the total 
amount of working hours for role r1 should be less than a certain limit”: 

C2: sum([a:PROCESS], case(∃t1 state(γ, t1) |= is_responsible_for(r1, execution, a), 
a.max_duration, 0)) < limit 

This property can be automatically verified every time when roles are assigned 
additional responsibilities for some processes. This is particularly useful in matrix 
organizations [17], in which roles often combine functions related to different 
organizational formations (departments, teams), and, as a result, their actual workload 
may not be directly visible. 

Another constraint expresses that when the execution of a process begins, for each 
of the basic aspects for this process (execution, tech_des, and manage_des) a responsible 
role should be assigned: 

C3: ∀a:PROCESS ∀γ, t  state(γ, t) |= process_started(a)  
� ∃r1,r2,r3: ROLE state(γ, t) |= [ is_responsible_for(r1, manage_des, a) ∧  

                     is_responsible_for(r2, tech_des, a) ∧ is_responsible_for(r3, execution, a) ] 

Another example is related to rewards/sanctions imposed on a role depending on 
the process execution results. As shown in [15], performance indicators (PIs) may be 
associated with organizational processes that represent performance measures of some 
aspects of the tasks execution. Depending on the PIs values, a company may have 
regulations to provide/impose some rewards/sanctions for roles (agents) responsible 
for the corresponding processes. Although such rules are rarely completely 
automated, still an EIS may signal to managers about situations, in which some 
rewards/sanctions can be applied. For example, the system may detect and propose a 
reward granting action to the manager, when a role has been keeping the values of 
some PI(s) related to its process above a certain threshold for some time period 
[period_start, period_end]. In TTL:  

C4: ∀γ, t1 t1 ≥ period_start & t1 ≤ period_end & state(γ, t1) |= [ is_responsible_for(r2, execution, 
a1) ∧ measures(PI1, a1) ∧ is_subordinate_of_for(r2, r1, a1) ∧ PI1.value > limit ]  
� state(γ, period_end+1) |= grants_reward_to_for(r1, bonus_5_procent, r2, 
excellent_performance_of_a1) 

The axioms Ax1-Ax4 can be checked on a specification of organizational formal 
authority relations. To this end, simple verification algorthims have been 
implemented. Whereas the constraints C1-C4 and similar to them need to be checked 
on actual executions of organizational scenarios (e.g., traces obtained from an EIS). 
An automated method that enables such types of analysis is described in [14]. 

Furthermore, the identified rules can be used to determine for each user of an EIS 
relevant to him/her information and a set of allowed actions that are in line with 



 

 287 

his/her (current) responsibilities defined in the system. Moreover, (possible) outcomes 
of each action of the user can be evaluated on a set of (interdependent) authority-
related and other organizational constraints, and based on this evaluation the action is 
either allowed or prohibited.  

5. Discussion 

This paper makes the first step towards defining the formal operational semantics for 
power-related concepts (such as authority, influence, control), which are usually 
vaguely described in organization theory. In particular, this paper addresses formal 
authority, different aspects of which are made operational by defining a dedicated 
predicate logic-based language. It is illustrated how the introduced relations can be 
used for representing authority structures of organizations of different types.  

Further, the paper addressed the integration of the formalized authority relations 
into an EIS. To this end, both syntactic and semantic integration have been 
considered. Syntactic integration is performed in a straightforward way, whereas for 
semantic integration rules (or axioms) have been defined using Temporal Trace 
Language. In particular, these rules attach meaning to different concepts and relations 
of authority and define the consistency of an authority structure. Thus, based on these 
rules verification of specifications of organizational authority relations can be 
performed. 

Modern enterprises can be described along different dimensions/views: e.g., 
human-oriented, process-oriented and technology-oriented. However, most of the 
existing EISs focus particularly on the process-oriented view. An extension of the 
models on which EISs are built with concepts and relations defined within the human-
oriented view allows conceptualizing more static and dynamic aspects of 
organizational reality, thus, resulting in more feasible enterprise models. Among the 
relations between human actors authority deserves a special attention, as it is formally 
regulated and may exert a (significant) influence on the execution of enterprise 
processes. This paper illustrates how the concepts and relations of authority can be 
formally related to other organizational views, thus resulting into an expressive and 
versatile enterprise model. 

In the future it will be investigated how the proposed authority modeling 
framework can be applied for the development of automated support for a separation 
task (i.e., maintaining a safe distance between aircrafts in flight) in the area of air 
traffic control. Originally this task was managed by land controllers, who provided 
separation instructions for pilots. With the increase of air traffic, the workload of 
controllers rose also. To facilitate the controllers’s work, it was proposed to (partially) 
delegate the separation task to pilots. This proposal found supporters and opponents 
both among controllers and pilots. The resistance to a large extent was (is) caused by 
ambiguity and vagueness of issues related to power mechanisms. Such questions as 
“whom to blame when an incident/accident occurs?”, “which part of the task may be 
delegated?”, “under which environmental conditions the task can be delegated?” still 
remain open. By applying the framework proposed in this paper one can precisely 
define responsibilities of both controllers and pilots and conditions under which the 



 

 288 

responsibility can be assigned/retracted. Notice that these conditions may include 
relations from different views on organizations (e.g., “current workload is less than 
x”, “has ability a”), which allows a great expressive power in defining constraints.  

References 

1. Bacharach, S.B. and Aiken, M.: Communication in administrative bureaucracies. Academy 
of Management Journal, 18 (1977) 365-377 

2. Blau, P.M. and Scott, W.R.: Formal Organizations.Chandler Publishing (1962) 
3. CIMOSA – Open System Architecture for CIM; ESPRIT Consortium AMICE, Springer-

Verlag, Berlin (1993) 
4. Clegg, S.R.: Frameworks of Power. London: Sage (1989) 
5. Friedrich, C.J. (ed.) Authority. Cambridge: Harvard University Press (1958) 
6. Gulick, L.H. and Urwick, L.F. (eds.) Papers on the Science of Administration. Institute of 

Public Administration, New York (1937) 
7. Hickson, D.J., Hinings,C.R., Lee,C.A., Schneck, R., Pennings, J.M.: A strategic contingency 

theory of intraorganizational power, Administrative Science Quarterly, 16 (1971) 216-229. 
8. Jonker, C.M., Treur, J.: A temporal-interactivist perspective on the dynamics of mental 

states. Cognitive Systems Research Journal 4 (2003) 137-155 
9. Lansley, P., Sadler, P.J., Webb, T.D.: Organization Structure, Management Style and 

Company Performance, Omega, London (1975) 
10. Manzano, M.: Extensions of First Order Logic. Cambridge University Press (1996) 
11. Mintzberg, H.: The Structuring of Organizations. Prentice Hall, Englewood Cliffs (1979) 
12. Parsons T.: The institutionalization of Authority. In: Max Weber, The Theory of Social and 

Economic organization. Oxford University Press, New York (1947) 
13. Peabody, R.L.:  Organizational authority: superior-subordinate relationships in three public 

service organizations. Atherton Press, New York (1964) 
14.Popova, V., Sharpanskykh, A.: Process-Oriented Organization Modeling and Analysis 

Based on Constraints. Technical Report 062911AI, VUA, http://hdl.handle.net/1871/10545 
15.Popova, V., Sharpanskykh, A.: Modelling Organizational Performance Indicators. In: 

Barros, F. et al. (eds) Proc. of IMSM’07 conference (2007) 165–170 
16.Scheer, A.-W.; Nuettgens. M.: ARIS Architecture and Reference Models for Business 

Process Management. In: van der Aalst, W.M.P. et al. (eds.), LNCS 1806, Berlin (2000) 
366-389 

17. Scott, W.R.: Institutions and organizations. SAGE Publications, Thousand Oaks (2001) 
18. Sharpanskykh, A. and Treur, J.: Verifying Interlevel Relations within Multi-Agent Systems. 

In Proc. of the 17th European Conf. on AI, ECAI'06. IOS Press, 2006, pp. 290-294. 
19. Simon, H.A.: Administrative Behavior. 2nd edn. Macmillan Co., New York (1957) 
20. Weber, M.: From Max Weber: Essays in Sociology. In: Gerth, H.H. and Wright Mills, C. 

(ed.) Oxford University Press, New York (1958) 
 



 

 289 

 
 
 
 
 
 
 
 

Chapter 7 

 

Agent-based Modeling of Human Organizations 1 

Abstract. At present the agent paradigm is often used for computational 
modeling of human behavior in an organizational setting. However, in many 
developed models only a limited number of (unrelated) organizational aspects 
are represented. Furthermore, some of these models make little use of a rich 
theoretical basis developed in social science. This may undermine the practical 
feasibility of such models. This paper proposes a formal approach for modeling 
of characteristics and behavior of agents in organizations, diverse aspects of 
which are represented using an expressive formal framework. The approach is 
based on the theoretical findings from social science and enables analysis of 
how different organizational and environmental factors influence the behavior 
and performance of agents. The approach is illustrated by a simulation case. 

1   Introduction 

The agent paradigm has been extensively used for modeling and analysis of both 
human and artificial organizations. In particular, in the area of Multi-Agent Systems 
(MAS) the representation of a system as an organization consisting of roles and 
groups can help to handle high complexity and poor predictability of the system 
dynamics [11]. Although organizational models of MASs can be computationally 
effective, nevertheless most of them have a limited ontological expressivity required 
for modeling of human organizations. Furthermore, such models only rarely make use 
of an extensive theoretical basis developed in social science.  

                                                           
1 A part of this chapter appeared as Sharpanskykh, A.: Modeling of Agents in Organizational 

Context. In: H-D. Burkhard, G. Lindeman, L. Varga, R. Verbrugge (eds.), Proceedings of the 
5th International Central and Eastern European Conference on Multi-Agent Systems, LNAI 
4696, Springer Verlag (2007) 



 

 290 

Modeling of individuals in a social setting using the agent has gained popularity in 
the area of computational social science [3]. In contrast to the traditional methods 
(e.g., based on system dynamics [8]) that abstract from individual events and entities 
and take an aggregate view on the social dynamics, the agent-based approaches take 
into account the local perspective of a possibly large number of separate agents and 
their specific behaviors in (formal) organizational structures. Agent-based social 
simulation has been used for investigating organizational structures and dynamics at 
macro- (e.g., market fluctuations [1]), meso- (e.g., interactions between organizations 
[5]) and micro- (e.g., personal traits and organizational performance [25]) levels. In 
many approaches that identify and exploit relations between different levels much 
attention has been devoted to analyzing, predicting and improving the effectiveness 
and efficiency of the allocation and the execution of organizational tasks to/by 
different types of agents. In particular, the frameworks TAEMS [6] and VDT [14] 
provide the elaborated models for (collaborative) task environments and the 
computational means to analyze the performance of agents and of a whole 
organization with respect to the task execution. The agents in these and other similar 
frameworks are represented as autonomous entities with such characteristics as skills, 
competences, experience, and, sometimes, goals. In task-oriented agent-based 
modeling it is often assumed that agents comply with organizational goals and will 
perform tasks in such a way that a high level of organizational performance is 
ensured. However, in some cases such an assumption may not be valid. In particular, 
for feasible modeling of human organizations various (sometimes conflicting) 
interests of different organizational actors should be explicitly considered, as they 
often (significantly) influence the organizational performance. In general, to stimulate 
productive work of employees, an organization should reconcile (or align) its goals 
with the (key) goals of its employees. Furthermore, the organization should arrange 
work and provide incentives to its employees in such a way that they are constantly 
motivated to adopt the behavior that ensures the satisfaction of the essential 
organizational goals. The topic of work motivation has received much attention in 
Organization Theory [10, 13, 15, 18, 19]. Also, different computational motivation 
models and the mechanisms for manipulating them have been proposed [4]. However, 
only a little research has been done on the computational modeling of motivation and 
intentional attitudes of agents situated in the organizational context. Organizational 
factors that influence the behavior of agents are diverse: e.g., norms and regulations 
related to the tasks execution, to communication, a power (authority) system, a 
reward/punishment system etc. Furthermore, many of these factors are interrelated 
(e.g., a power structure influences the execution of tasks). However, often models that 
are used in social simulations consider only a limited number of organizational 
aspects and do not reveal (inter-) dependencies that exist between these aspects. This 
results into limited evaluation possibilities of effects of different organization 
processes and may undermine the practical feasibility of such models. 

In this paper, a formal agent-based approach for modeling of characteristics and 
behavior of individuals in the organizational context is proposed. The approach makes 
use of a rich theoretical basis developed in Organization Theory. In particular, the 
motivation modeling of agents is based on the expectancy theory (the version of 
Vroom) [26] that has received good empirical support. The formal motivation 
modeling has an advantage that automated tools can be developed using which 



 

 291 

(human resource (HR)) managers can make estimations of how different 
organizational factors influence the motivation and performance of different types of 
employees (agents). Agents are situated in a formal organization modeled using the 
general organization modeling and analysis framework proposed in [12]. This 
framework comprises several interrelated views: the performance-oriented view [21] 
describes organizational and individual goal and performance indicators structures; 
the process-oriented view [20] describes task and resource structures and dynamic 
flows of control; within the organization-oriented view [12, 24] organizational roles, 
their power and communication relations are defined. Concepts and relations within 
every view are formally described using dedicated languages based on an order sorted 
predicate logic [16]. Temporal relations within and across the views are formalized 
using the Temporal Trace Language (TTL) [23], which is an extension of an order 
sorted predicate logic that allows reasoning about dynamic properties of systems. 
Both the order sorted predicate logic and TTL are also used for specifying the 
structural and temporal aspects of agent-based models correspondingly. 

The paper is organized as follows. Section 2 introduces the proposed modeling 
approach. The application of the approach is illustrated by a simulation case study in 
Section 3. Section 4 concludes the paper. 

2  An Agent-based Modeling Approach 

Using the general modeling framework an organizational model that comprises 
concepts and relations from different views is specified. The elements of the model 
are related as follows: Organizational goals are structured into a hierarchy using the 
refinement relations. Goals are satisfied by execution of certain tasks. Different sets 
of organizational tasks are associated with roles. Interaction (e.g., communication) 
and authority structures are defined on organizational roles with respect to tasks. To 
enable effective and efficient execution of tasks, agents with appropriate 
characteristics should be allocated to roles. In this Section, a description of 
professional, psychological, and intentional agent characteristics is provided (Section 
2.1), followed by the introduction of a motivation model of an agent (Section 2.2). 

2.1  Characteristics of agents and allocation to roles 

For each role a set of requirements on agent capabilities (i.e., knowledge and skills) 
and personal traits is defined. Requirements related to knowledge define facts and 
procedures with respect to organizational tasks, confident understanding of which is 
required from an agent. Skills describe developed abilities of agents to use effectively 
and readily their knowledge for tasks performance. In the literature [18] four types of 
skills relevant in the organizational context are distinguished: technical (related to the 
specific content of a task), interpersonal (e.g., communication, cooperation), problem-
solving/decision-making and managerial skills (e.g., budgeting, scheduling, hiring). 
More specific requirements may be defined on skills reflecting their level of 
development, experience, the context in which these skills were attained. To enable 
testing (or estimation) of skills and knowledge, every particular skill and knowledge 



 

 292 

is associated with a performance indicator(s) (PI) (e.g., the skill ‘typing’ is associated 
with the PI “the number of characters per minute”). Notice that some indicators may 
be soft (not directly measurable) (such as the level of flexibility); the value of such 
indicators may be established by indirect evidences (e.g., from the agent’s history and 
achievements). Moreover, a skill may be associated with a compound PI built as a 
weighed expression on simple PIs.  

Personal traits may also influence the successfulness of the execution of tasks. The 
traits are divided into five broad categories discovered in psychology [13]: openness 
to experience, conscientiousness, extroversion, agreeableness, and neuroticism. In 
some cases agent personal traits may be evaluated through psychological tests and by 
consultations with agents’ referees. Some agent’s traits may mediate the attainment of 
agent’s skills. For example, extroversion and agreeableness play an important role in 
building interpersonal skills. 

Agent capabilities and traits can have different levels of importance. Whereas 
required for a role capabilities and traits are compulsory for taking the role, desired 
capabilities and traits considered as an advantage. In some cases an organization may 
tolerate the deficiency in (or insufficient level of development of) some skills if a 
feasible guarantee is provided that this gap will be filled during a certain time period.  

Most of the approaches on personnel management used currently are based on the 
HR-models [19]. In contrast to the traditional scientific management models [17], the 
HR-based approaches pay a special attention to the needs, desires and goals of 
employees and to the alignment of the individual goals with the organizational ones. 
Therefore, during the evaluation of agents-candidates for a role, also the goals of the 
agents should be taken into consideration (to a possible extent) to identify similarities 
and conflicts with the organizational goals.  

In modern social science behavior of individuals is considered as goal-driven. A 
goal is defined as an objective to be satisfied describing a desired state or 
development of the individual. It is recognized that high level goals of individuals are 
largely dependant on their needs. These needs are to a great extent determined by the 
individual behavioral and biological history (i.e., biological and social background). 
Currently the following division of needs is identified in social science: (1) extrinsic 
needs associated with biological comfort and material rewards; (2) social interaction 
needs that refer to the desire for social approval, affiliation and companionship; (3) 
intrinsic needs that concern the desires for self-development, self-actualization, 
mastery and challenge. Such a categorization has some similarities with the hierarchy 
of needs proposed by Maslow [10]. However, a number of empirical studies showed 
that the Maslow’s key hypothesis that the high-order (intrinsic) needs cannot motivate 
behavior of an individual until the lower-order (extrinsic) needs are satisfied does not 
hold for all individuals. Empirical evidences confirmed that the importance (or the 
priority) of different types of needs (and the associated goals) often changes over time 
in different life phases of an individual. The characteristics of an agent can be 
formalized using the sorted first-order predicate logic as it will be shown in Section 3. 

In general, the efficiency of allocation of an agent to a role is dependant on how 
well the agent’s characteristics (i.e., capabilities and traits) and goals fit with the role 
specification and the requirements. However, modern organizations implement very 
diverse allocation principles (e.g., based on equality, seniority or stimulation of 



 

 293 

novices) [10]. Such principles can be formalized as allocation policies comprising 
executable (temporal) rules. An example of such a policy is given in Section 3. 

When an individual is allocated to a role, the identification of his/her specific lower 
level goals is performed in cooperation with a managerial representative of the 
organization. During this process, the high level goals, based on the agent’s needs are 
refined into more specific goals aligned with organizational goals using AND- and 
OR- relations as it is shown in [21]. Many authors argue that the lower level goals 
should as detailed and specific as possible [9, 19]; furthermore, such goals should be 
attainable by agents. Often two types of such goals are distinguished: development (or 
learning) and performance goals. Development goals reflect wishes of agents to gain 
certain knowledge or some skills that are also useful for the organization. For 
example, the attainment of the skills required to perform task(s) interrelated with the 
task(s) already assigned to the agent may enable the allocation of the agent to a more 
global and essential (composite) task. Individuals vary in the abilities and desires to 
learn; therefore, this type of goals is particularly dependent on the individuals’ traits 
and goals. Performance goals usually concern the effectiveness and efficiency of the 
execution of the tasks already allocated to the agent. Both development and 
performance goals may change over time. 

Within the performance-oriented view of the modeling framework [21] the formal 
specification of a goal is based on a mathematical expression over a PI(s). The 
characteristics of a goal include, among others: priority; horizon – for which time 
point/interval should the goal be satisfied; hardness – hard (satisfaction can be 
established) or soft (satisfaction cannot be clearly established, instead degrees of 
satisficing are defined); negotiability. For example, the hard performance goal “it is 
required to maintain the time for the generation of a plan < 24 hours” is based on the 
PI “the time for the generation of a plan”. Another example is the development goal 
“it is desired to achieve the state in which the framework JADE is mastered”. In the 
latter example the goal is desirable, which points at its low priority. 

The satisfaction of goals in the organizational context is associated directly or 
indirectly with the performance of tasks. In particular, goals associated with intrinsic 
needs are often satisfied by intrinsic rewards that are a natural consequence of the 
agent behavior related to the execution of a task. While externally provided rewards 
(e.g., salary, bonuses, group acceptance) serve to the satisfaction of goals related to 
extrinsic and social interaction needs. At any time point the (level of) satisfaction of a 
lower level goal may be established by the evaluation of the PI expression, on which 
the goal is based. Further, using the rules defined in [21] information about the 
satisfaction of lower-level goals is propagated to determine the satisfaction of high-
level goals. 

Many organizations have reward/sanction systems contingent on the satisfaction of 
goals. Furthermore, besides general organizational policies also particular individual 
policies (e.g., concerning promotions, bonuses etc.) can be defined. Such policies can 
be also formalized by sets of executable rules. Many studies showed that making 
explicit rules based on which rewards and sanctions are provided increases the 
motivation of an agent to perform certain actions (tasks) [18]. The motivation of 
agents to perform certain tasks is important to ensure the satisfaction of both 
individual and organizational goals related (directly or indirectly) to these tasks. 



 

 294 

Therefore, the motivational aspect of the agent behavior should be explicitly 
represented in the models of organizational agents. 

2.2  Modeling the motivation of an agent 

The topic of motivation in work organizations has received much attention in social 
science. In [26] the motivation is defined as a process governing choice made by 
persons among alternative forms of voluntary activity. There exist many different 
theories of motivation [15, 18, 19]. In this paper we adopt the Vroom’s version of the 
expectancy theory [26] that has received a good empirical support.  

According to this theory, when an individual evaluates alternative possibilities to 
act, s/he explicitly or implicitly makes estimations for the following factors: 
expectancy, instrumentality, and valence (see Fig.1).  

 

$������%

$������%&%

$������%&'

(
���	����!% )%%

*%

�%% *%%

*%'�%'

+���!
���
 ,�����!
���


)%% �"����	�� 

*%-!*%%-!*%' �	
�����

�%%-!�%' ���������	
����� 
Fig. 1. An example of the motivation model by Vroom [26] 

Expectancy refers to the individual’s belief about the likelihood that a particular act 
will be followed by a particular outcome (called a first-level outcome). In the 
organizational context expectancy of an agent related to successful task execution is 
determined by the characteristics of the task and the agent, and by the organizational 
and environmental conditions. Tasks can be characterized along multiple dimensions: 
(a) complexity and predictability; (b) specialization; (c) formalization; (d) 
interrelation with other tasks; (e) collaboration required from agents. Usually agents 
that possess knowledge and the skills required for some task have a high level of 
expectancy of the successful task execution. Furthermore, agents with highly 
developed skills tend to assign a high value to expectancy associated with complex 
and not completely predictable tasks. On the opposite, inexperienced agents decrease 
their expectancy when dealing with complex tasks and especially with tasks with low 
predictability. For such agents the formalization of a task (e.g., by detailed procedure 
descriptions and guidelines) will increase their expectancy level. If a task requires 
from an agent a contribution from or collaboration with other agents, then the agent’s 
belief about reliability and trustworthiness of these agents will play an important role 
in his/her expectancy estimation. Furthermore, other organizational factors, such as 
internal policies, rules and constraints (e.g., temporal, authority-related constraints) 
may influence expectancy of the task execution. Many modern organizations actively 
interact with the environment, which is often highly dynamic and unpredictable. The 
less certainty and knowledge about the environment an agent has (e.g., market 
fluctuations, resource availability), the less his/her expectancy level. As expectancy is 
defined as a subjective perception (or a belief) of an agent, the agent’s personal traits 
also have influence on his/her expectancy.  

Instrumentality is a belief concerning the likelihood of a first level outcome 
resulting into a particular second level outcome; its value varies between -1 and +1. A 



 

 295 

second level outcome represents a desired (or avoided) by an agent state of affairs that 
is reflected in an agent’s goal(s) (e.g., bonus receipt, imposition of a sanction). 
Although the notion of instrumentality can be perceived as probability, in contrast to 
the latter instrumentality may take negative values, in case a second-level outcome 
does not follow a particular first-level outcome. If an organizational reward system is 
defined explicitly, instrumentality between a performance level and the corresponding 
material reward/sanction is perceived as high (>0.5) by agents.  

Note that the agent’s experience gained by the execution of tasks influences the 
values of expectancies and instrumentalities associated with these tasks. For example, 
if despite high performance the agent did not get the promised/expected (amount of) 
rewards, then his/her instrumentality between the level of efforts and the previously 
identified reward will decrease. Similarly, the agent adjusts the expectancy value 
associated with a task based on his/her actual amount of efforts put into the task 
execution. 

Valence refers to the strength of the individual’s desire for an outcome or state of 
affairs. While second level outcomes are directly related to the agent’s goals, the 
valence values associated with these outcomes refer to priorities of these goals. Thus, 
similarly to goal priorities, the values of valence change over time (e.g., depending on 
the satisfaction of goals). 

While in most cases the correspondences between actions of agents and rewards 
provided externally can be specified in a straightforward way, the prerequisites for 
obtaining intrinsic rewards are less obvious. One of the conditions for intrinsic 
rewards identified in literature [9] is that a task assigned to an agent should represent 
a reasonably complete piece of work, to the outcomes of which the agent could 
attribute his/her efforts. Some agents receive intrinsic rewards from the very process 
of task execution irrespectively of the execution results. While intrinsic rewards for 
other agents are contingent upon the execution outcomes. In the latter case if the 
actual task result equates to or exceeds the agent’s expectation, then the agent 
receives an intrinsic reward. Furthermore, as follows from [9] the amount of intrinsic 
reward is dependent on the task complexity.  

In the Vroom model the force on an individual to perform an act is a 
monotonically increasing function of the algebraic sum of the products of the 
valences of all outcomes and the strength of his expectancies that the act will be 
followed by the attainment of these outcomes [26]. Hence, the motivational force to 
perform act i can be calculated as: 

��
==

×=×=
m

1k
jkjkjj

n

1j
iji IV    VVE( f F ),

 

(1) 

Here Eij is the strength of the expectancy that act i will be followed by outcome j; Vj is 
valence of first-level outcome j; Vjk is valence of second-level outcome k that follows 
first-level outcome j; Ijk is perceived instrumentality of outcome j for the attainment of 
outcome k.  



 

 296 

3   A Simulation Case Study 

In this Section we shall investigate the behavior of the employees of a small firm that 
develops web graphics by request from external clients. Such an organization 
manages all its activities using a cohesive team structure. Teams have a flat power 
structure, which allows achieving high responsiveness to the environmental dynamics. 
Although the role of a leader (or manager) is identified, all important decisions are 
made with the assistance of all team members. The manager is responsible mostly for 
organizing tasks: e.g., searching for clients, distribution of orders, monitoring of the 
order execution. The firm consists of highly motivated members and has a very 
informal and open working style. The risky, environment-dependant nature of the 
firms of such type may cause financial insecurity and deficiency for their members. In 
the following the model used for the simulation is introduced. Subsequently, the 
simulation results are presented. 

Modeling tasks and the environment 
Tasks received by the firm are characterized by: (1) name; (2) type; (3) required 
level(s) of development of skill(s); (4) average / maximum duration; (5) extra time 
delay per unit of each skill development; (6) material reward; (7) intrinsic reward; (8) 
development level increment per skill. For this case study the generalized PI “the 
development level” for each skill is used, which is an aggregated quantity (a real 
number in the range 0-5) reflecting the skill-related knowledge, experience, task 
execution context etc. The task average duration is the time that an agent that 
possesses the skills satisfying the task requirements will spend on the task execution. 
Agents with insufficient development levels of skills will require additional time for 
the execution. This is specified by the extra time delay characteristic per deficient unit 
of each required skill. The maximum task duration specifies the maximal time 
allowed for the task execution. For the successful performance of tasks agents are 
granted with material rewards; also the development level(s) of their skill(s) is (are) 
increased by the experience increment amount(s). Note that for simplicity the intrinsic 
rewards associated with the tasks in this case study are made independent of the 
specific characteristics of the agents who execute these tasks.  

The task types used in the simulation are specified in Table 1. When detailed data 
about the task execution are available, more precise dependencies between task 
durations, extra delays and the skill development levels and traits can be established. 

In the simulation we suppose that tasks arrive in accordance with a 
nonhomogeneous Poisson process {N(t), t≥0} with a bounded intensity function λ(t). 
Here N(t) denotes the number of events that occur by time t and the quantity λ(t) 
indicates how likely it is that an event will occur around the time t. We use the thining 
or random sampling approach [22], which assumes that λ(t) ≤ λ for all t ≤ T, where T is 
the simulation time (2000 working hours (1 year) for this case study). Furthermore, 
for T ≤ 1000: λA1=λA2=λB1=λB2=0.05 and for T > 1000: λA1=λA2=2 *10-5; λB1=λB2=0.05. 

Organization modeling 
The firm has two high level long-term goals with the same priority: “it is required to 

maintain a high profit level” and “it is required to maintain a high level of satisfaction of the 
employees”. These goals are imposed on the organizational structure that comprises the 
role Manager and the generalized role Task Performer. The latter is instantiated into 



 

 297 

specific roles-instances associated with the tasks received by the firm. An instantiated 
role is assigned to one of the agents representing the employees using the following 
policy: Agents that can be potentially allocated to a role should be qualified for this 
role. An agent is qualified for a role under two conditions: (1) the agent is not 
involved into the execution of any other tasks; (2) agent possesses the skills required 
for the task associated with the role; and the level of development of these skills will 
allow to the agent to finish the task before the task deadline (i.e., maximum duration).  

Table 1. The characteristics of the task types A1/A2 (create a simple/complex web illustration) 
and B1/B2 (create a simple/complex Flash animation) used in the simulation 

Type A1 A2 B1 B2 

Required skill(s) S1: 2 S1: 4 S2: 1 S2: 4 
Average (max) duration 
(hours) 

14 (18)  30 (38) 12 (15) 50 
(60) 

Extra time delay per skill 
(hours) 

S1: 2 S1:4 S2: 3 S2: 8 

Material reward 10 20 7 25 
Intrinsic reward 1 3 1 4 
Development increment  S1:0.1 S1:0.2 S2: 

0.08 
S2: 
0.2 

 
To formalize these conditions, for each task and agent characteristic a predicate is 

introduced. Some of these predicates are given in Table 2. To express the temporal 
aspects of the agent qualification rule the language TTL is used [23]. TTL specifies 
the dynamics of a system by a trace, i.e. a temporally ordered sequence of states. Each 
state corresponds to a particular time point and is characterized by a set of state 
properties that hold in this state. State properties are defined as formulae in a sorted 
predicate logic using state ontologies. A state ontology defines a set of sorts or types 
(e.g., TASK, AGENT), sorted constants, functions and predicates (see Table 2). States 
are related to state properties via the satisfaction relation |=: state(γ, t) |= p, which 
denotes that state property p holds in trace γ at time t. Dynamic properties are 
specified in TTL by relations between state properties. 

The agent qualification rule is formally expressed in TTL as follows: 
∀γ ∀t:TIME ∀a1:TASK ∀ag:AGENT ∀r1:ROLE ∀tp1: TASK_TYPE 
state(γ, t)|= [ task_arrived(a1) ∧ role_for_task(r1, a1) ∧ task_type(a1, tp1) ∧  
¬∃r2:ROLE r2≠r1 ∧ agent_allocated(ag, r2) ∧ sum([sk:SKILL], ∃VALUE:n, m, k case(state(γ, t)|= 
task_requires_skill(a1, sk, n) ∧ agent_possesses_skill(ag, sk, m) ∧ m≥0.5∧ task_extra_delay(tp1, 
sk, k), k • (n-m), 0)) < (task_max_duration(tp1) - task_average_duration(tp1))  
� ∀t1:TIME t1>t state(γ, t1)|= agent_qualified_for(ag, r1) 

Here in sum([summation_variables], case(logical_formula, value1, 0)) logical_formula is 
evaluated for every combination of values from the domains of each from the 
summation_variables; and for every evaluation when logical_formula is true, value1 is 
added to the resulting value of the sum function.  

 
 



 

 298 

Table 2. Predicates for the formalization of agent-based models 

Predicate Description 
task_arrived, task_started, task_finished: 
TASK  

Specifies the arrival, start and finish of a 
task 

role_for_task: ROLE x TASK Identifies a role for a task 
agent_allocated: AGENT x ROLE Specifies an agent allocated to a role 
agent_qualified_for: AGENT x ROLE Specifies an agent qualified for a role 
agent_requested: AGENT x ROLE Identifies an agent that requested a role 
 
Further, since the firm recognizes the importance of wishes of its employees, a role 

can be only allocated, when a qualified agent has voluntarily requested the role. 
Furthermore, the firm established the rule that in case several qualified agents 
requested a role, then the agent with the most distant (i.e., the earliest) previous 
allocation time among these agents will be allocated to the role. This rule is also 
formalized using TTL: 
∀γ ∀t, t1:TIME ∀ag:AGENT ∀r1:ROLE ∀a1:TASK  
state(γ, t) |= [ agent_qualified_for(ag, r1) ∧ agent_requested(ag, r1) ∧ role_for_task(r1, a1) ∧ 
latest_allocation(ag, t1) ∧ ∀ag1:AGENT ∀t2:TIME ag1≠ag ∧ agent_requested(ag1, r1) ∧ 
latest_allocation(ag1, t2) ∧ t1 < t2 
� agent_allocated(ag, r1) ∧ task_started(a1)] 

Here latest_allocation(ag1, t1) is a short notation for: 
∃t1:TIME ∃a2: TASK ∃r2: ROLE state(γ, t1)|= task_finished(a2) ∧ role_for_task(r2, a2) ∧ 
agent_allocated(ag1, r2) ∧ ∀t2:TIME t2> t1 ∀r3:ROLE state(γ, t2)|= ¬agent_allocated(ag1, r3) 

For the successful execution of tasks the agents are provided with material rewards 
on the following basis: 50% of the reward is given to the agent who performed the 
task and the rest is divided equally among all other employees. 

Modeling agents 
The firm consists of three members and the manager modeled as agents. As in the 
most firms of such type, the employees are intrinsically motivated by their work, and 
pursuit high performance standards. For each agent two high level long-term hard 
goals are defined that also comply with the organizational goals: g1: it is required to 
maintain the level of income not less than 50; g2: it is required to maintain the level of intrinsic 
satisfaction not less than 5. It is assumed that the goal g1 when unsatisfied has higher 
priority than the goal g2. When g1 is satisfied, g2 becomes more important.  

Two agents ag1 and ag2 possess the skill S1 to perform purely graphical work: 
agent_possesses_skill(ag1, S1, 4) and agent_possesses_skill(ag2, S1, 3). Here the third 
argument denotes the level of the skill development. The agent ag3 has the skill S2 to 
make Flash animations: agent_possesses_skill(ag3, S2, 4). Furthermore, ag1 has the 
general knowledge related to S2 (agent_possesses_skill(ag1, S2, 0.1)), which however is 
insufficient for the performance of tasks that require S2. By mutual consent of the 
firm and ag1 the development goal for ag1 without a strict deadline has been set: it is 
desired to achieve the level of development of S2 ≥ 0.5. When ag1 decides to gain the 
minimum level of the skill S2 development that is necessary for the task execution 
(0.5), s/he will be given one week for the training, during which no other tasks will be 
assigned to him/her. The motivation of the agents to attain their goals is represented 
by the motivation models, two examples of which for ag1 are given in Fig. 2.  



 

 299 

Successful
execution of
a task of type

A2

Material
reward = 10

Intrinsic
reward = 3

I11=1

E11=1

I12=1

Perform
a task of
type A2 The level of

development
of S2 = 0.5

Substantial
increase of

income

Increase of
intrinsic reward

I21 varies

E21= 0.7

I22=0.6

Develop
skill S2

 
Fig. 2. The examples of two motivation models for the agent ag1 used in the case study 

The parameters of the motivation models are defined as follows: Expectancy of an 
agent ag for the successful execution of a task tk is defined as a weighed average of 
the quotients pos(ski)/req(ski) for each skill ski required for tk; here pos(ski) is the 
development level of the skill ski possessed by ag and req(ski) is the level required by 
tk. Instrumentality for each second level outcome associated with the successful 
execution of a task is equal to 1 for every agent qualified for this task. This is because 
the reward system is defined explicitly and the qualified agents have a clear 
estimation of the intrinsic reward associated with the task. The instrumentality value 
of ag1 for the skill S2 development is reevaluated in the end of each month and is 
equal to 1, when n/m > 50, and is equal to n/(m*50) otherwise; here n is the amount of 
the material rewards provided by the tasks of types B1 and B2 received by the firm up 
to the current time point, and m is the amount of months of the simulation time (the 
initial instrumentality value is 0.35). The valence values of second level outcomes 
change over time. In particular, when the goal g1 of an agent ag is not satisfied, then 
the valence values of ag for all outcomes related to material rewards will become 1, 
and the valence values of outcomes related to intrinsic rewards will become 0.5. When 
g1 is satisfied, then the valence values for material outcomes will decrease to 0.5, and 
for intrinsic outcomes will increase to 1. An agent generates a request to perform an 
action specified in a motivation model (e.g., request for a role), when the motivational 
force associated with this action calculated using the formula (1) is greater than 0.5. 
The initial income value is 20 for all agents, and the initial intrinsic satisfaction level 
is 3. Each agent consumes 0.05 units of the received material rewards per day and the 
amount of the received intrinsic rewards decreases by 0.03 each day.  
 

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

time, in working hours(a) 
0 200 400 600 800 1000 1200 1400

not_sat

sat(g2)

sat(g1)

time, in working hours(b) 

Fig. 3. (a) The change of the motivation force (the vertical axis) of agent ag1 for the attainment 
of skill S2 over time. (b) The change of the satisfaction of the goals of agent ag1 over time. 

The simulation is performed using the dedicated tool [2]. Fig. 3a shows how the 
motivational force of ag1 to attain the skill S2 changes over time. After the time point 
1000, when the amount of tasks of type A diminishes significantly, the force 
transgresses the threshold 0.5, and ag1 begins the attainment of S2. After some time 



 

 300 

ag1 possesses the skills required to perform the tasks of both types A and B and both 
his/her goals g1 and g2 become satisfied (see Fig. 3b). 

4   Conclusion 

The paper proposes a formal approach for modeling of agents situated in an (formal) 
organization that accentuates the intentional and motivational aspects of agent 
behavior. The proposed quantitative motivation model of an agent based on the 
expectancy theory allows estimating the agent’s motivational force to attain certain 
(organizational or individual) goals. Since the goal expressions are based on 
performance measurements, using the proposed approach it is possible to analyze how 
different organizational factors that affect the parameters of the motivation model 
influence the organizational or agent performance. An example of such analysis is 
demonstrated by a simulation case study in this paper. 

Based on a large corpus of empirical social studies a great number of dependencies 
between organizational and environmental factors and the agent’s motivation have 
been identified. In general, to create a feasible and valid model for a complex 
organization, a large number of variables and functions representing these factors and 
dependencies should be specified. This causes such undesirable properties of a model 
as a high complexity and the loss of tractability [7]. Therefore, it is recommended that 
an organization analyst depending on the organizational type and the purpose of 
analysis should choose only the most relevant organizational and environmental 
factors that have a direct impact on the agent behavior in the considered 
organizational setting. Such a choice may be based on the results of empirical studies 
for organizations of the considered type. 

In the future research the behavior of various types of agents situated in 
organizations of different types (e.g., mechanistic, organic [17]) will be investigated. 

References 

1. Bertels, K., Boman, M.: Agent-Based Social Simulation in Markets. Electronic Commerce, 
1(1-2) (2001) 149 – 158 

2. Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J.: A Language and Environment for 
Analysis of Dynamics by Simulation. International Journal of Artificial Intelligence Tools, 
16: 435-464 (2007) 

3. Carley, K.M.: A comparison of artificial and human organizations. Journal of Economic 
Behavior & Organization, 31(2) (1996) 175-191 

4. Coddington, M. and Luck, M.: A Motivation Based Planning and Execution Framework, 
International Journal on Artificial Intelligence Tools, 13(1) (2004) 5-25 

5. Davidsson, P., Henesey, L., Ramstedt, L., Tornquist, J., Wernstedt, F.: An Analysis of 
Agent-Based Approaches to Transport Logistics. Transportation Research Part C: Emerging 
Technologies, Vol. 13(4) (2005) 255-271 

6. Decker, K.: TAEMS: A Framework for Environment Centered Analysis & Design of 
Coordination Mechanisms. Foundations of Distributed Artificial Intelligence, Chapter 16, 
O'Hare, G. and Jennings, N. (eds.), Wiley Inter-Science (1996) 429-448 



 

 301 

7. Dooley, K.: Simulation research methods. In: Baum, J. (ed.): Companion to Organizations. 
Blackwell, London (2002) 829-848 

8. Forrester, J. W.: Industrial dynamics, Waltham, MA: Pegasus Communications (1961) 
9. Galbraith, J.R.: Designing organizations. Jossey-Bass, San Francisco California (1995) 
10.Hackman, J.R.: Work redesign and motivation. Professional Psychology, 11 (1980) 445-

455. 
11. Horling, B. and Lesser, V. A Survey of multi-agent organizational paradigms. The 

Knowledge Engineering Review, Vol. 19(4) (2005) 281-316 
12. Jonker C.M., Sharpanskykh, A., Treur, J., Yolum, P.: A Framework for Formal Modeling 

and Analysis of Organizations, Applied Intelligence, 27(1), 49-66 (2007) 
13. Katz, D and Kahn, R.: The social psychology of organizations. Wiley, New York (1966) 
14.Kunz, J.C., Levitt, R.E., and Jin Y. The Virtual Design Team: A computational simulation 

model of project organizations. Communications of the Association for Computing 
Machinery 41(11) (1999) 84-92. 

15.Lawler, E.E.: Motivation in Work Organisations, Cole Publishing (1973) 
16.Manzano, M.: Extensions of First Order Logic. Cambridge University Press (1996) 
17.March, J.G. and Simon, H.A.: Organizations. Wiley, New York (1958) 
18.Pinder, C. C. (1998). Work motivation in organizational behavior. Upper Saddle River, NJ: 

Prentice-Hall. 
19. Porter, L.W., Bigley, G.A., Steers, R.M. (eds.): Motivation and Work Behavior, 7th edition. 

New York: McGraw-Hill (2003) 
20. Popova, V., Sharpanskykh, A.: Formal analysis of executions of organizational scenarios 

based on process-oriented models. In I. Zelinka, Z. Oplatkova and A. Orsoni (eds.), 
Proceedings of 21st European Conference on Modelling and Simulation ECMS’07, SCS 
Press (2007) 36-44. 

21.  Popova, V., Sharpanskykh, A.: Formal Modeling of Goals in Agent Organizations. In: V. 
Dignum, F. Dignum, E. Matson, B.Edmonds (eds.), Proceedings of AOMS workshop at 
IJCAI’07 (2007) 74-80 

22. Ross, S.: Simulation. 2nd edn. Harcourt Academic Press, London Boston New York (1998) 
23. Sharpanskykh, A., Treur, J.: Verifying Interlevel Relations within Multi-Agent Systems. In: 

Brewka, G., Coradeschi, S., Perini, A., and Traverso, P. (eds.), Proceedings of the 17th 
European Conference on Artificial Intelligence, Riva del Garda, September, IOS Press 
(2006) 290-294 

24. Sharpanskykh, A.: Authority and its Implementation in Enterprise Information Systems. In: 
Sadiq, S., Reichert, M., Schulz, K., Trienekens, J., Moller, C., and Kusters, J. (eds.), 
Proceeding of the 1st International Workshop on Management of Enterprise Information 
Systems, MEIS 2007, INSTICC Press (2007) 33-43 

25.Tyler G.P., Newcombe P.A.: Relationship Between Work Performance and Personality 
Traits in Hong Kong Organizational Settings. International Journal of Selection and 
Assessment 14 (1) (2006) 37–50 

26. Vroom, V.H.: Work and motivation. Wiley, New York (1964) 
 



 

 302 



 

 303 

 
 
 
 
 
 
 
 

Chapter 8 

 

On the Complexity Monotonicity Thesis for 
Environment, Behaviour and Cognition1 

Abstract. Development of more complex cognitive systems during evolution is 
sometimes viewed in relation to environmental complexity. In more detail, 
growth of complexity during evolution can be considered for the dynamics of 
externally observable behaviour of agents, for their internal cognitive systems, 
and for the environment. This paper explores temporal complexity for these 
three aspects, and their mutual dependencies. A number of example scenarios 
have been formalised in a declarative temporal language, and the complexity of 
the structure of the different formalisations was measured. Thus, some 
empirical evidence was provided for the thesis that for more complex 
environments, more complex behaviour and more complex mental capabilities 
are needed. 

1   Introduction 

Behaviour of agents (both living organisms and artificial (software or hardware) 
agents) can occur in different types and complexities, varying from very simple 
behaviour to more sophisticated forms. Depending on the complexity of the externally 
observable behaviour, the internal mental representations and capabilities required to 
generate the behaviour also show a large variety in complexity. From an evolutionary 
viewpoint, for example, Wilson [16], p. 187 and Darwin [3], p. 163 point out how the 

                                                           
1 This chapter appeared as Bosse, T., Sharpanskykh, A., Treur, J.: On the Complexity 

Monotonicity Thesis for Environment, Behaviour and Cognition. In: Baldoni, M., Son, T.C., 
Riemsdijk, M.B. van, and Winikoff, M. (eds.): Proceedings of the 5th International 
Workshop on Declarative Agent Languages and Technologies, DALT 2007, 17-32 (2007) 
(the names of the authors are ordered alphabetically reflecting the comparable contribution of 
each author). The post-proceedings of the workshop will be published by Springer Verlag. 



 

 304 

development of behaviour relates to the development of more complex cognitive 
capabilities. Godfrey-Smith [4], p. 3 assumes a relationship between the complexity 
of the environment and the development of mental representations and capabilities. 
He formulates the main theme of his book in condensed form as follows: ‘The 
function of cognition is to enable the agent to deal with environmental complexity’ 
(the Environmental Complexity Thesis). In this paper, this thesis is refined as follows: 
• the more complex the environment, the more sophisticated is the behaviour required to deal with this 

environment,  
• the more sophisticated the behaviour, the more complex are the mental representations and capabilities 

needed 
This refined thesis will be called the Complexity Monotonicity Thesis. The idea is 

that to deal with the physical environment, the evolution process has generated and 
still generates a variety of organisms that show new forms of behaviour. These new 
forms of behaviour are the result of new architectures of organisms, including 
cognitive systems with mental representations and capabilities of various degrees of 
complexity. The occurrence of such more complex architectures for organisms and 
the induced more complex behaviour itself increases the complexity of the 
environment during the evolution process. New organisms that have to deal with the 
behaviour of such already occurring organisms live in a more complex environment, 
and therefore need more complex behaviour to deal with this environment, (to be) 
realised by an architecture with again more complex mental capabilities. In particular, 
more complex environments often ask for taking into account more complex histories, 
which requires more complex internal cognitive representations and dynamics, by 
which more complex behaviour is generated.  

This perspective generates a number of questions. First, how can the Complexity 
Monotonicity Thesis be formalised, and in particular how can the ‘more complex’ 
relation be formalised for (1) the environment, (2) externally observable agent 
behaviour and (3) internal cognitive dynamics? Second, connecting the three items, 
how to formalise (a) when does a behaviour fit an environment: which types of 
externally observable behaviours are sufficient to cope with which types of 
environments, and (b) when does a cognitive system generate a certain behaviour: 
which types of internal cognitive dynamics are sufficient to generate which types of 
externally observable agent behaviour?  

In this paper these questions are addressed from a dynamics perspective, and 
formalised by a declarative temporal logical approach. Four cases of an environment, 
suitable behaviour and realising cognitive system are described, with an increasing 
complexity over the cases. Next, for each case, complexity of the dynamics of 
environment, externally observable agent behaviour and internal cognitive system are 
formalised in terms of structure of the formalised temporal specifications describing 
them, thus answering (1) to (3). Moreover, (a) and (b) are addressed by establishing 
formalised logical (entailment) relations between the respective temporal 
specifications. By comparing the four cases with respect to complexity, the 
Complexity Monotonicity Thesis is tested. 



 

 305 

2   Evolutionary Perspective 

The environment imposes certain requirements that an agent’s behaviour needs to 
satisfy; these requirements change due to changing environmental circumstances. The 
general pattern is as follows. Suppose a certain goal G for an agent (e.g., sufficient 
food uptake over time) is reached under certain environmental conditions ES1 
(Environmental Specification 1), due to its Behavioural Specification BS1, realised by 
its internal (architecture) CS1 (Cognitive Specification 1). In other words, the 
behavioural properties BS1 are sufficient to guarantee G under environmental 
conditions ES1, formally ES1 & BS1 � G, and the internal dynamics CS1 are sufficient 
to guarantee BS1, formally CS1 � BS1. In other environmental circumstances, 
described by environmental specification ES2 (for example, more complex) the old 
circumstances ES1 may no longer hold, so that the goal G may no longer be reached 
by behavioural properties BS1. An environmental change from ES1 to ES2 may entail 
that behaviour BS1 becomes insufficient. It has to be replaced by new behavioural 
properties BS2 (also more complex) which express how under environment ES2 goal 
G can be achieved, i.e., ES2 & BS2 �  G. 

Thus, a population is challenged to realise such behaviour BS2 by changing its 
internal architecture and its dynamics, and as a consequence fulfill goal G again. This 
challenge expresses a redesign problem: the given architecture of the agent as 
described by CS1 (which entails the old behavioural specification BS1) is insufficient 
to entail the new behavioural requirements BS2 imposed by the new environmental 
circumstances ES2; the evolution process has to redesign the architecture into one 
with internal dynamics described by some CS2 (also more complex), with CS2 � BS2, 
to realise the new requirements on behaviour.  
Based on these ideas, the Complexity Monotonicity Thesis can be formalised in the 
following manner. Suppose < E1, B1, C1 > and < E2, B2, C2 > are triples of environment, 
behaviour and cognitive system, respectively, such that the behaviours Bi are adequate 
for the respective environment Ei and realised by the cognitive system Ci. Then the 
Complexity Monotonicity Thesis states that 

E1 ≤c E2  �  B1 ≤c B2    &    B1 ≤c B2  �  C1 ≤c C2   
Here ≤c is a partial ordering in complexity, where X ≤c Y indicates that Y is more 

complex than X. A special case is when the complexity ordering is assumed to be a 
total ordering where for every two elements X, Y either X ≤c Y or Y ≤c X (i.e., they are 
comparable), and when some complexity measure cm is available, assigning degrees 
of complexity to environments, behaviours and cognitive systems, such that 

X ≤c Y ⇔ cm(X) ≤ cm(Y) 
where ≤ is the standard ordering relation on (real or natural) numbers. In this case the 
Complexity Monotonicity Thesis can be reformulated as 

cm(E1) ≤ cm(E2)  �  cm(B1) ≤ cm(B2)    & 
cm(B1) ≤ cm(B2)  �  cm(C1) ≤ cm(C2) 

The Temporal Complexity Monotonicity Thesis can be used to explain increase of 
complexity during evolution in the following manner. Make the following assumption 
on Addition of Environmental Complexity by Adaptation, as described above: 

• adaptation of a species to an environment adds complexity to this environment 

Suppose an initial environment is described by ES0, and the adapted species by 
BS0.  Then this transforms ES0 into a more complex environmental description ES1.  



 

 306 

Based on ES1, the adapted species will have description BS1. As ES1 is more 
complex than ES0, by the Complexity Monotonicity Thesis it follows that this BS1 is 
more complex than BS0: ES0 ( ES1  �   BS0 ( BS1. Therefore BS1 again adds 
complexity to the environment, leading to ES2, which is more complex than ES1, et 
cetera1: 

 

ES0          (          ES1          (          ES2          … 
 

 
BS0          (          BS1          (          BS2          … 

 

This argument shows that the increase of complexity during evolution can be 
related to and explained by two assumptions: the Complexity Monotonicity Thesis, 
and the Addition of Environmental Complexity by Adaptation assumption. This paper 
focuses on the former assumption. 

3   Variations in Behaviour and Environment 

To evaluate the approach put forward, a number of cases of increasing complexity are 
analysed, starting from very simple stimulus-response behaviour solely depending on 
stimuli the agent gets as input at a given point in time. This can be described by a very 
simple temporal structure: direct associations between the input state at one time point 
and the (behavioural) output state at a next time point. A next class of behaviours, 
with slightly higher complexity, analysed is delayed response behaviour: behaviour 
that not only depends on the current stimuli, but also may depend on input of the 
agent in the past. This pattern of behaviour cannot be described by direct functional 
associations between one input state and one output state; it increases temporal 
complexity compared to stimulus-response behaviour. For this case, the description 
relating input states and output states necessarily needs a reference to inputs received 
in the past. Viewed from an internal perspective, to describe mental capabilities 
generating such a behaviour, often it is assumed that it involves a memory in the form 
of an internal model of the world state. Elements of this world state model mediate 
between the agent’s input and output states.  

Other types of behaviour go beyond the types of reactive behaviour sketched 
above. For example, behaviour that depends in a more indirect manner on the agent’s 
input in the present or in the past. Observed from the outside, this behaviour seems to 
come from within the agent itself, since no direct relation to current inputs is 
recognised. It may suggest that the agent is motivated by itself or acts in a goal-
directed manner. For a study in goal-directed behaviour and foraging, see, for 
example, [5]. Goal-directed behaviour to search for invisible food is a next case of 
behaviour analysed. In this case the temporal description of the externally observable 
behavioural dynamics may become still more complex, as it has to take into account 
more complex temporal relations to (more) events in the past, such as the positions 
already visited during a search process. Also the internal dynamics may become more 

                                                           
1 Note that this argument can also be applied to multiple species at the same time, i.e., species A increases the complexity 

of the environment, which causes another species B to adapt to this more complex environment. 



 

 307 

complex. To describe mental capabilities generating such a type of behaviour from an 
internal perspective, a mental state property goal can be used. A goal may depend on 
a history of inputs. Finally, a fourth class of behaviour analysed, which also goes 
beyond reactive behaviour, is learning behaviour (e.g., conditioning). In this case, 
depending on its history comprising a (possibly large) number of events, the agent’s 
externally observable behaviour is tuned. As this history of events may relate to 
several time points during the learning process, this again adds temporal complexity 
to the specifications of the behaviour and of the internal dynamics. 

To analyse these four different types of behaviour in more detail, four cases of a 
food supplying environment are considered in which suitable food gathering 
behaviours are needed. These cases are chosen in such a way that they correspond to 
the types of behaviour mentioned above. For example, in case 1 it is expected that 
stimulus-response behaviour is sufficient to cope with the environment, whilst in case 
2, 3 and 4, respectively, delayed response behaviour, goal-directed behaviour, and 
learning behaviour is needed). The basic setup is inspired by experimental literature in 
animal behaviour such as [6], [14], [15]. The world consists of a number of positions 
which have distances to each other. The agent can walk over these positions. Time is 
partitioned in fixed periods (days) of a duration of d time units (hours). Every day the 
environment generates food at certain positions, but this food may or may not be 
visible, accessible and persistent at given points in time. The four different types of 
environment with increasing temporal complexity considered are:   
(1) Food is always visible and accessible. It persists until it is taken. 
(2) Food is visible at least at one point in time and accessible at least at one later time point. It persists 

until it is taken. 
(3) Food either is visible at least at one point in time and accessible at least at one later time point, or it 

is invisible and accessible the whole day. It persists until it is taken. 
(4) One of the following cases holds: 

a) Food is visible at least at one point in time and accessible at least at one later time point. It 
persists until it is taken. 

b) Food is invisible and accessible the whole day. It persists until it is taken. 
c) Food pieces can disappear, and new pieces can appear, possibly at different positions. For every 

position where food appears, there are at least three different pieces in one day. Each piece that 
is present is visible. Each position is accessible at least after the second food piece disappeared. 

Note that there is an accumulating effect in the increase of complexity of these types 
of environment. For example, the behaviour of environment (3) is described as the 
disjunction of the behaviour of environment (2) and another type of behaviour. For 
this reason, it is expected that agents that survive in environment n will also survive in 
environment n-1. 

4   Modelling Approach 

To express formal specifications for environmental, behavioural and cognitive 
dynamics for agents, the Temporal Trace Language (TTL, see [2]) is used. This 
language is a variant of order-sorted predicate logic. In dynamic property expressions, 
TTL allows explicit references to time points and traces. If a is a state property, then, 
for example state(γ, t, input(agent)) |= a denotes that this state property holds in trace γ at 
time point t in the input state of the agent. Here, a trace (or trajectory) is defined as a 
time-indexed sequence of states, where time points can be expressed, for example, by 



 

 308 

real or integer values. If these states are input states, such a trace is called an input 
trace. Similarly for an output trace. Moreover, an input-output correlation is defined 
as a binary relation C : Input_traces x Output_traces between the set of possible input 
traces and the set of possible output traces. 

In the following sections, the four variations in behaviour and environment as 
introduced above are investigated in more detail. For formalising dynamic properties 
in TTL that will be used to specify these cases, the following state properties are used: 

 

at(o, p) object o is at position p 
visible(sp)  an object occurring in the state property sp is visible 

 (e.g. as it is not covered by a large object) 
accessible(p)  position p is accessible (e.g. because there is no enemy at the position) 
distance(p1, p2, i)  the distance between positions p1 and p2 is i  
max_dist  a constant indicating the maximum distance the agent can travel in one step 
observed(sp) the agent observes state property sp 
performing_action(a)   the agent performs action a 

For example, a property that describes stimulus-response behaviour of an agent 
that goes to food, observed in the past can be expressed and formalised as follows: 

 

At any point in time t, 
if  the agent observes itself at position p 
and  it observes an amount of food x at position p' 
and  position p' is accessible 
then at the next time point after t the agent will go to position p' 

 

Formalisation: 
∀t ∀x ∀p ∀p’  
[ state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(at(food(x), p’)) ∧  
  observed(accessible(p’))  �  state(γ, t+1, output(agent)) |= performing_action(goto(p')) ] 

5   Behavioural Cases 

Using the introduced approach to formalise dynamic properties, the four variations in 
behaviour and environment are addressed in this section: stimulus-response, delayed-
response, goal-directed, and learning behaviour.  

5.1   Stimulus-Response Behaviour 

As a first, most simple type of behaviour, stimulus-response behaviour is analysed in 
more detail. For this and the following cases of behaviour the following basis 
properties EP1-EP5 are used to describe the behaviour of the environment. They are 
specified both in a structured semi-formal temporal language, and in the formal 
temporal language TTL. Additionally, for every case specific properties of the 
environment will be specified. 

Environmental properties 
EP1  Sufficient food within reach 
At the beginning of every day n (d is the duration of a day), the agent is positioned at a position p, and a 
sufficient amount x of food (c is the minimum) is provided at some position p' within reachable distance 
from p. 



 

 309 

∀n ∃p ∃p’ ∃x ∃i x>c & i≤max_dist & 
state(γ, n*d, environment) |= at(agent, p) ∧ at(food(x), p’) ∧ distance(p, p’, i) 

 

EP2  Complete observability 
If the agent is at position p, and a(p, p') is a visible state property involving p and a position p' within 
reachable distance, then this is observed by the agent. This property is to be applied to food, distance, 
accessibility, agent position, and the absence of these. 
∀t ∀x ∀p ∀p’ ∀i 
[[ i≤max_dist & state(γ, t, environment) |= at(agent, p) ∧ a(p, p’) ∧ visible(a(p, p’)) ∧ 
   distance(p, p’, i) ] � state(γ, t, input(agent)) |= observed(a(p, p’)))] 

 

EP3  Guaranteed effect of movement 
At any point in time t, if the agent goes to position p, then it will be at position p. 
∀t ∀p state(γ, t, output(agent)) |= performing_action(goto(p)) 
   �  state(γ, t+1, environment) |= at(agent, p)  

 

EP4  Guaranteed effect of eating 
At any point in time t, if the agent takes food and the amount of food is sufficient for the agent then the 
agent will be well fed 
∀t [[∀x state(γ, t, output(agent))|= performing_action(take(food(x))) & x≥c] 
   � state(γ, t+1, environment) |= agent_well_fed ] 

 

EP5  Reachability of environment 
The distances between all positions p in the agent’s territory are smaller than max_dist. Here, p and p' are 
variables over the type TERRITORY_POSITION, which is a subtype of POSITION. 
∀t ∀p ∀p’ ∀I state(γ, t, environment) |= distance(p, p’, i) � i ≤ max_dist 

 

The following environmental properties hold for the stimulus-response case and some 
of the other cases considered. 

 

EP6  Food persistence 
Food persists until taken by the agent. 
∀t1 ∀t2 ∀x ∀p [ t1<t2 & state(γ, t1, environment) |= at(food(x), p) & 
[ ∀t  t1 ≤ t ≤ t2 � state(γ, t, output(agent)) |= not(performing_action(take(food(x)))) ] 
   � state(γ, t2, environment) |= at(food(x), p) ] 

 

EP7  Food on one position 
Per day, food only appears on one position. 
∀n ∀x ∀p ∀p’ ∀t state(γ, n*d, environment) |= at(food(x), p) & 
state(γ, t, environment) |= at(food(x), p’) & n*d < t ≤ (n+1)*d � p = p’ 

 

EP8  Complete accessibility 
Each position is accessible for the agent (i.e., never blocked by enemies). 
∀t ∀p state(γ, t, environment) |= accessible(p) 

 

EP9  Complete visibility  
All state properties a(p, p') that are true, are visible (which means that they will be observed by agents that 
are close enough, according to EP2). This property is to be applied to food, distance, accessibility, agent 
position, and the absence of these. 
∀t ∀p ∀p’ state(γ, t, environment) |= a(p, p’) � state(γ, t, environment(agent)) |= visible(a(p, p’)) 

 
Note that the property of an agent being well fed is assumed to be a state property of 
the environment, since it refers to the agent’s body state. 

For the case of stimulus-response behaviour the environment is characterised by the 
following conjunction ES1 of a subset of the environmental properties given above: 

 

ES1 ≡  EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP8 & EP9 
 

Behavioural Properties 



 

 310 

The agent’s stimulus-response behaviour is characterised by the following 
behavioural properties. 

 

BP1  Going to observed food 
At any point in time t, if the agent observes itself at position p and it observes no food at position p and it 
observes that an amount of food x is present at position p' and it observes that position p' is accessible and it 
observes that position p' is within reachable distance then it will go to position p'. 
∀t ∀x ∀p ∀p’ [ [ state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(not(at(food(x), p))) ∧ 
observed(at(food(x), p’)) ∧ observed(accessible(p’)) ∧ observed(distance(p, p’, i)) & i≤max_dist ] 
   �  state(γ, t+1, output(agent)) |= performing_action(goto(p’)) ] 

 

BP2  Food uptake 
At any point in time t, if the agent observes itself at position p and the agent observes food at p then it will 
take the food 
∀t ∀x ∀p [ [ state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(at(food(x), p))] 
   �  state(γ, t+1, output(agent))|= performing_action(take(food(x))) ] 
 
Vitality property VP 
The animal gets sufficient food within any given day. 
∀n ∃t1 [ n*d ≤ t1 ≤ (n+1)*d & state(γ, t1, environment) |= agent_well_fed ] 

Logical relations 
Given the dynamic properties specified above, the environmental and behavioural 
specifications (in short, ES1 and BS1) for case 1 (stimulus-response behaviour) are as 
follows: 

 

         ES1 ≡ EP1 & EP2 & EP3 & EP4 & EP5 &EP6 & EP7 & EP8 & EP9 
BS1 ≡ BP1 & BP2 

 

Given these specifications, the question is whether they are logically related in the 
sense that this behaviour is adequate for this environment, i.e., whether indeed the 
following implication holds: 

 

BS1 & ES1 �  VP 
 

To automatically check such implications between dynamic properties at different 
levels, model checking techniques can be used. To this end, first the dynamic 
properties should be converted from TTL format to a finite state transition format. 
This can be done using an automated procedure, as described in [11]. After that, for 
checking the implications between the converted properties, the model checker SMV 
is appropriate (see URL: http://www.cs.cmu.edu/~modelcheck/smv.html; see also [8]). 
SMV has been used to verify (and confirm) the above implication, as well as a 
number of other implications shown in this paper. 

Concerning the relation between the specification of the cognitive and the 
behavioural dynamics: in this case CS1 = BS1. Thus, CS1 �  BS1 also holds. 

5.2   Delayed Response Behaviour 

In delayed response behaviour, previous observations may have led to maintenance of 
some form of memory of the world state: a model or representation of the (current) 
world state (for short, world state model). This form of memory can be used at any 
point in time as an additional source (in addition to the direct observations). In that 
case, at a given time point the same input of stimuli can lead to different behavioural 



 

 311 

output, since the world state models based on observations in the past can be 
different. This makes that agent behaviours do not fit in the setting of an input-output 
correlation based on a direct functional association between (current) input states and 
output states. Viewed from an external viewpoint, this type of behaviour, which just 
like stimulus-response behaviour occurs quite often in nature, is just a bit more 
complex than stimulus-response behaviour, in the sense that it adds complexity to the 
temporal dimension by referring not only to current observations but also to 
observations that took place in the past.  

This leads to the question what kind of complexity in the environment is coped 
with this kind of behaviour that is not coped with by stimulus-response behaviour. An 
answer on this question can be found in a type of environment with aspects which are 
important for the animal (e.g., food or predators), and which cannot be completely 
observed all the time; e.g., food or predators are sometimes hidden by other objects: 

 

Environmental properties 
For this case the environment described sometimes shows the food, but not always as 
in the previous case. It is characterised by the following conjunction ES2 of a subset 
of the environmental properties given above, extended with the properties EP10, EP11 
and EP12 given below: 

 

ES2  ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP10 & EP11 & EP12 
 

EP10  Temporary visibility of food 
Per day, all food that is present is visible for at least one time point, and is accessible for at least one later 
time point1. 

 

EP11  Complete visibility of non-food 
All state properties that are true, except the presence of food, are visible. Thus, this property is applied to 
distance, accessibility, and agent position. 

 

EP12  Complete local observability of food 
For all time points, if the agent is at the position p with food then the agent observes the food (no matter if 
it is visible, e.g., by smell) 

 

Behavioural properties  
Next, dynamic properties are identified that characterise the input-output correlation 
of delayed response behaviour, observed from an external viewpoint. Such a dynamic 
property has a temporal nature; it can refer to the agent’s input and output in the 
present, the past and/or the future. In semi-formal and formal notation, for the case 
considered, the input-output correlation for delayed response behaviour can be 
characterised by: 

 

BP3  Going to food observed in the past 
At any point in time t, if the agent observes itself at position p and it observes no food at position p and it 
observes that position p' is accessible and it observes that position p' is within reachable distance and at 
some earlier point in time t1 the agent observed that an amount of food x was present at position p' and at 
every point in time t2 after t1 up to t, the agent did not observe that no food was present at  p' then at the 
next time point after t the agent will go to position p' 
∀t ∀x ∀i ∀p ∀p’  
[ [ state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(not(at(food(x), p))) ∧  
    observed(accessible(p’)) ∧ observed(distance(p, p’, i)) & i≤max_dist ] & 
    ∃t1<t [state(γ, t1, input(agent)) |= observed(at(food(x), p')) & 

                                                           
1 Formal expressions for all properties can be found in the Appendix at http://www.cs.vu.nl/~tbosse/complexity. 



 

 312 

       ∀t2  [t ≥ t2 > t1 � state(γ, t2, input(agent))|= not(observed(not(at(food(x), p'))))]]  
          �  state(γ, t+1, output(agent)) |= performing_action(goto(p')) ] 

 

Cognitive properties 
Since the external characterisations of delayed response behaviour refer to the agent’s 
input in the past, it is assumed that internally the agent maintains past observations by 
means of persisting internal state properties, i.e., some form of memory. These 
persisting state properties are sometimes called beliefs. For the example case, it is 
assumed that an internal state property b1(p) is available, with the following 
dynamics: 

 

CP1  Belief formation on food presence 
At any point in time t, if the agent observes that food is present at position p then internal state property 
b1(p) will hold (i.e., a belief that food is present at p) 
 

CP2  Belief b1 persistence 
At any point in time t, if internal state property b1(p) holds and the agent does not observe the absence of 
food at position p then at the next time point internal state property b1(p) still holds  
 

CP3  Going to food believed present 
At any point in time t, if the agent observes itself at position p and it observes no food at position p and it 
observes that position p' is accessible and it observes that position p' is within reachable distance and p ≠ p' 
and internal state property b1(p') holds then the agent will go to position p' 

 

Logical relations 
ES2  ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP10 & EP11 & EP12 
BS2  ≡ BP2 & BP3 
CS2  ≡ BP2 & CP1 & CP2 & CP3 
BS2 & ES2 �  VP  

   CS2  �  BS2 

5.3   Goal-Directed Behaviour 

A next, more complex type of behaviour considered is goal-directed behaviour. This 
behaviour is able to cope with environments where visibility can be more limited than 
in the environments considered before. 

 

Environmental properties 
For this case the environment is characterised by the following expression ES3 based 
on a subset of the environmental properties given earlier, extended with property 
EP13, given below: 

 

ES3  ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP11 & EP12 & 
(EP10 OR (EP8 & EP13)) 

 

EP13  Complete invisibility of food 
Food is always invisible for the agent (e.g., always covered), unless the agent is at the same position as the 
food. 

 

Behavioural properties 
The agent’s behaviour exploring positions in order to discover food is characterised 
by the following behavioural property: 

 
 



 

 313 

BP4  Searching for food 
At any point in time t, if the agent observes itself at position p and it observes that position p' is accessible 
and it observes that position p' is within reachable distance and it did not visit position p' yet and p' is the 
position closest to p which the agent did not visit and it did not observe any food at all yet then at the next 
time point after t the agent will go to position p' 
∀t ∀p ∀p’  
state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(accessible(p’)) ∧ 
observed(distance(p, p’, i)) & i≤max_dist & 
   not [∃t’ t’<t & state(γ, t’, input(agent)) |= observed_at(agent, p’) ] & 
   ∀p” [[not [∃t’ t’<t & state(γ, t’, input(agent)) |= observed_at(agent, p”) ]] 
      � ∃d1 ∃d2 state(γ, t, input(agent)) |= observed(distance(p, p’, d1)) ∧ 
      observed(distance(p, p’’, d2)) & d1<d2 ] & 
      not [∃t’ ∃p’’ ∃x t’≤t & state(γ, t’, input(agent)) |= observed(at(food(x), p’’)) ]  
         � state(γ, t+1, output(agent)) |= performing_action(goto(p’)) 
 

Cognitive properties 
To describe the internal cognitive process generating this type of behaviour, the 
mental state property goal is used. In particular, for the case addressed here, when the 
agent has no beliefs about the presence of food, it will generate the goal to find food. 
If it has this goal, it will pro-actively search for food in unexplored positions. This is 
characterised by the following dynamic properties: 

 

CP4  Goal formation 
At any point in time t, if the agent does not believe that food is present at any position p then it will have 
the goal to find food 
 

CP5  Non-goal formation 
At any point in time t, if the agent believes that food is present at position p then it will not have the goal to 
find food 
 

CP6  Belief formation on visited position 
At any point in time t, if the agent observes itself at position p then internal state property b2(p) will hold 
(i.e., the belief that it visited p) 
 

CP7  Belief b2 persistence 
At any point in time t, if internal state property b2(p) holds then at the next time point internal state 
property b2(p) still holds  
 

CP8  Belief formation on distances 
At any point in time t, if the agent observes that the distance between position p and p' is d then internal 
state property belief(p, p', d) will hold 
 

CP9  Belief persistence on distances 
At any point in time t, if internal state property belief(p, p', d) holds then at the next time point internal state 
property belief(p, p', d) still holds  
 

CP10  Going to closest position 
At any point in time t, if the agent observes itself at position p and it observes that position p' is accessible 
and it observes that position p' is within reachable distance and it has the goal to find food and it believes it 
did not visit p' yet and p' is the position closest to p of which the agent believes it did not visit it then at the 
next time point after t the agent will go to position p' 

 

Logical relations 
ES3 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP11 & EP12 &  

                (EP10 OR (EP8 & EP13)) 
BS3 ≡ BP2 & BP3 & BP4 
CS3 ≡ BP2 & CP1 & CP2 & CP3 & CP4 & CP5 & CP6 & CP7 & CP8 & CP9 & CP10 
BS3 & ES3 �  VP 



 

 314 

CS3  �  BS3 

5.4   Learning Behaviour 

A final class of behaviour analysed is learning behaviour. In this case, depending on 
its history comprising a (possibly large) number of events, the agent’s externally 
observable behaviour is tuned to the environment’s dynamics. In the case addressed 
here, in contrast to the earlier cases, the environment has no guaranteed persistence of 
food for all positions. Instead, at certain positions food may come and go (e.g., 
because it is eaten by competitors). The agent has to learn that, when food often 
appears (and disappears) at a certain position, then this is an interesting position to be, 
because food may re-appear at that position (but soon disappear again). 

 

Environmental properties 
For this case the environment is characterised by the following expression ES4 based 
on a subset of the environmental properties given earlier, extended with property 
EP14, given below. 

ES4 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & ((EP6 & EP7 & EP10 & EP11 & EP12) 
 OR (EP6 & EP7 & EP8 & EP11 & EP12 & EP13) OR (EP9 & EP14)) 
 

EP14  Food reoccurrence 
Every piece of food disappears and reappears at least 2 times per day, of which at least after the second 
disappearance its position will be accessible. 

 

Behavioural properties 
The agent’s behaviour for this case should take into account which positions show 
reoccurence of food. The following behavioural property characterises this. 

 

BP5  Being at useful positions 
At any point in time t, if the agent observes itself at position p and it observes that position p' is accessible 
and it observes that position p' is within reachable distance and for all positions p" that the agent observed 
food in the past, the agent later observed that the food disappeared and at some earlier point in time t1 the 
agent observed that food was present at position p' and after that at time point t2 before t the agent observed 
no food present at position p' and after that at time point t3 before t the agent again observed the presence 
of food at position p' and after that at a time point t4 before t the agent again observed no food present at 
position p' and p' is the closest reachable position for which the above four conditions hold then at the next 
time point after t the agent will go to position p' 

∀t ∀p ∀p’ ∀x 
state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ 
observed(accessible(p’)) ∧ observed(distance(p, p’, i)) & i≤max_dist & 
∀t’ ∀p’’ ∀x’ [t’<t & state(γ, t’, input(agent)) |= observed(at(food(x’), p’’))  
� ∃t’’ t’<t’’≤t & 
   state(γ, t’’, input(agent)) |= observed(not(at(food(x’), p’’)))]  
   & ∃t1 ∃t2 ∃t3 ∃t4 [ t1<t2<t3<t4<t & 
   state(γ, t1, input(agent)) |= observed(at(food(x), p’)) & 
   state(γ, t2, input(agent)) |= observed(not(at(food(x), p’))) & 
   state(γ, t3, input(agent)) |= observed(at(food(x), p’)) & 
   state(γ, t4, input(agent)) |= observed(not(at(food(x), p’))) ]  
   & ∀p” [ ∃t1 ∃t2 ∃t3 ∃t4 [ t1<t2<t3<t4 &  
   state(γ, t1, input(agent)) |= observed(at(food(x), p”)) & 
   state(γ, t2, input(agent)) |= observed(not(at(food(x), p”))) & 



 

 315 

   state(γ, t3, input(agent)) |= observed(at(food(x), p”)) & 
   state(γ, t4, input(agent)) |= observed(not(at(food(x), p”))) ] � 

   ∃d1 ∃d2 
   state(γ, t, input(agent)) |= observed(distance(p, p’, d1)) ∧ 
   observed(distance(p, p’’, d2)) & d1<d2 ] 

          �  state(γ, t+1, output(agent)) |= performing_action(goto(p’)) 
 

Cognitive properties 
The internal cognitive dynamics has to take into account longer histories of positions 
and food (re)appearing there. This is realised by representations that are built up for 
more complex world properties, in particular, not properties of single states but of 
histories of states of the world. For example, at a certain time point, it has to be 
represented that for a certain position in the past food has appeared twice and in 
between disappeared. The state properties b3(p, q) play the role of representations of 
world histories on food (re)occurrence. 

 

CP11  Initial mental state 
At the beginning of every day n, for all positions p, internal state property b3(p, 0) holds (i.e. a belief that 
there is no food at p) 
 

CP12  Belief update on food presence 
At any point in time t, for q ∈ {0,2}, if internal state property b3(p, q) holds and the agent observes food at 
position p then internal state property b3b(p, q+1) will hold 
 

CP13  Belief update on food absence 
At any point in time t, for q ∈ {1,3}, if internal state property b3(p,q) holds and the agent observes no food 
at position p then internal state property b3(p,q+1) will hold 
 

CP14  Belief b3 persistence 
At any point in time t, for all q, if internal state property b3(p,q) holds then at the next time point internal 
state property b3(p,q) still holds  
 

CP15  Going to interesting position 
At any point in time t, if the agent observes itself at position p and it observes that position p' is accessible 
and it observes that position p' is within reachable distance and it has the goal to find food and p' is the 
position closest to p of which the agent believes that it is an attractive position then at the next time point 
after t the agent will go to position p' 

 

Here, b3(p,4) represents the belief that food was twice present at p, and subsequently 
disappeared (in other words, a belief that p is an attractive position, since food might 
show up again). Note that, although the mechanism described here is quite different 
from, e.g., machine learning, this type of behaviour nevertheless can be qualified as 
learning behaviour. The reason for this is that the behaviour can be split into two 
distinct phases: one in which nothing was learned, and one in which the agent has 
learned which positions are useful by maintaining a history of previous observations. 

 

Logical relations 
ES4 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & ((EP6 & EP7 & EP10 & EP11 & EP12) 

 OR (EP6 & EP7 & EP8 & EP11 & EP12 & EP13) OR (EP9 & EP14)) 
BS4 ≡ BP2 & BP3 & BP4 & BP5 
CS4 ≡ BP2 & CP1 & CP2 & CP3 & CP4 & CP5 & CP6 & CP7 & CP8 & CP9 & CP10 & 

 CP11 & CP12 & CP13 & CP14 & CP15 
BS4 & ES4 �  VP 
CS4  �  BS4 



 

 316 

6   Formalisation of Temporal Complexity 

The Complexity Monotonicity Thesis discussed earlier involves environmental, 
behavioural and cognitive dynamics of living systems. In Section 2 it was shown that 
based on a given complexity measure cm this thesis can be formalised by: 

cm(E1) ≤ cm(E2)  �  cm(B1) ≤ cm(B2)  & 
cm(B1) ≤ cm(B2)  �  cm(C1) ≤ cm(C2)   

What remains is the existence or choice of the complexity measure function cm. To 
measure degrees of complexity for the three aspects considered, a temporal 
perspective is chosen: complexity in terms of the temporal relationships describing 
them. For example, if references have to be made to a larger number of events that 
happened at different time points in the past, the temporal complexity is higher. The 
temporal relationships have been formalised in the temporal language TTL based on 
predicate logic. This translates the question how to measure complexity to the 
question how to define complexity of syntactical expressions in such a language. In 
the literature an approach is available to define complexity of expressions in predicate 
logic in general by defining a function that assigns a size to every expression [7]. To 
measure complexity, this approach was adopted and specialised to the case of the 
temporal language TTL. Roughly spoken, the complexity (or size) of an expression is 
(recursively) calculated as the sum of the complexities of its components plus 1 for 
the composing operator. In more details it runs as follows. 

Similarly to the standard predicate logic, predicates in the TTL are defined as 
relations on terms. The size of a TTL-term t is a positive natural number s(t) 
recursively defined as follows: 

(1) s(x)=1, for all variables x. 
(2) s(c)=1, for all constant symbols c. 
(3) s(f(t1,…, tn))= s(t1) + … + s(tn) + 1, for all function symbols f. 

For example, the size of the term observed(not(at(food(x), p))) from the property BP1 
(see the Appendix) is equal to 6.  

Furthermore, the size of a TTL-formula ψ is a positive natural number s(ψ) 
recursively defined as follows: 

(1) s(p(t1,…, tn))= s(t1) + … + s(tn) +1, for all predicate symbols p. 
(2) s(¬ϕ)=s((∀x) ϕ)= s((∃x) ϕ) = s(ϕ)+1, for all TTL-formulae ϕ and variables x. 
(3) s(ϕ&χ) = s(ϕ|χ) = s(ϕ�χ) = s(ϕ)+ s(χ)+1, for all TTL-formulae ϕ, χ. 

In this way, for example, the complexity of behavioural property BP1 amounts to 53, 
and the complexity of behavioural property BP2 is 32. As a result, the complexity of 
the complete behavioural specification for the stimulus-response case (which is 
determined by BP1 & BP2) is 85. 

Using this formalisation of a complexity measure as the size function defined 
above, the complexity measures for environmental, internal cognitive, and 
behavioural dynamics for the considered cases of stimulus-response, delayed 
response, goal-directed and learning behaviours have been determined. Table 1 
provides the results (see the Appendix for all properties).  

 
 
 



 

 317 

Table 1.  Temporal complexity of environmental, behavioural and cognitive dynamics. 
 

Case Environmental 
dynamics 

Behavioural 
dynamics 

Cognitive 
dynamics 

Stimulus-
response 

262 85 85 

Delayed 
response 

345 119 152 

Goal-directed 387 234 352 
Learning 661 476 562 

 

The data given in Table 1 confirm the Complexity Monotonicity Thesis put 
forward in this paper, that the more complex the environmental dynamics, the more 
complex the types of behaviour an agent needs to deal with the environmental 
complexity, and the more complex the behaviour, the more complex the internal 
cognitive dynamics.  

7   Discussion 

In this paper, the temporal complexity of environmental, behavioural, and cognitive 
dynamics, and their mutual dependencies, were explored. As a refinement of 
Godfrey-Smith’s Environmental Complexity Thesis [4], the Complexity 
Monotonicity Thesis was formulated: for more complex environments, more complex 
behaviours are needed, and more complex behaviours need more complex internal 
cognitive dynamics. A number of example scenarios were formalised in a temporal 
language, and the complexity of these formalisations was measured.  Complexity of 
environment, behaviour and cognition was taken as temporal complexity of dynamics 
of these three aspects, and the formalisation of the measurement of this temporal 
complexity was based on the complexity of the syntactic expressions to characterise 
these dynamics in a predicate logic language, as known from, e.g., [7]. The outcome 
of this approach is that the results support the Complexity Monotonicity Thesis. 

Obviously, the results as reported in this paper are no generic proof for the 
correctness of the Complexity Monotonicity Thesis. Instead, the paper should rather 
be seen as a case study in which the thesis was tested positively. However, the 
approach taken for this test was not completely arbitrary: the used complexity 
measure is one of the standard approaches to measure complexity of syntactical 
expressions [7]. Moreover, the formal specifications were constructed very carefully, 
to ensure that no shorter specifications exist that are equivalent. Although no formal 
proof is given that the used specifications are indeed the shortest possible ones, the 
construction of these specifications has been an iterative process in which multiple 
authors have participated. To represent the specifications, the language TTL was just 
used as a vehicle. Various similar temporal languages could have been used instead, 
but we predict that this would not significantly influence the results. 

Nevertheless, there are a number of alternative possibilities for measuring 
complexity that might in fact influence the results. Among these is the option to use 
complexity measures from information theory based on the amount of entropy of a 
system, such as [1]. In future work, such alternatives will be considered as well. 



 

 318 

Another challenging direction for future work is the possibility to establish a uniform 
approach for specification of dynamic properties for environment, behaviour, and 
cognition. Such an approach may, for example, prescribe a limited number of 
predefined concepts that can be used within the dynamic properties. 

Another issue that is worth some discussion is the fact that the Complexity 
Monotonicity Thesis can also be considered in isolation of Godfrey-Smith’s 
Environmental Complexity Thesis. Although it was used as a source of inspiration to 
explore for the more refined Complexity Monotonicity Thesis, the Environmental 
Complexity Thesis as such was not investigated in this paper. Doing this, again from 
an agent-based modelling perspective, is another direction for future work. To this 
end, techniques from the area of Artificial Life may be exploited, e.g., to perform 
social simulations and observe whether more complex agents evolve in a way that 
supports the Environmental Complexity Thesis. 

Furthermore, organizations can be also considered as structures that often create 
additional complexity in the environment, with which organisms need to cope. 
Therefore, some results presented in this paper can be also applied in organizational 
context. However, a more detailed investigation is still required. 

In [4], in particular in Chapters 7 and 8, mathematical models are discussed to 
support the Environmental Complexity Thesis, following, among others [9] and [12]. 
These models are made at an abstract level, abstracting from the temporal dimension 
of the behaviour and the underlying cognitive architectures and processes. Therefore, 
the more detailed temporal complexity as addressed in this paper is not covered. 
Based on the model considered, Godfrey-Smith [4] concludes that the flexibility to 
accommodate behaviour to environmental conditions, as offered by cognition, is 
favoured when the environment shows (i) unpredictability in distal conditions of 
importance to the agent, and (ii) predictability in the links between (observable) 
proximal and distal. This conclusion has been confirmed to a large extent by the 
formal analysis described in this paper. Comparable claims on the evolutionary 
development of learning capabilities in animals are made in work such as [13] and 
[10]. According to these authors, learning is an adaptation to environmental change. 
All these are conclusions at a global level, compared to the more detailed types of 
temporal complexity considered in our paper, where cognitive processes and 
behaviour extend over time, and their complexity can be measured in a more detailed 
manner as temporal complexity of their dynamics. 

References 

1. Berlinger, E. (1980). An information theory based complexity measure. In Proceedings of 
the Natural Computer Conference, pp. 773-779. 

2. Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, A., and Treur, J. (2006). 
Specification and Verification of Dynamics in Cognitive Agent Models. In: Proceedings of 
the Sixth International Conference on Intelligent Agent Technology, IAT'06. IEEE 
Computer Society Press, 2006, pp. 247-254. 

3. Darwin, C. (1871). The Descent of Man. John Murray, London. 
4. Godfrey-Smith, P., (1996). Complexity and the Function of Mind in Nature. Cambridge 

University Press. 



 

 319 

5. Hills, T.T. (2006). Animal Foraging and the Evolution of Goal-Directed Cognition. 
Cognitive Science, vol. 30, pp. 3-41. 

6. Hunter, W.S. (1912). The delayed reaction in animals. Behavioral Monographs, 2, 1912, 
pp. 1-85 

7. Huth, M. and Ryan, M. (2000). Logic in Computer Science: Modelling and reasoning about 
computer systems, Cambridge University Press. 

8. McMillan, K.L. (1993). Symbolic Model Checking: An Approach to the State Explosion 
Problem. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, 
1992. Published by Kluwer Academic Publishers, 1993. 

9. Moran, N. (1992). The evolutionary maintenance of alternative phenotypes. American 
Naturalist, vol. 139, pp. 971-989. 

10. Plotkin, H. C. and Odling-Smee, F. J. (1979). Learning, Change and Evolution. Advances in 
the Study of Behaviour 10, pp. 1-41. 

11. Sharpanskykh, A., Treur, J. (2006). Verifying Interlevel Relations within Multi-Agent 
Systems. In: Proceedings of the 17th European Conference on Artificial Intelligence, 
ECAI'06. IOS Press, 2006, pp. 290-294. 

12. Sober, E. (1994). The adaptive advantage of learning versus a priori prejustice. In: From a 
Biological Point of View. Cambridge University Press, Cambridge. 

13. Stephens, D. (1991). Change, regularity and value in evolution of animal learning. 
Behavioral Ecology, vol. 2, pp. 77-89. 

14. Tinklepaugh, O.L. (1932). Multiple delayed reaction with chimpanzees and monkeys. 
Journal of Comparative Psychology, 13, 1932, pp. 207-243. 

15. Vauclair, J. (1996). Animal Cognition. Harvard Univerity Press, Cambridge, MA.  
16. Wilson, O. (1992). The Diversity of Life. Harvard University Press, Cambridge, MA. 



 

 320 



 

 321 

 

 
 
 

Part IV 

Supporting Organization 
Design 



 

 322 

This part describes principles of an organization design process using the framework 
based on the modeling methods for particular views described in Part III.  

More specifically, Chapter 1 describes a set of general methodological guidelines 
for using the framework in the process of organization design. These guidelines link 
and generalize the specific methodological principles for (re)designing specifications 
of particular views introduced in Part III by defining a set of steps of an organization 
design process along all modeling views. The general guidelines help an organization 
designer create an organizational specification from scratch as well as offer the 
possibility to revise existing specifications of organizations.  

To automate the process of organization design, the identified general 
methodological guidelines should be made formal and operational. Chapter 2 
formalizes the design process of specifications from the organization-oriented view 
by introducing a set of formal design operators. These operators can be combined into 
complex operators that can serve as patterns for larger steps in an organization design 
process. Furthermore, the contribution of this Chapter provides a solid basis for the 
development of a software environment supporting interactive organization design 
processes. 



 

 323 

 
 
 
 
 
 
 
 

Chapter 1 

 

General Approaches to Organization Design 1 
 
 
The general approaches to organization design differ with respect to the presence and 
involvement of the concerned agents. The design can be performed without having in 
mind specific agents - the necessary agent profiles are composed at the later design 
stages based on the considered/designed tasks. Organizational design can also be 
performed with respect to a (partially) known set of agents who will take roles in the 
organization. Thus agents’ skills and traits can be taken into account. Sometimes the 
agents are not only known but they have some degree of power to steer the design 
process.  

The design process often starts with the identification of one or more high-level 
goals which play the role of the driving force behind the design process. These goals 
(initially still informally defined) should answer the question: why should the 
organization exist and what purpose will it serve? Such goals can be identified by the 
designer or emerge through communication and/or negotiation between the involved 
agents. In the second case the resulting organizational goals reflect to some extent the 
individual goals of the participating agents. In this way some possible future conflicts 
between individual and organizational goals are prevented early. If conflicts do 
appear, they can be dealt with through negotiation and redesign at the later stages.  

The higher-level goals are often more abstract and, through refinement, more 
specific, easier to evaluate, goals are formulated. Also, often the higher-level goals 
are long-term, strategic goals while their sub-goals are shorter-term tactical or 
operational goals. The leaves of the hierarchies should be goals formulated so that the 
corresponding PIs can clearly be associated to the processes in the workflow. In this 
way the satisfaction of every goal in the hierarchies can be evaluated. 

                                                           
1 This chapter appeared as a part of the paper: Popova, V., Sharpanskykh A.: A Formal 

Framework for Modeling and Analysis of Organizations. In: Ralyte, J., Brinkkemper, S., 
Henderson-Sellers, B. (eds.), Proceedings of the Situational Method Engineering Conference, 
ME'07, Springer Verlag (2007) (the names of the authors are ordered alphabetically 
reflecting the comparable contribution of each author). 



 

 324 

Also at the earlier stage of the design process one or more general tasks are 
identified giving an answer to the question: what should the organization do? For 
identifying these tasks sometimes only the defined goals are considered. However 
when the involved agents are (partially) known, the definition of tasks can be based 
on the available skills and experience as well. These tasks are later refined to task 
hierarchies. For the tasks, the used / produced resource types are identified which can 
also form hierarchies. Based on the tasks, processes are defined and organized into 
workflows that can represent different levels of abstraction. The level of elaboration 
of these structures can depend on the type of the organization. In mechanistic 
organizations [4] the procedures are prescribed to a great degree of detail which 
should result in more elaborate structures refined to simple tasks and processes. In 
organic organizations (e.g., adhocracies) the procedures are described at a higher level 
of abstraction leaving more freedom to the agents to choose how to perform them 
which should result in less deep task hierarchies and less elaborate workflows.  

The design process can follow different paths through the views and concepts but 
several general guidelines can be formulated. When an informally defined goal is 
being formalized and made more precise this should be reflected on the PI structure - 
often this means that a new PI is defined or an existing one is revised. A change in the 
goal hierarchy should also be reflected on the task hierarchy by identifying new or 
existing tasks that can realize the new or revised goals. A change in the task hierarchy 
often brings changes to the current workflow design. Adding or revising processes in 
the workflow might give rise to new PIs that need to be monitored. When a PI is 
proposed it should be decided on its level of importance in order to find out if a new 
goal should be formulated based on it. The definition of roles is based on the currently 
defined tasks and processes. Fig.1 shows the main dependencies between concepts 
and structures in the framework which guide the design process.  

 

 

Fig. 1. Dependencies between the structures of the four views 

Power and authority relations between the defined roles are usually assigned at the 
later stages of the design process. However different general schemes can be 
predefined and committed to by the designer at the earlier stages as well leaving the 
details for later. Such schemes reflect different types of organizations identified in 

Goal  
hierarchies 

PI  
structure 

Task 
hierarchies 

Workflow  

Res. type 
hierarchies 

Resource 
flow 

Roles 
set 

Agents 
set 

Performance-
oriented view 

Process-
oriented view 

Organization-
oriented view 

Agent- 
oriented view 



 

 325 

organization theory such as: hierarchical, flat or team-based organizations which 
differ in the way the power is distributed, granted or accepted by the roles (agents).  

The choice of scheme should be driven by an analysis of the environment in which 
the organization should operate. For example a relatively stable environment tolerates 
a well-defined hierarchical structure which can help the organization to operate more 
efficiently. A changing environment can be addressed by designing a lighter, more 
flexible and dynamic structure that can easily adapt to the changes. Obviously the 
environment in which the organization will be situated plays an important role not 
only in defining power and authority relations. It needs to be taken into account at 
every step of the design process and in every view of the framework.  

Sometimes instead of designing an organization from scratch, a specification of an 
existing one needs to be created. Here a wide range of internal or external documents 
are used, e.g., company policies, job descriptions, mission statement, business plans, 
procedure descriptions, laws. However even the richest documentation leaves some 
information unspecified thus it is essential to involve domain experts and managers. 
In organizational redesign, the issue of maintaining the consistency and 
correspondence between the structures of different views becomes more complex and 
the tools for automatic analysis become indispensable.  

The framework allows reuse in a number of ways. Libraries of commonly 
appearing parts of structures (goals and tasks hierarchies, PI-structures, workflow 
graphs, etc.) can be stored and reused for organizations in the same domain. The 
research in identifying and classifying important PIs for different domains [e.g. 1, 2] 
can easily be applied here. Reuse can also be supported by predefined templates for 
various aspects of different types of organizations (mechanistic, organic, etc.). For 
example templates for domain-specific constraints can be provided for each view to 
be customized by the designer. The used tool allows defining parameterized temp-
lates (macros) for TTL formulae that can be instantiated in different ways which can 
also be used as support for designers not skilled in logics. For more details see [3]. 

References 

1. F.T.S. Chan, Performance measurement in a supply chain, International Journal of 
Advanced Manufacturing Technology 21(7), 534-548 (2003). 

2. E. Krauth, H. Moonen, V. Popova, and M. Schut, Performance Measurement and Control in 
Logistics Service Providing, in: Proceedings of Seventh International Conference on 
Enterprise Information Systems, ICEIS 2005, edited by C.-S. Chen et al., pp. 239-247 
(2005). 

3. V. Popova and A. Sharpanskykh, Process-Oriented Organization Modeling and Analysis 
Based on Constraints. Technical Report 062911AI, VUA, http://hdl.handle.net/1871/10545 

4. W.R. Scott, Institutions and organizations (SAGE Publications, Thousand Oaks 2001). 
 
 



 

 326 



 

 327 

 
 
 
 
 
 
 
 

Chapter 2 

 

A Formal Framework to Support Organization Design 1 

Abstract. Organizational design is an important topic in the literature on 
organizations. Usually the design principles are addressed informally in this 
literature. This paper makes a first attempt to formally introduce design 
operators to formalize the design steps in the process of designing 
organizations. These operators help an organization designer create an 
organization design from scratch as well as offer the possibility to revise 
existing designs of organizations. The operators offer both top-down 
refinements and bottom-up grouping options. Importantly, the operators can be 
combined into complex operators that can serve as patterns for larger steps in 
an organization design process. The usability of the design operators is 
demonstrated in a running example. The contribution of this paper provides a 
solid basis for the development of a software environment supporting 
interactive organization design processes. This is demonstrated by an 
implemented prototype example tool. 

1   Introduction 

Organizations play a key role in the modern society. To a large extent vitality and 
productivity of an organization situated in the environment of a certain type depend 
on kinds of structure and behavior of the organization that should conform to the 
environmental conditions. Organizational structures and processes are studied in 
social sciences, where organizational design is a special topic. Organization design is 

                                                           
1 Part of this chapter appeared as: Jonker, C.M., Sharpanskykh, A., Treur, J., Yolum, P.: Design 

Operators to Support Organizational Design. In: J. Gero (ed.), Proc. of the Second 
International Conference on Design Computing and Cognition, DCC’06, Springer Verlag, 
203-222 (2006) (the names of the authors are ordered alphabetically reflecting the 
comparable contribution of each author). 



 

 328 

concerned "with what an organization is ought to be" (Pfeffer 1978). More 
specifically, Galbaith (1978) stated that organization design "is conceived to be a 
decision process to bring about a coherence between the goals or purposes for which 
the organization exists, the patterns of division of labor and interunit coordination and 
the people who will do the work". Further Galbaith argues that design is an essential 
process for "creating organizations, which perform better than those, which arise 
naturally". 

In literature, a range of theories and guidelines concerning the design of 
organizations are present (Galbraith 1978; Duncan 1979; Minzberg 1993; Blau and 
Schoenherr 1971). For example, Duncan proposed a contingency model for designing 
organizations with environmental variables being the principal determinants of 
organizational models. Minzberg described a number of guidelines applicable mostly 
for designing hierarchical organizations that function in a relatively stable 
environment. However, despite the abundance of organizational design theories no 
general principles applicable to organizational design in all times and places can be 
identified (Scott, 1998). Moreover, almost all theoretical findings in organizational 
design are informal and often vague. In order to provide an organization designer or a 
manager with operational automated tools for creating, analyzing, and revising 
organizations, in the first place a formal representation of an organization model as a 
design object description should be provided. In addition to this, to address the 
operations performed on such design object descriptions during a design process, a 
formal representation of design operators underlying possible design steps is needed. 
Such design operators describe the possible transitions between design object 
descriptions. Using the design operators, a design process can be described by, at the 
various points in time, choosing a next operator to be applied to transform the current 
design object description into the next one. Examples of very simple design operators 
are adding or deleting an element of a design object description. More sophisticated 
design operators can involve, for example, the introduction of further refinement of 
the aggregation levels within a design object description. 

In this paper we introduce a formal organizational model format, to be used to 
represent design object descriptions. On top of this, a set of design operators is 
formally defined. The formalization is based on the sorted predicate logic (Manzano 
1996). 

Often in the literature organizational design is recognized as an engineering 
problem (Child 1973). From this perspective design is considered as a continuous 
process of a gradual change of an organizational model by applying certain operations 
(Pfeffer 1978). For example, Minzberg (1993) describes design process as the 
following sequence of operations: given overall organizational needs, a designer 
refines the needs into specific tasks, which are further combined into positions. The 
next step is to build the "superstructure" by performing unit grouping using special 
guidelines and heuristics (e.g., grouping by knowledge and skill, by work process and 
function, by time, by place, etc.). Then, the grouping process is repeated recursively, 
until the organization hierarchy is complete. 

For this paper we aimed at identifying the most commonly and generally used set 
of operators for designing organizations. For this purpose the literature from social 
sciences, and design principles used in other disciplines were investigated. For 
example, useful principles for organizational design can be found in the area of 



 

 329 

derivative grammars. Thus, graphical changes in organizational designs may be 
described by shape (Stiny 1991) and graph grammars (Rozenberg 1997). Whereas 
changes in textual (or symbolic) structural and dynamic descriptions of organizational 
elements may be specified by string (Chomsky 1965) and graph grammars, which 
allow representation of relationships between descriptions of different elements. In 
order to relate graphical organizational designs to designs described in a symbolic 
form, parallel grammars (or grammars defined in multiple algebras) may be used 
(Stiny 1991). For designing organization structures with multiple levels of 
representation (e.g., hierarchical organizations with departments, groups, sections) 
abstraction grammars (Schmidt and Cagan 1995) and hierarchical graph grammars 
(Habel and Hoffmann 2004) can be useful. By means of abstraction grammars, design 
is performed from the top level of the abstraction hierarchy to the bottom (most 
concrete) level, with each design generation using the prior level design as a pattern. 
Furthermore, mechanisms for choosing the most appropriate design generated by 
different transformations defined by grammars have been developed in different areas 
(e.g. recursive annealing in mechanical design (Schmidt and Cagan 1995)). Although 
it is widely recognized in social studies that no “best” design of an organization 
exists, a number of informal guidelines and best practices developed in the area of 
organizational design can help in identifying the most suitable organizational designs. 

Thus, based on the rich literature on design, this paper makes a first attempt to 
formalize the operators underlying organization design processes. A set of design 
operators is formally introduced, which provides the means for creating a design of an 
organization from scratch as well as revising existing designs for organizations. 
Furthermore, the formalization of operators provides a solid basis for a software tool 
supporting interactive organization design processes. 

In Section 2 a formal framework for the specification of design object descriptions 
for organizations is described. Sections 3 and 4 introduce a set of classes of operators 
to create and modify design object descriptions for organizations. Section 5 illustrates 
the application of a developed prototype by an example. Finally, Section 6 discusses 
future work and provides general conclusions. 

2   Format for an Organizational Model as a Design Object 
Description 

We consider a generic organization model, abstracted from the specific instances of 
agents (actors), which consists only of structural and behavioral descriptions of 
organizational roles and relations between them. A top-down ordering of definitions 
is used, meaning that concepts are referred before they are defined. 

Definition 1 (Organization)  
A specification of an organization with the name O is described by the relation 
is_org_described_by(O, Γ, ∆), where Γ is a structural description and ∆ is a description of 
dynamics.  



 

 330 

An organizational structure is characterized by the patterns of relationships or 
activities in an organization, and described by sets of roles, groups, interaction and 
interaction links, relations between them and an environment. 
Definition 2 (Organization Structure)  
A structural description Γ of an organizational specification described by the relation 
is_org_described_by(O, Γ, ∆) is determined by a set of relations, among which1:  
• a relation has_basic_components(Γ, R, G, IL, ILL, ONT, M, ENV) defined on the subsets 

R, G, IL, ILL, ONT, M, ENV of the corresponding general sets ROLE (the set of all 
possible role names), GROUP (the set of all possible group names), 
INTERACTION_LINK (the set of all possible interaction links names), 
INTERLEVEL_LINK (the set of all possible interlevel links names), ONTOLOGY (the 
set of all possible ontology names), ONTO_MAPPING (the set of all possible 
ontology mappings names), ENVIRONMENT (the set of all possible environment 

names)2 
• a relation for specifying a role r∈R in Γ is_role_in(r, Γ) 
• a relation for specifying an interaction link e∈IL in Γ is_interaction_link_in (e, Γ) 
• a relation for specifying an interlevel link il∈ILL in Γ is_interlevel_link_in(il, Γ) 
• a relation for specifying an environment env∈ENV is_environment_in(env, ENV) 
• a relation has_input_ontology(r, o) that assigns an input ontology o∈ONT to a role r∈R 

(similarly the relations for output, internal, and interaction ontologies are 
introduced: has_output_ontology(r, o), has_interaction_ontology(r, o), 
has_internal_ontology(r, o)) 

• a relation has_input_ontology(env, o) that assigns an input ontology o∈ONT to an 
environment env∈ENV (similarly the relations for output, internal, and interaction 
ontologies are introduced: has_output_ontology(env, o), has_interaction_ontology(env, o), 
has_internal_ontology(env, o)) 

• a relation is_ontology_for(el, o) that assigns an ontology o∈ONT either to a role el∈ R 
or an environment el∈ ENV 

• a relation has_onto_mapping(il, m) that associates an interlevel link il∈IL with an 
ontology mapping m∈M (an ontology mapping for an interaction link is defined 
similarly) 

• a relation is_interaction_link_of_type(e, type) that specifies an interaction link e∈IL of 
one of the types: role_interaction_link, env_input_link, env_output_link 

• a relation connects_to(e, r, r', Γ) that specifies a connection by an interaction link 
e∈IL from a source-role r ∈ R to a destination role r’∈R in Γ 

• a relation connects_to(e, env, r, Γ) that specifies a connection by an interaction link 
e∈IL of type env_output_link from an environment env∈ENV to a role r∈R in Γ 
(similarly for connects_to(e, r, env, Γ)) 

• a relation subrole_of_in(r', r, Γ) that specifies a subrole r’∈R of a role r∈R in Γ 
• a relation member_of_in(r ,g ,Γ) that specifies a member role r∈R of a group g∈G in Γ 
• a relation interlevel_connection(il, r, r', Γ) that specifies a connection by an interlevel 

link il∈ILL between roles r, r’∈R of adjacent aggregation levels 

                                                           
1 Notice that all the following relations are defined using the names of organization elements; 

the specifications for these elements will be provided in the following definitions 
2 The difference between R and ROLE, for example, is that R (subset of ROLE) is the set of all 

role names that occur in Γ.  



 

 331 

Organizational behavior is described by dynamic properties of the organizational 
structure elements. 

Definition 3 (Organization Dynamics)  
A description of dynamics ∆ of an organizational specification described by the 
relation is_org_described_by(O, Γ, ∆) is determined by a set of relations, among which: 
• a relation has_basic_components(∆, DP) that specifies a set of dynamic properties 

names DP defined in an organization model 
• a relation has_dynamic_property(r, d) that specifies a dynamic property d∈DP for a 

role r∈R (the relations for dynamic properties of an interlevel link, a group and an 
environment are defined in a similar manner: has_dynamic_property(e, d), 
has_dynamic_property(g, d), has_dynamic_property(env, d)) 

• a relation has_expression(d, expr) that identifies a dynamic property name d∈DP with 
a dynamic property expression expr∈DPEXPR (e.g., a formula in sorted first-order 
predicate logic)  
 

A role is a basic structural element of an organization. It represents a subset of 
functionalities, performed by an organization, abstracted from specific agents (or 
actors) who fulfill them. Each role has an input and an output interface, which 
facilitate the interaction (communication) with other roles. The interfaces are 
described in terms of interaction (input and output) ontologies: a vocabulary or a 
signature specified in order-sorted logic. An ontology contains objects that are typed 
with sorts, relations, and functions. Generally speaking, an input ontology determines 
what types of information are allowed to be transferred to the input of a role, and an 
output ontology predefines what kinds of information can be generated at the output 
of a role. 

Each role can be composed of a number of other roles, until the necessary detailed 
level of aggregation is achieved. Thus, roles can be specified and analyzed at different 
aggregation levels, which correspond to different levels of an organizational structure. 
A role that is composed of (interacting) subroles, is called a composite role.  

Definition 4 (Role)  
A specification of a role r is determined by: 
Objects: 

• or, oi, o, o', o''∈ONT, or= o ∪ o' ∪ o'', oi= o' ∪ o'', here ∪ is a functional symbol that 
maps names of ontologies to a name of the joint ontology  

Relations: 

• has_internal_ontology(r, o), has_input_ontology(r, o'), and has_output_ontology(r, o'') 

• has_ontology(r, or) and has_interaction_ontology(r, oi) 
• d∈DP, has_dynamic_property(r, d) 

The ontologies, which describe interfaces of interacting roles, can be different. 
Therefore, if necessary, the specification of a role interaction process includes 
ontology mapping. An ontology mapping m between ontologies o and o' is 
characterized by a set of relations is_part_of_onto_map(a, a', m), where a is an atom 
expressed in ontology o and a’ is an atom expressed using ontology o’. 

Definition 5 (Ontology mapping)  
An ontology mapping m between ontologies o and o' is characterized by: 



 

 332 

• is_part_of_onto_map(a, a', m), where a∈At(o) and a'∈At(o') 

• for a∈At(o) is_in_domain_of(a, m) ⇔ ∃a'∈At(o') is_part_of_onto_map(a, a', m),  
where At(o) is the set of all atoms, expressed in ontology o. 

• for a'∈At(o') is_in_range_of(a', m) ⇔ ∃a∈At(o) is_part_of_onto_map(a, a', m) 

Roles of the same aggregation level interact with each other by means of 
interaction links. The interaction between roles is restricted to communication acts. 

Definition 6 (Interaction link)  
An interaction link e is determined by: 
Relations: 

• is_interaction_link_in(e, Γ) 
• has_onto_mapping(e, m) for some m∈M 
• has_dynamic_property(e, d) for a number of d∈DP 

Constraints: 
• An interaction link e should connect two roles at the same aggregation level: 

is_interaction_link_in(e, Γ) � ∃r, r'∈R connects_to(e, r, r', Γ) ∧ ¬has_subrole(r, r') ∧ 
¬has_subrole(r', r) 

An interlevel link connects a composite role with one of its subroles. It represents 
an information transition between two adjacent aggregation levels. For roles 
connected by an interlevel link, this link is described by an ontology mapping 
between the corresponding elements of ontologies, part of which may be identity 
correspondence. Moreover, an ontology mapping associated with an interlevel link 
may be used for representing mechanisms of information abstraction. These 
mechanisms can be applied for transmitting (or generating) partial, aggregated or 
generalized information to the input (or from the output) of a role.  

Definition 7 (Interlevel link)  
A specification for an interlevel link il is determined by: 
Relations: 

• is_interlevel_link_in(il, Γ) 

• has_onto_mapping(il, m) for some m∈M 
Constraints: 

• An interlevel link il should connect two roles at two adjacent aggregation levels: 
is_interlevel_link_in(il, Γ) � ∃r, r'∈R subrole_of_in(r', r, Γ) ∧ (interlevel_connection(il, r, r', Γ) 
∨ interlevel_connection(il, r', r, Γ)) 

A group is a composite structural element of an organization that consists of a 
number of roles. In contrast to roles a group does not have well-defined input and 
output interfaces. Groups can be used for modeling units of organic organizations, 
which are characterized by loosely defined or sometimes informal frequently 
changing structures that operate in a dynamic environment. Furthermore, groups can 
be used at the intermediate design steps for identifying a collection of roles, which 
may be further transformed into a composite role.  

Definition 8 (Group)  
A group g is defined by the relations to other concepts: 
• membership relation member_of_in: r∈R member_of_in(r, g, Γ) 
• has_dynamic_property(g, d) for a number of d∈DP 



 

 333 

The conceptualized environment represents a special component of an organization 
model. According to some sociological theories (e.g., contingency theory), an 
environment represents a key determinant in organizational design, upon which an 
organizational model is contingent. Similarly to roles, the environment is represented 
in this proposal by an element having input and output interfaces, which facilitate in 
interaction with roles of an organization. The interfaces are conceptualized by the 
environment interaction (input and output) ontologies. Interaction links between roles 
and the environment are indicated in the organizational model as ones that have a 
specific type, namely env_input_link or env_output_link by means of the predicate 
is_interaction_link_of_type.  

The internal structure of the environment is not fixed, i.e., the designer has 
freedom to provide his/her own conceptualization of the environment. For example, 
the environment can be defined by a set of objects with certain properties and states 
and by causal relations between objects. On the one hand, roles are capable of 
observing states and properties of objects in the environment; on the other hand, they 
can act or react and, thus, affect the environment. We distinguish passive and active 
observation processes. For example, when some object is observable by a role and the 
role continuously keeps track of its state, changing its internal representation of the 
object if necessary, passive observation occurs. For passive observation, no initiative 
of a role is needed. Active observation is always concerned with the role's initiative 
and focusing. For particular purposes the internal specification for the environment 
can be conceptualized using one of the existing world ontologies (e.g., CYC, SUMO, 
TOVE (Bertino, Zarri and Catania 2001)). However, despite the richness and the 
extensiveness of these ontological bases, more specific and refined types of concepts 
and relations are required for modelling particular types of organizations and 
environments. 

The behavior of each element of an organizational structure is described by a set of 
dynamic properties. With each name of a dynamic property an expression is 
associated. Dynamic property expressions represent formulae specified over a certain 
ontology(ies). In particular, a dynamic property for a role is expressed using a role 
ontology. A dynamic property for an interaction link is constructed using the output 
ontology of a role-source of a link and the input ontology of a role-destination. A 
group dynamic property is expressed using ontologies of roles- members of a group.  

Definition 9 (Dynamic Property)  
A specification of a dynamic property d∈DP is described by: 
• has_expression(d, expr) for some expr∈DPEXPR 
• uses_ont(d, o) for some o∈ONT 
• if r∈R and has_dynamic_property(r, d), then uses_ont(d, o) � has_ontology(r, o) 
• if e∈IL and has_dynamic_property(e, d), then uses_ont(d, o) � ∃r, r'∈R, ∃o’, o’’∈ONT 

such that  connects_to(e, r, r', Γ) ∧ has_output_ontology(r, o’)  ∧ has_input_ontology(r', o’’) 
∧ o⊆o’∪o’’  

• if g∈G and has_dynamic_property(g, d), then uses_ont(d, o) � ∃r∈R member_of_in(r, G, 
Γ) ∧ has_ontology(r, o)  

 Dynamic properties expressions are specified in the Temporal Trace Language 
(TTL) (Jonker and Treur 2003; Sharpanskykh and Treur 2006), which is a variant of 
order-sorted predicate logic (Manzano 1996) To enable reasoning about the dynamic 



 

 334 

properties the language TTL includes special sorts, such as: TIME (a set of linearly 
ordered time points), STATE (a set of all state names of a system), and TRACE (a set of 
all trace names; a trace or a trajectory can be thought of as a timeline with for each 
time point a state). 

 

Definition 10 (Dynamic Property Expression)  
Dynamic Property Expression is constructed as follows: 
1.   STATOM⊆ONT and has_expression: STATOM x STATOMEXPR where  
   STATOM denotes a static atom in an ontology. 
2. Static property expressions (STATPROPEXPR) are generated by applying 

conjunction, disjunction, implication, and negation operators on STATOMEXPR 
and STATPROPEXPR.  

3. States relate to particular time points in traces (TRACE x TIME → STATE). States 
are related to state properties via the satisfaction relation |=, formally defined as a 
binary infix predicate (or by holds as a binary prefix predicate). For example, the 
expression state(γ: TRACE, t: TIME, output(r: ROLE)) |= p (or holds(state(γ, t, output(r)), p)) 
denotes that state property p holds in trace γ at time t in the output state of role r.  

4. The set of all dynamic properties expressions (DPEXPR) for the corresponding 
dynamic properties names (DP) is inductively defined by: 
(1) If v1 is a term of sort STATE, and u1 is a term of the sort STATPROPEXPR, then 

holds(v1, u1) is an atomic dynamic property expression (belongs to the sort 
DPATOMEXPR, which is a subsort of the sort DPEXPR). 

(2) If τ1, τ2 are terms of any TTL sort, then τ1 = τ2 is an atomic dynamic property 
expression.  

(3) If t1, t2 are terms of sort TIME, then t1 < t2 is an atomic dynamic property expression.  
(4) The set of dynamic properties expressions (sort DPEXPR) is defined inductively based 

on atomic dynamic property expressions using boolean propositional connectives and 
quantifiers ( ∧, ∨, �, ¬, ∃, ∀).  

The application of the basic components of an organizational model is illustrated 
by means of a running example. Consider the process of organizing a conference. A 
partial model for the considered conference organization is shown in Figure 1.  

At the most abstract level 0 the organization is specified by one role CO 
(Conference Organization) that interacts with the environment Env. Role CO can act 
in the environment, for example by posting a call for papers in different media. Note, 
that the organizational model is depicted in a modular way; i.e., components of every 
aggregation level can be visualized and analyzed both separately and in relation to 
each other. Consequently, scalability of graphical representation of an organizational 
model is achieved. At the first aggregation level the internal structure of the 
composite role CO is revealed. It consists of subrole Ch (Conference Chair), which 
interacts with two other subroles: OC (Organizing Committee) and PS (Paper 
Selection role). At the second aggregation level the internal structure of role PS is 
represented. It consists of subrole PCh (Program Chair), subrole PCM (Program 
Committee Member), and subrole R (Reviewer), which interact with each other. The 
input interface of role PS is connected to the input interface of its subrole PCh by 
means of an interlevel link. In our example the interlevel link describes the mapping 
between the input ontology of role PS and the input ontology of its subrole PCh. It 



 

 335 

means that information, transmitted to the role PS at the first aggregation level, will 
immediately appear at the input interface of subrole PCh, expressed in terms of its 
input ontology at the second aggregation level. 

Level 0

Ch OC

Level 1

CO

Level 2

PCh

Paper Selection

Env

Env environment

role

interaction link

interlevel link

input interface

output interface

PS

PCM

R

environment
interaction link

CO - Conference Organization

Env - Environment

Ch - Conference Chair

OC - Organizing Committee

PS - Paper Selection

PCh - Program Chair

PCM - Program Committee Member

R  - Reviewer

 

Fig. 1. Model of the conference organizing committee  

For example, if Ch requests some information from PS, the request actually arrives 
at the input of PCh. As a result of the internal communications among PCh, PCM and 
R, PCh will generate a reply that will appear as a response of PS for Ch.  

For each element of the considered organizational model a set of dynamic 
properties is identified and formally specified in TTL. In fact, these properties define 
constrains on behavior of elements, thus forming their expected behavioral repertoire 
in the organization.  

For example, for role Reviewer the dynamic property may be specified expressing 
that a reviewer should send his/her review to the Program Chair before a certain 
deadline. This property is expressed in TTL as follows:  

∀t state(γ, t, environment) |= deadline_for_conference(d) � ∃t’ < d state(γ, t’, 
output(Reviewer)) |= communicate_from_to(Reviewer, Program_Chair, inform, review_report)  

The predicate communicate_from_to(r1:ROLE, r2:ROLE, s_act:SPEECH_ACT, 
message:STRING) is used to specify the speech act s_act (e.g., inform, request, ask) from 
role-source r1 to role-destination r2 with the content message. 

3   Representing Design Operators for Organizational Design  

In this section a formal format to represent design operators and based on this format 
representations are introduces for a number of primitive design operators for 
designing organizations. Each primitive operator represents a specialized one-step 
operator to transform a design object description (organizational model) into a next 
one. Each operator is concerned with a part of the design object description to which 



 

 336 

it will be applied and the part of the transformed design object description, resulting 
from the operator application. The parts of the organization O that are being modified 
in terms of structure and dynamics (i.e., sets of dynamic properties) are specified 
using the in-focus relations: structure_in_focus(O, Rf, Gf, ILf, ILLf, ONTf, Mf, ENVf) and 

dynamics_in_focus(O, DPf), with Rf⊆R, Gf⊆G, ILf⊆IL, ILLf⊆ILL, ONTf⊆ONT, Mf⊆M, 
ENVf⊆ENV, DPf⊆DP. The remaining parts of the organization stay the same. 

The following operations all refer to an organization O∈ORGANIZATION described 
by relations is_org_described_by(O, Γ, ∆), has_basic_components(Γ, R, G, IL, ILL, ONT, M, 

ENV). This organization is modified by an operator, leading to a second organization 
O’∈ORGANIZATION described by relations is_org_described_by(O', Γ', ∆'), 
has_basic_components(Γ', R', G', IL', ILL', ONT', M', ENV’). 

Our choice of primitive operators is motivated by different design guidelines and 
theories from social sciences (Galbraith 1978; Blau and Schoenherr 1971; Lorsch and 
Lawrence 1970), other disciplines, and our own research on formal modeling of 
organizations (Broek et al 2005). However, the application of the proposed set of 
operators is not restricted only to these theories. Thus, a designer has freedom to 
choose any sequence of operators for creating models of organizations. The operators 
are divided into three classes, which are consecutively described in the following 
subsections. Thus, in Section 3.1 the operators for creating and modifying roles are 
specified; in Section 3.2 the operators for introducing and modifying different types 
of links are described; and in Section 3.3 the operators for composing and modifying 
groups are introduced. 

3.1   OPERATORS FOR ROLES 

The classes of primitive operators for creating and modifying roles in a design object 
description for an organization are shown in Table 1. 

Table 1. Operator classes for creating and modifying roles 

CLASS DESCRIPTION 
Role Introduction Introduces a new role 
Role Retraction Deletes all links, connected to a role with their dynamic properties 

and mappings; deletes a role and all dynamic properties, associated 
with this role  

Role Dynamic Property Addition Adds a new dynamic property to a role 
Role Dynamic Property 
Revocation 

Deletes an existing role dynamic property 

 
A role introduction operator adds a new role to the organization. Usually, in 

organizational design after organizational tasks have been identified, these tasks 
should be further combined into positions (roles), based on the labor division 
principles (Kilbridge and Wester 1966). For example, in the conference organization 
setting if the number of reviewers turns out to be insufficient, a Reviewer Recruiter 
role can be added to Paper Selection role (see Figure 2). This role, for example, may 
contact researchers to ask them to review for the conference by means of interaction 
with the environment. 



 

 337 

PCh

Paper Selection

PCM

R

PCh

Paper Selection

PCM

R RR

Role introduction
operator

 

Fig. 2. Application of the role introduction operator for adding Reviewer Recruiter role (RR) 
into Paper Selection role 

Role introduction operator 
Let op(O, O', δ) be an operator that changes O into O’ with a focus on δ. Then op is a 
role introduction operator iff it satisfies: 
1. δ∉R, δ∈R' such that is_role_in(δ, Γ') 
2. structure_in_focus(O, ∅, ∅, ∅, ∅, ∅, ∅, ∅) 

3. structure_in_focus(O', {δ}, ∅, ∅, ∅, ONTf', ∅, ∅), where ONTf'= is_ontology_for(o, δ) and 
o∈ONT' 

A role retraction operator removes all links, connected to a role with their 
dynamic properties and mappings; it also deletes dynamic properties, associated with 
the role and the role itself. In the example of the conference organization, when the 
Reviewer Recruiter has found enough reviewers, then the role can safely be removed 
from the organization.  

Role retraction operator 
Let op(O, O', δ) be an operator that changes O into O’ with a focus on δ. Then op is a 
role retraction operator iff it satisfies: 
1. δ∈R such that is_role_in(δ, Γ)  
2. δ∉R' 
3. structure_in_focus(O, {δ}, ∅, ILf, ILLf, ONTf, Mf) 

ILf={e∈ IL| ∃r'∈R connects_to(e, δ, r', Γ) ∨ ∃r''∈R  
connects_to(e, r'', δ, Γ)} 

 ILLf={ill∈ILL| ∃r∈R interlevel_connection(ill, δ, r, Γ) ∨   
 ∃r’∈R interlevel_connection(ill, r’, δ, Γ)} 
 ONTf= is_ontology_for(δ, o), o∈ ONT 

Mf={m∈M| ∃ill∈ILLf has_onto_mapping(ill, m) ∨ ∃e∈ILf  
 has_onto_mapping(e, m)} 
4. structure_in_focus(O', ∅, ∅, ∅, ∅, ∅, ∅) 
5. dynamics_in_focus(O, DPf) 

DPf= {dp∈DP| has_dynamic_property(δ, dp) ∨ ∃e∈ILf has_dynamic_property(e, dp)} 
6. dynamics_in_focus(O', ∅) 

 
A role dynamic property addition operator creates a new property for the existing 

role in the organization and a role dynamic property revocation operator deletes a 
property from the dynamic description of a role.  

Role dynamic property addition operator 
Let op(O, O', δ) be an operator that changes O into O’ with a focus on δ. Then op is a 
role dynamic property addition operator iff it satisfies: 
1. dynamics_in_focus(O, ∅) 



 

 338 

2. dynamics_in_focus(O', DPf') 
DPf'= {δ∈DP'| ∃r∈R has_dynamic_property(r, δ)} 

 
Role dynamic property revocation operator 
Let op(O, O', δ) be an operator that changes O into O’ with a focus on δ. Then op is a 

role dynamic property revocation operator iff it satisfies: 
1. dynamics_in_focus(O, DPf) 

DPf= {δ∈DP| has_dynamic_property(r, δ)} 
2. dynamics_in_focus(O', ∅) 

3.2   OPERATORS FOR LINKS 

In this subsection, we propose a set of classes of primitive operators for creating and 
modifying links in a design object description for an organization (see Table 2).  

Table 2. Operator classes for creating and modifying links 

CLASS DESCRIPTION 
Interaction Link Addition Adds a new interaction link between any two roles 
Interaction Link Deletion Deletes an interaction link and all dynamic properties, 

associated with this link 
Interlevel Link Introduction Introduces a new interlevel link 
Interlevel Link Retraction Retracts an existing interlevel link 
Interaction Dynamic Property Addition Adds a new dynamic property to an interaction link 
Interaction Dynamic Property Revocation Deletes an existing dynamic property, associated with 

an interaction link  

 
An interaction link addition operator allows the creation of an interaction link 

(information channel) between two existing roles in the organization. In the 
organizational design after organizational subtasks are assigned to roles, the problem 
of coordination of interdependencies among subtasks should be solved.  

In the conference management example, the Program Chair (playing in this case a 
managerial role) may request two reviewers to discuss their reviews. This requirement 
can be handled by the addition of interaction links between the appropriate reviewer 
roles in the design object description for an organization (see Figure 3).  
 
Interaction link addition operator 

Let op(O, O', δ) be an operator that changes O into O’ with a focus on δ. Then  
op is an interaction link addition operator iff it satisfies: 

1. δ∉IL, δ∈IL' such that is_interaction_link_in(δ, Γ') 
2. structure_in_focus(O, ∅, ∅, ∅, ∅, ∅, ∅, ∅) 
3. structure_in_focus(O', ∅, ∅, {δ}, ∅, ∅, Mf', ∅) 

Mf'= {m∈M'| has_onto_mapping(δ, m)} 



 

 339 

PCh

Paper Selection

PCM

R1

Interaction link
addition operator

R2

PCh

Paper Selection

PCM

R1 R2

 

Fig. 3. Application of the interaction link addition operator for adding interaction links between 
Reviewer 1 role (R1) and Reviewer 2 role (R2) in Paper Selection role 

An interaction link deletion operator is used to delete an existing interaction link 
between two roles as well as to revoke all dynamic properties, associated with this 
link. For example, the Program Chair has taken care of the acceptance proceedings for 
the conference. He does not need to be in contact with the reviewers any more. This 
case can be handled by the deletion of the interaction between two roles in the design 
object description for an organization.  
 
Interaction link deletion operator 
Let op(O, O', δ) be an operator that changes O into O’ with a focus on δ. Then op is an 
interaction link deletion operator iff it satisfies: 
1. δ∉IL', δ∈IL such that is_interaction_link_in(δ, Γ)  
2. structure_in_focus(O, ∅, ∅, {δ}, ∅, ∅, Mf) 

      Mf= {m∈M| has_onto_mapping(δ, m)} 
3. structure_in_focus(O', ∅, ∅, ∅, ∅, ∅, ∅) 
4. dynamics_in_focus(O, DPf)  

DPf= {dp∈DP| has_dynamic_property(δ, dp)} 
5. dynamics_in_focus(O', ∅) 

An interaction property addition operator creates a new property for an existing 
interaction link. An interaction property revocation operator deletes a property from 
the dynamic description of an interaction link. 

Interaction property addition operator 
Let op(O, O', δ) be an operator that changes O into O’ with a focus on δ. Then op is an 
interaction property addition operator iff it satisfies: 
1. dynamics_in_focus(O, ∅) 
2. dynamics_in_focus(O’, DPf') 

DPf'= {δ∈DP'| ∃e∈IL’ has_dynamic_property(e, δ)} 

Interaction property revocation operator 
Let op(O, O', δ) be an operator that changes O into O’ with a focus on δ. Then op is an 
interaction property revocation operator iff it satisfies: 
1. dynamics_in_focus(O, DPf)  

DPf= {δ∈DP| ∃e∈IL has_dynamic_property(e, δ)} 
2. dymanics_in_focus(O', ∅) 

An interlevel link creates a relation between a composite role and its subroles. It 
allows information that is generated outside the role, to be passed into the role 
through its input interface or it allows information, generated within a role to be 
transmitted outside through the role output interface. Normally, in hierarchical 
(mechanical) organizations decisions made at a managerial level are transferred to an 



 

 340 

operational level, e.g, to a certain department. Within the department this information 
is obtained by a certain role(s). For identifying, which roles obtain this information 
interlevel links are used. In the conference management example, the Conference 
Chair may have the possibility to send inquiries to Program Committee Members. 
This can be achieved by introduction of an interlevel link between composite role 
Paper Selection (with which role Conference Chair has a direct connection by an 
interaction link) and its subrole Program Committee Member (see Figure 4).  

 

PCh

Paper Selection

PCM

R

Interlevel link
introduction

operator
PCh

Paper Selection

PCM

R

 

Fig. 4. Application of the interlevel link introduction operator for adding an interlevel link 
between Paper Selection role and Program Committee Member role (PCM) 

Interlevel link introduction operator 
Let op(O, O', δ) be an operator that changes O into O’ with a focus on δ. Then op is an 
interlevel link introduction operator iff it satisfies: 
1. δ∉IL, δ∈IL' such that is_interlevel_link_in(δ, Γ)  
2. structure_in_focus(O, ∅, ∅, ∅, ∅, ∅, ∅, ∅) 
3. structure_in_focus(O', ∅, ∅, ∅, {δ}, ∅, Mf', ∅) 

Mf'= {m∈M'| has_onto_mapping(δ, m)} 

An interlevel link retraction operator is used for breaking off interaction between 
some composite role and one of its subroles. This operation removes an interlevel link 
from the design object description for an organization. If the Conference Chair does 
not need to communicate with Program Committee Members any more, the interlevel 
link between these two roles can be retracted. 

 
Interlevel link retraction operator 
Let op(O, O', δ) be an operator that changes O into O’ with a focus on δ. Then op is an 
interlevel link retraction operator iff it satisfies: 
1. δ∉IL', δ∈IL such that is_interlevel_link_in(δ, Γ)  
2. structure_in_focus(O, ∅, ∅, ∅, {δ}, ∅, Mf) 

Mf= {m∈M| has_onto_mapping(δ, m)} 
3. structure_in_focus(O', ∅, ∅, ∅, ∅, ∅, ∅) 

3.3   OPERATORS FOR GROUPS 

The classes of primitive operators for creating and modifying groups in a design 
object description for an organization are shown in Table 3.  

Often an organization designer can easily list a number of roles needed in an 
organization. However, it is not always clear, which roles are related to each other; 
which roles would most often interact with each other, and so on. Once identified, the 
organization designer can group roles into sets.  



 

 341 

Table 3. Operator classes for creating and modifying groups 

CLASS DESCRIPTION 
Grouping Combines roles into groups 
Degrouping Moves roles outside of a group and deletes the group 
Group-to-Role Transformation Transforms groups into roles 
Role-to-Group Transformation Transforms roles into groups 

 
In the literature on organizational design (Minzberg 1993) different principles of 

grouping are described. For example, role grouping can be performed based on (1) 
similarities in role functional descriptions; (2) role participation in the same 
technological process; (3) identity or similarity of role technical specialties; (4) role 
orientation on the same market or customer groups. Often roles belonging to the same 
group interact with each other intensively. However, in the proposed organizational 
model in contrast to roles, groups do not have interfaces. It means that every role 
within a group is allowed to interact with roles outside the group by means of direct 
interaction links. For example, in the conference organization the Program Chair and 
the Program Committee Members can be joined in one Program Committee group 
that will be responsible for making final decisions concerning paper acceptance. This 
can be accomplished by applying the grouping operator (see Figure 5). 

PCh

Paper Selection

PCM

R

PCh

Paper Selection

PCM

R

Grouping operator

 

Fig. 5. Application of the grouping operator to create the Program Committee group that 
consists of roles Program Chair (PCh) and Program Committee Member (PCM) for making 
final decisions concerning paper acceptance 

Grouping operator 
Let op(O, Rg, O', Gn) be an operator that changes O into O’ wrt. Gn∈G’, Rg⊆R. Then op is 
a grouping operator that creates a new group Gn from the subset of roles Rg iff it 
satisfies: 
Structural aspect: 
1. ∀a∈Rg: member_of_in(a, Gn, Γ’). 
2. structure_in_focus(O, ∅, ∅, ∅, ∅, ∅, ∅, ∅) 
3. structure_in_focus(O', ∅, {Gn}, ∅, ∅, ∅, ∅, ∅) 
Dynamic aspect: 
1. dynamics_in_focus(O, ∅) 
2. dynamics_in_focus(O', DPf') 

DPf'={dp∈DP'| has_dynamic_property(Gn, dp) }. 
3. Er={e∈IL| ∃r1∈Rg ∃r2∈Rg connects_to(e, r1, r2, Γ)} 

DPr={dp∈DP|∃r∈Rg has_dynamic_property(r, dp) ∨ ∃e∈Er has_dynamic_property(e, dp)} 
DPg={dp∈DP’| has_dynamic_property(Gn, dp)} 

4. DPg⊆DCL(DPr), where DCL(DPr) is the deductive closure of DPr 



 

 342 

A natural dual to the role grouping is role degrouping. This operator takes a group 
of roles and moves the roles to outside of the group. Role Degrouping transforms a 
group into a set of roles. 

Degrouping operator 
Let op(O, Gd, O', Rdg) be an operator that changes O into O’ wrt. Gd∈G, and Rdg⊆R'. 
Then op is a degrouping operator iff it satisfies: 
Structural aspect: 
1. Rdg={r∈R| member_of_in(r, Gd, Γ)} 
2. Gd∉G' 
3. structure_in_focus(O, ∅, {Gd}, ∅, ∅, ∅, ∅) 
4. structure_in_focus(O', ∅, ∅, ∅, ∅, ∅, ∅) 
Dynamic aspect: 
1. dynamics_in_focus(O, DPf) 

 DPf={dp∈DP| has_dynamic_property(Gd, dp) }. 
2. dynamics_in_focus(O', ∅) 

 
A group can be transformed into a role, a more coherent, integrated and formal 

organizational unit with proper interfaces (e.g., a department of an organization). For 
a group to act as a role, it should have well-defined (formalized) input and output 
interfaces. A Group-To-Role operator takes a group and adds these interfaces. In an 
organic organization with loosely defined frequently changing structure this would 
correspond to the formalization of one of the organizational units, i.e., providing a 
formal (permanent) structural description with the subsequent specifying formal 
functional procedures. For example, in the conference organization setting Program 
Committee group from the Paper Selection role can be further transformed into 
Program Committee role, a formal organizational unit with certain characteristics and 
functions (e.g., final decision making for the paper acceptance). Such transformation 
can be achieved by means of Group-to-Role operator (see Figure 6). The next logical 
step would be to limit interactions of subroles of Program Committee role only to 
those that exist within Program Committee role, and replace all interactions with the 
roles outside of Program Committee role by corresponding interactions between outer 
roles and Program Committee role. This can be done by applying interaction and 
interlevel link addition and retraction operators. In this case reviewers should follow a 
formal procedure for interactions with Program Committee role and cannot directly 
address any arbitrary Program Committee member.  
Group-to-Role operator 
Let op(O, g, O', r) be an operator that transforms group g∈G in O into role r∈R' in O’. 
Then op is a group-to-role operator iff it satisfies: 
Structural aspect: 
1. r∉R, g∉G'. 
2. ∀a∈R: member_of_in(a,g, Γ) � subrole_of_in(a, r, Γ’). 
3. structure_in_focus(O, ∅, {g}, ∅, ∅, ∅, ∅, ∅) 
4. structure_in_focus(O', {r}, ∅, ∅, ∅, ONTf', ∅, ∅) 

ONTf'={o∈ONT'| has_internal_ontology(r, o) ∨ has_input_ontology(r, o) ∨ 
has_output_ontology(r, o)} 

Dynamic aspect: 
1. dynamics_in_focus(O, DPf) 

DPf={dp∈DP| has_dynamic_property(g, dp)}. 



 

 343 

2. dynamics_in_focus(O', DPf') 
 DPf'={dp∈DP'| has_dynamic_property(r, dp)}. 

3. DP(g) � DP(r)  

 

PCh

Paper Selection

PCM

R

PCh

Paper Selection

PCM

R

Group-to-Role
operator

 

Fig. 6. Application of the Group-to-Role operator to transform Program Committee group into 
Program Committee role 

A role may consist of several other roles that are not exposed to the rest of the 
world. When a role is converted to a group, it exposes the input and output interfaces 
of the roles inside it. Transforming a role into a group results in the subroles now 
residing on the level of the prior composite role. For example, during the 
reorganization some formal organization units (e.g., groups, sections, and 
departments) have been eliminated, whereas the roles that constituted these units and 
relations between them were kept, thus, creating a basis for new organizational 
formations.  

Role-to-Group operator 
Let op(O, r, O', Gr) be an operator that changes O into O’, with respect to r∈R, and Gr∈G'. 
Then op is a role-to-group operator that transforms role r into group Gr iff it satisfies: 
Structural aspect: 
1. Gr∉G, r∉R'. 
2. ∀a∈R: subrole_of_in(a,r, Γ) � member_of_in(a, Gr, Γ’). 
3. structure_in_focus(O, {r}, ∅, ∅, ∅, ONTf, ∅) 

ONTf={o∈ONT| has_internal_ontology(r, o) OR has_input_ontology(r, o) OR 
has_output_ontology(r, o)} 

4. structure_in_focus(O', ∅, {Gr}, ∅, ∅, ∅, ∅) 

Dynamic aspect: 
1. dynamics_in_focus(O, DPf) 

DPf={dp∈DP| has_dynamic_property(r, dp)}. 
2. dynamics_in_focus(O', DPf') 

DPf'={dp∈DP'| has_dynamic_property(g, dp)}. 

4   Composing operators  

The described above primitive operators reflect major principles of organizational 
design. In practice next to the primitive operators more complex operators are used. 
Complex operators are represented as a combination of a certain number of primitive 
operators; some of them are given in Table 4.  



 

 344 

Table 4. Sample complex operators for creating and manipulating organizations 

NAME PATTERN FOR DESCRIPTION 
Interaction 
Level Ascent 

Interaction link deletion*. Role interaction 
dynamic property addition*. Interlevel link 
addition*. Interaction link addition*. 

Represents interaction between 
roles at a higher aggregation level  

Role 
refinement 

Role Retraction. Interlevel link deletion*. 
Interaction link deletion*. Interaction dynamic 
property addition*. Interlevel link addition*. 
Interaction link introduction*. Role dynamic 
property addition*. Role introduction* 

Divides a role into several roles 
such that the role properties of the 
first role are distributed over the 
newer roles 

Role join Role Retraction*. Interlevel link deletion*. 
Interaction link deletion*. Interaction dynamic 
property addition*. Interlevel link addition*. 
Interaction link introduction*. Role dynamic 
property addition*. Role introduction 

Joins several roles into a single role 

Adding 
aggregation 
levels 

Interaction Level Ascent. G-t-R. Role 
grouping. Role refinement* 

Aggregates existing roles of the 
organization in more complex roles 

The symbol * denotes that an operator can be applied zero, one or multiple times.  

Sometimes an effect produced by application of some composite operator to a 
design object description for an organization can be achieved by different 
combinations of primitive operators.  

Consider the Role Refinement operator as an example. This operator divides a role 
into several roles such that the role properties of the first role are distributed over the 
newer roles. In organizational design role refinement corresponds to the fine-tuned 
specialization and division of labor for increasing efficiency. It is usually 
recommended to divide the work so that the portions be differentiated rather than 
similar, and that each role is responsible for a small portion of the overall task. 
According to Adam Smith, division of labor is limited by the extent of the market; 
other general principles of labor division can be found in (Kilbridge and Wester 
1966).  

Let us illustrate the application of Role Refinement operator in the context of the 
conference organizing example. In Figure 7 the design object description for an 
organization is represented at the first aggregation level. Consider the situation when 
the decision is made to divide the tasks of Organizing Committee (OC) between the 
Local Organizing Committee (LOC), which is hence responsible for negotiations with 
publishers for printing proceedings and arranging the conference venue, and the 
General Organizing Committee (GOC), which is designated for solving financial and 
other questions. Thus, role OC is refined into two newer roles LOC and GOC. These 
roles are able to interact with each other and with role Chair.  

Alternatively, every composite operator can be considered as an aggregated one-
step operator. Such descriptions define formal conditions for a design object 
description for an organization before and after the application of a complex operator; 
therefore, they can serve for the purposes of checking integrity and consistency of a 
design object description. 

 



 

 345 

 

Fig. 7. Example of Role refinement operator application, in which the Organizing Committee 
role (OC) is refined into the Local Organizing Committee (LOC) and General Organizing 
Committee roles (GOC) 

An example of such a representation for the refinement operator is given below.  

Refinement operator (integrity definition) 
Let op(O, r, O', Rref) be an operator that refines role r∈R in O into a set of roles Rref⊆R' 
in O’. Then op is a refinement operator iff it satisfies: 

Structural aspect: 
1. r ∈ R, r ∉ R', Rref∩R=∅ 
2. structure_in_focus(O, {r}, ∅, ILf, ∅, ONTf, Mf, ∅) 

ILf={e∈IL| ∃r'∈R connects_to(e, r', r, Γ) OR ∃r''∈R connects_to(e, r, r'', Γ)}, 
Mf= {m∈M| ∃e∈ILf has_onto_mapping(e, m)} 
ONTf={o∈ONT| has_ontology(r, o)} 

3. structure_in_focus(O', Rref, ∅, ILf', ∅, ONTf', Mf', ∅) 
ILf'={e∈IL'| ∃r1∈Rref ∃r2∈Rref connects_to(e, r1, r2, Γ') OR ∃r1'∈Rref ∃r2'∈R', r2'∉Rref 
connects_to(e, r1', r2', Γ') OR ∃r1''∈Rref ∃r2''∈R', r2''∉Rref connects_to(e, r2'', r1'', Γ')}. 
ONTf'={o∈ONT'| ∃r1∈Rref has_ontology(r1, o) }. 

4. ∀e∈IL, ∀b∈R, b∈R', b∉Rref connects_to(e, r, b, Γ) � ∃e'∈IL', ∃r' ∈ Rref connects_to(e', r', 
b, Γ') and  

∀e∈IL, ∀a∈R, a∈R', a∉Rref connects_to(e, a, r, Γ) � ∃e'∈IL', ∃r'∈Rref connects_to(e', 
a, r', Γ'). 

5. ∀e' ∈ IL', ∀r'∈Rref ∀b∈R' and b∉Rref connects_to(e, r', b, Γ') � ∃e∈IL, connects_to(e, r, b, 
Γ) and  

∀e' ∈ IL', ∀r'∈Rref ∀a∈R' and a∉Rref connects_to(e, a, r', Γ') � ∃e∈IL, connects_to(e, 
a, r, Γ). 

Dynamic aspect: 
1. dynamics_in_focus(O, DPf) 

DPf={dp∈DP| has_dynamic_property(r, dp) ∨ ∃e∈ILf has_dynamic_property(e, dp)}. 
2. dynamics_in_focus(O', DPf') 

DPf'={dp∈DP'| ∃r1∈Rref has_dynamic_property(r1, dp) OR ∃e'∈ ILf' 
has_dynamic_property(e', dp)}. 

3. ONTp={o∈ONT| ∃dp∈DPf uses_ont(dp, o) AND o∉ONTf} 
∀ϕ∈DYNPROPEXPR, such as uses_only_ont(ϕ, 

�
ONTpo∈

o) [DPf � ϕ] �[DPf' � ϕ] 

A natural dual to the role refinement is role joining. This operator takes several 
roles and joins them into a single role. Consider again the organization arranging a 
conference. If over time the differences between the tasks of the Program Committee 
Member and Reviewer roles disappear, then the roles Program Committee Member 
and Reviewer can be joined in one role. 

Let us consider one more often used complex operator Adding Aggregation Levels. 
When certain roles have been joined in one group, this operator allows representing 



 

 346 

this group as an integral structural unit of an organization at the more abstract 
aggregation level. This operator has a counterpart in organizational design studies 
called departmentalization. Based on the departmentalization principles (cf. Galbraith 
1978) an organization is partitioned into structural units (called departments) with 
certain areas of responsibilities, a functional orientation, and a local authority power. 

In the conference organization Adding Aggregation Levels operator can be applied 
for representing the Program Committee as an integral role that consists of the 
Program Chair and the Program Committee Member roles within Paper Selection 
role. Such choice, for example, can be motivated by introducing a general formal 
procedure for paper acceptance. Hence, the Program Committee role is empowered 
(has a corresponding dynamic property) to make final decisions concerning paper 
selection. Adding Aggregation Levels operator for this example can be considered as 
three-step process (see Figure 8 for the representation of the organization model (role 
Paper Selection) at the second aggregation level).  

�������

.������

�/0

�/�

1

�/0

�/�

1

�/0

�/�

1

�/0

�/�

1

�������

.���2��21�
�

�����	�
����	�����
3���
!(�����

�/
�/

 

Fig. 8. Example of Adding Aggregation Levels operator application, in which the roles 
Program Chair (PCh) and Program Committee Member (PCM) are grouped together and 
transformed into the Paper Selection (PC) role 

First, roles Program Chair (PCh) and Program Committee Member (PCM) are 
joined into one group by application of Grouping operator. After that, at step 2 by 
means of the Group-to-Role operator the created group is transformed into role 
Program Committee by adding interaction interfaces. Finally, as the last step using 
Interaction Level Ascent operator interaction links between roles PC and Reviewer 
(R) are created, as well as interlevel links within role PC. 

5   A Prototype Tool to Support the Design of Organizations  

The formal representations of the organization entities and the design operators 
described in this paper provide a solid basis for the development of a software 



 

 347 

environment supporting interactive organization design processes. The proposed 
formalism accurately distinguishes different types of organization entities with their 
objects, relations and constraints, which can be naturally represented as classes with 
members and methods in object-oriented programming (OOP) languages. 
Furthermore, the identified relationships among organization entities may be fully 
captured by the fundamental OOP mechanisms (e.g., inheritance, interfaces and inner 
classes). The design operators can be programmed as transformation functions with 
explicitly defined arguments, conditions and effects of their application. Moreover, 
most of the introduced formal concepts are based on the notions from organization 
theories, which will facilitate use of a tool by organization modelers.  

For the purpose of illustration and evaluation a prototype tool was implemented. 
This tool supports organizational design and allows investigating its dynamics. The 
application of the design prototype is demonstrated on the example of role refinement 
as described in the previous Section. The dynamics of the design process is described 
in Table 5, which is graphically illustrated by a partial trace taken from the tool in 
Figure 91.  

Table 5. Dynamics of the design process for the role refinement 

ACTIONS OF THE DESIGNER STATES OF THE TOOL  
Chooses to address the role Organizing 
Committee (OC) 

Proposes potentially applicable operators for role OC 

Chooses the role refinement operator According to the specification of the role refinement 
operator, initiates execution of role introduction 
operator and requests the designer to specify role names 

Specifies GOC (General Organizing 
Committee) and LOC (Local Organizing 
Committee) names of the roles, into which 
role OC is refined 

Requests to specify the elements of the ontologies for 
the newly created roles 

Specifies the elements of the ontologies for 
roles LOC and GOC 

Initiates execution of the role dynamic property 
addition operator. Requests to specify dynamic 
properties for LOC and GOC roles 

(optional) Specifies dynamic properties for the 
roles 

Initiates execution of the interaction link introduction 
operator. Requests to specify interaction links between 
roles Chair (Ch), LOC and GOC 

Specifies, which interaction links are needed 
between the roles 

Initiates execution of the interaction dynamic property 
addition operator. Requests to specify dynamic 
properties for the introduced interaction links 

(optional) Specifies dynamic properties for the 
interaction links 

Initiates execution of the interaction link deletion 
operator, which removes all interaction links connected 
with role OC. Then, initiates execution of the role 
retraction operator, which removes role OC from the 
design object description 

 
In the design process, first, a designer chooses a part of the design object 

description, on which she intends to put her attention (in the considered example it is 
the role Organizing Committee). Next, the software proposes to the designer a 
number of operators, which are potentially applicable to the chosen part of the design 
object description. The designer chooses one of them, for the example, the role 

                                                           
1 The complete screen print of a trace illustrating dynamics of the design process for role 

refinement is given in Appendix A. 



 

 348 

refinement operator. Refinement is a composite operator that consists of an ordered 
sequence of primitive operators. Usually, most of the primitive operators constituting 
composite ones are imperative (e.g., Role Introduction for Refinement); yet 
application of some of them may be postponed to the future (e.g., Role dynamic 
property addition for Refinement) or skipped (e.g., Interlevel link deletion for 
Refinement). Further, the tool demands specifying roles, into which role OC has to be 
refined. The designer specifies role names (for this example, Local Organizing 
Committee (LOC) and General Organizing Committee (GOC)) and their ontologies.  

 

is_role_in(OC, G_ORG)
is_role_in(Ch, G_ORG)
is_role_in(PS, G_ORG)

is_interaction_link(L1, G_ORG)
is_interaction_link(L2, G_ORG)
is_interaction_link(L3, G_ORG)
is_interaction_link(L4, G_ORG)

connects_to(L1, Ch, PS, G_ORG)
connects_to(L2, PS, Ch, G_ORG)
connects_to(L3, Ch, OC, G_ORG)
connects_to(L4, OC, Ch, G_ORG)

designer_attention(OC, G_ORG)
is_possible_operator_for_in(role_retraction, OC, ORG)

is_possible_operator_for_in(role_dyn_prop_add, OC, ORG)
is_possible_operator_for_in(role_dyn_prop_revoke, OC, ORG)

is_possible_operator_for_in(role_to_group, OC, ORG)
is_possible_operator_for_in(role_refinement, OC, ORG)

designer_supports(role_refinement, OC, ORG)
selected_operator(role_refinement, OC, ORG)

operator(role_intoduction, ORG)
request(role_name, ORG)
is_role_in(GOC, G_ORG)
is_role_in(LOC, G_ORG)

time 0 1 2 3 4 5 6 7 8 9 10 

Fig. 9. Screen print of a trace illustrating dynamics of the design process for the role refinement 

After that the software tool requests the designer to specify dynamic properties for 
the created roles. The designer may postpone this operation to a future time point. 
Thereafter, the tool proposes to add interaction links between roles LOC, GOC and 
role Chair (Ch), with which the original role OC was connected. After that dynamic 
properties for the introduced interaction links may be added. As the last step role OC 
and interaction links connecting it with role Ch, as well as OC role and interaction 
links dynamic properties are automatically removed from the design object 
description. 

6   Discussion  

This paper introduces a representation format and a variety of operators for the design 
of organizations specified in this representation format. The described operators have 
several important characteristics. First, they can be combined into composite 



 

 349 

operators that can serve as patterns for larger design steps in certain design cases. 
Second, the identified set of operators is independent of any organization theory or 
sociological methodology: they can be used for formalizing design principles from 
different theories. Third, a designer has freedom to choose any sequence of operators 
for creating designs of organizations of most types (e.g., functional and organic). An 
example of functional organizational design was discussed in this paper. When 
designing adaptive organic organizations, dedicated structural elements (e.g., the 
organization change management role) and dynamic descriptions (e.g., properties that 
describe the adaptation process) are specified. The operators offer both top-down 
refinements, as well as bottom-up grouping options. Finally, as has been shown the 
developed tool provides interactive support in designing organizations. In the future a 
graphical interface for representing design objects in the tool will be developed.  

To a certain extent organizations can be considered as compositional systems 
(Wijngaards, 1999). However, models and design methods for such systems do not 
allow representing many organization domain-specific concepts and operators (e.g., a 
group, a Group-to-Role operator) and, therefore, cannot capture many important 
organization phenomena.  

In the area of component-based software engineering a number of design patterns 
for building software components (e.g., refinement, chaining, disjoint composition) 
have been introduced (He, Li, and Liu 2005). These patterns specify general-purpose 
manipulations with programming constructs (e.g., interface and private methods of 
components); while in organizational design literature organization transformations 
are described using domain-specific concepts. The formal representation format 
proposed in this paper bridges this gap and facilitates the abstraction of organization 
domain into general-purpose programming design patterns. 

Formal specification of design processes enables verification of structural and 
dynamic consistency of a design object description for an organization. The 
verification of structural consistency is based on the consistency definitions for 
operators, such as one given in Section 4 for the role refinement operator. For 
verifying dynamic consistency (e.g., checking relations between dynamic properties 
defined at different aggregation levels of a model representation) model checking 
techniques (McMillan 1993; Sharpanskykh and Treur 2006) may be used, which will 
be further investigated in the future. Furthermore, verification mechanisms based on 
certain requirements on organizational functioning and performance (e.g., using 
organization performance indicators) represent a subject of our future research.  

Another way to evaluate an organizational model is by performing simulations. For 
this purpose, agents with different types of attitudes and internal architectures may be 
allocated to roles within an organization model on certain conditions. After that, by 
considering different types and sequences of environmental influences provided 
within certain simulation scenarios, traces (i.e., temporal sequences of events in the 
environment and within the organization) corresponding to the execution of scenarios 
can be generated. These traces may be further used for analysis of the organizational 
model, more specifically, for evaluating different global properties of the 
organizational model (e.g., robustness, stability, efficiency, and effectiveness). 

In conclusion, this paper introduced a representation format and a set of formally 
represented design operators dedicated to the design of organizations of most types. 
Although the choice of operators is motivated by different theories and guidelines 



 

 350 

from the area of organizational design, the application of the proposed operators is not 
restricted to any theories from social studies. The formalization of the operators 
provides a solid basis for the development of a software tool supporting interactive 
organization design processes. A prototype implementation for such a tool is 
demonstrated by an example in this paper. 

References 

Bertino, E, Zarri, GP, Catania, B: 2001, Intelligent Database Systems. Addison-Wesley 
Professional. 

Blau, PM and Schoenherr, RA: 1971, The structure of organizations, Basic Books Inc., New 
York London. 

Broek, E.; Jonker, C.; Sharpanskykh, A.; Treur, J. and Yolum, P. 2006. Formal Modeling and 
Analysis of Organizations. In O. Boissier, J. Padget, V. Dignum, G. Lindemann, E. Matson, 
S. Ossowsk, J. Sichman and J. Vazquez Salceda (eds.), Coordination, Organization, 
Institutions and Norms in Agent Systems I, LNAI 3913, Springer, 18-34 

Child, J: 1973, Organization: A Choice for Man, in J Child (ed), Man and Organization, 
Halsted Press, London, pp. 234-570. 

Chomsky, N: 1965, Aspects of the Theory of Syntax, The MIT Press. 
Duncan, RB: 1979, What Is the Right Organization Structure? Organizational Dynamics, 

Winter, pp.59-79. 
Galbraith, JR: 1978: Organization design, Addison-Wesley Publishing Company, London 

Amsterdam Sydney. 
Habel, A and Hoffmann, B: 2004, Parallel Independence in Hierarchical Graph Transformation, 

in Proceedings of International Conference on Graph Transformation, LNCS, Volume 
3256, Springer-Verlag, Heidelberg, pp. 178-193. 

He, J, Li, X, and Liu, Z: 2005, Component-Based Software Engineering, in D V Hung, M 
Wirsing (eds), Theoretical Aspects of Computing, LNCS 3722, Springer, pp. 70-95. 

Huth, M and Ryan, MD: 2004, Logic in Computer Science: Modelling and Reasoning about 
Systems, Cambridge University Press. 

Jonker, CM., Treur J: 2003, A temporal-interactivist perspective on the dynamics of mental 
states, Cognitive Systems Research Journal, 4(3): 137-155. 

Kilbridge, M and Wester, L: 1966, An economic model for the devision of labor, Management 
Science, February: 255-269. 

Lorsch, JW and Lawrence, PR: 1970, Organization design, Richard D. Irwin Inc., USA. 
Manzano, M.: 1996, Extensions of First Order Logic, Cambridge University Press. 
McMillan, K: 1993, Symbolic Model Checking, Kluwer Academic Publishers. 
Mintzberg, H: 1993, Structure in Fives: Designing Effective organizations, Prentice-Hall, NJ. 
Pfeffer, J: 1978, Organizational design, AHM Publishing Corp., Illinois, USA. 
Rozenberg, G (ed): 1997, Handbook of Graph Grammars and Computing by Graph 

Transformation, Volume 1: Foundations, World Scientific. 
Schmidt, LC and Cagan, J: 1995, Recursive Annealing: A Computational Model for Machine 

Design, Research in Engineering Design, 7: 102-125. 
Scott, WR: 1998, Organizations: rational, natural and open systems, Prentice Hall, USA. 
Sharpanskykh, A., and Treur, J.: 2006, Verifying Interlevel Relations within Multi-Agent 

Systems, in Proceedings of the 17th European Conference on Artificial Intelligence, 
ECAI'06, IOS Press 

Stiny, G: 1991, The Algebras of Design, Research in Engineering Design, 2: 171-181. 
Wijngaards, N: 1999, Re-design of Compositional Systems, PhD Thesis, SIKS dissertation 

Series, 99-6, Vrije Universiteit Amsterdam. 



 

 351 

Appendix A. Screen print of a trace illustrating dynamics of the 
design process for role refinement 
 

 
is_role_in(Ch, G_ORG)
is_role_in(PS, G_ORG)

is_interaction_link(L1, G_ORG)
is_interaction_link(L2, G_ORG)

connects_to(L1, Ch, PS, G_ORG)
connects_to(L2, PS, Ch, G_ORG)

has_input_ontology(PS, O2)
has_input_ontology(Ch, O1)

has_output_ontology(PS, O5)
has_output_ontology(Ch, O4)

is_role_in(OC, G_ORG)
has_input_ontology(OC, O3)

has_output_ontology(OC, O6)
is_interaction_link(L3, G_ORG)

connects_to(L3, Ch, OC, G_ORG)
is_interaction_link(L4, G_ORG)

connects_to(L4, OC, Ch, G_ORG)
designer_attention(OC, G_ORG)

is_possible_operator_for_in(role_retraction, OC, ORG)
is_possible_operator_for_in(role_dyn_prop_add, OC, ORG)

is_possible_operator_for_in(role_dyn_prop_revoke, OC, ORG)
is_possible_operator_for_in(role_to_group, OC, ORG)

is_possible_operator_for_in(role_refinement, OC, ORG)
designer_supports(role_refinement, OC, ORG)
selected_operator(role_refinement, OC, ORG)

operator(role_intoduction, ORG)
request(role_name, ORG)
is_role_in(GOC, G_ORG)
is_role_in(LOC, G_ORG)

request(role_ontology, ORG)
input_ontology(GOC, O7)

output_ontology(GOC, O8)
input_ontology(GOC, O9)

output_ontology(GOC, O10)
operator(role_dyn_prop_addition, ORG)

request(role_dyn_prop, GOC, ORG)
request(role_dyn_prop, LOC, ORG)

operator(interaction_link_intro, ORG)
request(interaction_link, ORG)

is_interaction_link_in(L5, G_ORG)
connects_to(L5, Ch, GOC, G_ORG)

is_interaction_link_in(L6, G_ORG)
connects_to(L6, GOC, Ch, G_ORG)

is_interaction_link_in(L7, G_ORG)
connects_to(L7, Ch, LOC, G_ORG)

is_interaction_link_in(L8, G_ORG)
connects_to(L8, LOC, Ch, G_ORG)

is_interaction_link_in(L9, G_ORG)
time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 



 

 352 

connects_to(L9, GOC, LOC, G_ORG)
is_interaction_link_in(L10, G_ORG)

connects_to(L10, LOC, GOC, G_ORG)
operator(interaction_dyn_prop_addition, ORG)

request(interaction_link_dyn_prop, L5, ORG)
request(interaction_link_dyn_prop, L6, ORG)
request(interaction_link_dyn_prop, L7, ORG)
request(interaction_link_dyn_prop, L8, ORG)
request(interaction_link_dyn_prop, L9, ORG)

request(interaction_link_dyn_prop, L10, ORG)
operator(interaction_link_deletion, L4, ORG)
operator(interaction_link_deletion, L3, ORG)

operator(role_retraction, OC, ORG)
time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 

 



 

 353 

 

 
 
 

Part V 

Case Study 
 
 
 



 

 354 

An Air Traffic Control Organization (ATCO) ensures a safe and efficient flow of 
aircrafts both at airports and in the air. Nowadays, an ATCO represents a complex 
organization that involves many parties with diverse goals performing for a wide 
range of tasks. Among the ATCO’s participants are airports, air navigation service 
providers (ANSP), airlines, regulators, and the government. Constantly increasing air 
traffic correlates with the growth of intensity and the complexity of interactions 
among all the parties of an ATCO. Due the structural and behavioral complexity of 
ATCOs, mistakes, inconsistencies and performance bottlenecks are not rare in such 
organizations. Some of these organizational flaws may result into performance issues, 
whereas others can seriously affect safety, causing incidents and even accidents. 
Therefore, the possibility to perform detailed and reliable automated analysis aiming 
at detecting safety hazards and performance issues in the structures and dynamics of 
ATCOs is of primary importance in the air traffic management domain. 

To enable such analysis possibilities, in this part the design steps identified in Part 
IV will be consequently applied to create a specification for an air traffic control 
organization. This organization combines features of mechanistic and organic 
organizations. All the required aspects of the organization will be specified using the 
concepts and relations of the proposed modeling methods. The analysis of the 
constructed specifications will be performed by applying the general and specific for 
particular views analysis techniques introduced in this thesis. Furthermore, the 
consequences of different types of agent behavior that diverges from the formal 
organization will be investigated by performing simulations.  
 
 



 

 355 

 
 
 
 
 
 
 
 
 

Chapter 1 

 

Modeling and Analysis of Organizations from the Air 
Traffic Management Domain 1 

1   Introduction 

In this case study we shall focus in particular on three general, related to each other 
tasks performed by the ATCO:  

(1) the development and evaluation of a new operation; 
(2) the movement of an aircraft on the ground; 
(3) the incident reporting and investigation. 
In the following these tasks will be briefly described. Initially, all operations 

related to the movement of an aircraft on the ground should be developed and 
evaluated (e.g., the introduction of runways and taxiways). The development of a new 
operation is often performed by a specially created design team. This team comprises 
representatives of the operation design units of the airport at which the developed 
operation will be introduced, of the ANSP, who will be involved into the operation 
execution and of an airline (usually the largest one that most often uses the airport). 
The control over the team functioning is exercised by the team manager. Furthermore, 
during the operation development process the intermediate design concepts of the 
operation are provided to the operation assessment unit of the ANSP for the 
evaluation. In such a way, mistakes and inconsistencies in the operation design can be 
identified at early stages of the operation design. Also, the experience shows that such 

                                                           
1 We would like to acknowledge the National Aerospace Laboratory for the cooperation and the 

European Organization for the Safety of Air Navigation for funding the project CARE INO 
III, in the frames of which this case study has been performed. 



 

 356 

a way of work organization results into the operation concepts of a higher quality and 
into the decrease of the operation development time. When the concept is developed 
and evaluated, it is provided to the operation management team of the ANSP and to 
the executive management of the ANSP for the final review. 

Based on the evaluated operations related to the movement of an aircraft on the 
ground the descriptions of tasks are specified, in particular, the taxiing of an aircraft 
to the designated runway and the subsequent take off from this runway. During the 
taxiing process an aircraft moves from one sector of the airport to another, until it 
reaches the runway designated for take off. The monitoring and the control over the 
traffic in a sector or on a runway are performed by a dedicated controller. During the 
taxiing the control over an aircraft is handed over from one controller to another, 
depending on the physical position of the aircraft. Before crossing an active runway 
the crew of an aircraft should request the controller responsible for the runway for 
clearance. Only when the clearance is provided, the aircraft is allowed to cross. The 
same holds for the take off operation. 

In case an incident/accident occurs during the taxiing or take off execution, this 
should be reported and further investigated. There are several incident reporting paths 
exist in the ATCO, which will be elaborated in this case study later.  

In Section 2 first the methodological steps for modeling and analysis of the ATCO 
structure and processes for the identified tasks is described. Then, the constructed 
organizational specification for the ATCO is presented in Section 3. Section 4 
discusses the analysis results of the constructed organizational specification using 
both correctness verification and simulation techniques. Finally, the conclusions are 
presented in Section 5. 

2   Methodology 

To perform analysis of the organizational structure and behavior the following types 
of specifications should be developed: 
(1) the specification of the formal organization; 
(2) the specifications of agents of different types (i.e., their characteristics and 

behavior) and the principles of their allocation to the roles of the organization. 
The required specifications for existing organizations may be created using 

different sequences of design steps. The chosen sequence given below is one of the 
alternatives: 
 
Step 1. The identification of the organizational roles 
Identify organizational roles, both simple and composite ones and establish subrole-
relations between them. 
 
Step 2. The specification of the interactions between the roles 
2a) Identify interaction relations between the roles. 
2b) Identify additional roles that enable interactions between composite roles.  
2c) Identify input and output ontologies for each role. 
 



 

 357 

Step 3. The identification of the requirements for the roles 
Identify the requirements for each role at the lowest aggregation level.  

 
Step 4. The identification of the organizational performance indicators and goals 
Identify organizational goals and performance indicators, relations between them and 
organizational roles.  
 
Step 5. The specification of the resources 
Identify organizational resource types and resources, and provide characteristics for 
them. 
 
Step 6.  The identification of the organizational tasks, the relations between the tasks, 
and relations between the tasks, the resources and the goals 
6a) Identify the task hierarchy that comprise tasks related by AND- and OR-relations. 
6b) For each task identify its characteristics: name, minimum and maximum duration. 
6c) Relate each task to organizational resource(s). 
6d) Relate each task to organizational goal(s). 
 
Step 7. The specification of the authority relations 
Identify authority relations (i.e., formal power relations): superior-subordinate 
relations on roles with respect to tasks, responsibility relations, control for resources, 
authorization relations. 
 
Step 8. The specification of the flows of control 
Identify flows of control (workflows). 

 
Step 9. The specification of the characteristics and behavior of agents, and the agent 
allocation principles. 

 
Step 10. The identification of the generic and domain-specific organizational 
constraints 
Identify general and domain-specific rules on the concepts and relations from the 
particular organizational perspectives and across different perspectives. 

 
Note that for the execution of the steps 1-8 and 10 (formal) organizational 

documents are required (e.g., organizational charts, job descriptions, procedures, 
regulations). By execution of these steps the specification of the formal organization 
is created. On the contrary, the step 9 aims at the identification of possible (realistic) 
variations and deviations of/from the predefined organizational structure and behavior 
that may be attributed to agents allocated to the organizational roles.  

For the analysis of the developed specifications a number of general and dedicated 
techniques of the framework will be applied. First, the correctness of the 
specifications will be checked using the verification techniques of the corresponding 
views. Then, the behavior of the organization in particular configurations and in 
particular environmental settings will be investigated by simulation. 



 

 358 

3   The organizational specification of the ATCO 

The constructed specifications will be described along the methodological steps 
identified in Section 2. 

 
Step 1. The identification of the organizational roles 
In the considered organization roles can be represented at three aggregation levels. 
For example, at the aggregation level 1 the Airport is considered as one composite 
role. The subroles of the Airport (the Airport Operation Design Unit and the Airport 
Management) are described at the aggregation level 2, and so forth. A special role 
type is the environment (env). In Table 1 all the generic roles of the considered 
organization with their subroles are listed. Note that based on the introduced generic 
roles role instances may be defined for particular applications. In particular, in this 
case study two instances of the Runway Controller role and two instances of the 
Ground Controller role are introduced. Furthermore, depending on the analysis type 
different number of instances of the role Airline will be considered.  

In the following the abbreviations are used for the role names: 
ANSP Air Navigation Service Provider 
ATC Air Traffic Control 
EMATC Executive Management ATC 
OAU Operation Assessment Unit 
OMT Operation Management Team 
ODU Operation Design Unit 
SIU Safety Investigation Unit 
TCU Tower Control Unit 
CST Controllers Supervision Team 
AODU Airport Operation Design Unit 
SMU Safety Management Unit 
NODT New Operation Design Team 

Table 1. Identified organizational roles at three aggregation levels. 

Level 1 Level 2 Level 3 
ATC Executive Management  - 

Team Member (CSU) 
Team Member (ODU) 
Team Member (Systems) 
Team Member (Maintenance) 

Operation Management Team 

OMT Leader 
Operation Analyst Operation Assessment Unit 
Head OAU 
Operation designer Operation Design Unit 
Head of ODU 
Safety Investigator Safety Investigation Unit 
Head of SIU  
Ground Controller 

Air Navigation Service 
Provider 

Tower Control Unit 

Runway Controller 



 

 359 

Tower Controllers Supervisor  
Env 
Controllers Supervisor 

 

Controllers Supervision Team 
Head of Controllers 
Airport Operation Designer Airport Operation Design 

Unit Head AODU 
Airport 

Airport Management - 
Airline Management - 
Safety Management Unit - 

Pilot in command 
Second Pilot 

Airline 

Crew 

Env 
Regulator - - 

Design Team Manager - 
ANSP design representative - 
Airport design representative - 

New Operation Design Team 

Airline representative - 
Env - - 

 
Step 2. The specification of the interactions between the roles 
Interaction relations between roles can be depicted at different aggregation levels. In 
particular, the interaction relations between the roles at the aggregation level 1 of the 
ATCO are depicted in Figure 1. 

To enable the interaction between the controllers of the ANSP and the pilots of the 
Airline the role Controller-Crew Interaction is introduced. This role consists of the 
subroles the Aircraft’s Controller, who performs the constant monitoring and control 
over the aircraft and the Crew Representative role that interacts with the controllers 
on behalf of the aircraft’s crew, when the contact is required. This interaction role is 
depicted at the aggregation level 2 in Figure 2.  

 

Fig. 1. The interaction relations between the generic roles at the aggregation level 1 
 

 

Fig. 2. The additional role for the interaction between the ANSP and the Airline composite 
depicted at the aggregation level 2 

The subroles of the role ANSP are depicted at the aggregation level 2 in Figure 3 
below. 



 

 360 

 
 

Fig. 3. The interaction relations between the subroles of the role Air Nativation Service 
Provider at the aggregation level 2 

The subroles of each role of the ANSP at the level 2 are depicted at the level 3 
below in Figures 4-6. 

 

Operation
Analyst

Head
OAU

Operation Assessment Unit
 

 
 (a) (b) 

Fig. 4. The interaction relations between the subroles of the role Operation Management Team 
(a) and of the role Operation Assessment Unit (b) at the aggregation level 3 

 

 
 
 (a) (b) 

Fig. 5. The interaction relations between the subroles of the role Operation Design Unit (a) and 
of the role Controllers Supervision Team (b) at the aggregation level 3 

 



 

 361 

 
 

 (a)       (b) 
 

Fig. 6. The interaction relations between the subroles of the role Tower Control Unit (a) and of 
the role Safety Investigation Unit (b) at the aggregation level 3 

The subroles of the New Operation Design Team role are depicted at the level 2 in 
Figure 7. 

 

 
 

Fig. 7. The interaction relations between the subroles of the role New Operation Design Team 
at the aggregation level 2. 

The subroles of the Airport role are given in Figure 8 (a) and (b) at the aggregation 
levels 2 and 3 correspondingly. 

 

 
 

 (a) (b) 

Fig. 8. The interaction relations between the subroles of the role Airport at the aggregation 
level 2 (a) and of its subrole Airport Operation Design Unit at the aggregation level 3 (b) 

The subroles of the Airline role are given in Figure 9 (a) and (b) at the aggregation 
levels 2 and 3 correspondingly. 

 
 



 

 362 

Pilot in
Command

Second
Pilot

CrewEnv

 
 

 (a)  (b) 

Fig. 9. The interaction relations between the subroles of the role Airline at the aggregation level 
2 (a) and of its subrole Crew at the aggregation level 3 (b) 

Note that in principle the environment may be included in almost every composite 
role of the ATCO, as almost all of these roles and their subroles interact with the 
environment in reality. However, for the purposes of this case study, for the 
considered tasks only the interactions of the controllers and the pilots with the 
environment will be modeled explicitly. 

 
Ontologies 
For each role three types of ontologies are specified: an input ontology, an output 
ontology and an internal ontology. Input and output ontologies are often referred to as 
interface ontologies, which are used to describe interactions with other roles. An 
internal ontology is used to specify internal states of agents allocated to roles.  

For specifying communications the interface ontologies for all roles include the 
following predicate: 

communication_from_to: ROLE x ROLE x MSG_TYPE x CONTENT 

Here the first argument denoted the role-source of information, the second – the 
role-recipient of information, the third argument denoted the types of the 
communication (which may be one of the following {observe, inform, request, decision, 
readback}) and the fourth – the content of the communication. The sort ROLE is a 
composite sort that comprises all subsorts of the roles of particular types (e.g., 
CONTROLLER, PILOT). The sort CONTENT is also the composite sort that comprises all 
names of terms that are used as the communication content. Such terms are 
constructed from sorted constants, variables and functions in the standard predicate 
logic way. For example, a set of functions that are used to construct the content of 
communications generated by the controller role of at its output is given in Table 2. 

Table 2. A set of functions that belong to the output ontology of the role Aircraft’s Controller 

Function Short description 
aircraft_approaches_to: AIRCRAFT x 
REGION  → CONTENT 

Specifies an aircraft that approaches to a sector or a 
runway 

aircraft_moved_from_to: AIRCRAFT x 
REGION x REGION → CONTENT 

Specifies an aircraft that moved from one region to 
another 

aircraft_at: AIRCRAFT x REGION → 
CONTENT 

Identifies an aircraft situated in a certain sector or 
on a certain runway 

instruction: INSTRUCTION_TYPE x 
RUNWAY → CONTENT 

Specifies an instruction (i.e., a clearance to cross, a 
clearance to take off, an instruction to position and 
hold) to a crew  



 

 363 

change_frequency_to: FREQUENCY 
→ CONTENT 

Identifies a new frequency for a crew 

clear_of_the_runway: AIRCRAFT x 
RUNWAY → CONTENT 

Specifies that an aircraft is clear of a runway 

notification_report_for: REPORT x 
INCIDENT → CONTENT 

Specifies a notification report for an incident 

start_execution: PROCESS → 
CONTENT 

Specifies a process being executed by the role 
  

start_monitoring: PROCESS → 
CONTENT 

Specifies a process being monitored by the role 

finish_execution: PROCESS → 
ACTION_TYPE 

Specifies the process execution finished by the role 

finish_monitoring: PROCESS → 
ACTION_TYPE 

Specifies the process monitoring finished by the 
role 

action: ACTION_TYPE → CONTENT Specifies an action of the role 
 
For example, to specify the communication of the decision of the agent allocated to 

the Aircraft’s Controller role on the request for the clearance to cross the runway rw 
from the agent allocated to the role Crew Representative the following relation is 
used: 
communication_from_to(Aircraft’s Controller, Crew Representative, decision, 
instruction(position_and_hold, rw)) 

For the correct organizational functioning no distortion should occur to any data 
transferred between roles. Note that ontologies of roles connected by an interlevel link 
may not contain common elements. In this case the interlevel link is described by an 
ontology mapping between the corresponding elements of ontologies. Moreover, an 
ontology mapping associated with an interlevel link may be used for representing 
mechanisms of information abstraction. These mechanisms can be applied for 
transmitting (or generating) partial, aggregated or generalized information to the input 
(or from the output) of a role. For example, a version of the incident notification 
report 1 provided by the ANSP role to the Regulator may differ (can be more 
abstracted) from the original received by the role OMT within the ANSP. To specify 
the corresponding ontology mapping consider the following part of the specification 
for the organization-oriented view: 

 
is_org_described_by(ATCO, Γ, ∆) 
is_interaction_link_in(e1, Γ) 
connects_to(e1, OMT, ANSP, Γ) 
has_onto_mapping(e1, m1) 
is_part_of_onto_map(notification_report1_original, notification_report1_abstracted_version, 

m1)  
 
To specify beliefs of agents allocated to roles the following predicate is used: 

belief: BEL_TYPE x ROLE x CONTENT 

Here the first argument specifies the belief type from the set {observed, requested, 
requested_by, informed, informed_by, decision_provided, decision_provided_by}, the second 
argument specifies the role that initiated the belief creation, and the third argument 
specifies the content of the belief. For example, the following relation represents the 



 

 364 

belief of the agent allocated to the Crew Representative role about the decision position 
and hold received from the Aircraft’s Controller role: 

belief(decision_provided_by, Aircraft’s Controller, instruction(position_and_hold, rw)) 

Ontologies of all other roles are constructed in a similar way. 
 

Step 3. The identification of the requirements for the roles 
 
At this step an example of the requirements for the air traffic controller role (of any 
type) all of which are capabilities (i.e., knowledge or skills) is given: 

(1). Passed a rigid medical examination. 
(2) 2 or 4 year college degree before initiation of ATC training. 
(3) Thorough knowledge of the air traffic management system and the flight 

regulations. 
(4) Computer training. 
(5) Air traffic control training. 
(6) Excellent listening and communication skills. 
(7) Quick decision-making skills. 
(8) Ability to stand stress. 
(9) Good short-term memory capabilities. 
 
Note that the measure of the level of development may be associated with (some) 

capabilities. For example, controllers may differ in the amount of hours that they 
spent for air traffic control training. This may be expressed by assigning 
corresponding development levels of this capability to the controllers.  

 
Step 4. The identification of the organizational performance indicators and goals 
 
Organizational goals are specified as expressions built based on performance 
indicators (PIs). In Table 3 the goals considered in the case study together with the 
PIs on which they are based, are specified. 

Table 3. The goals and PIs of the ATCO 

# Goal Based on the PI 
1 It is required to achieve a high level of completeness 

and accuracy of the identification of high level 
requirements for a new operation from all parties 
involved into the operation 

the completeness and 
accuracy of the 
identification of high level 
requirements for a new 
operation from all parties 
involved into the operation 

1.1 It is required to achieve a high level of completeness 
and accuracy of the identification of high level safety-
related requirements for a new operation from all 
parties involved into the operation 

the completeness and 
accuracy of the 
identification of high level 
safety-related requirements 
for a new operation from all 
parties involved into the 
operation 

1.2 It is required to achieve a high level of completeness the completeness and 



 

 365 

and accuracy of the identification of high level 
capacity- and volume-related requirements for a new 
operation from all parties involved into the operation 

accuracy of the 
identification of high level 
capacity- and volume-
related requirements for a 
new operation from all 
parties involved into the 
operation 

1.3 It is required to achieve a high level of completeness 
and accuracy of the identification of all other high 
level requirements for a new operation from all parties 
involved in the operation 

The completeness and 
accuracy of the 
identification of all other 
high level requirements for a 
new operation from all 
parties involved in the 
operation 

2 It is required to achieve a high level of safety of a new 
implemented operation 

the level safety of a new 
implemented operation 

2.1 It is required to achieve a high level of safety of the 
implementation of a new operation 

the level of safety of the 
implementation of a new 
operation 

3 It is required to achieve a high level of quality of the 
internal investigation of a new operation 

the level of quality of the 
internal investigation of a 
new operation 

3.1 It is required to achieve a high level of thoroughness of 
the internal investigation of a new operation 

the level of thoroughness of 
the internal investigation of 
a new operation 

3.2 It is required to maintain a high professional level of 
operation analysts 

the professional level of 
operation analysts 

3.3 It is required to maintain up-to-date knowledge of 
norms, standards and statistics used for the evaluation 
of a new operation 

knowledge of norms, 
standards and statistics used 
for the evaluation of a new 
operation 

4 It is required to achieve a satisfactory realization of the 
high level requirements and their refinements in the 
concept of a new operation 

the realization of the high 
level requirements and their 
refinements in the concept 
of a new operation 

4.1 It is required to achieve a satisfactory realization of the 
safety-related requirements in the concept of a new 
operation 

the realization of the safety-
related requirements in the 
concept of a new operation 

4.2 It is required to achieve a satisfactory realization of the 
capacity- and volume-related requirements in the 
concept of a new operation 

the realization of the 
capacity- and volume-
related requirements in the 
concept of a new operation 

4.3 It is required to achieve a satisfactory realization of 
other types of requirements in the concept of a new 
operation 

the realization of other types 
of requirements in the 
concept of a new operation 

4.4 It is required to achieve great involvement of the 
experts (e.g., controllers) possessing knowledge in the 
domain of the operation in the process of operation 
design 

the involvement of the 
experts possessing 
knowledge in the domain of 
the operation in the process 
of operation design 

5 It is required to achieve a high level of quality of the 
external investigation of a new operation 

the level of quality of the 
external investigation of a 



 

 366 

new operation 
6 It is required to achieve a high level of effectiveness 

and efficiency of a new introduced operation 
the level of effectiveness 
and efficiency of a new 
introduced operation 

6.1 It is required to achieve a high level of accuracy of the 
implementation of the concept of a new operation 

the level of accuracy of the 
implementation of the 
concept of a new operation 

7 It is required to achieve a high level of elaboration of 
the high level requirements for a new operation 

the level of elaboration of 
the high level requirements 
for a new operation 

7.1 It is required to achieve a high level of elaboration of 
the identified high level safety-related requirements for 
a new operation 

the level of elaboration of 
the identified high level 
safety-related requirements 
for a new operation 

7.2 It is required to achieve a high level of elaboration of 
the identified high level capacity-related requirements 
for a new operation 

the level of elaboration of 
the identified high level 
safety-related requirements 
for a new operation 

7.3 It is required to achieve a high level of elaboration of 
the other identified high level requirements for a new 
operation 

the level of elaboration of 
the other identified high 
level requirements for a new 
operation 

8 It is required to achieve a high level of productivity of 
the collaboration within the New Operation Design 
Team during the development of the concept for a new 
operation 

the level of productivity of 
the collaboration within the 
New Operation Design 
Team during the 
development of the concept 
for a new operation 

8.1 It is required to maintain a high professional level of 
the members of the team 

the professional level of the 
members of the team 

8.2 It is required to maintain constructive discussions 
during the development of a new operation 

discussions during the 
development of a new 
operation 

8.3 It is required to maintain a high level of consideration 
of the opinions of different members of the team 

the level of consideration of 
the opinions of different 
members of the team 

9 It is required to minimize the development and 
assessment time of a new operation 

the development and 
assessment time of a new 
operation 

9.1 It is required to maintain a frequent collaboration 
between the New Operation Design Team and the 
Operation Assessment Unit of the Air Navigation 
Service Provider during the development of the 
concept for a new operation 

collaboration between the 
NODT and the OAU of the 
ANSP during the 
development of the concept 
for a new operation 

9.2 It is required to minimize the development time of the 
concept of a new operation 

the development time of the 
concept of a new operation 

9.3 It is required to minimize time for an external 
assessment of a new operation 

the time for an external 
assessment of a new 
operation 

9.4 It is required to minimize time for an internal 
assessment of a new operation 

the time for an internal 
assessment of a new 
operation 



 

 367 

10 It is required to maintain a high level of safety of 
execution of tasks related to the air traffic management 

the level of safety of 
execution of tasks related to 
the air traffic management 

10.1 It is required to maintain a high level of conformance 
of all roles involved into the air traffic management to 
the formal norms and regulations defined for their 
tasks 

the level of conformance of 
all roles involved into the air 
traffic management to the 
formal norms and 
regulations defined for their 
tasks. 

10.2 It is required to maintain a high (sufficient) level of 
proficiency of pilots 

the level of proficiency of 
pilots 

10.2.1 It is required to maintain a high (sufficient) level of 
proficiency of pilots operating in regular conditions 

the level of proficiency of 
pilots operating in regular 
conditions 

10.2.2 It is required to maintain a high (sufficient) level of 
proficiency of pilots operating in non-stationary 
(hazardous) conditions 

the level of proficiency of 
pilots operating in non-
stationary (hazardous) 
conditions 

10.3 It is required to maintain a high (sufficient) level of 
proficiency of controllers 

the level of proficiency of 
controllers 

10.3.1 It is required to maintain a high (sufficient) level of 
proficiency of controllers operating in regular 
conditions 

the level of proficiency of 
controllers operating in 
regular conditions 

10.3.2 It is required to maintain a high (sufficient) level of 
proficiency of controllers operating in non-stationary 
(hazardous) conditions 

the level of proficiency of 
controllers operating in non-
stationary (hazardous) 
conditions 

10.4 It is required to maintain the high quality and 
reliability of communication lines between roles that 
are supposed to communicate during the execution of 
the tasks related to the air traffic management 

the quality and reliability of 
communication lines 
between roles that are 
supposed to communicate 
during the execution of the 
tasks related to the air traffic 
management 

10.5 It is required to maintain the high quality and 
reliability of communication lines between the roles 
involved into the air traffic management and the 
environment 

the quality and reliability of 
communication lines 
between the roles involved 
into the air traffic 
management and the 
environment 

10.6 It is required to maintain the high quality and 
reliability of the hardware used in the air traffic control 
management 

the quality and reliability of 
the hardware used in the air 
traffic control management 

11 It is required to maintain an up-to-date set norms and 
regulations that ensure the safe execution of the air 
traffic management tasks 

the set norms and 
regulations that ensure the 
safe execution of the air 
traffic management tasks 

11.1 It is required to maintain a sufficient proficiency level 
of regulators and other norm- and regulation-makers 

the proficiency level of 
regulators and other norm- 
and regulation-makers 

11.2 It is required to maintain the regular monitoring of 
flight data to identify potential hazards and to improve 

the regularity of the 
monitoring of flight data to 



 

 368 

the safety identify potential hazards 
and to improve the safety 

11.3 It is required to maintain the regular investigation of 
potential safety hazards 

the investigation of potential 
safety hazards 

11.4 It is required to maintain the regular performance of 
risk assessment of operations. 

the performance of risk 
assessment of operations 

11.5 It is required to maintain a timely update of norms and 
regulations based on investigation reports 

the timeliness of update of 
norms and regulations based 
on investigation reports 

12 It is required to maintain a consistent set of norms and 
regulations for the execution of the air traffic control 
management tasks 

the consistency of a set of 
norms and regulations for 
the execution of the air 
traffic control management 
tasks 

13 It is required to maintain a high level of effectiveness 
and efficiency of the work organization within the 
Tower Control Unit 

the level of effectiveness 
and efficiency of the work 
organization within the 
Tower Control Unit 

13.1 It is required to maintain effective coordination of the 
task execution within the Tower Control Unit 

the coordination of the task 
execution within the Tower 
Control Unit 

13.2 It is required to maintain high flexibility of the task 
allocation to the controllers within the Tower Control 
Unit 

the flexibility of the task 
allocation to the controllers 
within the Tower Control 
Unit 

13.3 It is required to maintain a high level of collaboration 
within the Tower Control Unit 

The level of collaboration 
within the Tower Control 
Unit 

14 It is required to maintain a high level of effectiveness 
and efficiency of the work organization of the crew of 
an aircraft 

the level of effectiveness 
and efficiency of the work 
organization of the crew of 
an aircraft 

14.1 It is required to maintain a high flexibility of the task 
distribution between the pilots of a crew 

the flexibility of the task 
distribution between the 
pilots of a crew 

14.2 It is required to maintain a high level of collaboration 
between the pilots of the crew 

the level of collaboration 
between the pilots of the 
crew 

14.3 It is required to maintain a high level of collaboration 
during decision making in the crew 

the level of collaboration 
during decision making in 
the crew 

15 It is required to maintain the timely execution of the 
processes of the air traffic management 

the timeliness of the 
execution of the processes 
of the air traffic 
management 

16 It is required to maintain a high level of robustness and 
unambiguousness of the control (coordination) 
structure for the execution of tasks 

the level of robustness and 
unambiguousness of the 
control (coordination) 
structure for the execution 
of tasks 

16.1 It is required to maintain a high level of robustness and 
unambiguousness of the control (coordination) 

the level of robustness and 
unambiguousness of the 



 

 369 

structure for the execution of tasks in standard 
conditions 

control (coordination) 
structure for the execution 
of tasks in standard 
conditions 

16.2 It is required to maintain a high level of robustness and 
unambiguousness of the control (coordination) 
structure for the execution of tasks in non-stationary 
(exceptional) conditions 

the level of robustness and 
unambiguousness of the 
control (coordination) 
structure for the execution 
of tasks in non-stationary 
(exceptional) conditions 

17 It is required to maintain timely reporting of 
incidents/hazards 

the timeliness of reporting 
of incidents/hazards 

18 It is required to maintain timeliness and a high quality 
of the incident investigation 

the timeliness and quality of 
the incident investigation 

18.1 It is required to maintain a high proficiency level of 
incident investigators 

the proficiency level of 
incident investigators 

18.2 It is required to maintain a sufficient level of details of 
(incident/hazard) notification reports 

the level of details of 
(incident/hazard) 
notification reports 

18.3 It is required to maintain the timely investigation of an 
incident/hazard 

the timeliness of the 
investigation of an 
incident/hazard 

18.4 It is required to maintain a high level of thoroughness 
of the incident investigation 

the level of thoroughness of 
the incident investigation 

19 It is required to maintain a high level of recognition of 
actual incidents/hazards from the potential ones 

the level of recognition of 
actual incidents/hazards 
from the potential ones 

20 It is required to maintain a sufficient level of autonomy 
of decision making and the operation execution for the 
roles involved into the air traffic management 

The level of autonomy of 
decision making and the 
operation execution for the 
roles involved into the air 
traffic management 

21 It is required to maintain unambiguousness, 
consistency, correctness and timeliness of information 
exchanged between agents 

the unambiguousness, 
consistency, correctness and 
timeliness of information 
exchanged between agents 

21.1 It is required to maintain a high level of 
unambiguousness and consistency of information 
exchanged between agents 

unambiguousness and 
consistency of information 
exchanged between agents 

21.2 It is required to maintain the timely provision of 
information to all agents that require this information 

the timeliness of the 
provision of information to 
all agents that require this 
information 

21.3 It is required to maintain the high correctness of 
information exchanged between agents 

the correctness of 
information exchanged 
between agents 

22 It is required to achieve a highly expeditious flow of 
air traffic at an airport 

the flow of air traffic at an 
airport 

22.1 It is required to maintain a high level of efficiency of 
scheduling of the aircrafts (for taxiing, departures, 
arrivals) at an airport 

the level of efficiency of 
scheduling of the aircrafts 
(for taxiing, departures, 
arrivals) at an airport 



 

 370 

23 It is desired to increase the volume of passengers, 
departing/arriving from/to an airport 

the volume of passengers, 
departing/arriving from/to 
an airport 

23.1 It is required to minimize the execution time of the air 
traffic management tasks 

the execution time of the air 
traffic management tasks 

23.2 It is desired to maximize the territory of an airport the territory of an airport 
23.3 It is desired to maintain low prices for services the prices for services 
24 It is desired to maintain a high level of job satisfaction 

of agents fulfilling the roles in all organizations 
the level of job satisfaction 
of agents fulfilling the roles 
in all organizations 

24.1 It is desired to maintain a sufficient level of motivation 
of every employee 

the level of motivation of 
every employee 

24.1.1 It is desired to maintain a sufficient level of autonomy 
for every employee 

the level of autonomy for 
every employee 

24.1.2 It is desired to maintain a sufficient amount of 
feedback for every employee 

the amount of feedback for 
every employee 

24.2 It is desired to achieve that an effective reward system 
is developed 

the effectiveness of the 
organization reward system 

 
Other characteristics of the identified goals are given in Table 4. A part of these 

characteristics are obtained from the formal documents of the considered ATCO. 
Other characteristics (such as the priority and the negotiability) are assigned based on 
the informal evidences (such as case studies, interviews, organization investigation 
documents). 

Table 4. The characteristics of the goals considered in the case study 

# Priority Horizon Ownership Perspective Hardness Negotiability 
1 
1.1 
1.2 
1.3 

2 ATCEM, OMT management neg. 

2 NODT, Regulator, 
Airport, ANSP 

2.1 
3 

Airport, ANSP 

management, 
customer 

non-neg. 

3 OAU, NODT 
3.1 

soft 

3.2 
3.3 

OAU 
hard 

4 
4.1 
4.2 
4.3 

2 

4.4 1 

NODT 

5 2 Regulator, NODT 

management 

6 NODT, OAU, 
Regulator, Airport, 
ANSP 

management, 
customer 

neg. 

6.1 

3 

Airport, ANSP non-neg. 
7 
7.1 
7.2 
7.3 

2 

short-term 

NODT 

management 

soft 

neg. 



 

 371 

8  NODT, ATCEM, 
OMT 

  

8.1 long-term hard non-neg. 
8.2 soft 
8.3 

NODT 
hard 

9 NODT, OAU, 
Regulator 

soft 

9.1 NODT, OAU 
9.2 NODT 
9.3 Regulator 
9.4 

 

short-term 

OAU 

 

hard 
neg. 

10 soft 
10.1 

TCU, SCU, SIU, 
Airline 

10.2 Pilot in Command, 
Second Pilot 

management, 
customer 

10.3 TCU, CSU 
10.4 
10.5 
10.6 

TCU, CSU, SIU, 
Airline 

hard 
non-neg. 

11 soft 
11.1 

3 

SIU, Regulator 

11.2 SIU 
11.3 
11.4 
11.5 

2 
neg. 

12 3 

SIU, Regulator 
hard 

non-neg. 
13 
13.1 

TCU, CSU 

13.2 
13.3 

TCU 

14 
14.1 
14.2 

2 

Pilot in Command, 
Second Pilot 

management 

soft 

15 3 Airline, TCU, CSU, 
SIU 

management, 
customer 

16 
16.1 
16.2 

All roles 

17 TCU, Airline 

hard 

18 

2 

soft 

neg. 

18.1 3 hard non-neg. 
18.2 2 soft 
18.3 3 hard 
18.4 

SIU, Regulator 

soft 
19 TCU, SIU, Regulator hard 
20 

2 
TCU, SIU, Crew, SIU soft 

neg. 

21 
21.1 
21.2 
21.3 

All roles hard non-neg. 

22 Airline, TCU, CSU 
22.1 TCU, CSU 
23 Airline, TCU, CSU, 

Airport, OMT, 
ATCEM 

soft 

23.1 

3 

long-term 

TCU, CSU, OMT, 

management 

hard 

neg. 



 

 372 

 ATCEM 
23.2 2 Airport, ATCEM, 

Airline 

 

23.3 3 Airport, ATCEM, 
Airline 

management, 
customer 

24 2 

 

All roles management soft 

 

 
The relations between the PIs on which the considered goals are based are depicted 

in Fig. 10. The relations between the PIs have been identified based on expert 
knowledge from the air traffic control domain. 

 
 

%&%

%

%&' %&4

'
���

'&%

4

4&%

4&'

4&4

5

5&% 5&5

5&4

5&'

6

���

���

���

7

7&%

8

8&4 8&' 8&%

9

9&%
9&'

9&4

���

���

:

:&5

:&'

:&4

:&%

%;

%;&7
%;&'

%;&4

%;&5

%;&6

%;&%

%%

%%&%

%%&'

%%&4
%%&5

%%&6

'5

%4

%4&%

%4&'

%4&4

%5

%5&%

%5&4
%5&'

%6

%7

%7&%

%7&'

%:
%9

%9&%
%9&'

%9&4

%9&5

'%

'%&%

'%&'

'%&4

'%

';

''

''&%

%6

%7

'4
'4&4

'4&%

'4&'

'5&%

���

���

';

���

';

���

7

���

���

���
8

���

���

���

���

���

���

���

�	

	 �

	 �

����

����

���
	���<	-!�-!����=

	����	�������<	-!�=

�	�����<	-!�-!����=

	 ��&�	��!>!	

'5&'

 

Fig. 10. Relations between the PIs considered in the case study 

Based on the relations between PIs the relations between corresponding goals are 
specified (see Fig. 11). Note that the types of refinement relations of the soft goals not 
explicitly identified in Fig. 11 are the satisfices relations. 

 



 

 373 

%

�	�!��	


����!��	


���������!
���

	��2
���!�
	����

�	
	����!
���!�
	����

?? ����������!�
	����

%&'

%&% %&4

'

%&%

8&% 5&%

4

6'&%

'%

4

4&%

4&'
4&4

5
??

??
??

?

5

5&'

5&% 5&4

5&5

6

4&%

4&'
4&4

5
??

??
??

?

7

4

% 5

67&%

8

%7

8

8&'

8&% 8&4

'%

9

9&%

9&'

9&4

%
:&%

:&'
:&4

:&5

%7

%;

%;&%

%;&'

%;&4

%;&5

%;&6

%;&7

%7

%5

%;&'&%

%;&'&'

%;&4&%

%;&4&'

%%

%9

%%&%

%%&' %%&4

%%&5

%%&6

%4

%;&4

%4&%

%4&'

%7

';

%7

'5

'5&% ';

'5&'

'5&%&%
'5&%&'

%5

%5&%

%5&'%;&'

%5&4

%7

%7&% %7&'
'%&%

'%&'

%9

%9&4

??
??

??

?

%9&%

%9&'

%9&5

''

''&%

%4

%5
%6

%;&'
%;&4

%7

7

'4

''

'4&%
'4&'

'4&4

��	�
��������!�
	����?

'%

%7

'%

'%

'%

'%

'%

'%

'%&4

'%

'%

:

 

Fig. 11. The refinements of the goals considered in the case study 

Step 5. The specification of the resources 
 
Some of the resource types used in the case study are given in Table 5. 

Table 5. Some of the resource types used in the case study 

Name Category Measurement unit Expiration duration 
Airport’s diagram Discrete Item Conditional: until 

any changes in the 
airport’s layout are 
performed 

Aircraft Discrete Item Depending on the 
aircraft’s type 

Runway Incursion 
Alert System (RIAS) 

Discrete Item 10 years 

Radar Discrete Item 10 years 
Communication R/T 
system 

Discrete Item 10 years 

 
Different types of data represent special resource types, some of which are listed in 

Table 6. Note that a conditional expiration duration is specified by an executable rule 
in the  



 

 374 

Table 6. Some of the resource types used in the case study 

Name Expiration duration 
Taxiing instructions For one flight 
Incident classification database Conditional: until any changes are introduced 
Data about the new frequency of a controller Conditional: for the time during which an 

aircraft is situated in the controller’s region 
Clearance to cross a runway Conditional: until the runway is crossed by 

the aircraft that received the clearance 
Clearance to takeoff from a runway Conditional: until the aircraft that received 

the clearance took off 
The readback of a controller’s instruction by 
the Crew Representative 

Conditional: until the readback is received 
and checked by the controller guiding the 
aircraft 

A notification report 1 year 
The results of the incident investigation 25 years 
An incident investigation report 50 years 
A list of identified hazards 1 year 
Operation requirements 50 years 
An intermediate concept for a new operation Conditional: until the final concept of a new 

operation is created 
The final concept for a new operation 50 years 

 
Step 6.  The identification of the organizational tasks, the relations between the tasks, 
and relations between the tasks, the resources and the goals 
 
In Table 7 the names, the short descriptions and the durations of the tasks considered 
in the case study are described. Furthermore, this table identifies relations between the 
lowest level tasks and goals. Sets of goals that correspond to higher level tasks are 
formed by combination of all goals that correspond to the subtasks of these tasks. 

Table 7. The tasks considered in the case study, their characteristics and the relations to the 
goals 

# Task name Short description Durations 
1 Taxiing the aircraft to the 

designated runway 
Taxiing the aircraft on the taxiways and 
through the runways to the designated 
runway according to the taxiing 
instructions provided to the crew 

Depends on the 
durations of 
subtasks  

1.1 Taxiing the aircraft on a 
taxiway 

- Depends on a 
particular 
taxiway  

Goal: 13.2, 14.1, 14.3, 24.1.1, 14.2, 23.1, 20 
1.2 Switching to the 

frequency of another 
controller 

The action of switching to the frequency of 
the controller, who will continue the 
guidance of an aircraft 

Min: 1 sec 
Max: 5 sec 
 

Goal: 14.1, 14.3, 14.2 
1.3 Inquiry for the clearance 

for crossing an active 
runway  

An inquire to the controller currently 
guiding the aircraft 

Min: 2 sec 
Max: 5 sec 

Goal: 14.1, 14.3, 14.2 



 

 375 

1.4 Making and 
communicating the 
decision on a request for 
crossing a runway 

The decision on a request from a crew for 
crossing an active runway is made by the 
controller currently guiding the aircraft of 
the crew 

Min: 3 sec 
Max:  11 sec 

Goal: 13.1, 22.1, 24.1.1, 23.1, 20 
1.5 Crossing a runway  - Min: 30 sec 

Max: 60 sec 
Goal: 14.1, 14.3, 23.1, 14.2, 20 
1.6 Provision of data about a 

new frequency to a crew 
The data are provided to the aircraft’s crew 
by the controller currently guiding the 
aircraft before the aircraft is handed over to 
another controller 

Min: 2 sec 
Max: 6 sec 

Goal: 10.1 
1.7 Readback of a pilot of 

the controller’s 
instructions 

All instructions provided by controllers to a 
crew should be read back by one of the 
pilots of the crew and corrected by the 
controller if necessary 

Min: 2 sec 
Max: 6 sec 

Goal: 14.1, 14.3, 21.1, 21.3, 14.2 
1.8 Transfer of control over 

an aircraft between 
controllers 

The transfer of control is performed by 
means of strips that are handed over 
between the controllers 

Min: 2 sec 
Max: 5 sec 

Goal: 13.1, 13.3, 23.1 
2 Acquiring a takeoff 

allowance 
When an aircraft is close to the designated 
runway the crew initiates the acquiring of 
the allowance for takeoff from the Runway 
Controller responsible for the runway 

Depends on the 
durations of 
subtasks 

2.1 Request for clearance to 
take off  

The request is communicated by the 
aircraft’s crew to the Runway Controller of 
the designated runway 

Min: 2 sec 
Max: 5 sec 

Goal: 14.1, 14.3, 14.2 
2.2 Making and 

communicating the 
decision on a request for 
takeoff 

The decision is made by the controller 
responsible for the runway 

Min: 3 sec 
Max: 11 sec 

Goal: 13.1, 22.1, 24.1.1, 23.1, 20 
3 Take off - Min: 30 sec 

Max: 60 sec 
Goal: 10.1, 14.1, 14.3, 15, 20, 23.1, 14.2, 13.2 
4 Incident reporting 

management based on 
the data provided by a 
controller 

The incident reporting loop initiated by a 
(runway or ground) controller 

Min: 1 day 
Max: 160 days 

4.1 Create a notification 
report 

When a controller observes an occurrence 
that may be classified as an 
incident/accident, s/he is obliged to create a 
notification report 

Min: 1 min 
Max: 2 hours 

Goal: 17, 18.2, 19, 20 
4.2 Preliminary processing 

of a notification report 
A notification report created by a controller 
is examined and improved by his/her 
supervisor. The occurrence described in the 
report is classified. 

Min: 1 min 
Max: 2 days 



 

 376 

Goal: 19, 13.3, 20 
4.3 Making decision about 

the investigation 
necessity based on the 
provided notification 
report 

If the occurrence is of a high severity, the 
incident/accident investigation will be 
initiated. The lower the level of severity of 
the occurrence, the less the chance that the 
occurrence will be immediately 
investigated 

Min: 1 day 
Max: 30 days 

Goal: 19, 20 
4.4 Investigation of the 

occurrence based on the 
notification report 

During the investigation the (possible) 
causes of the incident/accident are 
identified, and based on the investigation 
results recommendations are provided 

Min: 3 days 
Max: 90 days 

Goal: 18.3, 18.4, 20 
4.5 Discussion of the 

intermediate occurrence 
investigation results 

The intermediate results of the 
investigation are provided to the OMT of 
the ANSP 

Min: 1 day 
Max: 15 days 

Goal: 11.5, 12 
4.6 Reviewing of the 

occurrence investigation 
results 

The Executive Board of the ATC reviews 
the incident/accident investigation results 

Min: 5 min 
Max: 4 hours 

Goal: 11.5, 12, 20 
4.7 Distribute the occurrence 

investigation report 
among all concerned 
roles 

- Min: 1 hour 
Max: 15 days 

Goal: 21.2, 21.3, 21.1 
5 Incident reporting 

management based on 
the data provided by a 
crew 

The incident reporting loop initiated by a 
crew 

Depends on the 
durations of 
subtasks 

5.1 Create a notification 
report and provide it to 
the SMU 

When a pilot (a crew) observes an 
occurrence that may be classified as an 
incident/accident, s/he is obliged to create a 
notification report, which may be further 
provided to the SMU of the airline by 
which the pilot is employed 

Min: 2 hours 
Max: 2 days 

Goal: 14.1, 14.3, 17, 18.2, 19, 14.2, 20 
5.2 Create a notification 

report and provide it to 
the regulator 

A notification report created by a pilot may 
be provided directly to the regulator 

Min: 1 day 
Max: 14 days 

Goal: 14.1, 14.3, 17, 18.2, 19, 14.2, 20 
5.3 Process a notification 

report and provide it to 
the regulator 

A notification report created by a pilot (a 
crew) is examined and improved by the 
SMU and provided further to the regulator 
for further investigation 

Min: 1 day 
Max: 90 days 

Goal: 19, 20 
5.4 Making decision about 

the investigation 
necessity and about the 
role-investigator  

The decision is based on the notification 
report and the choice of the role-
investigator is based on the severity of the 
incident/accident, the availability of roles 
and the competences of the available roles 

Min: 1 day 
Max: 30 days 



 

 377 

Goal: 18.3, 18.4, 20 
6 Identification of hazards, 

safety problems and 
trends 

Once in three months the SIU of the ANSP 
performs an investigation on the collected 
notification reports and the occurrence 
investigation results. The aim of this 
investigation is to identify safety hazards, 
problems and trends 

Min: 20 days 
Max: 30 days 

Goal: 11.3, 11.4, 15, 11.2, 20 
7 Design and evaluate a 

new operation 
- Depends on the 

durations of 
subtasks 

7.1 Produce an intermediate 
design for a new 
operation 

During the development of the concept of a 
new operation a number of intermediate 
design concepts are produced which are 
provided for the further evaluation 

Depends on the 
particular 
operation. For 
the operation 
“runway 
introduction”: 
Min: 2 weeks 
Max: 1 month 

Goal: 4.1, 4.2, 4.3, 7.1, 7.2, 7.3, 8.1, 8.2, 8.3, 9.1, 9.2, 24.1.1, 20 
7.2 Assess an intermediate 

design for a new 
operation internally 

The internal evaluation of an intermediate 
design within the ANSP 

Min: 2 days 
Max: 1 week 

Goal: 3.1, 9.1, 9.4, 20 
7.3 Produce the final concept 

of a new operation 
Based on the previous intermediate design 
concepts and the results of the internal 
evaluation, the final concept of operation is 
produced 

Min: 4 days 
Max: 2 week 

Goal: 4.1, 4.2, 4.3, 7.1, 7.2, 7.3, 8.1, 8.2, 8.3, 9.2, 20 
7.4 Assess the final concept 

of a new operation 
externally 

The final concept of a new operation is 
assessed externally 

Min: 2 week 
Max: 1 month 

Goal: 3.1, 3.2, 3.3, 9.3, 5, 20 
7.5 Review the final concept 

of a new operation 
- Min: 3 days 

Max: 1 week 
Goal: 4.1, 4.2, 4.3, 6.1, 20 
8 Implement a new 

operation 
- Depends on the 

particular 
operation. For 
the operation 
“runway 
introduction”: 
Min: 3 month 
Max: 1 year 

Goal: 2.1, 20 
9 Create a list of high level 

requirements for a new 
operation 

This task precedes and produces an input 
for the final concept development task. 
Both safety and performance-related goals 
should be reflected in the requirements. 

Min: 1 month 
Max: 3 month 

Goals: 1, 20 
10 Schedule training for a - Min: 1 min 



 

 378 

pilot Max: 5 min 
Goal: 10.2, 14, 20 
11 Schedule training for a 

controller 
- Min: 1 min 

Max: 5 min 
Goals:10.3, 20 
12 Schedule training for an 

operation analyst 
- Min: 1 min 

Max: 5 min 
Goals: 3.2, 20 
13 Schedule training for a 

safety investigator 
- Min: 1 min 

Max: 5 min 
Goal: 18.1, 11.1, 20 
14 Get training - Depends on the 

particular 
training type 

Goal: 10.2, 14, 10.3, 3.2, 18.1, 11.1 
15 Allocation of agents to 

controllers roles 
- Constantly  

Goal: 13.2, 16, 20 
 
In Fig. 12 the decompositions of the identified composite tasks are depicted. 
 

 
1

1.1 1.2 1.3 1.4 1.5 1.6 1.7

2

2.1 2.2

4

4.1 4.2 4.3 4.8 4.5 4.6 4.7

5

5.4 5.25.3 5.1 5.4

and-refinement

7

7.1 7.2 7.3 7.4 7.54.4

1.8

task

 

Fig. 12. The refinement of composite tasks into subtasks 

The relations between the identified tasks and resource types are given in Table 8. 
Note that only the relations between the simple tasks and resource types are shown. 
The resource types that are used/consumed/produced by a composite task comprise all 
the resource types that are used/consumed/produced by all the subtasks of this task. 

Table 8. The relations between the identified tasks and the resource types that these tasks use/ 
consume/ produce 

Task Task uses Task produces 
1.1 the airport’s diagram, the taxi 

instructions for the flight, compass, 
radar, visual observations, aircraft 

- 

1.2 data about the new frequency - 
1.3 the observation of the close proximity 

of the active runway to be traversed, 
a request to the Runway Controller responsible 
for the runway for the clearance for crossing the 



 

 379 

the taxi instructions for the flight, 
communication R/T system 

runway 

1.4 data about the current state of the 
runway, a request from the aircraft’s 
crew to the Runway Controller 
responsible for the runway for the 
clearance for crossing the runway, 
communication R/T system 

the instruction to the crew (which may be 
’position and hold’ (wait) or ‘the clearance to 
cross is provided’) 

1.5 the clearance from the Runway 
Controller for crossing the runway, the 
airport’s diagram, the taxiing 
instructions, compass, radar, visual 
observations, aircraft 

the pilot’s report ‘clear of the runway’ to the 
Runway Controller controlling the runway 
 

1.6 the observation that the aircraft is 
approaching to the margins the current 
sector, the data about the controller of 
the adjoining region (i.e., a sector or a 
runway), communication R/T systems 

data about the frequency of the controller of the 
adjoining sector 

1.7 the controller’s instruction, 
communication R/T systems 

the correct readback of the controller’s 
instruction 

1.8 the observation that the aircraft is 
approaching to the margins the current 
sector, the data about the controller of 
the adjoining region (i.e., a sector or a 
runway) 

the strip with the aircraft’s details provided to 
the controller, who will be guiding the aircraft 

2.1 the observation of the close proximity 
of the designated runway, 
communication R/T systems 

a request to the Runway Controller of the 
designated runway for the clearance to take off 

2.2 data about the current state of the 
runway, a request to the Runway 
Controller of the designated runway 
for the clearance to take off, 
communication R/T systems 

the instruction to the crew (which may be 
’position and hold’ (wait) or ‘the clearance to 
takeoff is provided’) 

3 the clearance from the Runway 
Controller to takeoff, compass, radar, 
visual observations, aircraft, RIAS 

the pilot’s report ‘clear of the runway’ to the 
Runway Controller controlling the runway 

4.1 the observation from the environment 
of an occurrence that may be classified 
as an incident/accident, the incident 
classification database 

a notification report 

4.2 a notification report a processed notification report 
4.3 a processed notification report a decision on the initiation of the occurrence 

investigation 
4.4 a processed notification report, 

additional data about the occurrence 
(optional) 

an incident investigation report 

4.5 a processed notification report, an 
incident investigation report, 
occurrence statistics 

recommendations based on the incident 
investigation report 

4.6 an incident investigation report directions to redesign some operation(s) 
(optional) 

4.7 an incident investigation report, the list - 



 

 380 

of all concerned roles 
5.1 the observation from the environment 

of an occurrence that may be classified 
as an incident/accident, the incident 
classification database 

a notification report 

5.2 the observation from the environment 
of an occurrence that may be classified 
as an incident/accident, the incident 
classification database 

a notification report 

5.3 a notification report a processed notification report 
5.4 a (processed) notification report a decision on the initiation of the occurrence 

investigation, a decision concerning the role-
investigator 

6 Collected notification reports, 
incident/accident investigation reports, 
occurrence statistics 

a report on the identified safety hazards, 
problems and trends 

7.1 a list of high level requirements for a 
new operation, (optional) results of the 
internal assessment of the previous 
intermediate design concepts for a new 
operation, (optional) the previous 
intermediate design concept for a new 
operation. 

an intermediate design concept for a new 
operation 

7.2 an intermediate design for a new 
operation, the evaluation framework 

the results of the internal assessment of an 
intermediate design for a new operation 

7.3 operation requirements, the current 
intermediate design for a new 
operation 

the final concept of a new operation 

7.4 the final concept of a new operation, 
the evaluation framework 

the results of the external assessment of the 
final concept of a new operation 

7.5 the final concept of a new operation, 
the results of the internal assessment of 
the final concept of a new operation, 
the results of the external assessment 
of the final concept of a new operation 

a permission/prohibition for the implementation 
of a new operation 

8 the permission for the implementation 
of a new operation, the final concept of 
a new operation 

the new operation implemented 

9 - a list of high level requirements for a new 
operation 

10 data about a pilot training scheduled for a pilot 
11 data about a controller training scheduled for a controller 
12 data about an operation analyst training scheduled for an operation analyst 
13 data about a performance investigator training scheduled for a performance 

investigator 
14 data about a scheduled training - 
15 Data about the available agents and 

their workload, data about the roles 
that have to be allocated 

- 

 
Step 7. The specification of the authority relations 



 

 381 

 
The responsibility relations of the roles on different aspects of the identified tasks are 
given in Table 9. The connective “or” between two role names denotes that both roles 
are authorized for some aspect of a task. 

Table 9. The responsibility relations of the roles on different aspects of the identified tasks 

Task  Execution Monitoring Consulting Technological 
decisions 

Managerial 
decisions 

1.1 Crew Runway 
Controller, 
Tower 
Controllers 
Supervisor 

Runway 
Controller 

Crew Runway 
Controller, 
Tower 
Controllers 
Supervisor 

1.2 Crew Runway 
Controller 

Crew 

1.3 Crew 
1.4 Runway 

Controller 
Tower 
Controllers 
Supervisor 

Tower 
Controllers 
Supervisor, 
other 
Runway and 
Ground 
Controllers 

Runway Controller 

1.5 Crew Runway 
Controller 

Runway 
Controller, 
Tower 
Controllers 
Supervisor 

Crew Crew, Runway 
Controller, 
Tower 
Controllers 
Supervisor 

1.6 Runway or 
Ground 
Controller 

Tower Controllers Supervisor Runway Controller 

1.7 Pilot Runway or Ground Controller 
1.8 Aircraft’s 

controller (i.e., 
controller 
currently 
responsible for 
the aircraft) 

Tower Controllers Supervisor Aircraft’s controller 

2.1 Crew 
2.2 Runway 

Controller 
Tower Controllers Supervisor Runway Controller 

3 Crew Runway 
Controller 

Crew Crew, Runway 
Controller 

4.1 Runway or Ground Controller 
4.2 Tower Controllers Supervisor 
4.3 SIU 
4.4 Safety 

Investigator 
Head SIU Safety 

Investigator 
Safety 
Investigator, 
Head SIU 

4.5 OMT 



 

 382 

4.6 ATCEM 
4.7 OMT 
4.8 Safety 

Investigator or 
Regulator 

OMT, ATCEM Safety 
Investigator, 

Regulator 

OMT, ATCEM 

5.1 Crew 
5.2 Crew 
5.3 SMU 
5.4 Regulator 
6 Regulator 
7.1 New Operation Design Team 
7.2 Operation 

Analyst 
Head OAU Operation 

Analyst 
Head OAU 

7.3 New Operation Design Team 
7.4 Regulator 
7.5 OMT, ATCEM, Airport Management 
8 Airport 
9 OMT, ATCEM, Airport Management, Airline Management 
10 Airline Management 
11 Tower Controllers Supervisor 
12 Head OAU 
13 Head SIU 
14 Pilot, Controller, 

Operation 
Analyst, Safety. 

Investigator 

Airline Management, Tower Controllers Supervisor, Head OAU, 
Head SIU 

15 Tower Controllers Supervisor 
 
In Table 10 the superior-subordinate relations on the identified roles with respect to 

the tasks are specified. 

Table 10. The superior-subordinate relations on the identified roles with respect to the tasks 

Subordinate role Superior role Task 
ANSP design representative Design Team Manager 7.1, 7.3 
Airport design representative Design Team Manager 7.1, 7.3 
Airline representative Design Team Manager 7.1, 7.3 
OMT ATCEM 7.2, 7.4 
OAU OMT 7.2, 7.4 
Operation Analyst Head OAU 7.2, 7.4 
Runway Controller Tower Controllers Supervisor 1.4 
Ground Controller Tower Controllers Supervisor 1.1 
Runway Controller Tower Controllers Supervisor 1.5  
Runway Controller Tower Controllers Supervisor 2.2 
Runway Controller Tower Controllers Supervisor 4.1 
Safety Investigator Head SIU 4.4, 6 
OMT ATCEM 4.4, 6 
SIU OMT 4.4, 6 

 
 



 

 383 

Step 8. The specification of the flows of control 
 
At this step the workflows for the execution of the general tasks identified at the 
beginning are designed. The workflow for the taxiing of an aircraft to the designated 
runway and for the subsequent take off is given in Fig. 13. 

A formal specification for this workflow is given below. In particular, this 
specification identifies the temporal relations and the delays between the processes. 

 
is_instance_of(Allocation of agents to controllers roles, Allocation of agents to controllers 

roles) 
is_instance_of(Transfer of control over the aircraft, Transfer of control over an aircraft between 

controllers) 
is_instance_of(Provision data on the new frequency, Provision of data about a new frequency 

to a crew) 
is_instance_of(Switching to the new frequency, Switching to the frequency of another 

controller) 
is_instance_of(Taxiing the aircraft on the taxiway, Taxiing the aircraft on a taxiway) 
is_instance_of(Inquire for clearance to cross, Inquiry for the clearance for crossing an active 

runway) 
is_instance_of(Repeated inquiry for clearance to cross, Inquiry for the clearance for crossing 

an active runway) 
is_instance_of(Decision making on the request for the clearance, Making and communicating 

the decision on a request for crossing a runway) 
is_instance_of(Readback of the crossing instructions, Readback of a pilot of the controller’s 

instructions) 
is_instance_of(Readback of the take off instructions, Readback of a pilot of the controller’s 

instructions) 
is_instance_of(Crossing the runway, Crossing a runway) 
is_instance_of(Request for the clearance to take off, Request for clearance to take off) 
is_instance_of(Decision making concerning the request for the clearance to take off, Making 

and communicating the decision on a request for takeoff) 
is_instance_of(Take off, Take off) 
starts_after(begin_and(and4), begin, 0) 
starts_after(begin_loop(c5), begin_and(and4), 0) 
loop_cond(c5, “workflow is not finished”) 
loop_max(c5, 50) 
starts_after(begin_or(or3), begin_loop(c5), 0) 
or_cond(or3, “A new allocation of agents controllers to roles?”) 
or_branch(or3, yes, Allocation of agents to controllers roles) 
or_branch(or3, no, end_or(or3)) 
starts_after(end_or(or3), Allocation of agents to controllers roles, 0) 
starts_after(end_loop(c5), end_or(or3), 0) 
starts_after(end_and(and4), end_loop(c5), 0) 
and_cond(and4, all) 
 



 

 384 

Begin

Inquiry for
clearance
to cross

Decision
position
and hold

begin_or(or1)
Observed
location

Taxiing the aircraft
on the taxiway

taxiway

active runway

Decision
making on the

request for
the clearance

Crossing
the runway

end_or
(or1)

Away from the
designated

runway

begin_loop(c1)

begin_loop(c2)

end_loop(c2)

Request for
the clearance

to take off

Decision
position and

hold

Decision making
concerning the
request for the

clearance to take off

begin_loop(c3) end_loop(c3)

Take
off

End

begin_and
(and0)

begin_or(or2)
Is another

region close?

Yes
Provision data on
the new frequency

Switching to the
new frequency

begin_and
(and3)

Transfer of control
over the aircraft

end_and
(and3)

end_or(or2)

No

begin_loop(c4)

Away from the
designated

runway

end_loop(c4)

end_and
(and0)

end_loop(c1)

Readback of
the take off
instructions

Readback
of the

crossing
instructions

Allocation of agents
to controllers roles

2

2

Runway is
occupied

begin_loop(c4) end_loop(c4)

begin_or
(or3)

begin_and
(and4)

1
Workflow is
not finished

Yes

No

begin_loop(c5) end_loop(c5)

Runway is
occupied

end_loop(c6)begin_loop(c6)

end_and
(and4)

1

end_or
(or3)

 

Fig. 13. The workflow for the for the taxiing of an aircraft to the designated runway and for the 
subsequent take off 

starts_after(begin_and(and0), begin_and(and4), 0) 
starts_after(begin_loop(c4), begin_and(and0), 0) 
starts_after(begin_or(or2) ,begin_loop(c4), 0) 
or_cond(or2, “is another region close?”) 
or_branch(or2, yes, begin_and(and3)) 
or_branch(or2, no, end_or(or2)) 
starts_after(Transfer of control over the aircraft, begin_and(and3), 5) 
starts_after(end_and(and3), Transfer of control over the aircraft, 0) 
starts_after(Provision data on the new frequency, begin_and(and3), 1) 
starts_after(Switching to the new frequency, Provision data on the new frequency, 1) 
starts_after(end_and(and3), Switching to the new frequency, 0) 
and_cond(and3, all) 
starts_after(end_or(or2), end_and(and3), 0) 
starts_after(end_loop(c4), end_or(or2), 0) 
loop_cond(c4, “away from the designated runway”) 
loop_max(c4, 5) 
starts_after(end_and(and0), end_loop(c4), 0) 
and_cond(and0, all) 
starts_after(begin_loop(c1), begin_and(and0), 0) 
loop_cond(c1, “away from the designated runway”) 
loop_max(c1, 7) 
starts_after(begin_or(or1), begin_loop(c1), 0) 
or_cond(or1, “observed location”) 
or_branch(or1, taxiway, Taxiing the aircraft on the taxiway) 
or_branch(or1, active runway, Inquire for clearance to cross) 
starts_after(end_or(or1), Taxiing the aircraft on the taxiway, 0) 
starts_after(begin_loop(c2), Inquire for clearance to cross, 0) 
loop_cond(c2, “decision position and hold”) 
loop_max(c2, 4) 
starts_after(Decision making on the request for the clearance, begin_loop(c2), 0) 
starts_after(Readback of the crossing instructions, Decision making on the request for the 

clearance, 1) 
starts_after(begin_loop(c4), Readback of the crossing instructions, 0) 
loop_cond(c4, “runway is occupied”) 



 

 385 

loop_max(c4, 1000) 
starts_after(end_loop(c4), begin_loop(c4), 1) 
starts_after(end_loop(c2), end_loop(c4), 0) 
starts_after(Crossing the runway, end_loop(c2), 8) 
starts_after(end_or(or1), Crossing the runway, 0) 
starts_after(end_loop(c1), end_or(or1), 0) 
starts_after(end_and(and0), end_loop(c1), 0) 
starts_after(Request for the clearance to take off, end_and(and0), 1) 
starts_after(begin_loop(c3), Request for the clearance to take off, 0) 
loop_cond(c3, “decision position and hold”) 
loop_max(c3, 4) 
starts_after(Decision making concerning the request for the clearance to take off, 

begin_loop(c3), 0) 
starts_after(Readback of the take off instructions, Decision making concerning the request for 

the clearance to take off, 1) 
starts_after(begin_loop(c6), Readback of the take off instructions, 0) 
loop_cond(c6, “runway is occupied”) 
loop_max(c6, 1000) 
starts_after(end_loop(c6), begin_loop(c6), 1) 
starts_after(end_loop(c3), end_loop(c6), 0) 
starts_after(Take off, end_loop(c3), 8) 
starts_after(End, Take off, 0) 
Two another workflow examples that describe the execution of the incident 

reporting and investigation task are depicted in Figures 14 and 15. 

Create a
notification

report
Investigation of

an incident based
on the report

Begin
begin_or(or1)

Report
occurrence?

Yes
Preliminary

processing of a
notification report

begin_or(or2)
Decision
positive?

Making decision
on the occurrence

investigation

Discussion of the
intermediate incident
investigation resultsbegin_and

(and1)
end_and
(and1)

Reviewing of an
incident

Distribute an incident
investigation report

end_or
(or2)

No

Yes

end_or
(or1)

No

End

 

Fig. 14. The workflow that defines the execution of the incident reporting task initiated by a 
controller 

 

Create a
notification report
and provide it to

the SMU

Investigation
of the

occurrence
Begin

begin_or(or1)
Report

occurrence?

Yes begin_or(or2)
Decision on
investigation

positive?

Making decision on
the occurrence

investigation and
the role-investigator

Distribute the
occurrence

investigation
report

end_or
(or2)

No

end_or
(or1)

No

Process a
notification report
and provide it to

the Regulator

Yes

End

Create a notification
report and provide it

to the Regulator

begin_or(or3)
Inform Regulator

directly?

Yes

No

end_or
(or3)

 

Fig. 15. The workflow that defines the execution of the incident reporting task initiated by a 
crew 

One more flow of control describes the process of the development and the 
implementation of a new operation. 

 



 

 386 

Review the final
concept of a new

operation

Begin
Create a list of high
level requirements
for a new operation

Produce an
intermediate design
for a new operation

Assess an intermediate
design for a new

operation internally

An intermediate
design is

unacceptable

Produce the final
concept of a new

operation

Assess the final
concept of a new

operation externally

begin_loop(c1) end_loop(c1)

Implement a
new operation

End

 

Fig. 16. The flow of control that describes the process of the development and the 
implementation of a new operation 

Step 9. The specification of the characteristics and behavior of agents, and the agent 
allocation principles. 
 
The performance variability in an organization is represented by specifications of 
agents that are allocated to organizational roles. Agents are characterized by 
capabilities and traits. A prerequisite for the allocation of an agent to a role is the 
existence of a mapping between the capabilities and traits of the agent and the role 
requirements.  

For the case study a number of agent types have been identified: Controller, Pilot, 
Safety Investigator, Operation Designer, Operation Analyst, and Manager. Then, 
particular agents of these types with varying capabilities and traits have been defined. 
For example, the agent allocated to the Tower Controllers Supervisor role in 
comparison to the agent allocated to some Runway Controller role has a higher level 
of development of the technical and interpersonal skills and additionally has the 
developed managerial skills. 

The behavior of an agent is considered as goal-driven. In this case study only the 
goals of agents that are in line with the organizational goals are taken into account. 
Furthermore, the internal states of agents allocated to organizational roles are 
represented as beliefs. A belief of an agent is created based on: 

(a) an observation from the environment; 
(b) a communication provided to/obtained from another agent; 
(c) an action performed by the agent in the environment. 
 
Consider an example of the generation of belief state of the agent allocated to the 

role Crew Representative based on the communication from the agent allocated to the 
Aircraft’s Controller role. 

 
∀γ: TRACE ∀content_var:CONTENT ∀t1:TIME holds(state(γ, t1, input(Crew Representative)), 
communication_from_to(Aircraft’s Controller, Crew Representative, inform, content_var))) �  
holds(state(γ, t1+1, internal(Crew Representative)), belief(informed_by, Aircraft’s Controller, 
content_var)) 

 
For each belief state a belief persistency rule is specified. The following rule 

specifies the persistency of the belief of the agent allocated to the Crew 
Representative role about the clearance to cross the runway12: 

 
∀ct_var: MSG_TYPE ∀content_var:CONTENT ∀t1:TIME  
holds(state(γ, t1, internal(Crew_Representative)), belief(decision_provided_by, Aircraft’s 
Controller, instruction(clearance_to_cross, runway12)) & ∃t3: TIME t1 < t3 +119 & 



 

 387 

holds(state(γ, t3, input(Crew_Representative)), communication_from_to(Aircraft’s Controller, 
Crew Representative , decision, instruction(clearance_to_cross, runway12))) &  
& ¬∃t4 > t3 holds(state(γ, t4, internal(Crew Representative)), belief(performed, Crew, 
action(cross_runway, runway12))) 
 � holds(state(γ, t1+1, internal(Crew_Representative)), belief(decision_provided_by, Aircraft’s 
Controller, instruction(clearance_to_cross, runway12)) 

 
Informally this rule specifies that the belief will persist for two minutes at most 

upon the receipt of the clearance to cross the runway and will be ceased immediately 
after the aircraft’s crossing action. 

 
Step 10. The identification of the generic and domain-specific organizational 
constraints 
 
At this step a set of the identified constraints is specified. First, some of the 
constraints obtained from the regulations related to the functioning of a crew are 
given: 

 
Constraint 1. 
Each instruction of the controller guiding an aircraft provided to the crew of the 
aircraft should be read back by one of the pilots within 5 minutes. 
Formally: 
∀γ: TRACE ∀ct_var: MSG_TYPE ∀content_var:CONTENT ∀t1:TIME holds(state(γ, t1, 
input(Crew Representative)), communication_from_to(Aircraft’s Controller, Crew_Representative, 
ct_var, content_var)) � ∃t2  ≤ t1+5 holds(state(γ, t2, output(Crew Representative)), 
communication_from_to(Crew Representative, Aircraft’s Controller, readback, content_var)) 
 
Constraint 2.  
Before performing the crossing or taking off pilots must visually check for conflicting 
traffic regardless of clearance. 
Formally: 
∀γ: TRACE ∀content_var:CONTENT ∀t1:TIME ∀clear_var:CLEARANCE ∀runway_var: 
RUNWAY 
holds(state(γ, t1, internal(Crew)), belief(decision_provided_by, Aircraft’s Controller, 
instruction(clear_var, runway_var)) ∧ belief(observed, env, runway(runway_var, clear)) � 
holds(state(γ, t1+1, output(Crew)), begin_execution(cross_runway(runway_var))) 
 
Constraint 3. 
Both pilots should monitor the frequency when a clearance is called for to ensure that 
both pilots hear the taxi clearance. 
Formally: 
∀γ: TRACE ∀t1, t2:TIME t2 > t1 ∀clear_var:CLEARANCE ∀runway_var: RUNWAY ∀instr_var: 
INSTRUCTION_TYPE ∀ag1, ag2: AGENT 
holds(state(γ, t1, output(Crew Representative)), communication_from_to(Crew Representative, 
Aircraft’s Controller, request, instruction(clear_var, runway_var))) & 
holds(state(γ, t2, input(Crew Representative)), communication_from_to(Aircraft’s Controller, Crew 
Representative, decision, instruction(instr_var, runway_var))) & 
holds(state(γ, t1, env, agent_plays_role(ag1, Pilot in Command) ∧ agent_plays_role(ag2, Second 
Pilot)) & 
� ∀t3 t2 > t3 > t1 holds(state(γ, t3, env), agent_plays_role(ag1, Crew Representative) ∧ 
agent_plays_role(ag2, Crew Representative)) 
 



 

 388 

Constraint 4. 
When an aircraft is approaching to an active runway, the pilots should cease all 
processes not related to the taxiing. 
Formally: 
∀γ: TRACE ∀t1, t2: TIME t2 > t1 ∀acraft_var:AIRCRAFT ∀clear_var:CLEARANCE ∀runway_var: 
RUNWAY ∀ag1, ag2: AGENT ∀p1: TAXIING_AIRCRAFT ∀r1: ROLE 
holds(state(γ, t1, env), aircraft_approaches_to(acraft_var, runway_var) ∧ agent_plays_role(ag1, 
Pilot in Command) ∧ agent_plays_role(ag2, Second Pilot)) �  
holds(state(γ, t1, env), process_execution(p1, Pilot in Command) ∧ process_execution(p1, 
Second Pilot) ∧ ¬∃p2: PROCESS p2≠p1 process_execution(p2, r1) ∧ (agent_plays_role(ag1, r1) 
∨ agent_plays_role(ag2, r1))) 
 
Constrain 5. 
In case the pilots have different beliefs about certain objects or events related to the 
taxiing or taking off tasks, one of the pilots should contact the controller currently 
guiding the aircraft for the clarification. 
 
This rule should be specified by several constraints, one of which is the following: 
If pilots have different beliefs about the received clearance, they should contact the 
Aircraft’s Controller again. 
This and the following constraints are formalized in a similar way as the previous 
constraints. 
 
Constraint 6.  
Each observed incident/accident should be reported by a crew. 
 
Constraint 7. 
The pilots of the crew should verbally share relevant information with each other. 
 
Constraint 8. 
Any information received or transmitted during the absence of one of the crew 
members should be provided to him/her upon his/her return. 
 
Constraint 9. 
If a pilot is revealed/reveals himself/herself from the allocation to the role Crew 
Representative that constantly monitors the frequency of the Aircraft’s Controller 
role, then this pilot should inform all other crew members about this. 
 

In the following consider some of the constraints obtained from the regulations 
related to the functioning of a controller: 

 
Constraint 10. 
A shift of a controller consists of three sessions. The duration of each session is 1 
hour. After each session the obligatory break follows, which lasts for 1 hour. 
Formally: 
∀r1:CONTROLLER ∀a1:AGENT ∀t1:TIME ∀proc1:PROCESS holds(state(γ, t1, env), 
is_responsible_for(r1, execution, proc1) ∧ is_instance_of(proc1, control_region) ∧ 
agent_allocated(ag1, r1)) � 
[ holds(state(γ, t1+3600, env), agent_released_from(ag1, r1)) ∧  



 

 389 

[sum([t2: TIME], case(holds(state(γ, t2, env), agent_allocated(ag1, r1)), 1, 0) < 10800  � 
holds(state(γ, t1+7200, env), agent_allocated(ag1, r1)) ] ] 
 
Constraint 11. 
A controller may guide maximum two aircrafts at the same time.  
Formally: 
∀r1, r2: CONTROLLER ∀r3, r4: CREW ∀a1:AGENT ∀t1:TIME ∀p1, p2:PROCESS  
holds(state(γ, t1, env), [ process_monitoring(p1, r1) ∧ process_monitoring(p2, r2) ∧ 
process_execution(p1, r3) ∧ process_execution(p2, r4) ∧ p1≠p2 ∧ agent_allocated(ag1, r1) ∧ 
agent_allocated(ag1, r2) ] �  
[ [ ∀p3:PROCESS ∀r5:CONTROLLER ∀r6:CREW process_monitoring(p3, r5) ∧ 
agent_allocated(ag1, r5) ∧ process_execution(p3, r6)] � [p3 = p1 ∨ p3 = p2] ]) 

 
Constraint 12. 
A controller is not allowed to issue any new clearances for some runway until this 
runway is vacated by the aircraft that had received the last clearance from the 
controller. 
 
Constraint 13. 
As soon as a runway is vacated and some aircraft(s) is (are) waiting for the clearance 
for this runway, the controller responsible for the runway should provide a clearance 
to one of the waiting aircrafts.  
 
Constraint 14. 
If a controller cannot reach an aircraft taxiing in the sector for which this controller is 
responsible, s/he should contact the controller of the sector from which the aircraft 
came. 
 
Constraint 15. 
Each observed incident/accident should be reported by a controller. 

 
One of the constraints for the tower controllers supervisor is the following: 
 

Constraint 16. 
Perform the allocation of agents-controllers to the aircraft monitoring processes in 
such a way that the number of processes executed at the same time by each controller 
is less than two.  
 

Several constraints describe the required common allocations of agents: 
 

Constraint 17. 
At any time point one of the roles of type CONTROLLERS_SUPERVISOR should have 
the common allocation with the role Tower Controllers Supervisor. 
Formally: 
∀γ:TRACE ∀t1:TIME ∃ag1: AGENT ∃r1: CONTROLLERS_SUPERVISOR holds(state(γ, t1, env), 
agent_plays_role(ag1, r1) ∧ agent_plays_role(ag1, Tower Controllers Supervisor)) 

Constraint 18. 



 

 390 

At any time point the role Aircraft’s Controller should have the common allocation with 
one of the roles of the type CONTROLLER. 

Constraint 19. 
At any time point the role Crew Representative should have the common allocation with 
one of the roles of the type Pilot. 

Constraint 20. 
At any time point the role Head ODU should have the common allocation with the role 
Team Member (ODU). 

Constraint 21. 
At any time point the role Head of Controllers should have the common allocation with 
the role Team Member (CSU). 

Constraint 22. 
At any time point the role Airport design representative of the role NODT should have the 
common allocation with one of the roles of type Airport Operation Designer.  

Constraint 23. 
At any time point the role ANSP design representative of the role NODT should have the 
common allocation with one of the roles of type Operation Designer.  
 
Furthermore, one more general constraint for the allocation of agents to any role is 
defined: 

Constraint 24. 
A prerequisite for the allocation of an agent to a role is the existence of a mapping 
between the capabilities and traits of the agent and the role requirements. 

4 Analysis results 

In this Section first the results of the correctness verification of the specifications of 
the particular views and across different views are presented (Section 4.1). Then, the 
analysis by simulation of a combined specification with agents allocated to the roles is 
described (Section 4.2).  

4.1 Correctness verification 

First, the correctness of the goal and PI specifications for the performance-oriented 
view has been checked. More specifically, the generic structural integrity and 
consistency constraints defined in the performance-oriented view have been verified 
on these specifications. No inconsistencies have been identified in the considered PI 
structure. At the same time the automated checking of the consistency of the 
considered goal structure has identified a number of (potential) conflicts:  

(a) between the goals 9 and 3; 
(b) between the goals 9 and 7; 



 

 391 

(c) between the goals 10.3 and 4.4; 
(d) between the goals 11.2 and 4.4; 
(e) between the goals 20 and 10.1; 
(f) between the goals 4.1 and 4.2; 
(g) between the goals 18.3 and 18.4; 
(h) between the goals 23.1 and 10.1. 

The goals that are in conflict cannot be satisfied (satisficed) at the same time. To 
resolve a goal conflict one of the solutions proposed in the performance-oriented view 
in Part III may be used. To this end the characteristics of goals such as the priority, 
ownership and the negotiability may be used. 

Then, the correctness of the specifications for the process-oriented view has been 
checked. The identified structures of resources and tasks are correct with respect to 
the generic constraints identified in the process-oriented view. However, the 
following generic constraint defined over both the process-oriented and the 
performance-oriented views is not satisfied by the task specification: each 
organizational goal should be related to at least one organizational task and each task should 
contribute to the satisfaction of at least one organizational goal. The automated analysis 
showed that the goal 4.4 “It is required to achieve great involvement of the experts (e.g., 
controllers) possessing knowledge in the domain of the operation in the process of operation 
design” does not have the corresponding task. In reality it appeared that this goal is 
satisfied in an ad-hoc way, without following any particular procedures or regulations. 
Since this goal is in conflict with two other organizational goals 10.3 and 11.2, the 
satisfaction means of this goal directly influence the frequency of the occurrence of 
inconsistencies and performance drawbacks in the organizational operation. This 
problem type is called a latent flaw. 

The tasks that contribute to the satisfaction of the goals 10.4, 10.5, 10.6 and 23.3 
are not considered in this case study and it is assumed that these goals are always 
satisfied. 

The automated analysis showed that the constructed specifications of the flows of 
control depicted in Fig. 13 are correct with respect to the generic constraints defined 
in the process-oriented view. Furthermore, the defined process-oriented specifications 
satisfy all the relevant domain-specific constraints defined on the step 10: more 
specifically, the constraints 1 and 6 defined on the crew-related processes and the 
constraints 12, 13 and 15 defined for the controller-related processes. Establishing the 
satisfaction of all other identified constraints is performed on actual executions of 
organizational scenarios (traces).  

The structural integrity of the specifications for the organization-oriented view that 
describe interactions between the roles is established using the constraints defined in 
the organization-oriented view. Furthermore, the interaction relations between the 
roles defined by the constraints identified at the step 10 should be also represented in 
the specification. The automatic verification showed that the constructed 
specifications that describe the relations between the roles identified in the case study 
are correct.  

The responsibility relations of the roles on different aspects of the identified tasks 
are also defined in an unambiguous way: For each aspect of each identified task the 
responsible role(s) is (are) assigned. It is assumed that the requirements for roles 



 

 392 

reflect reliably the capabilities of agents required for the effective and efficient 
accomplishment of the corresponding tasks. 

The formal authority system of the considered organization combines features of 
mechanistic and organic organizations. In particular, the division of tasks and decision 
making within the crew is performed by common agreement of all members. This 
also contributes to the satisfaction of the goal 14. Furthermore, although a controller 
guides an aircraft, s/he is not given the formal power on its crew. Also, the way of 
working of the NODT is highly informal. Nevertheless, the superior-subordinate 
relations are defined between the Design Team Manager role and other members of 
the NODT. Note that because of the common allocations defined by the constraints at 
the step 10 almost all members of the NODT have at least two superior roles, one of 
which is the Design Team Manager. To ensure the effective and efficient work of the 
agents allocated to the roles-members of the NODT, their superiors should jointly 
coordinate the allocation of tasks to these agents. For the roles ODU, SIU, TCU, 
OAU and AODU the authority relations are defined that are inherent in mechanistic 
organizations. No inconsistencies or ambiguities have been identified in the authority 
structures of these roles. 

Note that besides the execution of tasks the formal authority relations of the 
organization influence the satisfaction of organizational goals. For example, to 
achieve the satisfaction of the goal 20 the crews and the controllers should be 
provided sufficient decision making power with respect to their tasks. In particular, 
according to Table 9 a crew is responsible for making both technological and 
managerial decisions with respect to the tasks such as “the inquiry for the clearance 
for crossing an active runway”, “crossing a runway”, “take off”, whereas a controller 
has the formal power to decide about the provision of clearances to crews. 

To ensure that the constraint 24 is always satisfied the organization should have a 
sufficient number of properly trained agents to be allocated to all the roles of the 
organization. The analysis based on the amount of agents currently employed by the 
organization that satisfy the requirements for the Ground and Runway Controllers 
roles identified many situations in which the same agent-controller should be 
allocated to more than two aircraft’s guiding processes (which violates the constraint 
16). In reality such situations are not rare when the amount of traffic increases. An 
example of such a situation is when more than two aircrafts approached to a runway 
in the same time frame and the Tower Controllers Supervisor could not assign the 
guidance of any of these aircrafts to some other agent-controller (e.g., because of their 
high workload). The interviews showed that in reality such situations are resolved by 
violating the constraint 16, thus, sacrificing the satisfaction of the organizational goals 
10, and 24. Also, it is reported that sometimes the management of the organization to 
keep the satisfaction of the constraint 16, violates the constraint 24, by allocating not 
(completely) qualified agents to the controller roles, thus, causing the dissatisfaction 
of the goal 10. Obviously, the satisfaction of the important organizational goal 10 
related to safety is sacrificed in both solutions. The lack of the consideration for the 
safety-related goals may cause incidents or even accidents. Therefore, problems that 
create obstacles to the satisfaction of such goals should be closely investigated by the 
organization. A possible solution for the described problem could be the provision of 
training for agents that are not (completely) qualified for the controllers roles or the 



 

 393 

employment of the agents that already conform to the requirements for the controllers 
roles. 

4.2 Analysis by simulation 

In reality the behavior of agents allocated to the organizational roles may diverge (to a 
substantial extent) from the predefined description of the formal organization (i.e., the 
specifications of the views and the related constraints). An agent may intentionally or 
unintentionally deviate from the prescribed behavior. Such deviations may affect the 
organizational performance both in a positive and in a negative way. 

In this Section the simulation results of two cases are described: in the first case the 
movement of aircrafts on the ground is simulated (Section 4.2.1), whereas the 
simulation for the second case concerns the formal and informal incident reporting 
and investigation paths (Section 4.2.2). In Section 4.2.1 it is demonstrated how agent 
deviations may affect the satisfaction of the organizational goals in a negative way. 
Then, Section 4.2.2 introduces an informal way of incident reporting that, as follows 
from the simulation results, may allows identifying organizational safety-related 
problems faster than through the formal incident reporting and investigation ways, 
thus positively contributing to the satisfaction of the organizational safety-related 
goals. 

4.2.1 Simulation of the movement of aircrafts on the ground 
Empirical studies in the area of air control have shown that among all causes of the 
agent’s unintentional deviations during the execution of aircraft taxiing operations, 
the agent’s incorrect situation awareness is the most frequent one. Among other 
common causes are: technical errors of the execution of processes, unexpected 
environmental circumstances not foreseen by the specification of the formal 
organization.  

Situation awareness is the agent’s mental representation of objects and events that 
exist/occur in his/her environment, modeled by a set of beliefs. The incorrect situation 
awareness of an agent may result from: 
(a) some communication problem; 
(b) misunderstanding and/or misinterpretation of information provided; 
(c) forgetting of information. 

Among the common communication problems are the following: 
(a) required information is not provided; 
(b) required information is sent, but not received; 
(c) incorrect information is provided; 
(d) partial information is provided; 
(e) correct information is provided to a wrong recipient; 
(f) required information provided untimely. 

A number of studies have been performed in the area of air control [2, 3, 6, 7], 
which by applying statistics to a large corpus of empirical data identified the 
probabilities of different types of errors and deviations of agents involved into the 
task of movement of an aircraft on the ground. In the following a simulation case of 
the execution of taxiing and take off processes in the ATCO will be described that 



 

 394 

uses some probability values from these studies. The configuration of the organization 
used in the case is taken from the ATCO reports. In the following the background of 
the case is described. 

Based on the joint decision of the Airport’s Management, of the ANSP and of the 
largest airlines a new operation has been developed, evaluated and implemented – a 
new runway has been introduced. Due to the physical position of the new runway, 
most of the aircrafts taxiing to other runways designated for take off need to cross this 
new runway. The new runway can be crossed at one place only, whereas may be 
approached using two taxiways situated in two different sectors of the airport. Thus, 
the focus of this study is on the processes performed on the new runway (runway1) 
and in two adjoining sectors (sector 1 and sector2). In normal conditions one 
controller is responsible for each region (i.e., a sector or a runway).  

The purpose of this study is to investigate the safety issues that may be caused by 
the introduction of the runway1. We shall investigate the organizational behavior in 
the normal configuration, when the number of the aircrafts guided by each controller 
is less than 3 and in a critical configuration, when the number of aircrafts increases 
significantly and the constraint 16 cannot be satisfied for some controllers.  

The number of agents-controllers is limited to four. One of these agents is always 
allocated to the Tower Controllers Supervisor role. This agent sees to the satisfaction 
of the constraint 16, reallocating three other agents-controllers to the ground and 
runway controllers roles depending on their workload. It is assumed that the agents 
are properly qualified for their roles.  

Generally, the agents allocated to the organizational roles behave as it is specified 
by the formal organizational specification. The differences with the predefined 
organizational scenarios are caused by agent deviations, the probabilities for some of 
which and for other events related to the functioning of the agents are given in Table 
11.  

Table 11. The probability values of the events involving controllers and pilots that deviate from 
the formal organizational specification 

Event Probability value 
(1) A crew recognizes a runway as a taxiway (wrong situation 
awareness) 

normal visibility 
conditions: 3.5e-5 
low visibility 
conditions: 2e-3 

(2) A controller forgets about an aircraft scheduled to wait for a 
clearance 

0.001 * 2n, if 0.001 
* 2n < 1 
1, otherwise 

(3) A controller forgets to inform the crew to change the frequency 0.001 * 2n, if 
0.0005 * 2n < 1 
1, otherwise 

(4) A controller makes a mistake in the calculation of the separation 
distance between aircrafts 

1.4e-5 * 22n, if 
1.4e-5 * 22n < 1 
1, otherwise 

(5) Crew reacts to the clearance of another aircraft 1e-4 
(6) A controller correctly recognizes an incident, when it occurred for serious 

occurrences: 1 
for less serious: 0.8 



 

 395 

(7) A controller reports an incident, when it occurred for serious 
occurrences: 1 
for less serious: 0.7 

(8) A pilot correctly recognizes an incident, when it occurred for serious 
occurrences: 1 
for less serious: 0.9 

(9) A pilot reports an incident, when it occurred for serious 
occurrences: 1 
for less serious: 0.5 

 
In the table n=0, when the number of the aircrafts simultaneously guided by the 

controller is less than 3, otherwise, n = the number of the aircrafts simultaneously guided by 
the controller -2.  

The deviations of the agents may cause different types of incidents/accidents. The 
examples of the serious incidents are the following: an incursion on a runway, an 
occurrence when an aircraft(s) cross(es) a runway, whereas another aircraft takes off. 
The examples of less serious occurrences are the following: a taxiing aircraft makes a 
wrong turn and progresses towards the runway crossing, a taxiing aircraft switches to 
a wrong frequency, a taxiing aircraft initiates crossing due to misunderstanding in 
communication. 

In this case study we shall focus on serious occurrences, namely on situations when 
two aircrafts are situated on a runway at the same time. Based on such type of 
incidents incident reports will be produced with a high probability. In Table 11 the 
events (1), (3), (4) and (5) (or their combinations) have direct effect on the incursion 
probability. As it follows from the table, an incursion on a runway is most probable in 
the conditions of the low visibility and of a high amount of traffic that causes the 
overload of controllers managing this traffic. For example, the probability that an 
aircraft in low visibility conditions enters a runway without receiving the clearance 
due to the coincidence of two events (1) the crew mistakenly recognized the runway 
as a taxiway, and (3) the responsible ground controller forgot to inform the crew 
about the frequency change because of the high workload (4 aircrafts simultaneously 
guided) is 0.002 * 0.004 = 0.000008. Notice that the occurrence of the event (1) 
without (3) will unlikely lead to an incident. In such a situation, a communication 
channel between the crew and the runway controller is established before the aircraft 
enters the runway. During the first contact with the crew, the runway controller will 
correct the wrong situation awareness of the crew. Also, the probability that the event 
(3) without the event (1) will cause an incursion is very low. However, although such 
and other events (e.g. (2)) may not lead to an incident, still they influence the 
organizational performance. A decrease in performance is caused by unnecessary 
delays and time required for the problem solving. However, in this study only safety 
issues are considered. 

The probability of an incursion occurrence in the normal configuration under low 
visibility conditions can be estimated analytically: 0.002* 0.001 + 0.000014+ 0.0001 
= 0.000116. In the normal visibility conditions is it even lower.  

A more serious threat for safety represent critical configurations. From Table 11 it 
is obvious that the higher is the workload of the controllers (of the runway controller 
in particular) the higher the probability of an incursion. Due to the physical location 
of the new runway, the growth of the workload on the controller of the runway1 is 



 

 396 

proportional to the traffic growth. For example, for the configuration, in which each 
ground controller guides four aircrafts, and the runway controller manages five 
aircrafts in low visibility conditions, the probability of an incursion is approximately 
0.001.  

For the simulation a critical configuration with six aircrafts is used. Four aircrafts 
approach to the runway1 from the sector 1, and two aircrafts approach to the runway1 
from the sector 2. The time points at which the aircrafts appear in the sectors 1 and 2 
are uniformly distributed within 7 minutes. For two of the aircrafts taxiing in the 
sector 1and for one aircraft taxiing in the sector 2 the runway1 was designated for 
take off. For the rest of the aircrafts the runway1 was situated on the way to their 
designated runway.  

Since the actual probabilities of the events given in Table 11 are very low and 
would require many (thousands of) simulations to draw some plausible conclusions, 
the probability values used in this case study are obtained from the original ones by 
the multiplication by the factor 100.  

The structural and behavioral formal organizational specification extended with the 
probability values of the events and the environmental conditions defined above has 
been specified in the simulation environment Leadsto [4]. Then, one hundred 
simulations have been performed and the obtained simulation traces have been 
analyzed using the checking environment [5]. 

In particular, by the analysis the following results have been obtained: 
(1) The agent allocated to the Controller Runway1 role in all traces most of the time 

was guiding at least four aircrafts.  
Formally it means that the following property holds for any simulation trace γ: 
∀n:INTEGER n≠4 & n ≥0 sum([t:TIME], case(holds(state(γ, t, env), 
agent_workload(ag_controllerB, n), true), 1, 0)) < sum([t:TIME], case(holds(state(γ, t, env), 
agent_workload(ag_controllerB, 4), true ), 1, 0)) 
 
Here ag_controllerB is the agent-controller allocated to the Controller Runway1 role. 
 

(2) Also, the ground controller of the sector 1 (agent ag_controllerA) was overloaded, 
guiding in average three aircrafts at the same time. 

(3) The incursion event on the runway1 occurred in 36 traces from 100.  
Formally: 
sum([γ:TRACE], case(∃t:TIME ∃crew1_var:CREW ∃crew2_var:CREW holds(state(γ, t, env), 
incursion_at_between(runway1, crew1_var, crew2_var), true), 1, 0)) = 36 

Therefore, the relative frequency of the incursion on the runway1 in the described 
configuration is 0.36.  
(4) The number of incursions caused by the combination of the events (1) and (3) 

from Table 11 is 30.  
Formally: 

prop1(γ:TRACE) is defined as 
∃t1, t3: TIME t3<t1 ∃crew1_var, crew2_var, crew_rep1_var, crew_rep2_var: CREW 
∃freq1:FREQUENCY ∃taxiway_var:TAXIWAY ∃acraft1_var, acraft2_var: AIRCRAFT 
holds(state(γ, t1, env), incursion_at_between(runway1, crew1_var, crew2_var) ∧ 
controller_frequency(controller runway1, freq1) ∧ crew_repr(crew1_var, crew_rep1_var) ∧ 
crew_repr(crew2_var, crew_rep2_var) ∧ crew_of_aircraft(crew1_var, acraft1_var) ∧ 
crew_of_aircraft(crew2_var, acraft2_var)) &  
∀t2:TIME ∀controller1_var:CONTROLLER t2 < t1  



 

 397 

((holds(state(γ, t2, input(crew_rep1_var)), ¬communication_from_to(controller1_var, 
crew_rep1_var, inform, change_frequency(freq1))) & holds(state(γ, t3, 
internal(crew_rep1_var)), belief(observed, env, aircraft_close_to(acraft1_var, taxiway_var))) 
& holds(state(γ, t3, env), aircraft_approaches(acraft1_var, runway1)))) ∨  
((holds(state(γ, t2, input(crew_rep2_var)), ¬communication_from_to(controller1_var, 
crew_rep2_var, inform, change_frequency(freq1))) & holds(state(γ, t3, 
internal(crew_rep2_var)), belief(observed, env, aircraft_close_to(acraft2_var, taxiway_var))) 
& holds(state(γ, t3, env), aircraft_approaches(acraft2_var, runway1))))) 

 
Then, the following property holds: 
sum([γ:TRACE], case(prop1(γ)), true), 1, 0)) = 30 
 

(5) The number of incursions caused by mistakes of the runway controller in the 
calculation of the separation distance between aircrafts is 5. 

Formally: 
sum([γ:TRACE], case(∃t:TIME ∃crew_rep1_var, crew_rep2_var:CREW ∃clear1_var, 
clear2_var: CLEARANCE ∃controller1_var, controller2_var: CONTROLLER ∃ag1_var:AGENT 
crew_rep2_var ≠ crew_rep1_var holds(state(γ, t, env), clearance_provided(clear1_var, 
runway1, controller1_var, crew_rep1_var)) ∧ clearance_provided(clear2_var, runway1, 
controller2_var, crew_rep2_var)) ∧ agent_plays_role(ag1_var, controller_runway1) ∧ 
agent_plays_role(ag1_var, controller1_var) ∧ agent_plays_role(ag1_var, controller2_var)), 
true ), 1, 0)) = 5 
 

(6) There is only one incursion caused by a crew mistakenly reacting to the clearance 
for some other crew.  

 
Although the increased probability values have been used this case study for 

simulations, still the analysis results point at a significant risk that exist, when an 
active runway is situated on the way to other runways. In this case the safety 
reevaluation of the new operation (i.e., the new runway introduction) is required. 

4.2.2  Simulation of formal and informal incident reporting paths 
Serious incidents (e.g., runway incursions) investigated in the simulation case study in 
the previous Section usually lead to an immediate investigation using the formal 
incident reporting paths identified in Section 3. However, more often less important 
events related to the operation of aircrafts on the ground occur that are less likely to 
lead to an immediate investigation, however, are often registered for further 
investigation. Examples of such events are the following: taxiing aircraft stops 
progressing on the runway crossing only after the stopbar and due to a call by the 
runway controller; taxiing aircraft makes wrong turn and progresses towards the 
runway crossing; taxiing aircraft makes wrong turn and progresses on a wrong taxiing 
route that is not a runway crossing; taxiing aircraft has switched to a wrong 
frequency. When a significant number of such events have been accumulated, an 
investigation may begin. Often accumulation of data about such occurrences takes 
long time. Also, the process of incident reporting and investigation is time consuming. 
One of the main reasons for this is that several roles from different organizations are 
involved in the formal incident reporting processes. Quite often interaction between 
organizations operating based on different norms and regulations creates time delays. 
Furthermore, incident investigation is a complex process that requires good analysis 



 

 398 

skills, experience and ingenuity. Time delays, interaction inefficiencies between 
organizations and a low quality of the incident investigation may cause a late 
identification of safety-related problems in the operations of the ATCO that may 
result into incidents. 

From the practical experience it is known that next to the formal incident reporting 
paths also informal incident reporting paths exist in the ATCO. In particular, 
examples are known when based on discussions among tower controllers, potential 
safety problems were informed to the management of the ANSP. This sometimes 
resulted into a much faster identification of safety problems related to aircraft 
movement operations. Such an incident communication path is not specified by any 
organizational documents and is initiated by agents-controllers themselves. More 
specifically, this path consists of the following steps: 

 
1. Tower Controllers (including their supervisor) discuss among themselves 

during the breaks occurrences that they observed during their shifts. 
2. If a potential (important) safety issue is identified during such discussions, the 

information about this issue will be further provided to the Head of Controllers, 
who is also the member of the Operation Management Team (OMT). 

3. The provided information is discussed in the OMT and may support the ATC 
Executive Management in their understanding of the vent and resulting 
decision-making. 

 
The aim of this simulation case is to investigate the path of informal incident 

reporting, its influence on the general organizational performance and to compare the 
consequences of both formal and informal incident reporting.  

This case is performed in the context of the previous case described in Section 
4.2.1 with the difference that 7 agent controllers are used in this simulation instead of 
4. In Table 12 the aggregated skills and their development levels are presented for the 
considered agents controllers. All the agents-controllers possess the aggregated air 
traffic control skill (atc), which allows them to be assigned either to runway or ground 
controllers roles. The agent ag_controllerG also possesses the skill “employee 
management”, which allows allocating this agent to the role Tower Controllers 
Supervisor.  

Table 12. The agents-controllers considered in the simulation case study. 

Agent Controller Skill (the level of development) Influence level 
ag_controllerA atc (2) 0.3 
ag_controllerB atc (3) 0.6 
ag_controllerC atc (2) 0.3 
ag_controllerD atc (4) 1 
ag_controllerE atc (3) 0.6 
ag_controllerF atc (4) 1 
ag_controllerG employee management(4) 

atc (4) 
1 

 
Furthermore, the development level of the skills related to air traffic control forms 

the basis for influence (i.e., informal power) in the ANSP. The influence levels of the 



 

 399 

considered agents are given in Table 12. The higher the skill development level of an 
agent-controller, the more influence this agent has in the ANSP organization. The 
level of influence of an agent-controller plays an important role in the propagation of 
information about a potential safety problem to the management level of the 
organization. 

In the simulation the work management of controllers is specified according to the 
constraints identified in Section 3. A traffic flow in the surrounding of the runway1 is 
assumed to be 30 aircraft per hour, 12 hours per day. Table 13 presents the 
probabilities values for some events that may occur during the execution of taxiing 
and taking off processes based on the results of the empirical studies.  

Table 13. The probabilities values for some events that may occur during the execution of 
taxiing and taking off processes. 

Event Event probability 
(per taxi operation) 

(a) Aircraft rejects take-off as result of a runway incursion 5e-6 
(b) Taxiing aircraft stops progressing on the runway crossing only 
after the stopbar and due to a call by the runway controller 

2e-5 

(c) Taxiing aircraft makes wrong turn and progresses towards the 
runway crossing 

1e-4 

(d) Taxiing aircraft makes wrong turn and progresses on a wrong 
taxiing route that is not a runway crossing 

2e-4 

(e) Taxiing aircraft has switched to a wrong frequency 1e-3 
(f) Taxiing aircraft initiates to cross due to misunderstanding in 
communication 

1e-4 

 
Note that some types of the identified events can be observed only by the agents 

allocated to particular roles in the organization. Table 14 specifies which types of 
events may be identified by which roles.  

Table 14. The observation possibilities of the identified events by the organizational roles. 

Identification by Event 
runway controller ground controller crew of a taxiing 

aircraft 
crew of a taking-

off aircraft 
(a)  yes no yes yes 
(b)  yes maybe yes maybe 
(c)  yes maybe maybe no 
(d) no maybe maybe no 
(e) maybe maybe maybe no 
(f)  yes no maybe maybe 
 
However, events that occur during operations of aircrafts on the ground may not 

always be noticed/ correctly recognized both by crews and controllers. Furthermore, 
both pilots and controllers do not always register events that occur. To represent this 
in the simulation model, the probability values have been assigned both to the 
observation and registration events by both controllers and crews (see Table 15).  



 

 400 

Table 15. The probability values for the observation and the registration of the identified types 
of events by controllers and crews. 

The probability of the correct event 
recognition, when it occurred 

The probability of the event 
registration, when it observed Event 

by a controller by a crew by a controller by a crew 
a 1 1 1 1 
b 1 1 0.99 0.99 
c 0.99 0.98 0.9 0.9 
d 0.95 0.8 0.5 0.5 
e 0.7 0.9 0.5 0.5 
f 0.99 0.9 0.99 0.99 

 
Furthermore, for this simulation case study we made assumptions regarding the 

number of events that are needed to formally and informally initiate a detailed 
investigation: N(a)=1, N(b)=1 to 5, N(c)=1 to 10, N(d)=10 to 100, N(e)=10 to 100, 
N(f)=1 to 10.  

Also, the combined influence level of the controllers involved into the discussion 
(the identification of safety-related problems) contributes to the incident reporting 
initiation through the informal path. To represent the prerequisites for an action of 
reporting of an identified safety-related problem based on the occurrence type 
occur_type by a representative of a group of controllers, the motivation model 
introduced in Chapter 7 of part III of this thesis is used (see Fig. 17). 

 

The issue is
considered at the
managerial level

Positive impact on the
organizational goals

I11

E11

Report about
a potential
safety problem

Group acceptance

I12  

Fig. 17. The motivation model of a representative of a group of controllers for reporting about a 
potential safety problem 

Here, both instrumentalities I11 and I12 are equal to 0.9 as the controllers involved 
into the discussion believe that the identified safety related issue will contribute to the 
satisfaction of some organizational safety-related goals and that they will be 
acknowledged for that. Both second-order outcomes (positive impact on the 
organizational goals and group acceptance) have a high level of priority for the 
controllers (i.e., valence value = 1). 

The expectancy E11 is calculated as the product of the sum of the influence levels 
of the controllers involved into the discussion and the coefficient ac(occur_type), which 
value is dependant on the number of occurrences of the type occur_type required for 
the investigation (N(occur_type)) and the number of occurrences of the type occur_type 
observed by the controllers involved into the discussion so far (N(occur_type)curr): 

 

��

�
�

�

>

≤
=  pe)N(occur_ty    pe)N(occur_ty    ,

pe)N(occur_ty
pe)N(occur_ty

pe)N(occur_ty    pe)N(occur_ty              1,
ype)ac(occur_t

curr
curr

curr  



 

 401 

 
Then, the motivation force to report about a possible problem based on the 

observations of events of type occur_type is calculated as it is described in Chapter 7 of 
Part III: F(occur_type, CD) = 1.8* ac(occur_type) * overall_influence(CD), where CD is the set 
of the agents-controllers involved into the discussion. If F(occur_type, CD) > 1.8, then 
the problem will be reported to the Head of Controllers by a controller representative 
(e.g., the controller with the highest influence level) of the group of the controllers 
involved into the discussion. After that, the problem will be discussed at the nearest 
OMT meeting. In this simulation it is assumed that this discussion will always result 
in a detailed investigation of the problem.  

Based on the simulation model described above, 200 simulations have been 
performed with the simulation time 1 year (12 working hours per day) each. If the 
problem has been identified, the simulation halts. The simulation results for both 
formal and informal reporting cases are presented in Table 16. The mean time value 
of the investigation beginning with respect to some event type in the third column is 
calculated over all traces, in which the occurrences of events of this type caused the 
incident investigation. The corresponding standard deviation in the fourth column is 
calculated over the same set of traces. 

Table 16. The results of the simulation experiments. 

Number of traces, 
in which based on 
the event type the 

investigation began 

Mean time value before 
the recognition of a safety 

problem (in hours) 

Standard deviation of time 
before the recognition of a 

safety problem Event 

Formal Informal Formal Informal Formal Informal 
a 31 40 2093.37 1304 836.05 633 
b 13 2 2523.32 1055 908.24 323.8 
c 59 135 2466.69 1558 705.28 544 
d 0 0 - - - - 
e 0 2 - 2756 - 113.1 
f 86 8 2502.47 2191 638.3 612 

 
The table shows that in all cases the path of the informal incident reporting allows 

a faster identification of safety-related problems than through the formal incident 
reporting paths.  

A difference between the numbers of traces for the event type b for formal and 
informal incident reporting can be explained by a lower generation probability of 
events of this type in comparison for example to the events of the type c. Thus, since 
both b and c require comparable numbers of occurrences before the investigation 
initiation, an investigation based on events of the type c begins often sooner than the 
investigation based on the events of the type b. A large number of traces, in which 
based on the events of the type c the investigation began, can be explained by the 
simultaneous observation possibility of events of this type by both a ground controller 
and the runway controller, and by the high observation and registration probabilities 
of events of the type c by the controllers. On the contrary, only a small number of 
events of the type e is observed and registered by controllers, thus, the problem 
identification based on this event type is rare. A large difference between the numbers 



 

 402 

of traces for the event type f for the formal and informal cases can be explained by the 
fact that only one controller is able to observe the events of this type. 

5 Conclusions 

The modeling and analysis of the structure and behavior of the Air Traffic Control 
Organization using the proposed framework proved to be practicable and useful for 
the understanding of the organizational functioning, for the identification of 
organizational errors and inconsistencies, and for the investigation of the 
organizational dynamics in different environmental settings. In the following this 
general conclusion will be substantiated. 

The modeling framework allowed the identification of diverse aspects of the 
considered organization at a detailed level. The expressivity of the languages of the 
views of the framework allowed specifying all static structures and the dynamic rules 
of behavior defined in the ATCO.  

Most of the tasks of the ATCO allow a significant degree of freedom of the 
execution by agents allocated to these tasks. Such tasks were specified at a high level 
of abstraction, whereas the important norms and regulations on these tasks were 
formalized as constraints. Some of these constraints can be verified on the 
organizational specifications, whereas others can only be checked on actual 
executions of the tasks by agents.  

In general, the mechanism of constraints proposed by the framework allows 
specifying diverse aspects of both mechanistic and organic types of organizations. 
Constraints may be defined using the concepts and relations from multiple views. For 
example, the representation of the constraint expressing that the Tower Controllers 
Supervisor performs (re)allocation of tower controllers roles to some tasks depending 
on the workload situation uses the concepts and relations both from the process-
oriented view (such as tasks, resources) and the organization-oriented view (such as 
roles, the authority relations between the Tower Controllers Supervisor and the tower 
controllers). The satisfaction of the constraints both of particular views and across 
multiple views can be determined using the efficient algorithms defined in Part III of 
this thesis. Using these analysis techniques in the frame of the case study the missing 
and the conflicting parts of the organizational description have been identified and for 
some problems possible solutions have been proposed. In particular, many of the 
conflicts identified at the level of organizational goals stem from the principal 
difference between performance and safety objectives of the organization. To survive 
and to make profit in the highly competitive environment ATCOs often strive for (a 
high degree of) the satisfaction (satisficing) of the performance-related goals. This 
often results into a decrease of the satisfaction of some safety-related goals, which 
may bring to an incident or even to an accident. To ensure a sufficient degree of 
safety, the ATCO should always ensure sufficient degrees of satisfaction of its safety-
related goals. 

Another analysis type described in this case study is performed on the simulation 
results of actual executions of organizational scenarios. In general, actual executions 
may diverge from the organizational scenarios defined by the formal organizational 



 

 403 

specification. The diverging behavior of agents may influence the organizational 
performance and the satisfaction of the organizational goals both in a positive and in a 
negative way. In this case study the examples of both negative and positive influence 
have been demonstrated. In particular, in Section 4.2.1 it has been shown how 
different types of divergent agent behavior may result into delays in executions of 
processes and even into incidents. On the other hand, an example of the positive 
influence on the organizational performance of the informal incident reporting path 
established by agents-controllers has been described in Section 4.2.2.  

Another example of the positive influence is the following. From the interviews 
with air traffic controllers it appeared that in low traffic conditions controllers often 
do not exactly follow the imposed on them prescriptions and regulations. From the 
controllers’s experience, these deviations often lead to the increase in the 
organizational performance. At the same time, many of the safety-related goals are 
also satisfied, since the incident/accident probabilities are low in the low traffic 
conditions. In the future more investigations into relations between the formal and 
informal organizational structures and behaviors will be performed. One of the ways 
to perform such analysis is by simulation as it is described in this study.  

Furthermore, in this case study beliefs were used for representing the internal states 
of agents. This choice was motivated by the assumption that the goals of agents are in 
line with the organizational goals and, therefore the analysis of intentional and 
motivational aspects of agents was not necessary. However, under different 
assumptions also other internal states and attitudes of agents (e.g. desires, intentions 
and motivation) would be useful to consider.  

Some scalability considerations on the used framework can be given with respect 
to this case study. Many parts of the presented organizational specification are 
specified and can be considered at different aggregation levels: e.g., the goals, the 
tasks, the interaction relations on roles, the workflows. The specifications of different 
aggregation levels can be developed and represented separately, which decreases the 
complexity of modeling. At the same time, to ensure the integrity of the whole 
organizational specification, the relations between different aggregation levels should 
be identified.  

Another point concerns the specification of role instances. When a generic role and 
its behavior are defined, the specification of any number of instances of this role 
requires only the definition of characteristics and behaviors that are different from 
those of the generic role, without providing the complete structural and behavioral 
specifications. 

Also the analysis techniques of the proposed framework are scalable. In particular, 
the analysis by simulation part of this case study focused on the task of the aircraft 
movement on the ground, for which a detailed specification was required. At the same 
time, other tasks (e.g., incident reporting) were considered at a high aggregation level, 
without unnecessary details in the analyzed specification. Further, since the relations 
between the tasks, the roles and the goals are clearly defined in the complete 
organizational specification, only the relevant subsets of the goals and the roles were 
automatically chosen for the analysis of the considered task. Furthermore, a set of the 
relevant constraints was also chosen based on the concepts and relations specified in 
the analyzed specification. In such a way, the analyzed specification was 
automatically abstracted from all irrelevant for the considered task information. Also, 



 

 404 

the outcomes of the analysis of the task of the aircraft movement on the ground (e.g., 
relative frequencies of different types of incidents) can be further used as input for the 
analysis of the incident reporting task. Thus, the proposed framework allows 
achieving the scalability of analysis. 

References 

1. Air navigation system safety assessment methodology. Eurocontrol. SAF.ET1.ST03.1000-
MAN-01, edition 2.0 (2004) 

2. Blom, H.A.P., Bakker, G.J.: Conflict probability and Incrossing probability in air traffic 
management. In Proceedings of the IEEE Conference on Decision and Control, Las Vegas, 
Nevada, December, 2421-2426 (2002) 

3. Blom, H.A.P., Bakker, G.J., Everdij, M.H.C., van der Park, M.N.J.: Collision risk modelling 
of air traffic. In Proceedings of the  European Control Conference (ECC03), Cambridge, 
UK, September (2003) 

4. Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J.: A Language and Environment for 
Analysis of Dynamics by Simulation. International Journal of Artificial Intelligence Tools, 
16: 435-464 (2007) 

5. Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, A., and Treur, J., Specification and 
Verification of Dynamics in Cognitive Agent Models. In: Proceedings of the Sixth 
International Conference on Intelligent Agent Technology, IAT'06. IEEE Computer Society 
Press, 2006, pp.247-255. 

6. Kardes, E, Luxhoj, J.T.: A hierarchical probabilistic approach for risk assessments of an 
aviation safety product folio. Air Traffic Control Quarterly 13(3):279-308 (2005) 

7. Stroeve, S.H., Blom, H.A.P., Bakker, G.J.: Safety risk impact analysis of an ATC runway 
incursion alert system, Eurocontrol Safety R&D Seminar, Barcelona, Spain, 25-27 October 
(2006) 



 

 405 

 

 
 
 

Part VI 

Conclusions 
 
 
 



 

 406 



 

 407 

 
 
 
 
 
 
 
 
 

Chapter 1 

 

Discussion of results 

 
In this dissertation a number of organization modeling and analysis methods have 
been investigated and introduced. These methods have been structured along several 
dedicated modeling views on organizations and have been integrated into a general 
organization modeling and analysis framework. The developed framework aims at 
addressing current needs both of academic organization theory and of organizational 
practitioners for automated techniques and means that enable reliable computational 
analysis of complex organizations of different types. The investigation of these needs 
performed in the context of this work resulted into the set of high-level requirements 
related to different aspects of modeling and analysis of organizations that have been 
identified in Part I. Among them: 

(1) expressivity: the modeling methods should be expressive enough to represent 
different structural and behavioral aspects of organizations of different types; 
furthermore, relations between different aspects of the organizational reality 
should be specified explicitly; 

(2) a strong connection to Social Science: the meaning attached to the introduced 
modeling concepts and the rules of correct use of these concepts in 
organizational specifications should be specified based on the literature from 
Social Science; 

(3) automated formal analysis: the language used for the formalization of 
organizational specifications should also allow manifold and rigorous 
automated formal analysis of these specifications (e.g., by simulation, 
verification and validation); 

(4) complexity: since specifications for real organizations may be very complex, 
means to handle a high complexity and to increase scalability of modeling 
and analysis should be identified; 



 

 408 

(5) support for the execution of organizational scenarios: the developed methods 
should allow designing organizational specifications that form a basis for 
enterprise information systems, which support and control the execution of 
organizational scenarios; 

(6) usability: the framework based on the developed techniques should be usable 
and convenient for organizational practitioners: modelers, designers, analysts, 
managers, etc. 

 
In the following it will be elaborated how these requirements have been realized. 

 
Expressivity 
The investigated modeling methods are positioned along a number of dedicated views 
(or perspectives) on organizations: the performance-oriented view, the process-
oriented view, the organization-oriented view and the agent-oriented view. The 
concepts and relations of each view have been identified based on the literature from 
Social Science, on the analysis of existing dedicated organization modeling 
architectures and frameworks, and on the needs of practitioners. Furthermore, the 
concepts and relations have been chosen in such a way that the structures and 
dynamics of different paradigmatic types of modern organizations identified in 
organization theory can be represented. The formal languages of the dedicated views 
have both qualitative and quantitative expressivity and allow representing both 
structural and dynamic aspects, which is an indispensable property for modeling 
organizations of different types. Moreover, for each modeling concept a clear 
definition has been provided and the relations to other concepts have been identified.  

In particular, in the performance-oriented view described in Chapters 1 and 2 of 
Part III organizational performance indicators and goals of different types are 
identified. The relations between these two concepts, which remain implicit in other 
frameworks, are clearly defined. Goals may be refined into more specific goals, thus 
forming hierarchies of goals. Performance indicators may be related by a number of 
relation types (causality, aggregation and correlation). Since structures of goals and 
performance indicators are interrelated, in most cases changes in one structure require 
also changes in the other structure. 

Furthermore, the process-oriented view described in Chapters 3 and 4 of Part III 
introduces a formal language for specifying organizational flows of control and actual 
executions of organizational scenarios. In particular, this language enables detailed 
modeling of resources, including expiration durations and different modes of sharing 
that are distinct from other existing modeling frameworks. The language of the view 
allows to represent all common templates that describe the execution of processes in 
workflows. Moreover, since the process-oriented view is related to other 
organizational views, process-oriented specifications may include relations between 
tasks, processes, resources and other organizational concepts (e.g. roles, goals, 
agents). 

The organization-oriented view described in Chapters 5 and 6 of Part III provides 
modeling means for representing both flat structures of organic organizations and 
hierarchical structures with any arbitrary number of aggregation levels of mechanistic 
organizations. Two types of structures are defined within the organization-oriented 
view: interaction and authority structures. In particular, for representing the authority 



 

 409 

structure of an organization the view introduces a set of concepts and relations based 
on the findings from the managerial literature. It distinguishes different aspects of 
responsibility for the execution of processes. Using the language of the view, formal 
power relations that exist in organizations of different types can be represented. 
Furthermore, the view establishes the relations between the formal power structure 
and the interaction structure of an organization. 

The agent-oriented view described in Chapters 7 and 8 of Part III introduces the 
characteristics and attitudes of agents. This view addresses both intentional (goals) 
and motivational attitudes of agents. Note that the framework for agent modeling 
described in the view is not fixed and can be easily extended by other mental attitudes 
of agents (e.g., desires, intentions) when needed. Furthermore, using the expressive 
language TTL any particular type of agent behavior can be specified. 

In the developed methods special attention is given to the identification of relations 
between different views (i.e., between different aspects of organizational reality). In 
contrast to more specialized modeling frameworks (e.g., goal-oriented, process-
oriented frameworks) that elaborate on particular organizational perspectives only, the 
proposed modeling methods allow to investigate relations between multiple 
perspectives on organizations and using these relations for analysis of organizations. 
In such a way, a better understanding of the organizational structure and behavior can 
be gained. In particular, the goals of an organization are achieved by the execution of 
organizational processes. Also, performance indicators are associated with processes, 
measuring some aspects of their execution. Goals are attributed to roles and agents. 
The formal authority relations on roles of an organization are defined with respect to 
tasks. Also, the relations between the role interaction structure and processes of an 
organization are identified. Some organizational rules are formulated over structures 
from all organizational views. For example, the following rule from a reward policy is 
formulated using concepts and relations from all organizational views: ‘when an agent 
allocated to some role has been keeping the values of some PI(s) related to its process 
above a certain threshold for some time period, then s/he will be granted some 
reward’. 

Specifications of the views often contain the environment description. In general, 
no particular restrictions on the representation of the environment are imposed. Many 
of the environmental conditions in which an organization operates can be represented 
by both generic and domain-specific constraints. Furthermore, for particular purposes 
(e.g., for simulation of particular scenarios) the environment can be represented by a 
separate modeling component. In this case either an aggregated view on the 
environment may be taken (e.g., to represent the global behavior of markets) or a 
more elaborated specification of the environment may be created. In the latter case, 
the internal specification for the environment can be specified using one of the 
existing world ontologies (e.g., CYC, SUMO). It can be also defined by a set of 
objects with certain properties and states and with causal relations between objects. 
 
A strong connection to Social Science 
One of the central notions of the performance-oriented view - the performance 
indicator – plays an important role in the modern Business Performance Management 
[1, 5, 6]. The definitions of relations between performance indicators introduced in 
the performance-oriented view were inspired by the literature from this area. 



 

 410 

Furthermore, informal goal-oriented modeling of an organization has been always one 
of the important topics in Social Science [10]. The existing findings in this area 
influenced our choice of the characteristics of goals.  

Organization theory describes many ways of execution of tasks (i.e., work 
management) in organizations of different types [8, 10]. Using the language of the 
process-oriented view detailed prescriptive flows of control, of resources and of 
information of mechanistic organizations can be specified. An example of such a 
specification is given in Chapter 3 of Part III. At the same time, more vaguely and 
generally defined flows of organic organizations can be described by the mechanism 
of constraints, as it is illustrated in the case study in Part V.  

Further, based on the theoretical findings from Social Science (managerial 
literature in particular) that describe power, duties and responsibilities of 
organizational positions [2, 11], a number of relations for the specification of formal 
authority have been identified in the organization-oriented view.  

The choice of the characteristics of agents described in the agent-oriented view is 
based on social psychology theories from [7, 9]. In general, the specification of 
internal attitudes and dynamics of agents is not limited to any particular theory. 
Instead, a modeler is given freedom to choose a suitable theoretical basis depending 
on the purpose of modeling. Thus, the motivation modeling of agents presented in 
Chapter 7 of Part III is based on the expectancy theory (the version of Vroom) [12] 
that has received good empirical support. At the same time, the investigation of the 
relations between the environmental complexity and the behavioral complexity of 
agents situated in this environment is inspired by the Environmental Complexity 
Thesis formulated by Godfrey-Smith [4]. 

 
Automated formal analysis 
The formal basis of the developed techniques provides the possibility to give precise 
definitions for the concepts and relations and to define rules of the correct use of these 
concepts and relations. Using the proposed languages the consistency and integrity 
constraints for the structures of each view and over multiple views have been defined. 
Furthermore, using the formal basis different sophisticated and rigorous types of 
analysis can be performed. Since the behavior of an organization can be complex, the 
specifications that describe dynamic aspects of an organization may contain complex 
temporal relations. These relations are expressed using Temporal Trace Language 
(TTL) in this thesis. Complex temporal specifications in TTL cannot be used for 
automated analysis directly, since complex temporal formulae cannot be processed by 
existing analysis tools. To address this issue, the thesis introduces executable 
sublanguages of TTL. To translate a behavioral specification of an organization in 
TTL into executable form, the thesis proposes an automated procedure, described in 
Chapter 3 of Part II. The result of such a translation – an executable specification – 
can be used to perform different types of analysis. The specification of organizational 
behavior in executable form directly can be cumbersome for complex organizations, 
since it would require a large quantity (including auxiliary) of executable rules. TTL 
proposes a much easier way of creating behavioral specifications, which still can be 
automatically translated into executable form.  

The analysis techniques developed in this thesis can be divided into the general 
ones and the ones specific to a particular view.  



 

 411 

Three general automated analysis techniques have been introduced in Part II. In 
particular, two of these techniques use the results of the procedure of transformation 
of a behavioral specification of a system in TTL into the executable format. The 
application of the first analysis techniques – by simulation – is demonstrated in 
Chapter 4 in the context of an example from the area of multi-agent systems. Chapter 
5 of Part III illustrates how the second technique can be applied in organizational 
context, to verify consistency of an organizational specification by checking relations 
between dynamic properties of different aggregation levels using model checking. 
The same chapter illustrates the application of the third general technique – checking 
properties on a limited set of traces – that is described in Chapter 5 of Part II. In this 
example dynamic properties are checked on a formalized empirical trace obtained by 
executing a particular scenario with roles of the organizational specification allocated 
to (human) agents. One more application of the third analysis technique is described 
in Part V, in the context of a case study from the area of air traffic control. In this part, 
the checking of safety-related properties is performed on a large number of simulation 
traces. 

As noted in Part II the introduced general techniques can be applied to dynamic 
systems in a great variety of domains. Several examples of the application of these 
techniques in the areas of multi-agent systems and cognitive science are given in Parts 
II and III. 

However, the generality has also a reserve side. Since the general verification 
algorithms are not tuned to particular characteristics of a system being analyzed, the 
computational properties of such algorithms are in most cases worse than the ones 
that can be achieved by dedicated domain-specific verification.  

To enable efficient analysis of specifications of different views, a number of 
dedicated formal analysis techniques have been developed and implemented. Using 
these techniques the correctness of organizational specifications with respect to 
different sets of constraints can be verified effectively. In particular, using one of the 
techniques described in the performance-oriented view (Chapter 1 of Part III), the 
consistency of a performance indicators structure can be established. Using the 
techniques described in Chapter 2 of Part III, the satisfaction of organizational goals 
can be automatically established, and the correspondence between goal and 
performance indicators structures can be determined in a semi-automated way. The 
process-oriented view described in Chapter 3 of Part III introduces a set of constraints 
of different types and provides the automated algorithms for their verification. 
Furthermore, this section discusses the complexity issues of the introduced 
algorithms. Note that because of the interconnections between the views, some of the 
constraints are expressed over multiple views. For checking of such constraints across 
views the automated algorithms are provided in Chapter 3 of part III. 

 
Complexity 
To reduce the complexity of modeling, the contributed modeling approach 
distinguishes four views, the specifications for each of which can be developed 
separately. However, in the end, the relations between the views should be identified. 

Furthermore, as it is shown in Part III, to reduce the complexity of modeling and 
analysis, the structure and dynamics of an organization can be specified, depicted and 
analyzed at different aggregation levels (e.g., at the level of departments, units, teams, 



 

 412 

groups). The specifications of each view can be created for each level separately. 
Then, properties related to the specifications of a particular level only can be checked 
without considering specifications of other levels. However, some properties may be 
formulated over structures of two or more aggregation levels (e.g., properties 
expressing relations between the performance of organizational units and the overall 
organizational performance; properties that ensure the consistency and integrity of the 
whole organizational specification). For checking such interlevel properties the 
general verification approach is applied, as it is described in Chapter 4 of Part II and 
in Chapter 5 of Part III.  

Moreover, organizational processes can be considered at different levels of 
abstraction, as it is discussed in Chapter 3 of Part III. More specifically, using task 
hierarchies, specifications can be built at different levels of abstraction. General 
constraints defined for high level processes are refined into more specific ones that 
should be satisfied by processes of lower levels. In such a way, to decrease 
complexity, specifications of different abstraction levels can be analyzed separately 
keeping relations with each other through task hierarchies and the constraint 
refinement. 

Also, the developed modeling methods allow reuse of specifications in a number of 
ways, which reduces the complexity of modeling. Libraries of commonly occurring 
parts of structures (goals and tasks hierarchies, PI-structures, workflow graphs, etc.) 
can be stored and reused for organizations in the same domain. The research in 
identifying and classifying important PIs for different domains [e.g. 1] can easily be 
applied here. Reuse can also be supported by predefined templates for various aspects 
of different types of organizations (mechanistic, organic, etc.). For example, templates 
for domain-specific constraints can be provided for each view to be customized by the 
designer. The developed tools allow defining parameterized templates (macros) for 
TTL formulae that can be instantiated in different ways (Chapter 3 of Part III). 

 
Support for the execution of organizational scenarios 
The developed modeling techniques provide a sufficient level of details to describe 
actual executions of organizational scenarios. As has been discussed in Chapters 4 
and 6 of Part III organizational specifications developed using the proposed 
techniques may serve as a basis for automated enterprise information systems. In 
particular, in Chapter 4 an approach is proposed for both online and offline checking 
of executions of organizational scenarios (traces) with respect to formal process-
oriented specifications. In such a way, the correspondence between predefined (or 
planned) scenarios and the actual executions of these scenarios by agents can be 
ensured. To guarantee an appropriate distribution of rights and responsibilities for 
roles and agents in an organization, and to ensure the legitimacy of the agents’ actions 
during the execution of organizational scenarios, Chapter 6 of Part III introduces a set 
of constraints (i.e., axioms, execution rules) to be implemented in an enterprise 
information system. However, the implementation and the exploitation of an EIS built 
based on a complete organization model description for the automated enterprise 
management is out of scope of this research. 

 
 
 



 

 413 

Usability 
The predicate-based languages used for the formalization of the views are intuitive, 
close to the natural language. This facilitates the development of specifications of 
each view for designers, who are not familiar with formal logics. Furthermore, the 
graphical notations are provided for the representation of structures of each view. 
Currently, the graphical interface is implemented for the performance-oriented view, 
whereas other views are specified textually using the developed modeling tools. 
Using these tools parameterized templates (macros) for complex constraints can be 
defined that can be instantiated in different ways. Such constraints cannot be 
represented graphically, thus, the form of templates would be the most appropriate for 
designers not skilled in logics.  

The developed analysis tools perform verification in a completely automated way 
and do not require from analysts any knowledge of the underlying verification 
algorithms. An exception is the process of the correspondence checking between goal 
and performance indicators structures described in Chapter 2 of Part III. During this 
process, due to the high expressivity of the language of the performance-oriented 
view, additional background information and the confirmation of the verification 
results may be requested from the analyst. 

 
Another objective of the thesis was the identification of the methodological 

guidelines for the development of organizational specifications. The design steps for 
the development of specifications for both new and existing organizations have been 
introduced in Part IV. A sequence of these steps may vary depending on a particular 
design process. For example, the sequence of the steps that have been chosen for the 
case study described in Part V was one of the possible alternatives available to the 
designer. Further, Chapter 2 of Part IV elaborates on the design process of 
specifications from the organization-oriented view. Methodological guidelines for the 
development of specifications of other views are given in the corresponding 
descriptions of the views in Part III.  

Although, the described methodological guidelines contain many useful modeling 
advices, still the designer has much freedom and choices to make during the design 
process. Although it is always possible to check automatically the consistency of an 
intermediate organizational specification at some design phase, many of the issues 
related to the representation of a real organization and its environment in a 
specification are to be solved by the designer alone. The quality of an organization 
design depends not only on the modeling skills of the designer, but also on the 
amount of knowledge available to the designer about the (formal and informal) 
organizational structure and processes, and of the environment in which this 
organization is situated. Furthermore, the analysis results of an organizational 
specification depend to a great extent on how plausible and complete the 
representation of the analyzed issue in this specification.  

 
Also, a preliminary evaluation of the proposed organization modeling and analysis 

methods was one of the objectives of this dissertation. To this end, the proposed 
methods have been integrated into a general framework. This framework has been 
applied in a number of case studies from the logistics, incident management and air 
traffic management domains.  



 

 414 

In particular, using the proposed methodological guidelines the specifications of 
the organization-oriented (Chapter 5 of Part III) and of the process-oriented views 
(Chapter 3 of Part III) have been created for a transport organization from the domain 
of logistics. Most of the processes of this organization were organized according to 
the principles of mechanistic organizations. The expressive power of the framework 
was sufficient to represent the structural and dynamic aspects of both views for this 
organization. Since the analyzed part of the organization was relatively small, no 
complexity issues emerged. The simulation-based analysis techniques proposed by 
the framework allowed investigating the organizational behavior in different 
scenarios. Furthermore, some inconsistencies in the constraint set of the process-
oriented view have been identified using the analysis techniques of the framework.  

One more organization that has been analyzed using the proposed framework was 
from the area of incident management. The analyzed part of the organization (the 
planning department) had many features of adhocracy (e.g., job specialization based 
on formal training, work organization rested on specialized teams, culture based on 
democratic and non-bureaucratic work). No expressivity or complexity problems have 
been encountered during the modeling of this organization. The dedicated analysis 
techniques of the performance-oriented view allowed establishing the consistency of 
the specifications of this view (e.g., the consistency of the goal structure and the 
performance indicators structure) for the considered organization (Chapter 1 and 2 of 
Part III). Furthermore, the mechanisms for the satisfaction of some goals of this 
organization have been described in Chapter 4 of Part III. Also, Chapter 4 describes 
how the constructed process-oriented specification of the considered organization can 
be used to guide and control the real time operation of the organization. 

The most extensive example of the application of the proposed framework in this 
dissertation is provided in Part V. In this part the design steps have been consequently 
applied to create a specification for an air traffic control organization. This 
organization combines features of mechanistic and organic organizations. All the 
required aspects of the organization were specified using the concepts and relations of 
the proposed framework. The developed specification has been represented at 
different aggregation levels. This allowed reducing the complexity of analysis, in 
which a more aggregated view has been taken on roles and processes that were not 
directly relevant for the analysis. By applying the general and specific for particular 
views analysis techniques, a number of organization problems and inconsistencies 
have been identified. The validity of the identified faults has been confirmed by the 
experts and the expert knowledge existing in the air traffic management domain. 
Furthermore, the consequences of different types of agent behavior that diverges from 
the formal organization have been investigated. It is demonstrated in the case study, 
the identified behavioral differences may influence the organizational performance 
(i.e., the satisfaction of organizational goals) both in a positive and in a negative way. 

From our modeling experience of organizations of different types two interesting 
(however, expected) observations have been made: Whereas mechanistic 
organizations require detailed modeling of both specifications of different views and 
of constraints imposed on these specifications, organic organizations are modeled to a 
great extent by sets of constraints that define general norms or rules imposed on the 
organizational structure and dynamics. Furthermore, often the modeling of organic 
organizations requires more extensive and sophisticated agent modeling (e.g., to 



 

 415 

represent adaptation, reasoning processes of agents) in comparison to the modeling of 
agents in mechanistic organizations. These observations are also in line with the 
known informal assessments of the autonomy levels that agents have in organizations 
of both types [8, 10]. 

To summarize, the modeling and analysis of the structures and dynamics of 
different types of organizations considered in the case studies discussed above using 
the developed methods, proved to be practicable and useful for the understanding of 
the organizational functioning, for the identification of organizational errors and 
inconsistencies, and for the investigation of the organizational dynamics in different 
environmental settings.  

 



 

 416 



 

 417 

 
 
 
 
 
 
 
 
 

Chapter 2 

 

Future work 

 
The major part of this dissertation is dedicated to the modeling and analysis of formal 
organizations. Behavior of agents allocated to organizational roles was considered in 
the context of the structures of formal organizations. However, agents themselves 
may form informal structures within formal organizations (e.g., social networks [3]). 
Such structures influence the operation of an organization and may even determine 
alternative ways of work management in an organization that could be formalized in 
the future. An agent-based simulation example of such an alternative way of work 
management is provided in Part V. The further investigation of informal structures of 
agents and their relations to formal organizations is one of the future research topics. 

Also, macro level processes are of interest for the future research, in particular, 
different types of interactions between organizations. This research direction gains a 
special importance nowadays, when the interdependency of the world increases with 
every passing year. A preliminary study in Part V showed that many modeling 
principles and analysis techniques introduced in this thesis can be also applied for the 
investigation of processes at the macro level. However, more precise and detailed 
investigations should be still performed. Furthermore, it is interesting to consider 
reciprocal relations between different types of inter-organizational interactions at the 
macro level on the one side, and internal structures and processes of organizations 
described at the micro and meso levels on the other side. This is also left for the future 
research. 

In Chapter 1 different ways of reuse of organizational specifications have been 
described. Based on these results, a set of templates for paradigmatic types of modern 
organizations can be defined. A template comprises partial specifications of different 
views and sets of constraints peculiar to organizations of a particular type. Such 
templates may facilitate modeling choices for designers-novices and may speed up a 



 

 418 

design process performed by experienced designers. The development of such 
templates is also a part of the future work. 

From the usability viewpoint, although the modeling views considered in the thesis 
are formalized based on intuitive, close to the natural, predicate languages, still a 
graphical interface would be of help. Currently, the graphical interface is provided for 
the performance-oriented view, whereas other views are specified textually using the 
dedicated tools. In the future, modeling related to other views will be also supported 
graphically. To enable the development of such graphical modeling tools, formal 
definitions for the design operators for each organizational view should be given, 
similarly to the ones provided for the organization-oriented view in Chapter 2 of Part 
IV.  

Finally, further evaluation of the proposed methods has to be performed. To this 
end, further case studies will be performed, in which different types of organizations 
will be modeled and analyzed. Also, after the graphical interface is developed, the 
framework based on the proposed modeling and analysis methods will be made 
available for organization practitioners (e.g., managers, analysts) for the evaluation. 

 

References 

1. Chan, F.T.S.: Performance measurement in a supply chain. International Journal of 
Advanced Manufacturing Technology: 21(7): 534-548 (2003) 

2. Clegg, S.R.: Frameworks of Power. London: Sage (1989) 
3. Freeman, L.C.: The Development of Social Network Analysis: A Study in the Sociology of 

Science. Vancouver: Empirical Press (2004) 
4. Godfrey-Smith, P.: Complexity and the Function of Mind in Nature. Cambridge University 

Press (1996) 
5. Ittner, C.D., Larcker, D.F.: Coming Up Short on Nonfinancial Performance Measurement. 

Harvard Business Review, 81(11): 88-96 (2003) 
6. Kaplan, R.S., Norton, D.P.: The balanced scorecard – measures that drive performance. 

Harvard Business Review, January-February: 71-79 (1992) 
7. Katz, D., Kahn, R.: The social psychology of organizations. Wiley, New York (1966) 
8. Mintzberg, H.: The Structuring of Organizations, Prentice Hall, Englewood Cliffs (1979) 
9. Pinder, C. C.: Work motivation in organizational behavior. Upper Saddle River, NJ: 

Prentice-Hall (1998) 
10. Scott, W.G., Mitchell, T.R., Birnbarum, P.H.: Organization theory: a structural and 

behavioural analysis, Richard D. Irwin inc., Illinois, USA (1981) 
11. Simon, H.A.: Administrative Behavior. 2nd edn. Macmillan Co., New York (1957) 
12. Vroom, V.H.: Work and motivation. Wiley, New York (1964) 

 



 

 419 

Samenvatting: Over Computergesteunde Methoden 
voor Modelleren en Analyse van Organisaties 

Organisaties spelen een sleutelrol in de moderne wereld. Snelle wetenschappelijke, 
sociale en technologische ontwikkelingen van de laatste eeuwen zorgden ervoor, dat 
er veel verschillende vormen van organisaties en typen van interacties tussen hen 
ontstonden. De complexiteit van de structuur en het gedrag van een organisatie hangt 
af van de condities van de omgeving, waar de organisatie zich in bevindt. Om 
leefbaar en welvarend te zijn, moeten de interne structuren en processen van een 
organisatie effectief en efficiënt beheerst worden, zodat de externe aanpassing van de 
organisatie met de omgeving in stand wordt gehouden. 

Veel moderne organisaties zijn gekenmerkt door een groot aantal actoren, die 
diverse rollen spelen, verschillende (soms tegenstrijdige) doelen hebben en bij de 
uitvoering van diverse taken betrokken zijn. Vaak functioneren zulke organisaties in 
omgevingscondities, die steeds veranderen, waar slechts een beperkt aantal 
hulpmiddelen beschikbaar is. Door een hoge complexiteit van de structuur en gedrag 
van een moderne organisatie kunnen erin diverse fouten, inconsistenties en 
knelpunten ontstaan, die ernstige gevolgen voor de productiviteit van de organisatie 
kunnen hebben. Slechts een klein aantal van zulke problemen kan snel en simpel 
geïdentificeerd en opgelost worden. Veel latente problemen vergen een gedetailleerde 
en diepe analyse.  

Methoden, die in de Sociale Wetenschappen ontwikkeld zijn (i.h.b. in 
Organisatietheorie), zijn in hoge mate informeel en fragmentarisch, hoewel nuttig 
voor het begrip van functioneren van organisaties. Daarom kunnen zulke methoden 
geen betrouwbare basis vormen voor een gedetailleerde analyse van organisaties. 
Voor een nauwkeuriger inspectie van structuren en processen van organisaties, een 
gedetailleerde evaluatie van de productiviteit van een organisatie, bestudering van 
invloeden van verschillende omgevingsfactoren op het gedrag van een organisatie zijn 
analysemethoden, die op een formeel organisatiemodel zijn gebaseerd, nodig. De 
eerste formele methoden voor analyse van organisaties zijn op basis van de 
Systeemdynamica en Operations Research ontwikkeld. Deze methoden abstraheren 
van aparte gebeurtenissen, objecten en actoren, en beschouwen organisaties op een 
hoog aggregatieniveau. Door de abstractie ging belangrijke informatie over locale 
gebeurtenissen en interacties tussen actoren verloren. Tegenwoordig onderscheidt 
men drie niveaus, waarop structuren en gedrag van organisaties kunnen bestudeerd 
worden: macro (het niveau van interacties tussen een organisatie en haar omgeving), 
meso (het niveau van interacties tussen actoren en/of groepen van actoren in de 
context van een organisatie) en micro (het niveau van een actor, haar eigenschappen 
en het gedrag in een organisatie). Alle drie de niveaus zijn met elkaar verbonden en 
beïnvloeden elkaar. Daarom is het begrip van het organisatiegedrag op ieder van de 
niveaus belangrijk voor een betrouwbare analyse. Tegenwoordig gebruikt men vaak 
de conceptie van een multiagent systeem voor het modelleren van het gedrag van 
actoren en interacties tussen hen. Agent is een autonoom object, dat zelfstandig 
beslissingen kan nemen en met haar omgeving (bijvoorbeeld, met andere agenten) 
interacteert door observeren en reageren. In deze context beschrijft een 



 

 420 

organisatiemodel een toewijzing van agenten aan de rollen van de organisatie 
(verzamelingen van functies van een organisatie), die met elkaar bepaalde relaties 
hebben. Aan de ene kant kunnen acties van agenten invloed op het gedrag van een 
gehele organisatie hebben. Aan de andere kant, hebben de normen en regels van een 
organisatie een bepaalde invloed op het gedrag van agenten. Afhankelijk van een 
organisatietype, worden agenten van een bepaalde mate van autonomie voorzien. 
Daarom moet een formele taal voor het modelleren van organisaties mogelijkheden 
bieden zowel voor het beschrijven van formele voorschriften (normen, regels) en 
structuren van een organisatie als voor het specificeren van autonoom gedrag van 
agenten. De huidige aanpakken in het gebied van multiagent systemen zijn meer op 
het laatste aspect gefocust. Deze methoden bieden brede mogelijkheden voor het 
specificeren van intern en extern geobserveerd gedrag van agenten, terwijl het 
beschrijven van formele structuren en gedrag van organisaties niet veel aandacht 
krijgt. Een van de redenen daarvoor is dat het organisatieparadigma in deze 
aanpakken alleen gebruikt wordt om distributieve algoritmen, die op multiagent 
systemen gebaseerd zijn, te verbeteren. 

Voor het ontwerp van plausibele modellen van reële (mens) organisaties moeten 
verschillende aspecten van de structuur en het gedrag van een organisatie expliciet 
geïdentificeerd worden. Om de complexiteit van het modelleren te verminderen, zijn 
diverse aspecten van organisaties in dit proefschrift vanuit vier perspectieven 
bestudeerd: het prestatiegerichte perspectief, het procesgerichte perspectief, het 
organisatiegerichte perspectief en het agentgerichte perspectief. 

In het kader van het prestatiegerichte perspectief worden met elkaar verbonden 
structuren van doelen en prestatie-indicatoren van een organisatie en agenten 
onderzocht. Het procesgerichte perspectief beschrijft zowel structuren van processen 
en hulpmiddelen van een organisatie, als dynamische stromen van processen. In het 
organisatiegerichte perspectief worden de rollen van een organisatie, hun interactie- 
en machtsrelaties gespecificeerd. Het agentgerichte perspectief beschrijft 
eigenschappen en gedrag van agenten in de context van een organisatie. De 
perspectieven zijn door bepaalde relaties met elkaar verbonden. Bijvoorbeeld, de 
doelen van een organisatie kunnen door de uitvoering van processen bereikt worden; 
de processen zijn met de rollen verbonden, die eventueel aan agenten toegewezen 
worden. 

De ontwikkelde formele talen voor de beschrijving van de concepten en relaties 
van elk perspectief zijn op de expressieve meersoortige predikaatlogica gebaseerd. 
Om dynamische eigenschappen te specificeren en erover te redeneren wordt de taal 
Temporal Trace Language (TTL) gebruikt. De formele grondslag voor deze taal 
(syntaxis en semantiek) is in het kader van dit proefschrift ontwikkeld. De talen van 
de perspectieven en TTL zijn geschikt voor het specificeren van zowel kwalitatieve, 
als kwantitatieve eigenschappen van een systeem (bij voorbeeld van een organisatie). 

Met behulp van de voorgestelde talen worden de exacte definities voor de 
concepten en relaties van de perspectieven in dit proefschrift gegeven. Daarnaast zijn 
ook de axioma’s gedefinieerd, die de regels van het correcte gebruik van de 
elementen van de talen en de beperkingen aan de integriteit van organisatiemodellen 
beschrijven. Voor de definities van deze regels en beperkingen wordt een theoretische 
basis vanuit de Sociale Wetenschappen gebruikt (voornamelijk vanuit de 
Organisatietheorie), waarmee een connectie tussen het formele logische fundament en 



 

 421 

de resultaten van empirisch onderzoek is vastgelegd. Het proefschrift beschrijft 
methodologische principes voor het ontwerp van een organisatiemodel met behulp 
van de ontwikkelde talen.  

Voor een geautomatiseerde analyse van organisatiemodellen moet de 
modelleringstaal uitvoerbaar (executeerbaar) zijn, d.w.z. dat specificaties van 
organisatiemodellen moeten door een computer kunnen worden gebruikt voor 
simulatie. Om dit te bereiken, beschrijft het proefschrift enige executeerbare subtalen 
van de TTL. Bovendien wordt in het kader van het proefschrift een geautomatiseerde 
procedure ontwikkeld voor de vertaling van complexe, niet uitvoerbare specificaties 
in TTL naar een executeerbare vorm. 

Het proefschrift beschrijft een aantal geautomatiseerde analysemethoden, die tot 
doel hebben het identificeren van diverse fouten, inconsistenties en knelpunten van 
organisaties. Een deel daarvan is op algemene analysemethoden voor logische 
modellen gebaseerd (bijvoorbeeld, model checking). De andere hebben als basis 
gespecialiseerde algoritmen voor het verifiëren van bepaalde eigenschappen van 
organisaties (bijvoorbeeld, de consistentie van een doelenstructuur, eisen voor de 
executie van processen, de integriteit van interactie- en machtsstructuren). Bovendien 
beschrijft het proefschrift methoden voor het doen van simulaties en geautomatiseerde 
verificatie van systeemeigenschappen op de basis van de simulatieresultaten. Tevens 
wordt een soortgelijke methode ontwikkeld voor een geautomatiseerde analyse van 
empirische data van een organisatie.  

De ontwikkelde methoden zijn in de praktijk binnen drie projecten toegepast, op 
het gebied van logistiek, incident management en luchtverkeersleiding. Dankzij de 
hoge expressiviteit van de modelleertalen konden alle belangrijke aspecten van de 
bestudeerde organisaties in de organisatiemodellen opgenomen worden. De 
ontwikkelde analysemethoden maakten het mogelijk, om problemen van diverse 
typen in deze organisaties te identificeren, die eerder niet bekend waren. De 
realiteitswaarde van de gevonden problemen wordt door de experts bevestigd. 

De formele methoden voor het modelleren en analyseren van structuren en gedrag 
van organisaties van verschillende typen, die in dit proefschrift worden voorgesteld, 
bleken toepasbaar in de praktijk en bruikbaar te zijn voor het begrip van de principes 
van functioneren van een organisatie, voor de identificatie van diverse typen van 
fouten en inconsistenties, en voor de bestudering van het gedrag van een organisatie 
in verschillende omgevingscondities.  



 

 422 

 



 

 423 

:      

  

���������
	
����
	�	
 
	
���������

 ��� �����������  
��� ��  

�
 ! ���"����#$�����
��#  

#$	����
. % �&���'#(	��&� �� �
)+*  �
�������
�

-
�&�',��
	
��� !'� 	�*  

	
 ! ���	�� �� �
� --&� ������#(	
��� !�� 	�*  . ��������� !�!  . � !�� ��/���	�,  ! �&� � ���&	�*  

!'. � ! ��0 ! �&�"���"� �  . ��1�� � �'��	��  
0�� �� �2 �����  

���'���
����0�������	�1
 
�������'��	
���'
	
�����
)3,

 4 ����#  
	

 ��	 . ���  
#(�'56����������	
����
	
�����������

 
������	
#$��/���* ! ����	�1 . %7� ��53��� ! �   ! �&��� � ������)  

	
 

. �����'/����
	�1  
�������'��	
���'
	�	

 
���

 
#$�
������#

 
�����"	 ! 	��  ���  � !'� ����	
*  

� � ����53���98:��*  ! ����/�) , 
�
 

� ���&����)+,  
���������
	
����
	�1

 4 ��� � 
	
���
	
�����'� . ; 	
���
� !�. � ! ��0��
� ! �   
	

 . ������"���&����	
�  ���������
	
�����	
	
 
�
��,���/�1"� ! 1  

�
 
�����"	 ! 	
#$� ! ��	  

���
 
�������

, 
�
� !'� � �� "� �  -&4<4 � � �'	����
�  ���������
	
�����	
1

 !�. � ! ��0��
�  � . ����� � 1��   ! ����	
#(	  
�"�����&���'�
��	
#(	

 ! ����� � �'�����'#$	  
	

 
. ����
� !'! ��#$	  

�
 ! �����&�"�'� ! ����	�	  !  � !�� ����	
1",  

� � ����56����8:�'*  ! ����/�) .  = �
����	
�
 ! ���"����#$�����
)+�  �������'��	������	
	  

� ��� �����'���  �  ! ��0�1  
0�� �� �2 ���  ��	 !'� �  

� � �&�������  
(
��� � ��* ), 

	
#$����89	�,
 
���'� � 	
����)+�  (

	��
����/��
 
�
� ! ���"#(� ! ��	
#$)+� ) 
� � 	 , 

�"��� � ���������
)+,  
�
 	 !'. � � �
����	
�  

���'��������0��������
)6,
 

�������'��	
���'�	������
)+,
 . ����
� !'! ��� . > � ! �&�  

�&� � 	��  ���������
	
�����	
	
 
�
�',���/�1�� ! 1  

�
 . � ! ����1������  

	
��#$����1���8?	
, ! 1  
� !'� ����	
1",  

� � ����53����89��*  
! ���'/�)  !  ���������
	
���'���
)+#  � � � 	���� ! �&�"��#  

��� ! ��� ! ��� . @ �
���A/��  
	���#(�'�
���
	�1

 
�
 
� � ����53����8:��*  

! ���'/��  1'� � 1���� ! 1  
�&� � 56�  . ����/ . � ! ) ��� ��#$	  �  

	
��#(�'������	
�
 ! �&��� � ������)  

	
/
	 � 	  . ���"��/��'��	
1  ���������
	
�����	
	

. @ � -���  
�") ! � � ��*  !�� ��5B��� ! �'	  ! ����� � �'���  

	
 . ���"��/����
	�1  ! ���"����#$���
�
)6,  ���������
	
�����	
*

, 
�
 
��	�,

 
��� ! �&�  

�"�����
	 � �'���  � 2 	
0 � 	 , 
�
� ! ��� � � ! ���"���
�
� ! �'	  

	
 . ����0 � ��#$)  ��� � 	
,  

#$� ! � , � � � � ��8?	
�  ! ���  �'���
)+�  . � !'� ��/ ! ����	�1  
/ � 1  . ����	
���"��/�	���� �� �
� ! ��	  ���������
	
�����	
	

. C � �� '� �  
�
����������	
�&� �� �
��1  

��� ! �   
�&� � 	�,  . ����0 � ��#  

#$��56�'�
 
0�)3�   � ��� � �  ��0��
������53���
�

 
	

 
� ! ���������'�
� . = �
����	
�

 
56�

 !�� ��)+�&)6�  . ����0 � ��#$)  
�&����0����'�

 
0�� � ���  /����&� �� �
�����  

	
 
� � ��0�� � �����  

���
� � 	���� .  = �'�&��/�)
 
���������
	
�����	
���
�
�����

 
���
� � 	���� , ���'������0����&�����
)+�  

�
 
��0 � � ! ��	  ! ���	
� �� �
)3,  �
��� �  (

�
 
��� ! ���
� ! �&	 , 

�
 
�&������	
	

 
�������'��	
���'�	�*

), 
�
 
���
����	���� �� �
��*  ! �&� . �'��	  

4 ������#(�'�
�&������)  
	

 
�
����������)

, 
,����&1

 
	

 . � � �����
)  
/ � 1  . ����	
#$�'�
	�1  . ��	
��
	 . ���  

4 ��� � �	
����	������"����	
1  
���������
	
����
	�*

. D � - �&��#(�  
�&� � 	
�  #(�'�&��/�)  

���
 
#$���A���

 !'� ��5B	��   �
�'/���56�
)+#
 
0�����	 ! ��#  

/ � 1  
/����&� �� �
�����  

�'��� � 	
���  �������'��	
���'
	�* . E6� 1  
0�� � ���  

�&�����
�����
 	 !'!�� ��/������'��	
1  

���������
	
����
	����
�
)6,
 ! ����� � �'���  

	
 . ����
� !'! ��� , . ��/�����0��
��*  

��
��� � 	  ���������
	
�����	
�����
��*
 . ����	����"��/�	
�&� �� �
� ! �&	 , 

	 !�!'� �'/����"����	�1  
� � 	
1��
	�1  

����� � 	
���
)3,  
4 � � �&�������  

� � ����53�'��89�'*  ! ����/�)  
�
�

 . ���"�'/�����	
�  
�������'�
	
�����	
	

 
�
����0�,���/�	
#$)

 
#$������/�)

 �'�
� � 	
��� , � ! �
���"�����
)+�  
���

 4 ����#$� �� �
��*  
���������
	
���'�	����
�
��*

 
#(��/�� � 	 . D �����")+�  

4 ����#$� �� �
)+�  #(�'�&��/�)
 
/ � 1  

	 !'!�� �'/��������
	�1  
���������
	
�����	
*

 
0�) � 	  

� ! �
���"���
)  
�
�

 � .
. �'���'�&�',  ! 	 ! �&�'#(�
��*  
/�	����'#(	 � 	  

	
 
	 !�!�� �'/����"����	
1  

� . ������
	�* . F ��	  
#$������/�)

 �'0 ! �&���'��	
�����"� � 	 !'  
���

 
���&/�� �� �
)+,  ! ��0�)3�&	�* , 

��0�G�� � �&���  
	

 
� � �&�������  

���������
	
���'�	�*
, 
�&��#

 
! ��#$)+#  

��� !�! #(�'�&��	
�"��1  
�������'��	
���'
	
���������

 
/�	��
��#$	 � �  

���
 
��0���0�8:�����
��#

 
���������
�

. ��/��
� � �  . ��	  - ����#  
�����'��	
�&� �� ����1  

��� ! �   . � � �����
��*  
	�� 4 ����#(�'
	�	  

�
 � � � � �� �
)6,  

! ��0�)+�&	
1",  
	

 
�"����	
#(��/��'* ! �&��	
	  

� � �&�������  
�&����1 � � !'  

	
 
�
�

 
#$��� � �  

0�)+�   
	 !'. � �� �����"���
�  / � 1  �'�
� � 	
��� . H  

�
� ! �&��1�8?	
*  
#$��#$���
�

 . ��	���1��&�  
���'� � 	����'�   

�'��	
 
���������
1

, 
�
�

 � ���&����)+,  ���������
	
�����	
�����
)+�
 ! �&��� � �'����)  

	
 . ����
� !'! )  

#(�������
 
0�)3�   

	 !�!�� �'/����"���
) : 
#$� � ���  

(
�������"�'�   

�"���'	�#$��/��'* ! ���"	�1  
�������'��	
���'
	�	

 !  
� � ����56�'��8:��*  

���
 ! ����/���* ), 

#(�'���
 (
�������"���   �"����	
#$��/��'* ! �&��	
1  

� � �&�������  
	

/
	 � 	  

����� .
.  
� � �&�������  

�
 
���������
	
�����	
�����
��#

 � ���
�&� ��! �&� ) 
	

 #$	 � ���  (
�������"�'�   

����/�� �� �
�����  
� � �&����� , �����

 
,������ � �&�'��	 ! �&	 � 	  

	
 . ���"�'/�����	
�  

�
 ���������
	
�����	
	

). H+! �  �&��	  
���������
1

 
�
��,���/�1�� ! 1  

�"�
 
�"����	
#(� ! �"1���	  

/������
 !  /���������# , . � - ����#<�  



 

 424 

���������	�
�����  ������
���������  ���������������
�����  ���  � ���������  ���  ��� ���   ��������
!  ����"���  ��#��  ����$ � ��������������  �
����#%����� . & ��!�'��
$  ��#%�  �(������#���������
�����  ������
���������  � �)� �������  �  ��������	�����
!�$ � �)��!  �	���"�   �����(�  '���$ � �  �������	������* �  � ��������������*  �  #�+ � ���
����� � ��,��  $
��$ � �
� . - ����� �  ��������$ � �
�)#%�
� �  $
��.���!  ��� � �������	��,�!  ��.�/�� �)� , $�����$
��.���,0!  $
���	��$ � ��� � ��#�+
���  �����������	� � +  ����12�������  �  ��3�
���	������!�$ � ����� � +  $  � � �  ���
*542�
!  $���������!  
(�����������	��� , $  ���  �6���	�  �����
� � �
�(� ) �  %� ���  ����.�#%*7��������!  �  ���
!�$ � �)��! . 8  ���
�������  
� ��� � � � $ � �  �(������#�+  ���������������
�����  ������$
,0���� �  ����������'��
�����  � �)� �������  (��#%�  ������� � ��� ) �����3�������
�  (��#%�  ����#��
� ) �������
������������� , ������$
,�����
�(,0�  �(�����"��$ � ����	�  ��������������������������,0�  9: � � ����!  �  �����%�����
4;����$��  �  �������
����#��
����,0�  � � ����12�
������  ���  �  $  ���  ����� . &  ��������!  $ � ��������, , ���
!�$ � ����  � � ����#%+���,"�  �����
� � ���  $
����$���.���,  � � �
�3,0�� � +  �#����������  ���  ����������
�����  �������������3�������  �  ����#���� . &  ���  �6��!  $ � ��������, , ���������#%�  �  �������	,  �������
�������������  �#�����* �  ���  ����������
�����  ������� � ��� . 8  �������$����	��$ � �  � �  � �����  ��������������������� , �
���
� � ,  �����
����$ � �
�#%�
� � $
�  ���
�3#���'����
�  $ � �����
��+  $����.�����, . < � �=� ���   ���
��.����������	� , ' � ��.�,  9 �����(�
#%+���,�!  �
��, �  ��#%�  ������$��������  �������������3������������,��  �	������#%��!  ����������$ � �
�)#%�#  ����3�	���"����$ � +  ��������$ � ���)#��
�����  � � �  9 �����	��#�+
��,0�  ������������$��
����!  (������� , ���������# ) �  $ � �  ��)�� �  ���������������
����� , � � �  �  �
� � �������	�������  �������
���
�����  � �)� �������  
(�����
� � ��� ). & ���������	������,0�  �������%����,  �  ��.�#%�
$ � �  �  #%+ � ��������� � ��,0�  $
��$ � ���  
9 � �% $����  * � $��  �  .���#%+�12��!  $ � ���������  ���  ����$�#%���������  ��$���� �%� � , �����
����$ � ���)#����  1;����� � ���  ����3�	���"����$ � �  ������$��������  ���  �� ���
�����
!  �  �)���
1;���  ����.�#%*>���
���	��!  �������
�(� � �  ����������
�����  �
����� � ��� . 8  � �  ���  ����
�(� , ������$
�
����*  9 �����	��#�+
��,��  $ � �  )�%�
 �  �  ����������
�����  ��������������������!   ����#%�����  �(�
#%�  �)�����(������� . ? ������!  ���  ������'����  �=� ���   �
�#���� � $
�  � � , ' � �  �  
��� ���  �������%�������  ���������������
�������������  ���
���
�������(�  ��$�����#%+��  � � $
�  $  ����#%+�*   #  '�1;� � +  �,0'���$�#�� � ��#%+��,0�  $����!�$ � ��  ����$
����������#%������,0�  �
#%������� � �	��� , ������#���������
����,"�  $  �����(��4>+�*  �  #�+ � ���
���
� � ��,0�  $
��$ � ��� .  @ #%�  $��������������  �������)������������.���,0�  �(�����
#%�
!  ������#�+���,0�  �������
������������!  ������#%��'���,0�  �
$���� �)� ,  9 �����(�
#%+��,��  �������
�����3������������,��  $ � �  %�)�� �  �  �������
���������  ���������������
����!  ����#%�A��,  .�, � +  ������  ��������$ � �
�)#%����, . &  ����#%+*  ���������"�
�����  $
#%��������$ � �  �	������#%��������������  ���
�3#���'���,0�  �
$���� �%� ,  �������������3������!  ���
$
$
�(� � �������* � $��  �  ���
������!  ����$�$��
� � �������  $  '�� � ,0���
�  ��������(��$�����3������,"�  ���
��$���� �%� ���  (��#%�  �������� ): ���������3������ � �
#%+��� -��������� � ���������������! , ����������$�$  �
#%+���� -��������� � ���������������! , $ � �  )�%�� ����� -��������� � ��������
������!  �  ������� � ��� -��������� � ��������
������! .  
8  ���
� � �
�  ���������������� � ��#�+
��� -�������
� � ������������������  ������  ����$
$��	� � �������
* � $��  ��������	��$�����3�
����,0�  $ � �  %�%�
 ��,  ����#%�
!  �  ������� � � � �������  ����������������� � �
#%+����$ � �  ���������������������  �  ������� � ��� . < �������
$�$  ��#%+��� -��������� � ��������������,�!  ����  ������$
,����� �  $ � �  )�%�� ��,  ���������
$�$����  �  ����$  ��$����  �������
������������� , �  � � � �A�  �������
�(��'���$ � ���  ��� � � � �  

 �������)#%�
�����  ���������
$�$
���B�  �������������3������� . 8  ����� � �
�  $ � �  %���� ����� -�������
� � ������������������  ������  ����$
$��	� � �������
* � $��  ����#��  (��#��  ������������� ) �������
������������� , �  � � � ���  � � ����12�������  ��������	�����
!�$ � �)���  �  �)#%�
$ � �  �	���"�   �����	� . - ����� � ��� -�������
� � ���������
����,"!  �)���  ������$
,0���� �  $����!�$ � ��  �  ����������������  �
���
� � ���  �  �������
�����3���������������  � ��� � � � $ � � . 8 ����,  ��������	��$�����3�
��,  ����$
���
��$ � �����  �
����  �������
����#%������,��  � � ����1;������! : �  '���$ � ����$ � � , ����#%�  ���������������������  ����$ � ������* � $��  ����$�������$ � ����  �,"����#����������  ���������
$�$���� , �  ����������$
$�,  �  $
���*  ��'��
���
��+  $�����3�
��,  $  ����#%���	� , � � � ����,0�  �����$�#��
��$ � �)���  ����������'���* � $��  ������� � ��� . C �������
.�� � ������,0�  9 �����(�
#%+���,��  ���3, � � , ��$
����#%+��  ���	,0�  ��#%�  ������$��������  ������� � ��!  �  � � ����12������!  �  ���
� � �
�  � ���������6�  ������  .��
�3���  * � $
�  ���  �,0������� � �
#%+�����!  �	��������$
��� � ����!  #������ � �  ��������� � � � ��� . 
@ #%�  ������$��
�����  ���������	��'��
$ � ���  �
$
��� �)� ���  �������������3������!  �  #�������'���$ � ���  ����$
$  �"���
����!  �  ������
���������  ���������������
�����  ��$
����#%+��  � � $
�  ����, �  TTL 

(Temporal Trace Language), 9 �����(�
#%+���,�!  9: �����
�(��� �  ($���� � � � $���$  �  $��
�(�
� � � � � ) ��#��  



 

 425 

�������������	�  
���  ��������� 
 �������  �  �����������  � ���������  ��������� ������� ��� .  � � � �  ����� � �  �  TTL � 
�� � � ��!"�  �#� ����� � � ���%$ � � � �  ��� ��� � � � ��� �  �&�%'  ��( ��� �)� ��'  ���)�  ��� ����*���� � �)� ��� � � , �����  �  ��� *���� � �#� �&� � �  ��� ��� � � �  �)��� � � �  (����(�� � � � � , �����	��� � �+��� � � ). , � � � ����� � � ���  (�� ����� �)�	� � � � �  ' � � ��� �  � ��� �  ��� * � �-�  ��(�� �)�����%� � ��'  (��&� ' � ��' �  �  ��������. � � ��' �  ����� � � . / ����0 �  ��(�� ��������� � �  ��� ��� ��� � , ��( �����-� ��!21 ���  (���� �#��� �  
��� (&� �%$ �+� � �)� ��'  3���� � � ����� �  ' � � ���  (�� �  (�� � ����� � � ���  ��� �����%� �  �  ���	����� �&*�� � ��'  � ��� � � ����� � � �  ��� �����%� . 

, � �  ��(&� �������%� � ���  3 � � �  (���� �����  �  ���	����� ��*�� � � �  
�����  
��� (&� �%$ �+� � �)� �  � � ��� � � ��*���� � ���  �&����� 
 ����� �  � �  � 
�� � � � �  � ��� � � �%$ � � �  �&�)4%�  (�  
* � � ����� � � � , � � ��� ���  �����	��� � �+��� � � ), � � �  � ��� � �  � 
���� ( ��*���� � '  ���#' � $  � � 0 � 4  5 ������� �%$ � � �  � ��� �&*���� � � �  

5 4%� � ��� � �������  �  � � �	4 ��$ ��������� �  3 ��( � � ��*���� � � �  
�������%�)� � � ��� � � . 67������� �����)� ��'  ��( �����-� � � �  � � ��� � � � ��� ��*���� � ���  (&� � ��� � ( �  (�� � ����� � � ��'  ��� �����%� �  ��������� � �+��� � � , ��� (�� ��$ �	4 '  �����+��� 
 ��������� �-�  ' � � � � .  

67�%'  � � ��������� � � � ��� � �����&���	�  ����� ��� ���  �����	��� � ����� � ����� � �  ��� �����%� �  ' � � �  ��� �����%� ��� � ��� ��'  � � � 0 � �  
&� � $  ��� (�� � � � � � � , ���  ��� � $  � � � 0 � �  (&� ��� � � ��� ���%' � $  
� ���+����07�&� � � �  � ��� � �)� ��'  �  � 
 ��� 
 ����� �  �����	�)� � ����� � ����� � �  ��� �����%� �  ���  �����8( $ !9� � � � . :

 3 �����  � ���%$ !  �&������� �����)� ��'  ��( ������ � � �  � ��� ��� �%$ ���  ��� (�� � � � � � �  (&� � �;����0 ��� � �  
' � � ���  TTL. < ����� �  �����	� , �  �����������  ��������� ������� ���  ��������� 
 ���������  � � ��������� � � � ��� � �)����� '  (������ ��� 4����  �����)� � 5 �����8��� ���  ��� ��07� � �  � ����� (&� � � � � � �  � ( � � � 5 � ����� � �  �&�  ' � � � �  
TTL �  ��� (�� � � � ��4�!  

5 �����;4 , (�� � �%� �&' 1=4�!  �&�%'  � � �����8��� � � � ��� � ���������	�  ����� ��� �+� . 
67������� ������� ��'  ��( �����7� � � �  ����������� 
 �����+� �-�  � � ��������� � � � ��� � ����� ��  � � ��� ���  ����� �%� �+�  �����	��� � ����� � �  �  � �)�%$ !  � 
 ������4�0 � � ��'  ��. ��
 �&� , � ��� ����� ��� � � � ��� �  �  4%��� � �  � ��� � . > � ��������� �-�  � �  � � �  � � ��� � ��� �  ���  � 
 1 � �  (�� � �%� � �)�  �  ����� ��� ��4  � ��� ��*���� � � �  ��� �����%� �  

(����(�� � � � � , � � ��� �  (���� �#� ��� �  ��� �����%� �  (model checking)). 6 ��4�� �&�  � � ��� � ��� �  ���  
� ( � � � � ��� � � ��� � �)��� � �  � � �	��� � ���8���  (���� �#� ��� �  ��(�� �������%� ��� � �  ��� ��� � � �  �����	��� � ����� ���  
(����(�� � � � � , � � (������ ��� ��� ��*���� � � � �  � ���&4%����4%� �  � ���%� � , ��� �)
 � � ��� � �  �  ��� (&� � � � � � !  (������ ����� � � , � �)� � � ����� � � �  ������� � � �  � ��� � ��� ��� � � � �#��'  �  � ���&4%����4�� �  �#� � � � � ). 

: ����� 4 � �  ����� � � � � $ , * ���  �)�*�������� � ����$ � �-�  ��� �&� � � � �  � ( � � � � ��� � � ��� � ����� � �  � � �	��� � ����� �  
� 4 * . � , *�� �  4  � 
 1 � � . < ����� �  �����	� , ��������� 
 ������� �  � � ��� ���  ���%'  (&��� �#����� � ��'  
��� ��4 �%' � � �  ����� ���&* � � �  � � � �&��� �����  (�� �#����� � ��'  �����	��� � �	��� ���  �  � � ��������� ��*���� �����  (���� �#� ��� �  ��� ��� � � �  ����� � � � �  �&�  � � �&� �#�  � � �+4 ��$ ������� �  3 � � �  ��� �;4 ��' � � � . / ����0 �  ��������� 
 �������  (����%�&0 � �  (�� � �%� �  ����'  � � ��������� � � � ��� � �����&���	�  ����� ��� ���  3 �8( � � ��*���� � � �  
� ����� � �  �  

5 4%���%� � ��� � ��� � ��� ���  �����	��� � �+�)� ��� .  , � ����� ��0 � ��� �-�  �  ��������� �����)� �&�  � � ��� ���  
��7�%�  (�� � � � � � � �  ���  (�������� � � �  �  �����8�����  ��� � �  (���� � ����� �  � �  � 
&� � � � � �  � ��� ��� � � � � , 4%(���� �#�%� � ��'  � ��� ����� �&����� �  �  4%(���� ���%� � ��'  � �#� �)� � ����� � �  ����� 5 � ����� . ?� ����� � � ���%$ � �-�  �)� ��� � � � �  ' � � ��� �  ��� ������� ��� � ��� ��'  (���� � � �������  � ��� � ��� $  � � � ���&� � ��* � ��  ��� �������  �����	��� � �+�)� � �  � �  3 � � �  (���� � ����� � . , � ����� ��0 � ��� �-�  � � ��� ���  ����� ��� ���  (���� � � �%���%�  � 
 �����&4%0 � � $  � ��� � �#��� ��� �-�  ����� ���  (���� 
���� � �  �����������	�  � � (&�  �  3 � � �  �����	��� � �+�)� ��' � , � � � ��� �#� ����� � � $  ��������� � �  
��-� �  (�� � � �#� �&0 ��� ���  3 � � ( � ������� � . , � ��� � ��'  � ����� , 5 ������� �%$ � �-�  � � ��� ���  �8� �����%� ��� � ��� ��'  �  ����� �%� ���  � ����4��%��4��  �  (�� �)����� � ��'  �����	��� � �+��� � �  ������� � �  � � (�� � , (�� ����� �&0 � ��� ��  �  ��������� ������� ��� , �������+� �%����$  (�� � � � � � � � � �  ���  (������%� � � �  �  (�� �%� ��� � � �  ����'  (���� � �8�)� ��'  (�� � ��� � (�� �  5 4������ � ��� � ��� � ��� ��'  �����	��� � �+��� � � , � 
 �����&4%0 � � ��'  ������� � �  � � (�� �  ��. ��
 �&�  �  � ��� ����� �#� � � � �#� �  �  ���%'  �&�����%�)� � � ��� ��'  ��� ����� � � �  (&� �#����� � ��'  ��������� � �+��� � �  �  �����+� � �  4 ��� � ���&' �  �����&4%0��!91 � �  � � ����� . 



 

 426 



 

 427 

SIKS Dissertation Series 

 
1998 

 

Johan van den Akker, DEGAS - An 
Active,Temporal Database of Autonomous 
Objects, CWI, 1998-1 

 

Floris Wiesman, Information Retrieval by 
Graphically Browsing Meta-Information, 
UM, 1998-2 

 

Ans Steuten, A Contribution to the Linguistic 
Analysis of Business Conversations within the 
Language/Action Perspective, TUD, 1998-3 

 

Dennis Breuker, Memory versus Search in 
Games, UM, 1998-4 

 

E.W. Oskamp, Computerondersteuning bij 
Straftoemeting, RUL, 1998-5 

 

1999 
 

Mark Sloof, Physiology of Quality Change 
Modelling; Automated modelling of Quality 
Change of Agricultural Products, VU,1999-1 

 

Rob Potharst, Classification using decision 
trees and neural nets, EUR, 1999-2 

 

Don Beal, The Nature of Minimax Search, 
UM, 1999-3 

 

Jacques Penders, The practical Art of 
Moving Physical Objects, UM, 1999-4 

 

Aldo de Moor, Empowering Communities: A 
Method for the Legitimate User-Driven 
Specification of Network Information 
Systems, KUB, 1999-5 

 

Niek J.E. Wijngaards, Re-design of 
compositional systems, VU, 1999-6 

 

David Spelt, Verification support for object 
database design, UT, 1999-7 

 

Jacques H.J. Lenting, Informed Gambling: 
Conception and Analysis of a Multi-Agent 
Mechanism for Discrete Reallocation, UM, 
1999-8 

2000 
 

Frank Niessink, Perspectives on 
Improving Software Maintenance, VU, 
2000-1 

 

Koen Holtman, Prototyping of CMS 
Storage Management, TUE, 2000-2 

 

Carolien M.T. Metselaar, Sociaal-
organisatorische gevolgen van 
kennistechnologie; een procesbenadering 
en actorperspectief, UVA, 2000-3 

 

Geert de Haan, ETAG, A Formal Model of 
Competence Knowledge for User Interface 
Design, VU, 2000-4 

 

Ruud van der Pol, Knowledge-based 
Query Formulation in Information 
Retrieval, UM, 2000-5 

 

Rogier van Eijk, Programming Languages 
for Agent Communication, UU, 2000-6 

 

Niels Peek, Decision-theoretic Planning of 
Clinical Patient Management, UU, 2000-7 

 

Veerle Coup, Sensitivity Analyis of 
Decision-Theoretic Networks, EUR, 2000-8 

 

Florian Waas, Principles of Probabilistic 
Query Optimization, CWI, 2000-9 

 

Niels Nes, Image Database Management 
System Design Considerations, Algorithms 
and Architecture, CWI, 2000-10 

 

Jonas Karlsson, Scalable Distributed Data 
Structures for Database Management, 
CWI, 2000-11 

 

2001 
 

Silja Renooij, Qualitative Approaches to 
Quantifying Probabilistic Networks, UU, 
2001-1 

 



 

 428 

Koen Hindr iks, Agent Programming 
Languages: Programming with Mental 
Models, UU, 2001-2 

 

Maarten van Someren, Learning as 
problem solving, UvA, 2001-3 

 

Evgueni Smirnov, Conjunctive and 
Disjunctive Version Spaces with Instance-
Based Boundary Sets, UM, 2001-4 

 

Jacco van Ossenbruggen, Processing 
Structured Hypermedia: A Matter of Style, 
VU, 2001-5 

 

Martijn van Welie, Task-based User 
Interface Design, VU, 2001-6 

 

Bastiaan Schonhage, Diva: Architectural 
Perspectives on Information Visualization, 
VU, 2001-7 

 

Pascal van Eck, A Compositional Semantic 
Structure for Multi-Agent Systems Dynamics, 
VU, 2001-8 

 

Pieter  Jan ’ t Hoen, Towards Distributed 
Development of Large Object-Oriented 
Models, Views of Packages as Classes, RUL, 
2001-9 

 

Maarten Sierhuis, Modeling and Simulating 
Work Practice BRAHMS: a multiagent 
modeling and simulation language for work 
practice analysis and design, UvA, 2001-10 

 

Tom M. van Engers, Knowledge 
Management: The Role of Mental Models in 
Business Systems Design, VUA, 2001-11 

 

2002 
 

Nico Lassing, Architecture-Level 
Modifiability Analysis, VU, 2002-01 

 

Roelof van Zwol, Modelling and searching 
web-based document collections, UT, 2002-
02 

 

Henk Ernst Blok, Database Optimization 
Aspects for Information Retrieval, UT, 2002-
03 

 

Juan Roberto Castelo Valdueza, The 
Discrete Acyclic Digraph Markov Model in 
Data Mining, UU, 2002-04 

 

Radu Serban, The Private Cyberspace 
Modeling Electronic Environments 
inhabited by Privacy-concerned Agents, 
VU, 2002-05 

 

Laurens Mommers, Applied legal 
epistemology; Building a knowledge-based 
ontology of the legal domain, UL, 2002-06 

 

Peter  Boncz, Monet: A Next-Generation 
DBMS Kernel For Query-Intensive 
Applications, CWI, 2002-07 

 

Jaap Gordijn, Value Based Requirements 
Engineering: Exploring Innovative E-
Commerce Ideas, VU, 2002-08 

 

Willem-Jan van den Heuvel, Integrating 
Modern Business Applications with 
Objectified Legacy Systems, KUB, 2002-09 

 

Brian Sheppard, Towards Perfect Play of 
Scrabble, UM, 2002-10 

 

Wouter  C.A. Wijngaards, Agent Based 
Modelling of Dynamics: Biological and 
Organisational Applications, VU, 2002-11 

 

Albrecht Schmidt, Processing XML in 
Database Systems, UVA, 2002-12 

 

Hongj ing Wu, A Reference Architecture 
for Adaptive Hypermedia Applications, 
TUE, 2002-13 

 

Wieke de Vr ies, Agent Interaction: 
Abstract Approaches to Modelling, 
Programming and Verifying Multi-Agent 
Systems, UU, 2002-14 

 

Rik Eshuis, Semantics and Verification of 
UML Activity Diagrams for Workflow 
Modelling, UT, 2002-15 

 

Pieter  van Langen, The Anatomy of 
Design: Foundations, Models and 
Applications, VU, 2002-16 

 

Stefan Manegold, Understanding, 
Modeling, and Improving Main-Memory 
Database Performance, UVA, 2002-17 



 

 429 

2003 
 

Heiner Stuckenschmidt, Onotology-Based 
Information Sharing In Weakly Structured 
Environments, VU, 2003-1 

 

Jan Broersen, Modal Action Logics for 
Reasoning About Reactive Systems, VU, 
2003-02 

 

Martijn Schuemie, Human-Computer 
Interaction and Presence in Virtual Reality 
Exposure Therapy, TUD, 2003-03 

 

Milan Petkovic, Content-Based Video 
Retrieval Supported by Database 
Technology, UT, 2003-04 

 

Jos Lehmann, Causation in Artificial 
Intelligence and Law - A modelling 
approach, UVA, 2003-05 

 

Boris van Schooten, Development and 
specification of virtual environments, UT, 
2003-06 

 

Machiel Jansen, Formal Explorations of 
Knowledge Intensive Tasks, UvA, 2003-07 

 

Yongping Ran, Repair Based Scheduling, 
UM, 2003-08 

 

Rens Kortmann, The resolution of visually 
guided behaviour, UM, 2003-09 

 

Andreas Lincke, Electronic Business 
Negotiation: Some experimental studies on 
the interaction between medium, innovation 
context and culture, UvT, 2003-10 

 

Simon Keizer, Reasoning under Uncertainty 
in Natural Language Dialogue using 
Bayesian Networks, UT, 2003-11 

 

Roeland Ordelman, Dutch speech 
recognition in multimedia information 
retrieval, UT, 2003-12 

 

Jeroen Donkers, Nosce Hostem - Searching 
with Opponent Models, UM, 2003-13 

 

Stijn Hoppenbrouwers, Freezing Language: 
Conceptualisation Processes across ICT-
Supported Organisations, KUN, 2003-14 

 

Mathijs de Weerdt, Plan Merging in 
Multi-Agent Systems, TUD, 2003-15 

 

Menzo Windhouwer, Feature Grammar 
Systems-Incremental Maintenance of 
Indexes to Digital Media Warehouses, 
CWI, 2003-16 

 

David Jansen, Extensions of Statecharts 
with 
Probability, Time, and Stochastic Timing, 
UT, 2003-17 

 

Levente Kocsis, Learning Search 
Decisions, UM, 2003-18 

 

2004 
 

Virginia Dignum, A Model for 
Organizational Interaction: Based on 
Agents, Founded in Logic, UU, 2004-01 

 

Lai Xu, Monitoring Multi-party Contracts 
for E-business, UvT, 2004-02 

 

Perry Groot, A Theoretical and Empirical 
Analysis of Approximation in Symbolic 
Problem Solving, VU, 2004-03 

 

Chris van Aart, Organizational Principles 
for Multi-Agent Architectures, UVA, 2004-
04 

 

Viara Popova, Knowledge discovery and 
monotonicity, EUR, 2004-05 

 

Bart-Jan Hommes, The Evaluation of 
Business Process Modeling Techniques, 
TUD, 2004-06 

 

Elise Boltjes, Voorbeeldig onderwijs; 
voorbeeldgestuurd onderwijs, een opstap 
naar abstract denken, vooral voor meisjes, 
UM, 2004-07 

 

Joop Verbeek, Politie en de Nieuwe 
Internationale Informatiemarkt, Grens-
regionale politiële gegevensuitwisseling en 
digitale expertise, UM, 2004-08 

 

Martin Caminada, For the Sake of the 
Argument; explorations into argument-
based reasoning, VU, 2004-09 

 



 

 430 

Suzanne Kabel, Knowledge-rich indexing of 
learning-objects, UVA, 2004-10 

 

Michel Klein, Change Management for 
Distributed Ontologies, VU, 2004-11 

 

The Duy Bui, Creating emotions and facial 
expressions for embodied agents, UT, 2004-
12 

 

Wojciech Jamroga, Using Multiple Models 
of Reality: On Agents who Know how to Play, 
UT, 2004-13 

 

Paul Harrenstein, Logic in Conflict. Logical 
Explorations in Strategic Equilibrium, UU, 
2004-14 

 

Arno Knobbe, Multi-Relational Data 
Mining, UU, 2004-15 

 

Federico Divina, Hybrid Genetic Relational 
Search for Inductive Learning, VU, 2004-16 

 

Mark Winands, Informed Search in 
Complex Games, UM, 2004-17 

 

Vania Bessa Machado, Supporting the 
Construction of Qualitative Knowledge 
Models, UvA, 2004-18 

 

Thijs Westerveld, Using generative 
probabilistic models for multimedia retrieval, 
UT, 2004-19 

 

Madelon Evers, Learning from Design: 
facilitating multidisciplinary design teams, 
Nyenrode, 2004-20 

 

2005 
 

Floor Verdenius, Methodological Aspects of 
Designing Induction-Based Applications, 
UVA, 2005-01 

 

Erik van der Werf, AI techniques for the 
game of Go, UM, 2005-02 

 

Franc Grootjen, A Pragmatic Approach to 
the Conceptualisation of Language, RUN, 
2005-03 

 

Nirvana Meratnia, Towards Database 
Support for Moving Object data, UT, 2005-
04 

 

Gabriel Infante-Lopez, Two-Level 
Probabilistic Grammars for Natural 
Language Parsing, UVA, 2005-05 

 

Pieter Spronck, Adaptive Game AI, UM, 
2005-06 

 

Flavius Frasincar, Hypermedia 
Presentation Generation for Semantic Web 
Information Systems, TUE, 2005-07 

 

Richard Vdovjak, A Model-driven 
Approach for Building Distributed 
Ontology-based Web Applications, TUE, 
2005-08 

 

Jeen Broekstra, Storage, Querying and 
Inferencing for Semantic Web Languages, 
VU, 2005-09 

 

Anders Bouwer, Explaining Behaviour: 
Using Qualitative Simulation in Interactive 
Learning Environments, UVA, 2005-10 

 

Elth Ogston, Agent Based Matchmaking 
and Clustering - A Decentralized Approach 
to Search, VU, 2005-11 

 

Csaba Boer, Distributed Simulation in 
Industry, EUR, 2005-12 

 

Fred Hamburg, Een Computermodel voor 
het Ondersteunen van Euthanasie-
beslissingen, UL, 2005-13 

 

Borys Omelayenko, Web-Service 
configuration on the Semantic Web; 
Exploring how semantics meets 
pragmatics, VU, 2005-14 

 

Tibor Bosse, Analysis of the Dynamics of 
Cognitive Processes, VU, 2005-15 

 

Joris Graaumans, Usability of XML Query 
Languages, UU, 2005-16 

 

Boris Shishkov, Software Specification 
Based on Re-usable Business Components, 
TUD, 2005-17 

 

Danielle Sent, Test-selection strategies for 
probabilistic networks, UU, 2005-18 

 

Michel van Dartel, Situated 
Representation, UM, 2005-19 

 



 

 431 

Cristina Coteanu, Cyber Consumer Law, 
State of the Art and Perspectives, UL, 2005-
20 

 

Wijnand Derks, Improving Concurrency 
and Recovery in Database Systems by 
Exploiting Application Semantics, UT, 2005-
21 

 

2006 
 

Samuil Angelov, Foundations of B2B 
Electronic Contracting, TUE, 2006-01 

 

Cristina Chisalita, Contextual issues in the 
design and use of information technology in 
organizations, VU, 2006-02 

 

Noor Christoph, The role of metacognitive 
skills in learning to solve problems, UVA, 
2006-03 

 

Marta Sabou, Building Web Service 
Ontologies, VU, 2006-04 

 

Cees Pierik, Validation Techniques for 
Object-Oriented Proof Outlines, UU, 2006-
05 

 

Ziv Baida, Software-aided Service Bundling 
– Intelligent Methods & Tools for Graphical 
Service Modeling, VU, 2006-06 

 

Marko Smiljanic, XML schema matching – 
balancing efficiency and effectiveness by 
means of clustering, UT, 2006-07 

 

Eelco Herder, Forward, Back and Home 
Again - Analyzing User Behavior on the Web, 
UT, 2006-08 

 

Mohamed Wahdan, Automatic Formulation 
of the Auditor's Opinion, UM, 2006-09 

 

Ronny Siebes, Semantic Routing in Peer-to-
Peer Systems, VU, 2006-10 

 

Joeri van Ruth, Flattening Queries over 
Nested Data Types, UT, 2006-11 

 

Bert Bongers, Interactivation - Towards an 
e-cology of people, our technological 
environment, and the arts, VU, 2006-12 

 

Henk-Jan Lebbink, Dialogue and 
Decision Games for Information 
Exchanging Agents, UU, 2006-13 

 

Johan Hoorn, Software Requirements: 
Update, Upgrade, Redesign - towards a 
Theory of Requirements Change, VU, 
2006-14 

 

Rainer Malik, CONAN: Text Mining in the 
Biomedical Domain, UU, 2006-15 

 

Carsten Riggelsen, Approximation 
Methods for Efficient Learning of Bayesian 
Networks, UU, 2006-16 

 

Stacey Nagata, User Assistance for 
Multitasking with Interruptions on a 
Mobile Device, UU, 2006-17 

 

Valentin Zhizhkun, Graph transformation 
for Natural Language Processing, UVA, 
2006-18 

 

Birna van Riemsdijk, Cognitive Agent 
Programming: A Semantic Approach, UU, 
2006-19 

 

Marina Velikova, Monotone models for 
prediction in data mining, UvT, 2006-20 

 

Bas van Gils, Aptness on the Web, RUN, 
2006-21 

 

Paul de Vrieze, Fundaments of Adaptive 
Personalisation, RUN, 2006-22 

 

Ion Juvina, Development of Cognitive 
Model for Navigating on the Web, UU, 
2006-23 

 

Laura Hollink, Semantic Annotation for 
Retrieval of Visual Resources, VU, 2006-
24 

 

Madalina Drugan, Conditional log-
likelihood MDL and Evolutionary MCMC, 
UU, 2006-25 

 

Vojkan Mihajlovic, Score Region 
Algebra: A Flexible Framework for 
Structured Information Retrieval, UT, 
2006-26 

 

Stefano Bocconi, Vox Populi: generating 
video documentaries from semantically 



 

 432 

annotated media repositories, CWI, 2006-27 
 

Borkur  Sigurbjornsson, Focused 
Information Access using XML Element 
Retrieval, UVA, 2006-28 

 

2007 
 

Kees Leune, Access Control and Service-
Oriented Architectures, UvT, 2007-01 

 

Wouter  Teepe, Reconciling Information 
Exchange and Confidentiality: A Formal 
Approach, RUG, 2007-02 

 

Peter  M ika, Social Networks and the 
Semantic Web, VU, 2007-03 

 

Jurr iaan van Diggelen, Achieving Semantic 
Interoperability in Multi-agent Systems: A 
Dialogue-based Approach, UU, 2007-04 

 

Bart Schermer , Software Agents, 
Surveillance, and the Right to Privacy: a 
Legislative Framework for Agent-enabled 
Surveillance, UL, 2007-05 

 

Gilad M ishne, Applied Text Analytics for 
Blogs, UVA, 2007-06 

 

Natasa Jovanoviç, To Who It May Concern 
– Addressee Identification in Face-to-Face 
Meetings, UT, 2007-08 

 

Mark Hoogendoorn, Modeling of Change in 
Multi-Agent Organizations, VU, 2007-09 

 

David Mobach, Agent-Based Mediated 
Service Negotiation, VU, 2007-09 

 

Huib Aldewereld, Autonomy vs. Conformity: 
an Institutional Perspective on Norms and 
Protocols, UU, 2007-10 

 

Natalia Stash, Incorporating 
Cognitive/Learning Styles in a General-
Purpose Adaptive Hypermedia System, TUE, 
2007-11 

 

Marcel van Gerven, Bayesian Networks for 
Clinical Decision Support: A Rational 
Approach to Dynamic Decision-Making 
under Uncertainty, RUN, 2007-12 

 

Rutger  Rienks, Meetings in Smart 
Environments; Implications of Progressing 
Technology, UT, 2007-13 

 

Niek Bergboer , Context-Based Image 
Analysis, UM, 2007-14 

 

Joyca Lacroix, NIM: a situated 
computational memory model , UM, 2007-
15 

 

Davide Grossi, Designing Invisible 
Handcuffs: Formal Investigations in 
Institutions and Organizations for Multi-
agent Systems, UU, 2007-16 

 

Theodore Char itos, Reasoning with 
Dynamic Networks in Practice, UU, 2007-
17 

 

Bart Orr iens, On the development an 
management of adaptive business 
collaborations, UvT, 2007-18  

 

David Levy, Intimate relationships with 
artificial partners, UM, 2007-19 

 

Slinger  Jansen, Customer Configuration 
Updating in a Software Supply Network, 
UU, 2007-20 

 

Kar ianne Vermaas, Fast diffusion and 
broadening use: A research on residential 
adoption and usage of broadband internet 
in the Netherlands between 2001 and 2005, 
UU, 2007-21 

 

Zlatko Zlatev, Goal-oriented design of 
value and process models from patterns, 
UT, 2007-22  

 

Peter  Barna, Specification of Application 
Logic in Web Information Systems, TUE, 
2007-23 

 

Georgina Ramirez Camps, Structural 
Features in XML Retrieval, CWI, 2007-24 

 

Joost Schalken, Empirical Investigations 
in Software Process Improvement, VU, 
2007-25 

 

2008 
 

Katalin Boer-Sorbán, Agent-Based 
Simulation of Financial Markets: A 
modular, continuous-time approach, EUR, 
2008-01 


