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Abstract Several association studies support the

hypothesis that genetic variants can modify the influence of

environmental factors on behavioral outcomes, i.e., G 9 E

interaction. The case-control design used in these studies is

powerful, but population stratification with respect to allele

frequencies can give rise to false positive or false negative

associations. Stratification with respect to the environ-

mental factors can lead to false positives or false negatives

with respect to environmental main effects and G 9 E

interaction effects as well. Here we present a model based

on Fulker et al. (1999) and Purcell (2002) for the study of

G 9 E interaction in family-based association designs, in

which the effects of stratification can be controlled. Sim-

ulations illustrate the power to detect genetic and

environmental main effects, and G 9 E interaction effects

for the sib pair design. The power to detect interaction was

studied in eight different situations, both with and without

the presence of population stratification, and for categorical

and continuous environmental factors. Results show that

the power to detect genetic and environmental main

effects, and G 9 E interaction effects, depends on the

allele frequencies and the distribution of the environmental

moderator. Admixture effects of realistic effect size lead

only to very small stratification effects in the G 9 E

component, so impractically large numbers of sib pairs are

required to detect such stratification.

Keywords Gene by environment interaction �
Genetic association � Sib pair-based designs

Introduction

Several studies have demonstrated that genetic variants

may modify the influence of environmental factors on

behavioral outcomes, or, equivalently, that environmental

factors modify the effects of genes (e.g., Caspi et al. 2002,

2003; Foley et al. 2004; Huizinga et al. 2004; Yaffe et al.

2000). Recently, for example, Lasky-Su et al. (2007)

reported SNP-by-socioeconomic status interaction with

respect to attention hyperactivity deficit (ADHD) symptom

count in and around the BDNF gene. Although some of

these studies may be subject to methodological limitations

(Eaves 2006), gene by environment interaction (G 9 E)

should be considered in genetic association studies.

Most genetic association studies are based on a case-

control design. While case-control designs for genetic

association are powerful, they suffer from potential effects

of population stratification, leading to false positives or

negatives (e.g., Cardon and Bell 2001; Posthuma et al.

2004). Family-based designs, which compare genetically

related subjects, are therefore preferred. Fulker et al.

(1999) proposed a design for association analysis of

quantitative traits in sib pair data using maximum-likeli-

hood variance-components procedures. They showed that
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the design is robust against spurious association stemming

from population stratification, because the association

effect is decomposed into a within-family effect and a

between-family effect. The within-family effect is free of

the potential effects of population stratification, because

sibling pairs are drawn from the same family, and thus

from the same genetic stratum. This design was extended

by Neale et al. (1999) to include covariates, and by

Abecasis et al. (2000a) to include multiple sibs, and

parental information. The Fulker model now forms the

basis for widely used statistical packages such as QTDT

(Abecasis et al. 2000a, b).

Just like the association between genotypes and pheno-

types, the associations between the environment and a

phenotype, and between the G 9 E interaction and a phe-

notype are susceptible to the effects of population

stratification. If two populations with (a) different allele

frequencies, (b) different environmental frequencies (cate-

gorical environmental measure) or different environmental

means (continuous environmental measure), and (c) differ-

ent phenotypic means, are mixed, spurious environmental

effects and spurious interaction effects can result, in addition

to spurious allelic effects. In the sib pair design, it is therefore

expedient to decompose into orthogonal between- and

within-family effects (1) the allelic association; (2) the main

effect of the environment; and (3) the G 9 E interaction.

In the present paper, we extend the sib pair model

proposed by Fulker et al. (1999) to include environmental

main effects and G 9 E interaction effects. The measured

environmental variable may be either categorical or con-

tinuous. We report simulations carried out to investigate

the statistical power to detect the presence of environ-

mental main effects and G 9 E interaction effects for

different effect sizes, different allele frequencies, and dif-

ferent environmental frequencies or means. In addition, we

examine the statistical power to detect spurious G 9 E

interaction due to population stratification.

Sib pair-based association including environmental

effects and G 3 E interaction

We assume a diallelic marker with allele A1 with frequency

p, and allele A2 with frequency 1 - p = q, and genotypes

A1A1, A1A2 and A2A2 with genotypic effects a, d and -a,

respectively, (Fisher 1918; Falconer and Mackay 1996).

For simplicity we assume throughout the paper that the

marker under study is the actual quantitative trait locus

(QTL), i.e., recombination fraction h is zero. In reality, the

genotypic value of a marker is unequal to zero only if the

marker is the QTL, or if the marker is in linkage disequi-

librium (LD) with the QTL. We assume that the observed

trait value of an individual is a function of a major gene

effect (QTL), an additive polygenic genetic background

effect, a shared familial or ‘common environmental’ effect,

and an unshared, unique environmental effect (which also

includes measurement error). Furthermore we assume that

the effects of the additive polygenic genetic background,

the common and unique environment, and the QTL are

mutually uncorrelated, and that the additive polygenic

genetic background effect and the environmental effects

are normally distributed with mean zero.

If data from sibling pairs are available, the additive and

dominance QTL effects may be partitioned into between-

and within-family effects, as specified in Fulker et al.

(1999), Abecasis et al. (2000a, b), and Posthuma et al.

(2004). We will now introduce parameters for the effects of

the environment, and for the interaction between genotype

and environment.

Categorical environment

We assume that there are two environmental levels or

conditions. The probability of being in either one of the

environmental conditions is assumed not to depend on

one’s genotype, i.e., the correlation between genotype and

environmental status (rGE) is zero. We also assume that

the probability of being in either one of the environmental

conditions is independent of the environmental condition

of other family members.

We adopt the notation of van den Oord (1999), and

model the environmental main effect (e) as the difference

in the phenotypic means of environmental Conditions 1

and 2. To model the interaction effect, we assign interac-

tion effect i to subjects with genotype A1A1 in Condition 2,

interaction effect -i to subjects with genotypes A2A2 in

Condition 2, and interaction effect c to the heterozygotes

A1A2 in Condition 2. Modeled as such, the interaction

parameter i represents the difference between genotypic

value a in Condition 2, and genotypic value a in Condition

1, after the main effect of the environmental condition has

been taken into account. Similarly, interaction parameter

-i represents the difference between genotypic value -a in

Condition 2 and genotypic value -a in Condition 1, after

accounting for the environmental main effect. The inter-

action parameter c represents the difference between the

dominance effect in Condition 2 and in Condition 1, once

the main effect of the environment has been accounted for

(see Mather and Jinks 1977, for a similar parameteriza-

tion). For the purpose of illustration, the expected

phenotypic means ŷkg (i.e., the expected score of subjects in

condition k with genotype g) are presented in Table 1 for

the case of an environment with three levels.

Note that in the case of sib pair data (or data including

multiple siblings and parents), various combinations of

these means models are likely to be observed. When
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family-data are available, the effects of the QTL, the

environmental measure under study, and their interaction,

may be further partitioned into between- and within-family

effects. To illustrate, for sib pairs and a dichotomous

environment, all possible combinations are presented in

Tables 2–4.

In the case of the sib pair association design, the phe-

notypic score yijkg (i.e., the observed score y of subject j

from family i in condition k with genotype g) is modeled

as:

ŷijkg ¼ si þ abAbi þ awAwij þ dbDbi þ dwDwij þ ebkEk

þ ewkEk þ ibkgIkg þ iwkgIkg þ eij; ð1Þ

where si is the family-specific intercept, and eij the residual

term, i.e., the part of the phenotypic score yijkg that is not

explained by the measured QTL, the environmental mea-

sure, or the interaction between these two, and which may

be due to background genetic, or background environ-

mental effects, unmodeled interactions, or measurement

error. The parameters ab and aw are the estimated between-

and within-family additive genetic effects of the marker,

which are weighted by the derived coefficients Abi and Awij,

respectively. These coefficients are either -1, -½, 0, ½ or

1, as calculated in the 7th and 8th column of Tables 2–4

(see Fulker et al. 1999). Parameters db and dw are the

estimated between- and within-family dominance genetic

effects of the marker, which are weighted by the derived

coefficients Dbi and Dwij, respectively. These coefficients

are either 0, ½ or 1, as calculated in the 9th and 10th

column of Tables 2–4 (see Posthuma et al. 2004). Simi-

larly, the parameters ebk and ewk represent the between- and

within-family effects of environmental condition k, which

are weighted by the derived coefficient Ek. This coefficient

Table 1 Expected phenotypic means for genotypic groups distin-

guished with respect to three environmental conditions

Genotype Mean

Condition 1 Condition 2 Condition 3

A1A1 si + a si + a + e1 + i1 si + a + e2 + i2

A1A2 si + d si + d + e1 + c1 si + d + e2 + c2

A2A2 si - a si - a + e1 - i1 si - a + e2 - i2

Note: si denotes the family-specific intercept, a denotes the additive

genotypic value, d denotes the dominance deviation for the hetero-

zygotes, e1 and e2 denote the main effects for the environment (i.e.,

the in- or decrease of the phenotypic mean in Conditions 2 and 3

compared to Condition 1), i1 and i2 denote the G 9 E interaction

effects for homozygotes (i.e., the difference between the genotypic

values a in Conditions 2 and 3 compared to the genotypic value a in

Condition 1, after the main effect for environment is accounted for),

and c1 and c2 denote the G 9 E interaction for heterozygotes (i.e., the

difference between the dominance effect in Conditions 2 and 3

compared to the dominance effect in Condition 1, once the main

effect of the environment is accounted for)
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is either -½, 0, ½ or 1, as calculated in the 11th and 12th

column of Tables 2–4. The parameters ibkg and iwkg rep-

resent the between- and within-family effects of the

interaction of genotype g and environmental Condition k,

which are weighted by the derived coefficient Ikg. This

coefficient is either -½, 0, ½ or 1, as calculated in the 7th

to 10th column of Tables 2–4.

Continuous environment

If the environmental measure is continuous in nature, rather

than categorical, the model as presented in Eq. 1, is altered

as follows. The between and within-family environmental

parameters eb and ew are simply weighted by the subject’s

score on the continuous environmental measure, Ej, just as

the genotype-dependent between and within-family inter-

action parameters ibg and iwg. The continuous

environmental measure is now modeled as a continuous

moderator, in the manner proposed by Purcell (2002). In

the case of a continuous environmental measure, the phe-

notypic score yijg is modeled as:

ŷijg ¼ si þ abAbi þ awAwij þ dbDbi þ dwDwij þ ebEj þ ewEj

þ ibgEj þ iwgEj þ eij:

ð2Þ

Given these additional effects of the environment and the

G 9 E interaction, the variance-covariance matrix for

siblings j and m of the ith family, Ri, is given as:

where rQTL-A
2 is the variance due to the additive genetic

effect of the marker, rQTL-D
2 is the variance due to the

dominance effects of the marker, rENV
2 is the variance due

to the measured environmental indicator, and rINT
2 is the

variance due to the interaction between the marker and the

environmental measure. After all these measured effects

are accounted for, rs
2 denotes the residual sibling

resemblance, which is due to shared alleles other than the

QTL alleles under study, shared environmental effects

other than the measured environmental variable under

study, or covariance between these two sources. Finally, ru
2

denotes all variance that is not shared by siblings from the

same family, and which is due to unshared alleles, and

unshared environmental effects. The covariance between

the phenotypic scores of siblings equals the additive and

dominance QTL variance, weighted by p̂ijk (the estimated

proportion of alleles that siblings j and m from family i

share IBD, i.e. p(IBD = 2) + ½ p(IBD = 1)) and Ẑijk

(the probability of complete IBD sharing between siblings

j and m, i.e., p(IBD = 2)), respectively. Because we

assumed the environmental effect under study to be

unrelated to genotype (i.e. rGE = 0) or to family

membership, the environmental effect and the interaction

effect only contribute to the variance through rENV
2 and

rINT
2 , but not to the covariance between siblings j and m.

Note that in practice, rENV
2 , rINT

2 , and ru
2 cannot be

estimated individually (i.e., only the sum of them can be

estimated). Note also that when the marker under study is

indeed the actual QTL, as is assumed throughout this

paper, and the environmental measure is an accurate

reflection of the true environmental moderator, the

expected variance–covariance matrix Ri reduces to

X
i
¼ r2

s þ r2
u

r2
s

if j ¼ m
if j 6¼ m

� �
ð4Þ

(Fulker et al. 1999), because the family variance–covariance

matrices Ri are formed conditionally on the marker

genotypes of the siblings, and conditionally on their envi-

ronmental status. Conditionally on the marker genotype and

the environmental status of the siblings, there no longer is

any variation in marker genotype or environmental status, so

these variables no longer explain any variance. The effects of

the marker and the environment are then modeled via the

mean structure only, per Eqs. 1 and 2.

In the variance-components approach, the means and

variances of related individuals are modeled simulta-

neously, as a function of the set of parameters h which

equals h = {si, ab, aw, db, dw, eb, ew, ibg, iwg, rs
2, ru

2}, if the

marker under study is the QTL. Maximum likelihood

estimation can be used to obtain parameter estimates, and

likelihood ratio tests can be used to test specific constraints

on the parameters (Azzelini 1996). For example, one can

test whether the regression weight for the between-family

additive genetic marker effect, ab, is equal to the within-

family additive genetic marker effect, aw, the idea being

that ab only differs from aw when population stratification

significantly influences the results of the test for genetic

association.

Sib pair association models including a measured

environment and G 9 E interaction effects can readily be

X
i
¼

r2
QTL�A þ r2

QTL�D þ r2
ENV þ r2

INT þ r2
s þ r2

u

p̂ijkr2
QTL�A þ Ẑijkr2

QTL�D þ r2
s

if j ¼ m
if j 6¼ m

( )
ð3Þ
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implemented in the Mx software package1 (Neale et al.

2003). Appendices I and II include example Mx-scripts for

the case of sib pair data and a dichotomous environment or

a continuous environment, respectively. Adaptation of

these scripts for the modeling of more than two siblings, or

categorical environments with multiple levels is quite

straightforward. Extension of these scripts to include data

from nuclear families (parents and offspring; Abecasis

et al. 2000a) requires some modifications which are spelled

out in the Mx-script provided by Posthuma et al. (2004) in

their Appendix II. An example script for the modeling of

data from monozygotic and dizygotic twin pairs is avail-

able online.2 Note that whereas sib pair data only allow

distinction between rs
2 and ru

2, twin data allow a more

detailed decomposition of the background variance into

variance due to additive genetic effects (rA
2 ), common

environmental effects (rC
2 ) or dominance genetic effects

(rD
2 ), and unshared environmental effects (rE

2).

Power calculations for the G 3 E model

We performed a series of simulation studies to investigate

the power of the extended sib pair model to detect the

G 9 E interaction effects. We considered both a dichoto-

mous environmental measure and a continuous

environmental measure. All simulations were based on

simulated sibling pairs only, and the simulated marker was

assumed to be the actual QTL. The power analyses are thus

limited to the detection of effects on the means (associa-

tion), not the variances (linkage).

Procedures

Simulations involved a diallelic marker locus with fre-

quency p of the increaser allele A1 being .5 or .2. Except

where noted, QTL dominance effects were absent. In the

case of a dichotomous environment, the frequency b1 of

Condition 1 was either .5 or .2. The continuous environ-

mental measure was standard normally distributed, i.e.,

Environment * N(0,1). Simulated environmental values

were uncorrelated to the simulated genotypes (e.g.,

rGE = 0). The continuous phenotype was standard nor-

mally distributed when all measured allelic and

environmental effects were zero. When these effects are

not zero, the phenotypic mean and variance deviate from 0

and 1, respectively. The degree of deviation depends on

their effect size.

The QTL effect, the environmental effect, and the

interaction were manipulated so that in isolation, these

factors each explained 1%, 2.5% or 5% of the total phe-

notypic variance in the total sample. In the simulations

with a dichotomous environment, these effect sizes were

determined for the case that both environmental conditions

and alleles were evenly distributed (i.e., b1 = b2 = .5 and

p = q = .5). Note, however, that the percentage of

explained variance depends on the allele frequencies and

the distribution of the environmental variable. For instance,

if the parameters representing the genotypic effect of the

QTL locus are chosen such that the locus explains 5% of

the variance in the case that p = q = .5, this same locus

(i.e., same genotypic values) only explains 3.3% of the

variance in the case that p = .2. Likewise, an environ-

mental effect that explains 5% of the variance if

b1 = b2 = .5, explains only 3.3% of the variance if

b1 = .2. For the simulations including a continuous envi-

ronment, effect sizes were determined for the case that

p =q = .5.

Where noted, population stratification was generated by

mixing two samples (A and B) of equal proportions, with

different phenotypic means (lA and lB), and different

marker allele frequencies (pA = .7, pB = .3). In the case of

a dichotomous environment, environmental frequencies

differed between samples A and B (bA1 = .3, bB1 = .7). In

the case of a continuous environment, the environmental

means differed between samples A and B (lenvA = 0,

lenvB = 2). The phenotypic means of samples A and B

were selected such that admixture accounted for 20% of the

total phenotypic variance in the combined population, i.e.,

(lA - lB)2/4rTOT
2 = .20 (see Abecasis et al. 2000a).3 The

mixture of these two samples with different phenotypic

means, different allele frequencies, and different environ-

mental frequencies or means, results in spurious allelic,

spurious environmental, and spurious interaction effects.

The emphasis in these simulations is thus on the detection

of false positives, but false negatives are theoretically

possible (e.g., Posthuma et al. 2004; Neale et al. 1999).

For all simulations, background variance was modeled

such that, after accounting for the QTL-effect, the envi-

ronmental main effect, and the interaction, 30% of the

remaining variance was attributable to additive polygenic

genetic effects (A), and 70% was due to non-shared envi-

ronmental effects (E). Covariance between the sibs due to

shared environmental components (C) was fixed to zero, so

all resemblance between the sibs was due to genetic factors

only (i.e., the QTL and other unidentified genes). Because

A and C cannot be distinguished unless the sample includes

1 The Mx program is freely available at http://www.vcu.edu/mx/.
2 www.psy.vu.nl/u/s.van.der.sluis.

3 Effect size is defined as the variance explained by the effect,

divided by the total variance, i.e., [½(lA - lG)2 + ½(lB - lG)2]/

rTOT
2 , where lA and lB are the means of the different subpopulations,

and lG is the mean of the combined population, which is defined as

(lA + lB)/2 = ½lA + ½lB. Substitution of lG with ½lA + ½lB

gives (lA - lB)2/4rTOT
2 .
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monozygotic twins, in addition to regular siblings or

dizygotic twins, the term rs
2 will include all the siblings’

resemblance due to shared genes other than the QTL, and

common environmental influences. The term ru
2 then

includes all variance due to unidentified non-shared genes

and non-shared environmental effects. Note that, in gen-

eral, the power to detect the effects of interest increases as

the residual sibling resemblance rs
2 increases, even if the

exact nature of resemblance (genes or environment) cannot

be distinguished. This is because, as a result of increasing

rs
2, the non-shared component ru

2 decreases, and less

unshared variance implies less ‘‘noise’’ (i.e., unexplained

variance), which increases statistical power. The choice to

fix shared environmental effects to zero in all simulations,

thus results in conservative estimations of the power to

detect the effects of interest.

All data simulations were performed in the R program,4

and exact data simulation was used for all analyses (van der

Sluis et al. 2008; Bollen and Stine 1993; Dolan et al.

2005). Exact data simulation can be used when sufficient

summary statistics are available in theory, i.e., when all

information present in the raw data can be summarized

sufficiently in the variance covariance matrix R, and the

means vector l. Exact data simulation implies the simu-

lation of raw data that are transformed to fit the true model

exactly. Consequently, when the true model is fitted to

these data, all parameter estimates used to simulate the data

are recovered exactly. Subsequently, the constrained, nes-

ted (wrong) model is fitted to the data, in which parameters

of interest are fixed to zero, or constrained to be equal.

Minus twice the difference in the log-likelihoods of the true

model and the nested model asymptotically equals the non-

centrality parameter k of the non-central v2-distribution,

with df equal to the difference in the number of parameters

estimated. This non-centrality parameter can subsequently

be used to calculate the sample size N required for a chosen

power level, given a chosen critical value a (Saris and

Satorra 1993).5

The results of power analyses based on exact data

simulation equal exactly the results obtained through the

analysis of (population or expected) summary statistics R
and l. Also, as in power calculations based on summary

statistics, these results are asymptotically similar to results

obtained through Monte Carlo simulation (depending on

the number of runs, and the sample size N used in the

Monte Carlo procedure). In contrast to Monte Carlo sim-

ulation, however, exact data simulation obviates the

requirement to replicate the analyses in different runs

because the quasi-randomly generated data are transformed

to fit the true model exactly. Exact data simulation is

therefore not only easy to perform but also computationally

light compared to Monte Carlo simulation, which is why

we chose to use exact data simulation here. We refer to

Van der Sluis et al. (2008) for an extensive discussion on

exact data simulation.

Given non-centrality parameter k, the Mx program

computes the total sample size that would be required,

given the reported proportion of subjects in each distin-

guishable group, to reject the tested hypothesis at various

power levels, ranging from .25 to .99. Here, we focus on

the conditions required for a power of 80%. For all sta-

tistical tests, a was chosen to equal .05.

Patterns of G 9 E interaction

The power to detect G 9 E interaction was studied given

eight different patterns of interactions (see also Van den

Oord 1999; Khoury et al. 1988, 1993). These eight designs

are illustrated in Fig. 1 for a dichotomous environment.

Design(i) concerns the situation that all effects are zero

except the interaction effect for the homozygotes. As a

result, the phenotypic means are equal across genotypes in

Condition 1, but they are increased or decreased in the

homozygotes in the second environmental condition.

Design(i = c) represents a variation on Design(i); here the

interaction effect in the heterozygotes is also assumed to be

non-zero. More specifically, the interaction effect in the

heterozygotes is set to equal the effect in the A1 homo-

zygotes (i.e., ‘complete interaction dominance’). The

phenotypic mean of the heterozygotes (A1A2) therefore

equals the phenotypic mean of the group with genotype

A1A1 in both the first and the second environmental con-

dition. Design(i,e) applies when the environmental main

effect and the interaction effect in the homozygotes are

greater than zero. Design(i,a) is a function of a non-zero

allelic effect (A1 being the increaser allele), and a non-zero

interaction effect. As a result, the phenotypic means of the

three genotypic groups differ in Condition 1, and fan out

even more in Condition 2. Design(i,a,d) is a variation on

Design(i,a), with the difference that complete genetic dom-

inance is present under environmental Condition 1, while

the interaction effect in the heterozygotes remains zero. As

a consequence, the phenotypic means in the groups with

genotype A1A1 and A1A2 are equal in Condition 1, but

differ in Condition 2 due to different interaction effects. In

Design(i,a,e), allelic effects, environmental main effects and

interaction effects are non-zero, and dominance is absent

for all effects. Design(-i,a) is a variation on Design(i,a),

where both allelic effects and interaction effects are non-

zero. For Design(-i,a), however, the signs of the interaction

4 R is a freely accessible software environment for statistical

computing and graphics, see http://www.r-project.org/.
5 A small R-program is available online (www.psy.vu.nl/u/s.van.

der.sluis), which can be used to calculate sample size N required to

obtain a chosen level of power, given non-centrality parameter k, and

critical value a.
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Fig. 1 Different patterns of

genotype-environment

interaction. Design(i):

interaction effect for

homozygotes, no main effects;

Design(i = c): interaction effect

for homozygotes and

heterozygotes, with interaction

effect heterozygotes equal to

effect A1 homozygotes, no main

effects; Design(i,e): interaction

effects homozygotes, and main

effect environment; Design(i,a):

interaction effect homozygotes,

and QTL effect; Design(i,a,d):

interaction effect homozygotes,

and main effect QTL including

dominance; Design(i,a,e):

interaction effects homozygotes,

and main effects environment

and QTL; Design(-i,a): reversed

interaction effects homozygotes,

and main effect QTL;

Design(-i,a,e): reversed

interaction effects homozygotes,

and main effects environment

and QTL
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effects are reversed, resulting in crossing lines. As a con-

sequence, the group with the highest phenotypic mean in

environmental Condition 1, has the lowest phenotypic mean

in environmental Condition 2, and vice versa. Design(-i,a,e)

resembles Design(-i,a), except that in addition, environ-

mental main effects are non-zero as well.

Results

All tables with results of power analyses (Tables 5–7)

show the number of sib pairs required for a power of 80%

given a = .05; non-centrality parameters are not reported

here but are available online.6

To start with, we studied the power to detect specific

effects in the situation where all other effects are zero. The

simulated data included either a main effect for the QTL, or

a main effect of the environment, or a G 9 E interaction

effect (i.e., interaction in the absence of main effects).

Within this context, we studied the effects on the power of

allele frequencies, the scale of the environmental measures

(dichotomous or continuous), and in the case of a dichotomous

environment, the frequencies of the environmental condi-

tions. Knowledge of the power to detect isolated effects of

given effect sizes, provides a useful guide to subsequent

analyses, where interaction effects are tested in the presence

of other effects. Data were simulated such that the specific

effects explained 1%, 2.5% or 5% of the variance when

p = .5 and, if applicable, b1 = .5. Note that these simula-

tions included no population stratification. All between and

within parameters could thus be constrained to be equal

without loss of fit (given the exact data simulation, this

implies v2 = 0 for all tests concerning admixture effects).

Recall that the background variance (i.e., the variance not

due to the marker under study, the environmental measure

under study, or their interaction) was simulated to consist

of 30% additive polygenic genetic effects (rs
2) and 70%

environmental effects not-shared by the siblings (ru
2). In

addition, note that in determining the power to detect the

effects of interest, we first fitted the full model, i.e., the

Table 5 Number of sib pairs required to detect main effects of QTL

and environment, and G 9 E interaction effects of different effect

sizes, in the context of different allele frequencies, and different types

of environments (categorical versus continuous) for power of .80 with

a = .05 when all other effects are 0

Effect size Zero effects freely estimated Zero effects fixed to zero

Environment Environment

b1 = .2 b1 = .5 Continuous b1 = .2 b1 = .5 Continuous

Main effect QTLa

1% p = .2 3,607 1,441 737 600 600 600

2.5% 1,400 561 288 235 235 235

5% 664 266 142 116 116 116

1% p = .5 2,290 921 473 385 385 385

2.5% 890 359 185 151 151 151

5% 422 171 92 75 75 75

Main effect environmentb

1% p = .2 3,864 2,468 2,581 600 384 386

2.5% 1,509 964 1,010 228 146 152

5% 716 458 490 110 71 75

1% p = .5 1,157 743 770 600 384 386

2.5% 452 291 302 228 146 152

5% 216 139 147 110 71 75

Interactiona

1% p = .2 1,111 710 725 149 186 278

2.5% 415 266 289 57 70 111

5% 186 120 142 27 33 55

1% p = .5 706 454 463 117 296 378

2.5% 265 171 186 44 70 151

5% 119 77 92 21 33 75

a These power calculations assume 2 degrees of freedom
b These power calculations assume 1 degree of freedom

6 http://www.psy.vu.nl/u/s.van.der.sluis.
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model including all effects, both zero and non-zero effects.

Subsequently we fitted the model in which only the

parameters of interest were constrained to zero.

The results are presented in the first three columns of

Table 5. With respect to the main effects of the QTL, all

tests have 2 degrees of freedom (df), as parameters for both

additive and dominance allelic effects are constrained to

zero. The power is greatest when p = q = .5, and when the

environment is a continuous measure. A more uneven

distribution of alleles is detrimental to the power to detect

allelic effects, as is an uneven distribution of environ-

mental conditions in the case of a dichotomous

environmental measure. Interestingly, the distribution of

the environmental variable influences the power to detect

the QTL main effect, even though association between the

environment and the phenotype is absent. These results are

consistent with those in Table 6 of Neale et al. (1999).

All tests for environmental main effects have one degree

of freedom. As can be seen from the first three columns of

Table 5, the power to detect main effects of the environ-

ment is somewhat lower when the environmental effects

are continuous, compared to a dichotomous environment

with equally distributed conditions. The power to detect

environmental main effects is lowest when both the alleles

and the environmental conditions are unevenly distributed.

Evidently, the allele frequencies influence the power to

detect the environmental main effect when the genotypic

effects are estimated freely, even though association

between the QTL and the phenotype is absent.

All tests for interaction effects are 2 df-tests as both the

interaction effects in the homozygotes and the heterozyg-

otes are constrained to zero. The first three columns of

Table 5 show that the power to detect interaction effects is

greatest when both the allele frequencies and the environ-

mental frequencies are evenly distributed. The power to

detect interaction in the context of a continuous environ-

ment is only slightly lower.

In conclusion, if alleles are approximately evenly dis-

tributed, representative samples of about 200–400 sibling

pairs are sufficient to detect main effects for the QTL or the

environment, or interaction effects with effect sizes as

small as 2.5–5% of the variance.

For illustrative purposes, the last three columns of

Table 5 show the sample sizes required to detect the iso-

lated effects with a power of 80% when all zero-effects are

actually fixed to zero. As knowledge about which effects

are actually zero is usually absent in practice, this is not a

realistic situation. It does however illustrate two interesting

points. First, the power to detect the effects of interest is

much better in the context of a more constrained model.

Practically, this implies that the order in which constraints

are imposed on the model, may determine the probability

to detect effects. This is something to bear in mind when

deciding on model fitting procedures. Second, we previ-

ously noted that the power to detect effects (e.g., a QTL

main effect, an environmental main effect) depends on the

distribution of other variables in the model (e.g., the

environmental variable, allele frequencies), even when

these other variables are not actually associated with the

phenotype under study. Naturally, this effect disappears

when these zero-effects are excluded from the model.

Subsequently, we examined the power to detect genuine

G 9 E interaction effects in the eight different designs

Table 6 Number of sib pairs required to detect G 9 E interaction effects in eight different conditions (see Fig. 1) for power of .80 with a = .05a

Environment

b1 = .2 b1 = .5 Continuous

p = .2 p = .5 p = .2 p = .5 p = .2 p = .5

Design(i) 410 261 263 169 289 185

Design(i = c) 144 175 93 113 102 124

Design(i,e); Design(i,a); Design(i,a,d); Design(i,a,e); Design(-i,a); Design(-i,a,e) 410 261 263 169 289 185

a All tests assume two degrees of freedom

Table 7 Number of sib pairs required to detect spurious (H1:B = W

vs. H0: B=W) and genuine (H1:B=W = 0 vs. H0: B=W=0)

G 9 E interaction effects in eight different conditions for power of

.80 with a = .05a

Dichotomous environment Continuous environment

B = W B=W = 0 B = W B=W = 0

Design(i) 4,745 274 2,543 184

Design(i = c) 4,129 192 3,277 126

Design(i,e) 3,832 274 4,000 184

Design(i,a) 3,470 274 2,071 184

Design(i,a,d) 3,658 274 2,146 184

Design(i,a,e) 2,914 274 3,045 184

Design(-i,a) 6,922 274 3,235 184

Design(-i,a,e) 5,318 274 5,563 184

B = W, test for presence of population stratification; B=W = 0, test

for significance of within-family interaction effect only
a All tests assume two degrees of freedom
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distinguished by van den Oord (1999, see Fig. 1). For these

simulations, parameter values for all non-zero effects were

chosen such that in isolation, these effects would explain

2.5%. However, in the case of a dichotomous environment,

the presence of other effects influences the percentage of

variance explained by the G 9 E interaction. Using the

same parameter values, the actual percentage of variance

explained by the G 9 E interaction varied from 2.1% for

Design(i,a,e), to 3.5% for Design(i = c). Also, as is well

known in the context of ANOVA analysis, interaction

effects can show up as main effects. In this case, the

interaction effects show up as allelic main effects when the

environment is dichotomous. Consequently, for Design(i)

through Design(i,a,e), the main effects of the QTL deviated

from zero, with effect sizes ranging from 2.5% (Design(i))

to 8.6% (Design(i,a)). For Design(-i,a) and Design(-i,a,e) on

the other hand, the QTL main effect explained 0% of the

variance as the actual effect of the QTL was nullified

entirely by the reversed interaction effect. The G 9 E

interaction only turned up as a main environmental effect

in Design(i = c). In all cases that the main effect of the

environment was specifically modeled to be larger than

zero (Design(i,e), Design(i,a,e) and Design(-i,a,e)), the effect

was slightly lower than 2.5% (2.3, 2.0 and 2.4, respec-

tively) due to the presence of the G 9 E interaction effect.

Again, the background variance was simulated to consist of

30% additive polygenic genetic effects (rs
2), and 70%

environmental effects not-shared by the siblings (ru
2) in all

conditions. These simulations included no population

stratification, so all between and within parameters could

be constrained to be equal without loss of fit.

The results of these simulations are in Table 6. All tests

are 2 df-tests, as both interaction effects for the homo-

zygotes and the heterozygotes are constrained to zero. Note

that, irrespective of the allele frequencies, and the mea-

surement scale of the environment, the power to detect

interaction effects is higher for Design(i = c) than for

Design(i). This makes sense, because the heterozygous

group only contributes to the power to detect G 9 E

interaction if the heterozygous interaction effect deviates

from zero (Design(i = c) and not Design(i)). Note also that

the power to detect the interaction in the context of com-

plete interaction dominance (Design(i = c)) is higher given

p = .2 than given p = .5. This is because the distribution

of the informative genotypic groups is more even in the

case of p = .2 (i.e., A1A1 + A1A2 vs. A2A2: .51:.49) than

in the case of p = .5 (i.e., A1A1 + A1A2 vs. A2A2: .75:.25),

which increases the power to detect the effects of interest.

The power to detect the interaction effect is not influ-

enced by the presence or absence of an environmental main

effect (Design(i,e) versus Design(i), and Design(i,a,e) and

Design(-i,a,e) versus Design(i,a), Design(i,a,d) and Design(-i,a)).

This is understandable, given that the environmental main

effect only influences the phenotypic means of the geno-

typic groups, but not the differences in phenotypic means

between the genotypic groups. The environmental main

effect may thus be viewed as a constant, which does not

influence the power to detect interaction.

The presence or absence of a main effect of the QTL

also has no influence on the power to detect G 9 E

interaction. (To assure that this finding was not due to

the size of the allelic effect, additional analyses includ-

ing a larger allelic effect, explaining 10% and 20% of

the variance rather than 2.5%, were run, which showed

similar results.)

Finally, we studied the power to detect population

stratification with respect to the interaction component of

the model. As described above, we mixed two subsamples

of equal proportions, which differed with respect to allele

frequencies (pA = .7, pB = .3), and environmental distri-

bution (in case of a dichotomous environmental measure,

bA1 = .3, bB1 = .7; in case of a continuous environmental

measure, lenvA = 0, lenvB = 2), choosing phenotypic

means of the subsamples such that the admixture accounted

for 20% of the total phenotypic variance in the combined

sample. When these admixture proportions were used to

simulate data in which the actual effects (allelic, environ-

mental and interaction) were zero, spurious allelic,

environmental, and interaction effects were observed in the

combined sample due to the admixture. For the dichoto-

mous environment, the between family effects deviated

from the within family effects, with the stratification effect

being largest for the allelic effects (N = 184 for 80%

power), intermediate for the environmental effects

(N = 1,465 for 80% power), and smallest for the interac-

tion effects (N = 7,028 for 80% power). For the

continuous environment, the between family effects also

deviated from the within family effects, with the stratifi-

cation effect being largest for the environmental effects

(N = 278 for 80% power), medium for the allelic effects

(N = 576 for) and smallest for the interaction effects

(N = 3,233 for 80% power). It is clear that very large

numbers of sib pairs are required to detect stratification

effects in the interaction component. It is also noteworthy

that the allele frequencies in the subsamples determine how

the spurious G 9 E interaction is expressed. With the

present admixture settings (pA = .7, pB = .3, i.e., contrast-

ing allele frequencies), spurious G 9 E is only apparent

with respect to the interaction parameter for the heterozy-

gous group, while the interaction parameter for the

homozygous group obtained in the combined sample does

not deviate from its actual value in the subsamples. How-

ever, if the allele frequencies in the subsamples are not

contrasting (e.g., pA = .3, pB = .5), both interaction

parameters for the heterozygous and homozygous groups

are informative about spurious interaction.
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Given population stratification, we again considered the

eight different interaction designs (Fig. 1) to study (a) the

power to detect stratification effects with respect to the

interaction component of the model (tests with 2 df as both

homozygote and heterozygote interaction effects are con-

strained to be equal within and across families) and (b) the

power to detect genuine interaction effects (tests with 2 df

as both homozygote and heterozygote interaction effects

are constrained to be zero within families, while the

between-family effects are freely estimated). For all con-

ditions, the background variance was again simulated to

consist of 30% additive polygenic genetic effects (rs
2), and

70% environmental effects not-shared by the siblings (ru
2).

The results are presented in Table 7. Besides confirming

the observation that prohibitively large samples of sib pairs

are required to detect spurious interaction (B = W), it is

shown that the power to detect the spurious interaction due

to population admixture varies across the eight differenti-

ated subtypes. Overall, the power to detect spurious

interaction is somewhat higher when the environment is

continuous in nature, but the sample sizes required to

detect stratification with respect to the interaction effect are

prohibitively large in all simulated scenarios.

An indication of the power to detect the genuine inter-

action effect is obtained by freely estimating the between-

family effect, while the within-family effect is constrained

to be zero (B=W = 0). The results in Table 7 show that

the power to detect G 9 E effects on the means is about as

large as one would expect given the previous results pre-

sented in Table 6, and the distribution of the genotypes in

the mixed population (i.e., freq(A1A1) = (.72 + .32)/

2 = .29; freq(A1A2) = ((2 * .3 * .7) + (2 * .3 * .7))/

2 = .42; freq(A2A2) = (.32 + .72)/2 = .29).

Discussion

In this paper, the family-based association design was

extended to include G 9 E interaction effects and envi-

ronmental main effects. Power calculation showed that

allele frequencies, and characteristics of environment (e.g.,

measurement level, and in the case of a categorical envi-

ronment, the frequencies of the environmental conditions)

affect the power to detect G 9 E interaction. Relatively

small interaction effects, explaining 2.5–5% of the phe-

notypic variance in the total sample, can be detected with

reasonably small sample sizes (200–400 sib pairs, respec-

tively), if alleles are evenly distributed. The power to

detect main effects and interaction effects generally is

reasonable, particularly when all zero-effects are removed

from the model first.

Throughout the paper, we assumed that the marker locus

under study is the actual QTL. In practice, this will often

not be the case and markers will usually be more or less

strongly in LD with the QTL. Also, a criterion level a of

.05 was employed in the simulation studies. Often, how-

ever, one will not test for association in one, but several

marker loci, and a will be adjusted downwards to control

for Type I errors. The power results presented here thus

concern the most favorable conditions, and in practice,

larger sample sizes may be required to obtain a power of

80%.

Modeling measured environmental effects in association

studies is standard (e.g., Caspi et al. 2002, 2003; Foley

et al. 2004; Huizinga et al. 2006; Lasky-Su et al. 2007;

Yaffe et al. 2000). The use of the extended sib pair model

in such studies has the advantage of controlling for popu-

lation stratification, and excluding spurious main effects of

the QTL and the environment, and, given sufficiently large

sample size, spurious interaction effects. This extension

can be implemented readily in packages such as Mx

(Appendices I and II), or, in case of a categorical envi-

ronmental factor, in SPSS (Beem and Boomsma 2006).

Some caveats are in order. First, it has often been shown

that non-normality can result in spurious interaction effects

(e.g., Boomsma and Martin 2002; Martin 1999; Purcell

2002; van den Berg et al. 2007; van der Sluis et al. 2006).

However, the actual presence of G 9 E can also render the

distribution non-normal (e.g., Purcell 2002; van der Sluis

et al. 2006), resulting in the problem that non-normality of

the data can either indicate the presence of G 9 E (i.e.,

G 9 E being the source of the non-normality) or mimic the

presence of G 9 E (i.e., non-normality due to e.g. cen-

soring or poor scaling of the phenotypic measure). The

model presented here is equally susceptible to this

phenomenon.

Although there is no ready solution to this problem,

researchers should at least investigate alternative reasons

for the non-normality of their data than the presence of

G 9 E (e.g., poor measurement scale, selective sampling,

etc.). As has been argued before (e.g., Martin 1999; van der

Sluis et al. 2006), transformation of the data is no solution

as it will remove both spurious and genuine G 9 E from

the data.

Here we presented a model with measured genotypes

and a measured environment. If these measured variables

are indeed the ones involved in the G 9 E interaction, and

thus the ones causing the heteroscedasticity, then

accounting for these measures (i.e., modeling their effects)

should render the remaining variance (as summarized in

Eq. 4) homoscedastic. In a previous paper (van der Sluis

et al. 2006), marginal maximum likelihood showed to be

useful in the detection of heteroscedasticity. If hetero-

scedasticity is present before modeling the genotypic and

environmental effects, but absent when these effects are

controlled for, then this can be taken to indicate that the
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heteroscedasticity was due to the interaction between the

locus and environment under study. Yet, if the hetero-

scedasticity is still present, this can mean (a) that the

heteroscedasticity is caused by scaling problems in the

instrument used to measure the phenotype, or (b) that

G 9 E interaction is present but the genes and environment

controlled for are not the ones involved in this interaction,

or only ‘rough approximations’ of the actual gene/envi-

ronment involved (e.g., a poorly designed environmental

measure, or a marker that is only slightly in LD with the

actual QTL). Important in this context is an issue discussed

by Eaves (1984) in the light of plant studies, that the genes

that control average performance (i.e., main effects) may

not be the genes that control the sensitivity to the envi-

ronment (i.e., the genes involved in the interaction effect,

giving rise to the heteroscedasticity, see Berg et al. 1989,

for a similar distinction between ‘level’ and ‘variability’

genes). Within a design as discussed here, where both

genes and environment are measured entities, level and

variability genes can be distinguished. This distinction may

be important in understanding the biological basis of the

G 9 E interaction.

Second, throughout this paper, we assumed that the

environmental measure is independent of genotype and

family membership. Using so-called family-level environ-

mental measures, i.e., environmental measures that are by

definition equal for all siblings within a family, is prob-

lematic in the sib pair design discussed here, because the

decomposition in between and within family environmen-

tal effects (eb vs. ew) depends on siblings that are

discordant with respect to the environmental measure (see

Tables 2–4). The use of family-level environmental mea-

sures thus excludes the possibility to test for stratification

effects in family-level environmental components, such as

socioeconomic status, divorce status of the parents,

domestic violence, and loss of a parent. However, stratifi-

cation with respect to the allelic effects and the interaction

effect can still be controlled for, and one can still test the

significance of the interaction effect, and allelic and envi-

ronmental main effects. In this context it is important to

note that there is ample debate about whether genuine

family-level environmental measures actually exist. For

example, the fact that divorce status of the parents is

necessarily equal for siblings from the same family does

not necessarily imply that this event has similar effects on

the siblings, or is experienced in exactly the same manner

by all siblings. We refer to Turkheimer et al. (2005) for an

extensive discussion of this subject.

Third, the model presented so far does not account for

the presence of gene-environment correlation (rGE). rGE

represents the genetic liability to experience different

environmental events, or the genetic control of exposure to

different environments (e.g., Kendler and Eaves 1986;

Plomin et al. 1977). Genetic factors have been found to

substantially influence individual differences in, for

example, the likelihood of experiencing stressful life

events, lack of social support, participation in leisure

activities, martial status, and age of first sexual intercourse

(see Rutter and Silberg 2002 for a review). The finding that

so many diverse ‘environmental’ measures are under

genetic control, suggests that the present sib pair model

may prove to be of limited use. Extension of this model to

include the possibility to test and account for rGE is

therefore desirable. For now, we advise researchers to test

for the presence of rGE before they proceed. For instance,

one can test whether the genotypic groups differ with

respect to their environmental mean (ANOVA), or, if the

environmental measure is categorical, with respect to

the distribution of subjects across environmental conditions

(v2 test for equal frequencies). If differences with respect to

the environmental measure are absent, one can proceed

with the extended sib pair model as presented here.

Gene by environment interaction studies are relatively

new and such studies are often characterized by difficulties

concerning measurement and modeling (e.g., Eaves 2006).

In general however, researchers seem to agree that studies

aimed at revealing the sources of individual differences in

specific qualities need to take G 9 E interaction into

account, in order to arrive at a full account of individual

differences (e.g., Caspi et al. 2006, Moffitt et al. 2005,

2006). Tests for G 9 E interaction are thus likely to

become standard in future (association) studies.
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Appendix 1

! Mx script for the conduction of sib-pair association 
! models including the effects of measured genes (G), measured categorical environment (E) 
! and the GxE interaction.  
! Note that alleles need to be coded 1,2,… n,  
! and environmental conditions need to be coded 1,2 … k 

#define n 2             ! number of alleles  
#define env 2         ! number of environmental states  
#define nvar 1        ! univariate 
#define nsib 2        ! sibshipsize 
#define ngroups 6  ! G1= precalc group,  
                               ! G2=data group  
                               ! G3 - G6 constraint groups 

G1: calculation group between and within effects 
data calc Ngroups=6 
Begin Matrices; 
   A full 1 n free ;  ! additive genetic effects within 
   C full 1 n free ;  ! additive genetic effects between 
   D sdiag n n free ; ! dominance deviations within 
   F sdiag n n free ;     ! dominance deviations between 

   H full 1 env free ;  ! environmental effect within
   J full 1 env free ;  ! environmental effect between

   E full 1 n free ;    ! int effect homozyg within
   G full 1 n free ;    ! int effect homozyg between 

   S sdiag n n free ;    ! int effect  heterozyg within
   P sdiag n n free ;    ! int effect heterozyg between 

   T full 1 nvar free;  !  grand mean

   I unit 1 n ;                ! unit vector

   Q lower nvar nvar free ! familial variance
   R lower nvar nvar free ! non-familial variance

End Matrices; 

Fi H 1 1 J 1 1      ! first elements of H and J are fixed to zero
Va 0 H 1 1 J 1 1 

Begin Algebra; 
   W =  ((A'@I)+(A@I')) + (D + D');               ! total within QTL effect 
   B =  ((C'@I)+(C@I')) + (F + F');                ! total between QTL effect 
   X =  ((E'@I)+(E@I')) + (S + S');                ! total within interaction effect 
   Y =  ((G'@I)+(G@I')) + (P + P');                ! total between interaction effect 
End Algebra; 

st .2 all 
end

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

G2: datagroup 
data NIinput=8 
rect file=file.dat 

Labels
! all refer to allele so all11 is allele 1 sib 1 and all12 is allele 2 sib 1, etc. 
! env1 and env2 are the environmental conditions of sib1 and 2 respectively 
! and pheno1 and pheno2 are the continuous phenotypic scores of sib1 and 2 respectively 

all11 all12 env1 pheno1 all21 all22 env2 pheno2 

select
all11 all12 env1 pheno1  
all21 all22 env2 pheno2; 

definition_variables  
all11  all12  env1 all21  all22  env2  ; 

begin matrices;  
  I unit nsib nsib fix ;  
  K full 1 4 fix ;   ! first and second allele sib1, times 2, coded as 1 and 2 
  L full 1 4 fix ;   ! first and second allele sib2, times 2, coded as 1 and 2 
  U full 1 4 fix ;  ! env condition sib1, coded as 1 and 2 
  O full 1 4 fix ;  ! env condition sib2, coded as 1 and 2 

  S full 1 1 fix ;   ! contains nsib 
  M full 1 env fix ; ! contains 0 and 1 

  B computed n n = B1 ;    ! spurious and genuine genotypic effects 
  W computed n n = W1;   ! genuine genotypic effects 
  Y computed n n = Y1 ;    ! spurious and genuine interaction effects 
  X computed n n = X1;   ! genuine interaction effects 

   J full 1 env = J1 ;    ! spurious and genuine environmental effects 
   H full 1 env = H1;   ! genuine environmental effects 
   T full 1 nvar = T1 ;  !grand mean 
   Q lower nvar nvar = Q1 ;  ! familial variance 
   R lower nvar nvar = R1 ;  ! non-familial variance 

End Matrices ; 

End Algebra; 

! mean is grand mean + between family effect which is equal for all sibs 
! + within family effect which are deviations between sibs 

Means T + V +((\part(W,K) +  \part(H,U) + \part(X,K)@\part(M,U))-D) |  
            T + V +((\part(W,L) +  \part(H,O) + \part(X,L)@\part(M,O))-D) ; 

Covariance  
    Q*Q' + R*R' | Q*Q' _ 
               Q*Q' | Q*Q' + R*R' ; 
end

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

G3: Constraint sum allelic effects = 0 
constraint  
Begin Matrices ; 
   A full 1 n = A1 ; 
   O zero 1 1 ; 
End Matrices ; 
Begin Algebra ; 
   B = \sum(A) ; 
End ALgebra ; 
constraint B=O ; 
option NO-output 
End

G4: Constraint sum allelic effects = 0 
constraint  
Begin Matrices ; 
   C full 1 n = C1 ; 
   O zero 1 1 ; 
End Matrices ; 
Begin Algebra ; 
   B = \sum(C) ; 
End ALgebra ; 
constraint B=O; 
option NO-output 
End

G5: Constraint sum interaction effects homozyg = 0 
constraint  
Begin Matrices ; 
   E full 1 n = E1 ; 
   O zero 1 1 ; 
End Matrices ; 
Begin Algebra ; 
   B = \sum(E) ; 
End ALgebra ; 
constraint B=O; 
option NO-output 
End

G6: Constraint sum interaction effects homozyg = 0 
constraint  
Begin Matrices ; 
   G full 1 n = G1 ; 
   O zero 1 1 ; 
End Matrices ; 

matrix S nsib      ! sibship size = 2 
                            ! Note that with varying sibship sizes, one can read in sibship-size 
                            ! as a variable and use it as a definition variable 
matrix M 0 1       ! weights matrix
matrix K 1 1 1 1  ! provide initial values otherwise matrix with 0's 
matrix L 1 1 1 1  ! which is problematic in part-statement 
matrix U 1 1 1 1 
matrix O 1 1 1 1 

Specify K all11 all12 all11 all12    ! genotypes sib1 to be used for \part 
Specify L all21 all22 all21 all22    ! genotypes sib2 to be used for \part 
Specify U 0 env1 0 env1       ! env sib 1 
Specify O 0 env2 0 env2       ! env sib 2 

Begin Algebra; 
 ! between family effect; genetic part, env part and interaction part 
   V = ( \part(B,K) + \part(B,L) + \part(J,U) + \part(J,O) +  
             \part(Y,K)@\part(M,U) + \part(Y,L)@\part(M,O) ) % S ;    

 ! within family effect; genetic part, env part and interaction part 
   D = ( \part(W,K) + \part(W,L) + \part(H,U) + \part(H,O) + 
            \part(X,K)@\part(M,U) + \part(X,L)@\part(M,O)  ) % S ;   
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Appendix 2

Begin Algebra ; 
   B = \sum(G) ; 
End ALgebra ; 
constraint B=O; 
option NO-output 
option multiple issat  
End

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

save dich.mxs 

! Test for spurious allelic association 
get dich.mxs 
eq A 1 1 1 C 1 1 1  ! because of constraint groups G3 and G4, A 1 1 2  
eq D 1 2 1 F 1 2 1  ! and C 1 1 2 will be equal as well
end

! Test for spurious environmental association 
get dich.mxs 
eq H 1 1 2 J 1 1 2 
end

! Test for spurious interaction association 
get dich.mxs 
eq E 1 1 1 G 1 1 1 ! because of constraint groups G5 and G6, E 1 1 2  
eq P 1 2 1 S 1 2 1    ! and G 1 1 2 will be equal as well
end

! If the equality constraints tested above are tenable, then the significance of the allelic effects,  
! the environmental effects, and the interaction effects can be tested in the context of the  
! model in which these equality constraints are implemented.  One can then test the  
! significance of allelic effects, environmental effects and interaction effects across families,  
! i.e., both between and within effects are fixed to zero, and the deterioration of the fit of the  
! model is indicative of the significance of the effects. 
! If the equality constraints are not tenable, then only the within family effects (i.e., the genuine  
! effects) are fixed to zero. 

get dich.mxs 
eq A 1 1 1 C 1 1 1  ! because of constraint groups G3 and G4, A 1 1 2  
eq D 1 2 1 F 1 2 1  ! and C 1 1 2 will be equal as well
eq H 1 1 2 J 1 1 2 
eq E 1 1 1 G 1 1 1 ! because of constraint groups G5 and G6, E 1 1 2  
eq P 1 2 1 S 1 2 1    ! and G 1 1 2 will be equal as well
end
save equal.mxs 

! Test for main effect QTL 
get equal.mxs 
Fi A 1 1 1 D 1 2 1 ! fix with-family allelic effects to zero 
Va 0 A 1 1 1 D 1 2 1
end

! Test for main effect environment 
get equal.mxs 
Fi H 1 1 2         ! fix with-family environmental effects to zero 
Va 0 H 1 1 2
end

! Test for main effect QTL 

get equal.mxs 
Fi E 1 1 1 S 1 2 1   ! fix with-family interaction effects to zero 
Va 0 E 1 1 1  P 1 2 1  
end

! Mx script for the conduction of sib-pair association 
! models including the effects of measured genes (G), measured continuous environment (E) 
! and the GxE interaction.  
! Note that alleles need to be coded 1,2,… n,  

#define n 2             ! number of alleles 
#define nvar 1        ! univariate 
#define nsib 2        ! sibshipsize 
#define ngroups 6  ! G1= precalc group,  
                                ! G2=data group sibs 
                               ! G3 - G6 constraint groups 

G1: calculation group between and within effects 
data calc Ngroups=6 
Begin Matrices; 
   A full 1 n free ; ! additive genetic effects within 
   C full 1 n free ;   ! additive genetic effects between 
   D sdiag n n free ; ! dominance deviations within 
   F sdiag n n free ;     ! dominance deviations between 

   H full 1 1 free ; ! environmental effect within 
   J full 1 1 free ; ! environmental effect between 

   E full 1 n free ;    ! int effect homozyg within  
   G full 1 n free ;    ! int effect homozyg between  

   I unit 1 n ;                ! unit vector 

   S sdiag n n free ;    ! int effect  heterozyg within 
   P sdiag n n free ;    ! int effect heterozyg between  
   T full 1 nvar free;  !  grand mean 

! variance components 
   Q lower nvar nvar free ! familial variance 
   R lower nvar nvar free ! non-familial variance 
End Matrices; 

Begin Algebra; 
   W =  ((A'@I)+(A@I')) + (D + D');               ! total within QTL effect 
   B =  ((C'@I)+(C@I')) + (F + F');                ! total between QTL effect 
   X =  ((E'@I)+(E@I')) + (S + S');                ! total within interaction effect 
   Y =  ((G'@I)+(G@I')) + (P + P');                ! total between interaction effect 
End Algebra; 

st .3 all 
end

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

G2: datagroup  ! sibs 
data NIinput=8 
rect file=file.dat 
! all refer to allele so all11 is allele 1 sib 1 and all12 is allele 2 sib 1, etc. 
! env1 and env2 are the environmental conditions of sib1 and 2 respectively 
! and pheno1 and pheno2 are the continuous phenotypic scores of sib1 and 2 respectively 
Labels
all11 all12 env1 pheno1 
all21 all22 env2 pheno2 

select
all11 all12 env1 pheno1 
all21 all22 env2 pheno2 ; 

definition_variables  
all11 all12 env1  
all21 all22 env2 ; 

begin matrices;  
   I unit nsib nsib fix ;  
   K full 1 4 fix ;   ! first and second allele sib1, times 2, coded as 1 and 2 
   L full 1 4 fix ;   ! first and second allele sib2, times 2, coded as 1 and 2 

   U full 1 1 fix ;  ! env condition sib1, continuous 
   O full 1 1 fix ;  ! env condition sib2, continuous 

   S full 1 1 fix ;   ! contains sibship 

   B computed n n = B1 ;    ! spurious and genuine genotypic effects 
   W computed n n = W1;   ! genuine genotypic effects 
   Y computed n n = Y1 ;    ! spurious and genuine interaction effects 
   X computed n n = X1;  ! genuine interaction effects 
   J full 1 1 = J1 ;    ! spurious and genuine environmental effects 
   H full 1 1 = H1;   ! genuine environmental effects 
   Q lower nvar nvar = Q1 ; 
   R lower nvar nvar = R1 ; 
   T full 1 nvar = T1; 

End Matrices ; 

matrix S nsib  ! sibship  
                            ! Note that with varying sibship sizes, one can read in sibship-size 
                            ! as a variable and use it as a definition variable 
matrix K 1 1 1 1  ! provide initial values otherwise matrix with 0's 
matrix L 1 1 1 1 ! which is problematic in part-statement 
matrix U 1
matrix O 1

Specify K all11 all12 all11 all12    ! genotypes sib1 to be used for \part 
Specify L all21 all22 all21 all22    ! genotypes sib2 to be used for \part 

Specify U env1       ! env sib 1 
Specify O env2       ! env sib 2 

Begin Algebra; 
 ! between family effect; genetic part, env part and interaction part 
   V = ( \part(B,K) + \part(B,L) 
         + U@J + O@J  
         + U@(\part(Y,K)) + O@(\part(Y,L))  ) % S ;    

 ! within family effect; genetic part, env part and interaction part 
   D = ( \part(W,K) + \part(W,L)   
         + U@H + O@H  
         + U@(\part(X,K)) + O@(\part(X,L))  ) % S ;    

End Algebra; 

Means T + V +((\part(W,K) +  U@H + U@(\part(X,K)) )-D) |  
            T + V +((\part(W,L) +  O@H + O@(\part(X,L)) )-D)  ; 

Covariance  
    Q*Q' + R*R' | Q*Q' _ 
               Q*Q' | Q*Q' + R*R' ; 
end

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
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G3: Constraint sum allelic effects = 0 
constraint  
Begin Matrices ; 
   A full 1 n = A1 ; 
   O zero 1 1 ; 
End Matrices ; 
Begin Algebra ; 
   B = \sum(A) ; 
End ALgebra ; 
constraint B=O ; 
option NO-output 
End

G4: Constraint sum allelic effects = 0 
constraint  
Begin Matrices ; 
   C full 1 n = C1 ; 
   O zero 1 1 ; 
End Matrices ; 
Begin Algebra ; 
   B = \sum(C) ; 
End ALgebra ; 
constraint B=O; 
option NO-output 
End

G5: Constraint sum interaction effects homozyg = 0 
constraint  
Begin Matrices ; 
   E full 1 n = E1 ; 
   O zero 1 1 ; 
End Matrices ; 
Begin Algebra ; 
   B = \sum(E) ; 
End ALgebra ; 
constraint B=O; 
option NO-output 
End

G6: Constraint sum interaction effects homozyg = 0 
constraint  
Begin Matrices ; 
   G full 1 n = G1 ; 
   O zero 1 1 ; 
End Matrices ; 
Begin Algebra ; 
   B = \sum(G) ; 
End ALgebra ; 
constraint B=O; 
option NO-output 
option multiple issat  
End
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save cont.mxs 

! Test for spurious allelic association 
get cont.mxs 
eq A 1 1 1 C 1 1 1  ! because of constraint groups G3 and G4, A 1 1 2  
eq D 1 2 1 F 1 2 1   ! and C 1 1 2 will be equal as well 
end

! Test for spurious environmental association 
get cont.mxs 
eq H 1 1 1 J 1 1 1 
end

! Test for spurious interaction association 
get cont.mxs 
eq E 1 1 1 G 1 1 1   ! because of constraint groups G5 and G6, E 1 1 2  
eq P 1 2 1 S 1 2 1    ! and G 1 1 2 will be equal as well 
end

! If the equality constraints tested above are tenable, then the significance of the allelic effects,  
! the environmental effects, and the interaction effects can be tested in the context of the  
! model in which these equality constraints are implemented.  One can then test the  
! significance of allelic effects, environmental effects and interaction effects across families,
! i.e., both between and within effects are fixed to zero, and the deterioration of the fit of the  
! model is indicative of the significance of the effects. 
! If the equality constraints are not tenable, then only the within family effects (i.e., the genuine  
! effects) are fixed to zero. 

get cont.mxs 
eq A 1 1 1 C 1 1 1  ! because of constraint groups G3 and G4, A 1 1 2  
eq D 1 2 1 F 1 2 1   ! and C 1 1 2 will be equal as well 
eq H 1 1 1 J 1 1 1 
eq E 1 1 1 G 1 1 1   ! because of constraint groups G5 and G6, E 1 1 2  
eq P 1 2 1 S 1 2 1    ! and G 1 1 2 will be equal as well 
end

save equal.mxs 

! Test for main effect QTL 
get equal.mxs 
Fi A 1 1 1  D 1 2 1
Va 0 A 1 1 1 D 1 2 1
end

! Test for main effect environment 
get equal.mxs 
Fi H 1 1 1 
Va 0 H 1 1 1
end

! Test for main effect QTL 
get equal.mxs 
Fi E 1 1 1  S 1 2 1 
Va 0 E 1 1 1   P 1 2 1  
end

388 Behav Genet (2008) 38:372–389

123



Eaves LJ (1984) The resolution of genotype-environment interaction

in segregation analysis of nuclear families. Genet Epidemiol

1:215–228

Eaves LJ (2006) Genotype 9 environment interaction in psychopa-

thology: fact or artifact? Twin Res Human Genet 9(1):1–8

Falconer DS, Mackay TFC (1996) Introduction to quantitative

genetics, 4th edn. Pearson Education Ltd., Essex, England

Fisher RA (1918) The correlation between relatives on the supposi-

tion of Mendelian inheritance. Trans R Soc Edinb 52:399–433

Foley DL, Eaves LJ, Wormley B, Silberg JL, Maes HH, Kuhn J, Riley

B (2004) Childhood adversity, monoamine oxidase A genotype,

and risk for conduct disorder. Arch Genet Psychiatry 61:738–744

Fulker DW, Cherny SS, Sham PC, Hewitt JK (1999) Combined

linkage and association sib-pair analysis for quantitative traits.

Am J Human Genet 64:259–267

Huizinga D, Haberstick BC, Smolen A, Menard S, Young SE, Corley

RP, Stallings MC, Grotpeter J, Hewitt JK (2006) Childhood

maltreatment, subsequent antisocial behavior, and the role of

monoamine oxidase A genotype. Biol Psychiatry 60:677–683

Kendler K, Eaves L (1986) Models for the joint effect of genotype

and environment on liability to psychiatric illness. Am J

Psychiatry 143:279–289

Khoury MJ, Adams MJ, Flanders WD (1988) AN epidemiologic

approach to ecogenetics. Am J Human Genet 42:89–95

Khoury MJ, James LM (1993) Population and family relative risks of

disease associated with environmental factors in the presence of

gene-environment interaction. Am J Epidemiol 137:1241–1250

Lasky-Su J, Faraone SV, Lange C, Tsuang MT, Doyle AE, Smoller

JW, Laird NM, Biedermand J (2007) A study of how socioeco-

nomic status moderates the relationship between SNPs

encompassing BDNF and ADHD symptom count in ADHD

families. Behav Genet 37:487–497

Mather K, Jinks JL (1977) Introduction to biometrical genetics.

Chapman and Hall, London

Martin N (1999) Gene-environment interaction and twin studies. In:

Spector TD, Snieder H, MacGregor AJ (eds) Advances in twin

and sib-pairanalysis. Greenwich Medical Media, London

Moffitt TE, Caspi A, Rutter M (2005) Strategy for investigating

interactions between measured genes and measured environ-

ments. Arch Genet Psychiatry 62:473–481

Moffitt TE, Caspi A, Rutter M (2006) Measured gene-environment

interactions in psychopathology: concepts, research strategies,

and implications for research, intervention, and public under-

standing of genetics. Perspect Psychol Sci 1(1):5–27

Neale MC, Cherny SS, Sham PC, Whitfield JB, Heath AC, Birley AJ,

Martin NG (1999) Distinguishing population stratification from

genuine allelic effects with Mx: association of ADH2 with

alcohol consumption. Behav Genet 29(4):233–243

Neale MC, Boker SM, Xie G, Maes HH (2003) Mx: statistical

modeling, 6th edn. Department of Psychiatry, Richmond, VA

Plomin R, DeFries JC, Loehlin JC (1977) Genotype-environment

interaction and correlation in the analysis of human behavior.

Psychol Bull 84:309–322

Posthuma D, de Geus EJC, Boomsma DI, Neale MC (2004)

Combined linkage and association tests in Mx. Behav Genet

34(2):179–196

Purcell S (2002) Variance components models for gene-environment

interaction in twin analysis. Twin Res 5:554–571

Rutter M, Silberg JL (2002) Gene-environment interplay in relation

to emotional and behavioral disturbance. Ann Rev Psychol 53:

463–490

Saris WE, Satora A (1993) Power evaluations in structural equation

models. In: Bollen KA, Long JS (eds) Testing structural equation

models. Sage, Newbury Park, CA, pp 181–204

Turkheimer E, D’Onofrio BM, Meas HH, Eaves LJ (2005) Analysis

and interpretation of twin studies including measures of the

shared environment. Child Dev 76(6):1217–1233

Van den Berg SM, Glas CAW, Boomsma DI (2007) Variance

decomposition using an IRT measurement model. Behav Genet

37:604–616

Van den Oord EJCG (1999) Method to detect genotype-environment

interactions for quantitative trait loci in association studies. Am

J Epidemiol 150(11):1179–1187

Van der Sluis S, Dolan CV, Neale MC, Posthuma D (2006) Detecting

genotype-environment interaction in monozygotic twin data:

comparing the Jinks and Fulker test and a new test based on

marginal maximum likelihood estimation. Twin Res Human

Genet 9(3):377–392

Van der Sluis S, Dolan CV, Neale MC, Posthuma D (2008) Power

calculations using exact data simulation: a useful tool for genetic

study designs. Behav Genet 38:202–211

Yaffe K, Haan M, Byers A, Tangen C, Kuller L (2000) Estrogen,

apoe, and cognitive decline: evidence for gene-environment

interaction. Neurology 54:1949–1954

Behav Genet (2008) 38:372–389 389

123


	A General Test for Gene-Environment Interaction in Sib �Pair-based Association Analysis of Quantitative Traits
	Abstract
	Introduction
	Sib pair-based association including environmental effects and G x E interaction
	Categorical environment
	Continuous environment

	Power calculations for the G x E model
	Procedures
	Patterns of G x E interaction

	Results
	Discussion
	Acknowledgements
	Appendix 1
	Appendix 2
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


