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Abstract Murine L1210 leukaemia cells expressing
either the reduced folate carrier (RFC) or the membrane
folate receptor (MFR) were studied in vitro and in vivo to
assess the dynamics of membrane transport of two catego-
ries antifolates; folate-based inhibitors of dihydrofolate
reductase (methotrexate, edatrexate, aminopterin, PT523,
and PT644) and thymidylate synthase (TS) [CB3717, ral-
titrexed, plevitrexed (BGC9331), pemetrexed and
GW1843]. The potency of in situ inhibition of TS was used
as an endpoint to analyze the in vitro dynamics of RFC/
MFR-membrane transport of these antifolates. Both for
L1210-RFC and L1210-MFR cells, the potency of in situ
TS inhibition was closely correlated with increasing aYni-
ties of these transporters for the antifolates (r = 0.64,
P < 0.05 and r = ¡0.65, P < 0.05, respectively). Within the
group of antifolates for which MFR had a low binding
aYnity, those that had the ability to become polyglutamy-
lated, were more potent inhibitors of TS in situ activity than
non-polyglutamatable antifolates. In vivo activity of metho-
trexate, edatrexate, raltitrexed and pemetrexed was
assessed in L1210-RFC and L1210-MFR bearing mice that
were fed either a standard or a folate-deWcient chow. Die-
tary folate depletion signiWcantly reduced the MTD for
methotrexate (sevenfold), edatrexate (sevenfold), raltitr-
exed (50-fold) and pemetrexed (150-fold). Based on
increased life spans, antitumor eVects of methotrexate and

edatrexate were markedly better in L1210-RFC bearing
mice on the folate-deWcient chow (ILS: 455 and 544%,
respectively) than on standard chow (ILS: 213 and 263%,
respectively). No therapeutic eVects of methotrexate and
edatrexate were observed for L1210-MFR bearing mice on
either chow condition, which may be consistent with the
low binding aYnity for MFR. Irrespective of the folate diet
status, pemetrexed and raltitrexed were inactive against
both L1210-RFC and L1210-MFR bearing mice, which
may be due to high circulating plasma thymidine levels.
Collectively, this study underscores that modulation of die-
tary folate status can provide a basis within which the ther-
apeutic eVect of antifolates may be further improved.
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Abbreviations
AMT Aminopterin
CB3717 N10-propargyl-5,8-dideazafolic acid
DHFR Dihydrofolate reductase
EDX Edatrexate
FPGS Folylpolyglutamate synthetase
GW1843 (S)-2[5-(((1,2-dihydro-3-methyl-1-

oxobenzo(f)quinazolin-9-yl)-methyl)-
amino)1-oxo-2-isoindolinyl]-glutaric acid

HBSS HEPES-buVered saline solution
IC50 Drug concentration required for 50% growth

inhibition compared to controls
ILS Increase in life span
LV Leucovorin (5-formyltetrahydrofolate)
MFR Membrane folate receptor
MTD Maximum tolerated dose
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MTX Methotrexate
PMX Pemetrexed
PT523 N�-(4-amino-4-deoxypteroyl)-N�-(hemiphta-

loyl-L-ornithine)
PT644 5-Methyl-5-deaza-PT523
RFC Reduced folate carrier
RTX Raltitrexed
TS Thymidylate synthase
TSI50 Drug concentration required to inhibit 50%

of TS activity compared to untreated controls
BGC9331 Plevitrexed/(2S)-2-(0-Xuoro-p-[N-(2,7-dime-

thyl-4-oxo-3,4-dihydroquinazolin-6-ylme-
thyl)-N-(prop-2-ylnyl)amino] benzamido)-4-
(tetrazol-5-yl) butyric acid

Introduction

Several distinct routes for the uptake of folates and antifo-
lates have been reported. Of these the reduced folate carrier
(RFC) and membrane folate receptors (MFR) are thoroughly
characterized [4, 14, 24, 25, 31, 52, 71]. The RFC is an inte-
gral membrane glycoprotein that generates folate uptake by
a carrier-mediated process through a bi-directional anion
exchange mechanism [25, 31]. The RFC is characterized by
a high aYnity (Km: 1–10 �M) for reduced folates and metho-
trexate (MTX), whereas it has poor aYnity for oxidized
folates such as folic acid (Km: 200–400 �M).

Membrane folate receptors are membrane-associated
folate binding proteins that constitute a second group of
folate transporters and are characterized by high binding
aYnity for folic acid (Kd: 0.1–1 nM) and 5-methyltetrahy-
drofolate (Kd: 3 nM), but markedly lower aYnities for other
reduced folates and MTX [26, 29, 44, 64].

Three isoforms of MFR (�, � and �) with distinct binding
aYnities for folates and antifolates, have been identiWed.
MFR-� and MFR-� are linked to the cell membrane by a
glycosylphosphotidylinositol-anchor [65], whereas MFR-�
is a secretory form and lacks this anchor [44]. Two mecha-
nisms of internalization of folates by MFR have been pro-
posed: classical endocytosis [47] and a process called
potocytosis which involves the sequestration of MFRs in
speciWc membrane vesicles (caveolae) in which, upon acid-
iWcation, the (anti) folates dissociate from the receptors and
are transported into the cytosol by a putative folate carrier
[2]. Although the exact role and the relative importance of
the RFC in mediating antifolate antitumor activity in vivo
has been fairly well established [5, 29, 31, 50], the role of
MFR is still unclear [12, 67]. However, it may be antici-
pated that optimal MFR-mediated transport could be
revealed under conditions of low extracellular folates when
there is less receptor occupancy and competition with cir-
culating reduced folates [15, 61, 68].

In addition to inXux into cells, the cytotoxic action of
MTX and other antifolates is dependent on binding to the
intracellular targets dihydrofolate reductase (DHFR) [35]
and thymidylate synthase (TS) [40], polyglutamylation [33,
34], and the rate of drug eZux via members of the multi-
drug resistance protein family [3, 18, 63]. TS is a key
enzyme in the de novo synthesis of thymidylate necessary
for DNA synthesis. It catalyzes the conversion of deoxy-
uridine monophosphate (dUMP) into deoxythymidine
monophosphate (dTMP), for which 5, 10-methylene-
tetrahydrofolate is the methyl donor. Inhibition of TS
results in depletion of dTMP, which can lead to thymine-
less death due to inhibition of DNA synthesis [1]. Polyglut-
amylation is the process of elongation of the (anti) folate
molecule by the addition of multiple glutamate moieties to
the �-carboxyl group of the glutamate side chain. This pro-
cess is catalyzed by folylpolyglutamate synthetase (FPGS)
and results in increased retention of (anti) folates within the
cell and increased aYnity for some key enzymes [36].

Aminopterin (AMT) [10, 58] and edatrexate (EDX) [55]
are DHFR inhibitors that are better transported via the RFC
and better substrates for FPGS than MTX (Table 1). PT523
and PT644 are novel DHFR inhibitors that exhibit eYcient
RFC transport but their hemiphtaloyl-ornithine side chain
withholds them from being polyglutamylated [46, 49].
MFR exhibits, relative to folic acid, a low binding aYnity
for the group of DHFR inhibitors MTX, EDX and PT523,
whereas a relatively high binding aYnity is noted for the
group of antifolate TS inhibitors (Table 1).

In addition to DHFR, other crucial enzymes in folate
metabolism, such as TS, have been exploited as targets for
the development of novel antifolates [20, 39]. CB3717 was
the Wrst folate-based TS inhibitor, which was withdrawn
from clinical development because of renal toxicity [19]. In
recent years new antifolate-based TS-inhibitors have been
approved for clinical use, including raltitrexed (RTX) [9,
53] and pemetrexed (PMX; ALIMTA™) [16]. Other TS
inhibitors such as GW1843 (reformulated as a liposomal
compound: GS7904L) and BGC9331 (plevitrexed, ZD9331)
are currently being evaluated in clinical trials [6, 8, 13, 21].
RTX [23] and GW1843 [13] are more eYciently trans-
ported via the RFC and better substrates for FPGS than
MTX. BGC9331 is a non-polyglutamatable TS inhibitor
that displays eYcient transport both via the RFC and MFR
[21]. PMX mainly inhibits TS but polyglutamate metabo-
lites of this drug are also potent inhibitors of DHFR and
glycinamide ribonucleotide formyltransferase, a key enzyme
in the de novo purine synthesis [56]. Moreover, PMX is a
good substrate for FPGS and RFC and has high binding
aYnity for MFR [56].

Previous studies from our laboratory [66, 68] and others
[60, 64] have assessed the diVerential role of RFC and
MFR in the growth inhibitory eVects of antifolates in terms
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of aYnity relationships. In this study, we focused on the
dynamics of membrane transport of a series of antifolates
(MTX, EDX, AMT, PT523, PT644, CB3717, RTX,
BGC9331, GW1843 and PMX) via the RFC and/or MFR
using the in situ inhibition of TS as an endpoint. These
studies should provide insight whether MFR binding aYn-
ity is correlated with the eYcacy of cell entry and capacity
to inhibit TS. Model systems used were L1210 murine leu-
kaemia cells expressing RFC as sole folate transport system
[17], and L1210-MFR cells that lack functional RFC activ-
ity but harbour high MFR expression [28]. In addition, we
extended these studies to an in vivo setting in which the
antitumor eVect of two antifolates with a low MFR binding
(EDX and MTX) was compared with two antifolates with
high MFR binding capacity (RTX and PMX). Since folate
levels in mouse plasma may be amply suYcient to saturate
MFR [54, 62], we also performed experiments in mice kept
on a folate-depleted diet aiming to achieve a greater per-
centage of unoccupied receptors that could bind antifolates.

Materials and methods

Chemicals

RPMI 1640 cell culture medium, with and without folic
acid, and (dialyzed) foetal calf serum (FCS) were obtained
from Cambrex Bio Science (Verviers, Belgium). Leucovorin,

folic acid and AMT were purchased from Sigma Chemical
Co. (St Louis, MO). MTX was a gift from Pharmachemie
(Haarlem, The Netherlands). Edatrexate (EDX) was a gift
from Dr. J.H. Schornagel, Netherlands Cancer Institute,
Amsterdam, The Netherlands. Raltitrexed (Tomudex,
ZD1694) was from AstraZeneca Pharmaceuticals (Mac-
clesWeld, UK). CB3717 and BGC9331 were gifts from
Prof. A.L. Jackman, Inst. of Cancer Research (Sutton, Sur-
rey, UK). GW1843 was provided by Dr G.K. Smith, Glaxo-
Wellcome Research Laboratories, currently Glaxo Smith
Kline (Research Triangle Park, NC). PT523 was a gift from
Dr. W.T. McCulloch (then at Sparta Pharmaceuticals,
Research Triangle Park, NC). PT644 (5-methyl-5-deaza-
PT523) was provided by Dr. A. Rosowsky (Dana-Farber
Cancer Institute, Boston, MA). Pemetrexed (PMX, ALI-
MTA™) was a gift of Lilly Research Laboratories (India-
napolis, IN). The radiochemicals [3�,5�,7-3H]-MTX (23 Ci/
mmol), [3�,5�,7,9-3H]-AMT (13 Ci/mmol), [3�,5�,7,9-3H]-
Folic acid (69 Ci/mmol) and [5-3H]-2�-deoxycytidine
(28 Ci/mmol) were obtained from Moravek Biochemicals
(Brea, CA). All other chemicals were of the highest purity
available.

Cell lines

L1210-RFC cells, a murine leukaemia cell line that
expresses wild type RFC, was cultured in RPMI-1640
medium (containing 2.3 �M folic acid), supplemented with
10% FCS, 2 mM glutamine, penicillin (100 units/ml),
streptomycin (100 �g/ml), and 50 �M �-mercaptoethanol.
L1210-MFR cells overexpress MFR but lack functional
RFC activity [28, 68] and were grown in folate-free RPMI-
1640 medium, supplemented with 10% dialyzed FCS and
2.5 nM L-LV as the sole folate source. The cell lines were
maintained at 37°C in a humidiWed atmosphere with 5%
CO2. The cells had comparable levels of DHFR, TS and
FPGS [68].

In situ TS inhibition assay

Inhibitory eVects of antifolates on in situ TS activity were
determined as described previously [32, 48]. In short, cells
were washed and suspended in folate-free RPMI-1640
medium and samples of 2 £ 105 cells in a volume of 150 �l
were exposed to various concentrations of antifolate drugs
for 3, 6, 9, 12 or 24 h at 37°C. One hour before the end of
the incubation, 10 �l [5-3H]-2�-deoxycytidine was added to
the cell suspensions to a Wnal concentration of 1 �M (spe-
ciWc activity, 0.7 �Ci/nmol). [3H]-2�-deoxycytidine is con-
verted intracellularly to [3H]-dUMP, which is the substrate
of TS. TS catalyses the conversion of [3H]-dUMP to dTMP
and during this reaction [3H]H2O is released in the medium,
which is a marker of uninhibited TS activity [69]. The

Table 1 Transport and polyglutamylation properties of antifolates

a RFC aYnity is expressed as the concentration of drug (�M) required
to inhibit 5 �M [3H]MTX inXux in human CEM-7A leukaemia cells by
50% [68]
b MFR-aYnity is depicted as relative aYnity compared to folic acid
(set to 1). Relative aYnity is deWned as the inverse molar ratio of drug
required to displace 50% of [3H]-folic acid from MFR in L1210-MFR
cells [68]
c FPGS substrate activity (Km) is deWned as follows: ++++ Km < 5 �M,
+++ Km 5–25 �M, ++ Km 25–100 �M, + Km > 100 �M, – non-substrate

AYnity 
RFCa

AYnity 
MFRb

AYnity 
FPGSc

References

DHFR inhibitors

MTX 10.8 0.009 ++ [68]

AMT 2.2 0.012 +++ [68]

EDX 1.7 0.009 +++ [51, 68]

PT523 1.1 0.005 ¡ [45, 68]

PT644 0.45 0.18 ¡ [49, 68]

TS inhibitors

CB3717 57 1.4 ++ [68]

BGC9331 0.85 0.72 ¡ [21, 68]

RTX 2.0 0.68 ++++ [23, 68]

GW1843 0.8 0.55 ++++ [13, 68]

PMX 4.5 1.48 ++++ [56, 68]
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reaction was stopped by the addition of 150 �l ice-cold
35% trichloroacetic acid solution. After the addition of
750 �l 10% charcoal solution, the suspensions were mixed
and centrifuged at 800£g for 30 min (4°C). A 450 �l super-
natant sample was counted for radioactivity. Inhibition of
TS activity was expressed as a TSI50 value: the drug con-
centration required for 50% inhibition of TS activity of
control cells incubated without drugs.

Determination of accumulation and polyglutamate 
formation of MTX and AMT

L1210-RFC and L1210-MFR cells (10 £ 106 in 10 ml
medium) were incubated in 25 cm2 tissue Xasks in the pres-
ence of diVerent concentrations of [3H]-MTX (speciWc
activity 0.45 �Ci/nmol) or [3H]-AMT (speciWc activity
0.65 �Ci/nmol). After 1, 4 and 24 h, cells were washed
twice with ice-cold HEPES-buVered saline solution
(HBSS) pH 7.4 by centrifugation and the pellet was resus-
pended in 1 ml HBSS. A sample of 90 �l was counted for
radioactivity, 10 �l was used to determine the number of
cells, the remaining suspension was centrifuged and the
pellet was kept at ¡20°C until extraction. The extraction of
[3H]-MTX and [3H]-AMT polyglutamates and HPLC anal-
ysis were performed as described previously [7].

Mice

Female DBA/2 mice (7–10 weeks) were obtained from
Harlan (Zeist, The Netherlands) and maintained under stan-
dard conditions [62]. Mice were fed either a standard chow
(containing 3.65 mg folic acid per 100 kg) or a folate deW-
cient (0 mg folic acid per 100 kg) chow (Hope Farms,
Woerden, The Netherlands), which was given ad libitum.
The animals for low folate diet experiments were fed with
the folate deWcient chow for at least 2 weeks prior to the
onset of experiments. Under these conditions folate levels
in tissues and plasma are reduced within 2 weeks to that
observed in humans [62].

To assess the maximum tolerated doses (MTD) of MTX,
EDX, RTX and PMX for mice on a standard diet and for
mice on a low folate diet, various doses of each drug were
tested (3 mice per dose). MTX and EDX were administered
on day 0 and day 7; RTX and PMX were injected once
daily on day 0–4. All of the drugs were administered intra-
peritoneally. All animal experiments were approved by the
Animal Ethical Committee of the VU University.

Determination of anti-leukaemic activity

Mice were intraperitoneally inoculated with wild type
L1210 cells (1 £ 106 per mouse) or L1210-MFR cells
(2 £ 106). Since the doubling rate of L1210 cells is

approximately 1.5-fold higher than the variants, the number
of injected cells was adjusted accordingly. Treatment was
started 24 h after inoculation using the established MTD of
the drugs. Mice (5 per group) received bolus injections with
MTX or EDX on day 0 and day 7, whereas RTX or PMX
were injected daily on day 0–4.

Weight and clinical condition were determined daily.
Survival was assessed daily for up to 93 days and was
counted from the start of injection of the cells. Mice identi-
Wed as moribund (visual inspection and/or >20% weight
loss) were sacriWced by cervical dislocation and survival
time was considered the number of days alive plus one. The
antileukaemic activity of the antifolates was assessed by
calculating the percentage of the increase in life span (ILS),
i.e., the ratio of the median survival of treated mice over the
median survival of the untreated control group £ 100%.

Ex vivo folic acid binding studies

Ascites was collected from sacriWced mice for determina-
tion of [3H]-folic acid binding capacity. Ascites L1210-
MFR cells were isolated by centrifugation with Ficoll-
Isopaque. One part of the cells was washed with HBSS
buVer (pH 7.4) and used for measurement of folic acid
binding capacity. The other part of the cells was washed
twice with folate free RPMI-1640 medium and subse-
quently resuspended in folate free RPMI-1640 medium
supplemented with 10% dialyzed FCS for a period of 24 h.
Cells were counted with a haemocytometer and viability
was determined by Trypan-blue dye exclusion.

Folic acid binding capacity of isolated L1210-MFR
cells was assessed as described previously [26]. In short,
one portion of cells (3–5 £ 106 cells/ml) was incubated in
HBSS pH 7.4 with 100 pmol [3H]-folic acid (speciWc
activity 0.5 Ci/mmol) for 10 min at 4°C. Then cells were
centrifuged and the cell pellet was analyzed for radioac-
tivity. The total folic acid binding capacity was deter-
mined after a 20 min acidic treatment with HBSS buVer
(pH 3.5) to remove surface bound folates [29]. After cen-
trifugation, cells were resuspended in HBSS pH 7.4 and
incubated with [3H]-folic acid as described above.
Another portion of L1210-MFR cells were resuspended in
folate-free RPMI-1640 medium and cultured in vitro for
24 h after which folic acid binding capacity was assessed
again.

Statistics

For the relation between TS inhibitory potency of the antif-
olates and growth inhibitory eVect or folate transporter
aYnities, the Spearman ranking correlation coeYcient was
calculated. P values < 0.05 were considered to be statisti-
cally signiWcant.
123



Cancer Chemother Pharmacol (2008) 62:937–948 941
Results

In situ TS inhibition studies

The inhibitory eVects of 3 h exposure of the antifolate com-
pounds MTX, AMT, EDX, PT523, PT644, CB3717,
BGC9331, RTX, GW1843 and PMX on in situ TS activity
of L1210-RFC cells and L1210-MFR cells are listed in
Table 2. All drugs, with the exception of CB3717, dis-
played rapid and potent inhibition of TS activity in the
L1210-RFC cells. A signiWcant correlation was observed
between the TSI50 values for this panel of antifolates and
their RFC substrate aYnities (r = 0.64; P < 0.05; Fig. 1a).
Furthermore, TSI50 values for L1210-RFC cells obtained
with the 3-h in situ TS inhibition assay revealed a strong
correlation (r = 0.69; P < 0.05; Fig. 1b) with the previously
published IC50 values for cell growth inhibition after 72 h
drug exposure [68]. For L1210-MFR cells, an inverse rela-
tion was found between the increasing MFR antifolates
binding aYnities and the 3-h TSI50 values (r = ¡0.65;
P < 0.05; Fig. 1c). Finally, a strong correlation (r = 0.87,
P < 0.01; Fig. 1d) was observed between the 3-h TSI50 val-
ues and the IC50 values for growth inhibition of L1210-
MFR cells after 72-h drug exposure.

In L1210-MFR cells, the TSI50 value for 3 h exposure to
MTX, PT523 and PT644 were more than 300-fold higher
compared to the TSI50 values in L1210-RFC cells
(Table 2), which may be consistent with the low MFR

binding aYnity for these compounds (Table 1). Interest-
ingly, however, MFR also exhibits a poor binding aYnity
for AMT and EDX (Table 1), but these two DHFR inhibi-
tors demonstrated a much more potent TS inhibitory eVect
(Table 2). Within the group of TS inhibitors, PMX,
GW1843, BGC9331 and RTX all displayed a good TS
inhibitory eVect after 3 h exposure (Table 2). Supplementa-
tion of medium with 200 nM folic acid had a marked (351-
fold) protective eVect against TS inhibition by RTX in
L1210-MFR cells (Table 2), consistent with MFR being the
dominant transport route for RTX in these cells. Surpris-
ingly, CB3717, for which MFR has a relatively high bind-
ing aYnity and RFC a low aYnity (Table 1), displayed a
low potency of TS inhibition after 3 h drug exposure in
L1210-MFR cells, being just 2.6-fold lower than for
L1210-RFC cells (Table 2). The TS-inhibitory activity of
RTX, BGC9331 and PMX in L1210-MFR was comparable
with that of L1210-RFC cells (Table 2).

Time dependency

Since data presented in Table 2 indicated that TS in situ
inhibition for some antifolates in L1210-MFR cells (in con-
trast to L1210-RFC cells) was not fully displayed after 3 h
of exposure, experiments were extended to 24 h drug expo-
sure. The TS inhibitory eVects of the diVerent antifolates in
L1210-MFR cells in relation to exposure-time are depicted
in Fig. 2a (for DHFR inhibitors) and Fig. 2b (for TS inhibi-
tors). Extension of the exposure time from 3 to 24 h
resulted in a 3-log increase of the TS inhibitory eVect of
MTX against L1210-MFR cells; in particular, a marked
increase in MTX-activity occurred between 6 and 9 h
(Fig. 2a). The non-polyglutamatable DHFR inhibitors
PT523 and PT644 gained increasing TS inhibitory activity
over 3–12 h exposure after which the eVect levelled oV
(Fig. 2a). CB3717 demonstrated higher TS inhibitory activ-
ity than MTX after short-term exposures (·6 h), however,
this property was lost beyond 9 h of drug incubation
(Fig. 2b). For comparison, short exposures of L1210-MFR
cells to the TS inhibitors RTX and BGC9331 were already
suYcient to achieve their maximal TS inhibitory activity.

Accumulation and polyglutamylation of MTX and AMT

In order to establish whether diVerences (Table 2) in TSI50

for two compounds with similar MFR binding aYnity,
MTX and AMT (Table 2), could be explained by factors
downstream of transport, we analyzed accumulation and
polyglutamate formation of [3H]-MTX and [3H]-AMT in
L1210-RFC and L1210-MFR cells (Table 3). Following 1,
4 and 24 h exposures to 1 �M [3H]-MTX and [3H]-AMT,
accumulation of both antifolates in L1210-MFR cells was
1,5-3-fold lower than in L1210-RFC cells. For both cell

Table 2 Inhibitory eVects of antifolates on in situ TS activity of
L1210-RFC and L1210-MFR cells

Cells were incubated for 3 h with a concentration range of drugs (cov-
ering 2 log concentrations). The in situ TS activity was determined by
incubating cells with [5-3H]-deoxycytidine and measuring release of
[3H]-H2O. TSI50 values were determined in at least three diVerent
experiments

L1210-RFC parental cells (RFC+), L1210-MFR (RFC-/MFR+++)

TSI50 (nM)

L1210-RFC L1210-MFR

DHFR inhibitors

MTX 46.3 § 7.6 17,870 § 1,690

AMT 25.3 § 6.1 172 § 15

EDX 20.3 § 3.7 2,013 § 113

PT523 8.2 § 0.5 35,056 § 5,877

PT644 7.3 § 0.2 33,550 § 4,150

TS inhibitors

CB3717 2,805 § 680 7,200 § 2,180

BGC9331 10.0 § 0.9 7.8 § 4.6

RTX 17.0 § 2.7 5.9 § 1.7

RTX (200 nM FA) 2,070 § 415 

GW1843 57.4 § 4.9 91.4 § 30.7

PMX 45.2 § 4.5 20.7 § 2.9
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lines, however, formation of long chain polyglutamate
forms of [3H]-AMT was much more eYcient than for [3H]-
MTX, which could be consistent with lower TSI50 values
for AMT as compared to MTX, and with the higher aYni-
ties of AMT to FPGS compared to MTX.

In vivo dose-Wnding studies

The MTD for the four antifolates was determined both in
mice on a standard folate diet and mice on a low folate diet.

The latter was done for two reasons. First, plasma folate
levels of mice are approximately fourfold higher than in
human plasma and may counteract activity of antifolates
[62]. When mice were adapted to a folate-restricted diet,
plasma levels were more in line with that of human plasma.
Secondly, high plasma folate levels in mice may lead to full
occupancy of MFR binding sites which requires a greater
degree of competition for antifolates to displace natural
folates. It is hypothesized that under a folate-restricted diet,
MFR occupancy by natural folates will be lower to allow

Fig. 1 a Correlation of RFC 
aYnity for antifolates and 
TSI50 nM after 3 h drug expo-
sure to L1210-RFC cells, b Cor-
relation between IC50 nM values 
of growth inhibition of L1210-
RFC cells after 72 h drug expo-
sure and TSI50 nM after 3 h drug 
exposure, c Correlation of MFR 
aYnity for antifolates and 
TSI50 nM after 3 h exposure to 
L1210-MFR cells, d Correlation 
between IC50 nM values of 
growth inhibition of L1210-
MFR cells after 72 h drug expo-
sure and TSI50 nM after 3 h drug 
exposure
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binding of antifolates. On a low folate diet the MTD for
MTX and EDX was sevenfold lower than for mice on stan-
dard folate containing chow (Table 4). Even more substan-
tial dose reductions (50- and 150-fold, respectively) were
required for RTX and PMX in low folate mice as compared
in mice on a standard diet (Table 4).

Anti-leukaemic eVect

The anti-leukaemic activity of MTX, EDX, RTX and PMX
was evaluated in mice (on either a standard or a low folate
diet) that were inoculated with L1210-RFC and L1210-
MFR cells (Fig. 3). MTX and EDX displayed a low
antileukaemic activity against L1210-RFC bearing mice on
standard folate containing chow: ILS 213% and 263%,
respectively (Fig. 3a). Of note, both MTX and EDX
showed markedly enhanced anti-leukaemic activity against
L1210-RFC cells bearing mice on a folate deWcient diet
(Fig. 3b), represented by an ILS of 455% (1 out of 5 long
term survivors) and 545% (2 out of 5 long term survivors),
respectively. RTX and PMX were only marginally active
against mice bearing L1210-RFC cells (ILS 144 and 138%,
respectively) (Fig. 3a). Regardless of the folate diet status,

MTX, EDX, RTX and PMX were not active against mice
inoculated with L1210-MFR cells (Fig. 3c, d).

Ex vivo analysis of folic acid binding capacity

In order to investigate whether mouse peritoneal residence
may inXuence MFR expression on L1210-MFR cells, we
analyzed total receptor levels and the percentage of unoccu-
pied receptors in these cells immediately after sacriWcing
the mice. Furthermore, since receptor levels may also have
been transiently down regulated due to internalization,
L1210-MFR cells were again transferred into folate-free
medium for 24 h to allow recycling of receptors to the cell
surface. The total number of folate receptors in L1210-
MFR cells harvested from mice on standard chow was
approximately half the number found in these cells when
cultured in vitro under low folate conditions (Fig. 4). After
in vivo harvesting of L1210-MFR cells, receptors appeared
to be 80–90% occupied with circulating reduced folates.
Total MFR binding capacity was almost fully recovered to
the level of control L1210-MFR cells after ex vivo culture
for 24 h in folate-free medium, suggesting that the original
50% reduction in [3H] folic acid binding capacity is due to
internalization of receptors. Following treatment of L1210-
MFR bearing mice with the diVerent antifolates these
parameters were not changed (results not shown). Under
low folate diet conditions in the mice total folate receptor-
[3H]-FA binding activity of L1210-MFR was reduced by
40% as compared to cells maintained in vitro at low folate
conditions. Interestingly, in contrast to cells on a high folate
diet, MFR occupancy under low folate restrictions was only
30–40%. After ex vivo culture of these cells in folate-free
medium for 24 h restored original total receptor levels
which were still occupied with folates for approx. 25%.

Table 3 Accumulation and 
polyglutamylation of MTX and 
AMT in L1210-RFC and L1210-
MFR cells

Substrate Inc. 
time (h)

Accumulation 
(pmol/107 cells)

Glu1 (%) Glu2 (%) Glu3 (%) Glu4 (%) Glu5 (%) Glu6 (%)

L1210-RFC

MTX 1 11.6 67 20 13 – – –

4 22.8 27 8 35 30 – –

24 83.4 6 1 12 57 24 –

AMT 1 18.7 60 30 10 – – –

4 23.0 17 23 45 16 – –

24 64.7 21 3 7 25 35 7

L1210-MFR

MTX 1 5.4 100 – – – – –

4 12.3 82 18 – – – –

24 24.5 50 21 18 12 – –

AMT 1 12.9 59 41 – – – –

4 14.1 31 53 16 – – –

24 42.4 21 32 19 19 6 3

Cells were incubated for the 
indicated periods with either 
1 �M [3H]-MTX or 1 �M [3H]-
AMT. Results depicted are the 
mean of duplicate experiments

Table 4 Maximum tolerated doses of antifolates for DBA/2 mice fed
with a regular or folate-deWcient chow

Antifolate Standard chow 
(high folate) (mg/kg)

Folate-deWcient 
chow (mg/kg)

MTX 100 15

EDX 100 15

RTX 10 0.2

PMX 150 1.0
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Discussion

With MTX as its main representative, folate antagonists
remain to have an established place in the oncologists’ che-
motherapeutic armature. Nowadays, second and third gen-
erations of folate antagonists are available based on the
rationale design of compounds that harbour speciWc

membrane transport, polyglutamylation and/or enzyme tar-
geting properties [63]. Since inhibition of TS is the resul-
tant of one or more of these parameters, we used the in situ
TS inhibition assay as a tool to obtain insight how for new
generation of antifolates this is translated into potential
therapeutic activity [32, 48]. In addition the data support
further clinical development of AMT, one of the Wrst
antifolates to enter the clinic, which is currently being re-
evaluated for its clinical potential [10, 11]. The Wrst new
clinical data warrant development of AMT. This good
activity is probably related to its better polyglutamylation
pattern compared to MTX.

The primary models used in this study included L1210
leukaemia cells that expressed either the classical RFC or
MFR as the dominant route of (anti) folate cell entry. Previ-
ous notions that eYciency of RFC transport is a determin-
ing factor in the potency of hydrophilic antifolates [25, 31],
were re-established by revealing good correlations between
RFC aYnities for antifolates and both TSI and IC50 values
for cell growth inhibition (Fig. 1). We report here (Fig. 1)
that similar types of correlations are observed for hydro-
philic antifolate transport mediated via MFR. Nevertheless,
results from the TS in situ assay with L1210-MFR cells
provided evidence for some intriguing diversities in the
cascade of MFR-mediated cell membrane translocation and
targeting of TS. First, for several antifolates including
MTX, MFR-mediated transport appears slower than RFC
transport. However, a eightfold increase in exposure time
(from 3 to 24 h) resulted in an up to 3-log (1,000-fold)
increase in TS inhibitory eVect, which is in line with earlier
studies on the eVect of duration of exposure on MTX

Fig. 3 EVects of antifolates on 
survival of mice bearing L1210-
RFC cells (a, b) or L1210-MFR 
cells (c, d) and fed with either a 
standard high folate chow (a, c) 
or a folate-deWcient chow (b, d)
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Fig. 4 Folate receptor occupancy in L1210-MFR cells isolated from
L1210-MFR bearing mice on a standard high folate (HF) or folate-
deWcient (LF) chow. After harvesting the cells were recultured ex vivo
in folate-deWcient medium. The level of occupied receptors was deter-
mined after assessment of [3H] folic acid binding before (represents
empty receptors) and after brief acid washing of the cells to remove
occupied folate from the receptor. Further experimental details are de-
scribed in the “Materials and methods”. * Indicates signiWcantly diVer-
ent (P < 0.01) in free receptors and total receptor binding capacity
compared to in vitro control
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cytotoxicity [30]. Second, compounds for which MFR had
equally low aYnities could still diVer two orders of magni-
tude in potential to inhibit TS as was illustrated for AMT in
comparison with MTX (Table 2). The marked diVerential
potency by AMT is likely to be due to better transport and
more eYcient polyglutamylation than for MTX (Table 3),
which allows a better retention and greater inhibitory eVect
on TS activity. Third, compounds for which MFR has simi-
lar binding aYnities but have the ability to become polyglu-
tamylated showed much more potent TS inhibitory eVects
than non-polyglutamatable compounds. This is best illus-
trated in a comparison of polyglutamatable MTX versus the
non-polyglutamatable compounds PT523 and PT644, of
which the latter compound even has a 24-fold gain in MFR
binding aYnity over PT523. Since both PT523 and PT644
showed excellent TS inhibitory potential for L1210-RFC
cells (Table 2; Fig. 2a), this suggest that in L1210-MFR
cells polyglutamylation may be a driving force to release
antifolates from the receptor after MFR-mediated cell
membrane translocation [59]. Fourth, antifolates for which
MFR displays a high aYnity may not necessarily confer a
potent TS inhibitory eVect. This may apply for CB3717 for
which MFR has a binding aYnity even greater than for
folic acid (Table 1) [68], but this did not translate in a
potent TS inhibitory eVect (Table 2; Fig. 2b), presumably
because the tight binding attenuates the intracellular release
of CB3717 from MFR. Remarkably, PMX which has an
even higher aYnity to MFR displays a much lower TSI50

than CB3717. However, PMX is an excellent substrate for
FPGS, allowing a rapid polyglutamylation leading to an
eVective TS inhibition in line with the above stated role of
polyglutamylation. Finally, although this study did not
elaborate as much on the exact mechanism of MFR-medi-
ated antifolates uptake in L1210-MFR cells, receptor-
mediated endocytosis [47] or potocytosis [2]. For the
potocytosis route some recent studies revealed a possible
candidate transporter that may work in tandem with MFR
to facilitate cell membrane translocation of antifolates. This
transporter is referred to as proton coupled folate trans-
porter (PCFT) [42], which functions optimally at mildly
acidic pH and has a high aYnity for folic acid and also for
the antifolates PMX [43]. Since the substrate aYnities of
PCFT for many of the antifolates used in the present study
are not yet known, it remains to be established whether
PCFT may contribute to the uptake, in tandem with MFR or
not, for a broad spectrum of antifolates drugs.

The DHFR inhibitors MTX and EDX displayed potential
anti-leukaemic activity against L1210-RFC bearing mice.
This is in accordance with a study by Sirotnak et al. [57]
with L1210-RFC cells in another mouse strain. Our data
show that dietary folate depletion could further enhance the
anti-leukaemic eVect of both drugs, most likely due to less
competition for cellular uptake and polyglutamylation by

circulating plasma folates [27]. In contrast to L1210-RFC
cells, MTX and EDX did not evoke a substantial antil-
eukaemic eVect against L1210-MFR cells. This observation
may be consistent with the low binding aYnity of MFR for
these compounds [68], which entails a relatively low level
of receptor binding along with an attenuated capacity to
displace natural folates from the receptor. The lack of anti-
leukaemic activity by RTX and PMX relates to a known
phenomenon that high plasma thymidine levels in mice
serve as a salvage route to abolish any therapeutic eVect
[22, 54, 62]. Since this salvage eVect is not aVected by feed-
ing mice a folate-deWcient chow, this also counteracts an
anti-leukaemic eVect of RTX or PMX under these condi-
tions. This comes along with the markedly reduced MTD’s
for these compounds in mice fed with a folate deWcient
chow. Consequently, plasma levels of these antifolates may
be insuYcient to achieve a critical state of MFR saturation
that is required to elicit an anti-leukaemic eVect. In addi-
tion, RTX and PMX do not have an anti-purine eVect simi-
lar to MTX, which may also account for the inferior eVects
of these compounds in our in vivo model.

For several antifolates, in particular PMX, the therapeu-
tic window is inXuenced by the patients’ folate status [37,
38, 54, 62, 70]. The present study indicates that dietary
folate modulation in mice provides a condition where folate
receptors are less occupied by natural folates (Fig. 4). Con-
sequently, this may allow enhanced binding of antifolates,
especially those for which MFR has a binding aYnity close
to folic acid. In this context, some recently identiWed novel
antifolates structures, i.e., BGC638 [61] and BGC945 [15],
with the property of not being a substrate for RFC but pos-
sessing a good binding aYnity for MFR, warrant further
evaluation for selective MFR-mediated cell entry. Finally,
recent observations that retinoic acid and histone deacetyl-
ase inhibitors can provoked a marked induction of MFR
expression [41] may further facilitate selective targeting of
MFR.
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