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Abstract 
This paper considers the use of ‘long-run cost functions’ for congested networks in solving 

second-best network problems, in which capacity and tolls are instruments. We derive 

analytical results both for general cost and demand functions and for specific functional 

forms, namely Bureau of Public Roads cost functions and constant-elasticity demand 

functions. The latter are also used in a numerical simulation model. We consider second-best 

cases where only a subset of links in a network is subject to tolling and/or capacity choice, 

and cases with and without a self-financing constraint imposed. We will demonstrate that, 

under certain assumptions, second-best long-run cost (or actually: generalized price) 

functions can be derived for most of the cases of interest, which can be used in an applied 

network model as a substitute for the conventional short-run user cost functions. Doing so 

reduces the dimensionality of the problem and should therefore be helpful in speeding up 

procedures for finding second-best optima.  
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1. Introduction 

Road pricing is gaining increasing momentum as a possible instrument in dealing with traffic 

congestion. The concept is firmly based in micro economic theory: Pigou (1920) was the first 

to recognize that traffic congestion entails an external cost, and that Pareto efficiency requires 

a toll equal to the marginal external congestion costs. This result remains the first-best pricing 

rule when moving from single roads to full networks, as demonstrated by Beckmann, 

McGuire and Winsten (1956), Dafermos (1973) and Yang and Huang (1998); and also applies 

in the long-run when link capacities are optimized (Mohring and Harwitz, 1962). For practical 

implementations of road pricing, however, the assumptions that underlie first-best analysis are 

often unacceptably strong. These assumptions include in the first place that underpricing of 

congested traffic is, as it were, the only market failure in the entire economy: on all markets 

that are directly or indirectly related to the traffic considered, prices should be equal to 

marginal social cost. Therefore, if congestion occurs for commuting, this assumption means 

that spatial labour markets function perfectly and that no pre-existing labour taxes exist. 

Secondly, the assumptions entail that the regulator has perfect (pricing) instruments, meaning 

that all users on all links can be tolled on all times, with perfect toll differentiation possible. In 

reality, this is of course usually not the case. An important example, also addressed in this 

paper, concerns the case where some but not all links in the network are subject to tolling, as 

is the case for schemes that employ toll cordons, toll areas, specific toll roads, or so-called 

‘pay-lanes’, for which unpriced parallel capacity remains offered. Violations of both types of 

assumptions brings the analysis in the realm of second-best pricing, which means that tolls are 

set to maximize a social objective (usually social surplus) under one or more constraints as 

described above. It is then for example not possible to optimize prices outside the transport 

network of interest, or it is not possible to charge all network users with the individually 

optimal toll. 

 With the growing number of practical applications of road pricing, also the study of 

second-best has gained increasing interest in the road pricing literature. A recent overview is 

provided by Small and Verhoef (2007). Specific to the theme of second-best network 

problems are early studies by Marchand (1968) and Lévy-Lambert (1968), who studied what 

has now become known as the ‘classic two-route problem’, where unpriced parallel capacity 

(a road, or a lane) is offered in addition to priced capacity. Various aspects of this problem 

have more recently been studied. For example, Verhoef, Nijkamp and Rietveld (1996) 

considered various ownership regimes, including private monopoly. Braid (1996) considered 

the problem in the context of Vickrey’s (1969) bottleneck model.  Liu and McDonald (1998) 

considered an empirical application, namely the Californian SR-91. De Palma and Lindsey 

(2000) focused on competition between operators of the two links. Verhoef and Small (2004) 

looked at heterogeneous drivers, with different values of time. Rouwendal and Verhoef 

(2004) paid explicit attention to capacity choice in addition to toll setting. De Borger, Proost 

and Van Dender (2005) also considered capacity choice and tolling, but in the context of a 
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private duopoly. Some main conclusions from these studies are that the second-best toll is 

usually below the first-best level, and achieves only a certain part of the possible welfare 

gains from pricing – the size of which depends on elasticity of demand and heterogeneity of 

travelers, among other determinants. Not surprisingly, private ownership usually raises profits 

and lowers welfare, compared to public operation.  

 The two-route problem has also been extended to larger networks. Verhoef (2002ab) 

considered the more general second-best network pricing problem, where a certain sub-set of 

links in a network of undetermined size and shape can be tolled. As may be expected, the 

resulting toll expressions are tedious, and depend on demand and cost elasticities in the 

network, besides the marginal external congestion costs on the tolled and untolled links. This 

reflects that tolls are set to optimize network-wide social surplus and therefore should take 

into account congestion on untolled links, as well as the extent to which pricing on the tolled 

links aggravates it. Verhoef (2002b) also studies the related question of which links to toll, if 

only a sub-set can be tolled. This entails questions like “where should a toll cordon be 

positioned?” and “should we have a cordon at all?”. Sumalee, May and Shepherd (2005) show 

that a formal approach to these questions may lead to a rather different pattern of toll points 

over a network, and higher welfare gains, than does an approach based on expert opinions. 

 While the more recent papers on the classic two-route problem often consider capacity 

choice in addition to the toll instrument, this issue seems to have received considerably less 

attention in the context of second-best policies for larger networks. This is an important 

omission from the perspective of actual policy making which, of course, usually involves 

tolling on bigger networks. Undoubtedly, the analytical complexity of combined second-best 

toll and capacity setting explains at least partly this lack of attention. And for numerical 

network simulation modeling, one may expect that the combination of two instruments on a 

link may greatly complicate procedures of finding second-best optimality, due to what is 

sometimes referred to as the ‘curse of dimensionality’ (Bellman, 1961). 

 In this paper we aim to show how the use of ‘long-run cost functions’ for congested 

networks can help solve second-best network problems in which both capacities and tolls are 

instruments. We derive analytical results both for general cost functions and for cost functions 

with a specific functional form, namely the well-known Bureau of Public Roads (BPR) 

formula. We consider second-best cases where only a subset of links in a network is subject to 

tolling and a subset is subject to capacity optimization, where these subsets may or may not 

overlap. We also consider the case where for some – possibly all – links that are subject to 

both tolling and capacity optimization, a zero-profit constraint is imposed, so that toll 

revenues collected on the link are constrained to be equal to the link’s capacity cost. Our 

paper has a simple structure: Section 2 will present our analytical results, and Section 3 

provides a numerical application. Section 4 will conclude. 

 We will demonstrate that, under the assumptions to be spelled out below, second-best 

long-run cost (or actually: generalized price) functions can be derived for most of the cases of 

interest, which can be used in an applied network model as a substitute for the conventional 
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short-run user cost functions. Doing so reduces the dimensionality of the problem and should 

therefore be helpful in speeding up procedures used for finding second-best optima. Of 

course, two special cases of our second-best problem deserve special attention, because they 

produce strong benchmark insights. These are the cases where the network collapses to a 

single link, and the first-best case where on a larger network, all capacities and tolls can be 

set. We will start the next analytical section with these two special cases. 

2. Pricing, capacity and long-run cost functions: analytical results 

This section presents our analytical results on the relation between pricing, capacity and long-
run cost functions for congested traffic. We will start simple, by reviewing the basic results 
for single roads, and next move to a number of second-best network problems. 

A number of assumptions underlie all our derivations. First, we consider stationary-
state (or static) traffic conditions. Road users are homogeneous: they have the same value of 
time and the same (marginal) impact on link travel times. The travel time on a link therefore 
depends only on its aggregate use. Demand is not perfectly inelastic, and the inverse demand 
for an OD-pair m (for “market”) is denoted Dm(Nm). The user cost cl(·) on a link (l) depends 
on the link flow Nl and on the link’s capacity Kl. The link capacity cost Cc,l depends on Kl 
only. Our (Marshallian) measure for benefits is the conventional area below the inverse 
demand, while total costs are the combination of user cost and capacity costs. We will 
consider public operators only, who seek to maximize social surplus, which is defined as total 
benefits minus total (user and capacity) costs. A toll τl may be levied; its receipts constitute a 
transfer that in itself represents no social welfare gain (such gains may, of course, arise from 
toll-induced changes in demand). 

Besides general formulations, in which functional forms are not specified, we will use 
more specific formulations when these yield additional analytical insights and, of course, in 
the numerical simulation model. For the inverse demand function, this specific form assumes 
that it takes on a constant-elasticity form:  

( )1/
( )

m
m m m mD N N

η
δ= ⋅ , (1) 

where δm is a scale parameter and ηm is the elasticity of demand with respect to the 
generalized price. 
 The specific user cost function employs the Bureau of Public Roads (BPR) travel time 
function: 

1
l

l l l l l
f l

N
p c t

K

χ

τ α β τ
  
 = + = ⋅ ⋅ + ⋅ +    

, (2) 

where pl is generalized price, α is the value of time, tf
l the free-flow travel time, and β and χ 

are parameters. Note that cl only contains time costs. This is one of many user cost functions 
exhibiting constant returns to scale in congestion technology (Small and Verhoef, 2007), 
meaning that it is homogeneous of degree zero in the flow-capacity ratio Nl/Kl. 
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The specific capacity cost function assumes neutral scale economies in road 
construction:  

, ( )c l l l l
fC K t Kρ= ⋅ ⋅ , (3)  

where ρ is a parameter that reflects the unit price of capacity, expressed per unit of time (i.e., 

it represents costs of interest and depreciation) and per unit of distance (represented by the 

free-flow travel time, which is – for a given free-flow speed – a perfect measure of distance). 

2.1. Single link results 

It is instructive to start our exposition with some results for the single-link case; i.e., ignoring 
network complications. In this case, there is a one-to-one correspondence between “the” link 
and “the” OD-pair, so that we can suppress indices m and l. 
 The first-best benchmark is the case where the regulator can set both the toll and the 
capacity of the single road. A constraint is that road users will enter the road up to the point 
where marginal benefits D(N) are equal to the generalized price p=c(N,K)+τ. The associated 
Lagrangian looks as follows: 

( )
0

( )d ( , ) ( ) ( , ) ( )
N

cD n n N c N K C K c N K D Nλ τΛ = − ⋅ − + ⋅ + −∫ . (4) 

The first three main terms define the objective of social surplus and the final term gives the 
constraint just mentioned; λ is the Lagrangian multiplier. The set of equations defined by the 
first-order conditions with respect to N, K, τ and λ can be solved to yield the following two 
well-known policy rules (e.g. Small and Verhoef, 2007, p. 164): 

c
N

N
τ ∂= ⋅

∂
, (5a) 

cc C
N

K K

∂ ∂− ⋅ =
∂ ∂

, (5b) 

while for the Lagrangian multiplier we find: 

0λ = . (5c) 

Equation (5a) stipulates that the optimal toll should be set equal to the marginal external 
congestion costs, while equation (5b) shows that the marginal benefits from capacity 
expansion (the left-hand side) should be equal to the marginal cost (the right-hand side). In 
addition, equation (5c) reflects that the constraint has no impact on the level of welfare that 
can be achieved (recall that the equilibrium value of a Lagrangian multiplier gives the 
marginal impact on the optimized objective from a marginal relaxation of the associated 
constraint). 
 Mohring and Harwitz (1962) have demonstrated how the joint application of the tax 
rule (5a) and the investment rule (5b) result in a zero financial surplus for the road operator, 
provided three technical conditions are fulfilled: (i) capacity is a continuous variable; (ii) there 
are constant returns to scale in congestion technology, so that c(N,K) can be written in the 
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form c(N/K); and (iii) there are neutral scale economies in road construction, so that Cc(K) can 
be written as ρ·K. As a matter of fact, units of capacity can always be chosen such that latter 
condition is satisfied, namely by defining a measure of capacity that is proportional to 
(minimized) capacity cost; what matters is whether the combined effect of conditions (ii) and 
(iii) is achieved. The quickest way to prove the Mohring-Harwitz result in the current setting 
is to multiply both sides of (5b) by K, and to replace the resulting term –K·∂c/∂K on the left-
hand side by N·∂c/∂N (the equality follows from Euler’s theorem, as well as from a combined 
application of the chain and quotient rules of differentiation). The left-hand side of (5b) then 
gives total toll revenues (N·N·∂c/∂N), while the right-hand side, K·∂Cc/∂K, gives total capacity 
cost if the marginal cost of capacity ∂Cc/∂K is constant (and therefore equal to a constant unit 
price ρ). 
 For our purposes, it is interesting to see whether we can derive a long-run cost 
function from the solutions (5). In closed form, this is possible only when the functional forms 
of the cost functions c and Cc are specified. Consider the specific functions of (2) and (3). 
Equation (5b) then becomes: 

1
1

1

2f f

N N
N t t K N

K K

χ χα β χα β χ ρ
ρ

− + ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⇒ = ⋅   −   
ɶ ɶ , (6a) 

where a tilde (~) denotes the long-run optimal value.1 Note that long-run optimal capacity Kɶ  
increases linearly with the level of use, N, as might be expected with neutral scale economies. 

Inserting Kɶ  from (6a) into (2) and (3) gives long-run average user costs cɶ  and long-run 

capacity cost cCɶ . The latter can be divided by Nɶ  to obtain long-run average capacity cost ccɶ , 

while the sum of cɶ  and ccɶ  gives the long-run average ‘total’ cost, tcɶ . And finally, we can 

determine the long-run optimal toll level τɶ  by evaluating (5a) for a ratio N/K implied by (6a). 
All this results in the following expressions:  

( )
1 1

1
fc t

χ
χ

χ
ρα α β
χ

+
+

 
  = ⋅ + ⋅ ⋅    

 

ɶ , (6b) 

( )
1

11c
fc t

χ
χχα β χ ρ ++= ⋅ ⋅ ⋅ ⋅ɶ , (6c) 

t cc c c= +ɶ ɶ ɶ , (6d) 

( )
1

11
ft

χ
χχτ α β χ ρ ++= ⋅ ⋅ ⋅ ⋅ɶ , (6e) 

p c τ= +ɶ ɶ ɶ . (6f) 

                                                
1 Equation (6a) differs from the corresponding equation in Small and Verhoef (2007, p. 108) because in the 
present case, (1) no “duration” of the peak period is specified (their q is normalized to 1 here); (2) the cost of 
capacity is defined per unit of distance (so that Tf drops out here); and (3) we define directly ρ as the per-unit-of-
time cost of a unit of capacity (they multiply a cost recovery factor (which they denote ρ) by investment costs). 



Pricing, capacity and long-run cost functions for first-best and second-best network problems 6

The equality of ccɶ  and τɶ  shows that the road is exactly self-financing in the long run. 
A relevant second-best case for the single-link model concerns the situation where 

optimal pricing is not in place. We consider the case where there is no toll at all, so τ=0. The 
Lagrangian of (4) then becomes:  

( )
0

( )d ( , ) ( ) ( , ) ( )
N

cD n n N c N K C K c N K D NλΛ = − ⋅ − + ⋅ −∫ . (7) 

The set of equations defined by the first-order conditions with respect to N, K, and λ can be 
solved to yield the following investment rule:  

( )
cc C

N
K K

λ ∂ ∂− − ⋅ =
∂ ∂

, (8a) 

with: 

c
N

N
c D
N N

λ

∂⋅
∂= ∂ ∂−

∂ ∂

. (8b) 

These form a special case of the investment rule presented by Small and Verhoef (2007, p. 
172), who consider a multi-period model and allow for any arbitrary toll level (not just 0). 
The interpretation of the investment rule is intuitive: the marginal benefits from capacity 
expansion, on the left-hand side of (8a), are calculated as if fewer travellers than N are present 
on the road (note that λ in (8b) is positive). This reflects that additional capacity will induce 
additional demand, which in itself is however socially undesirable (at the margin) because 
congestion is underpriced. The correction factor or shadow price λ in (8b) consequently 
‘deflates’ the direct benefits of capacity expansion to account for undesired induced demand, 
and quite naturally λ increases when congestion is more severe (in the numerator) or when 
equilibrium demand is more responsive to average cost changes (in the denominator). Both 
would provide reason for weighting induced demand effects more heavily. 
 Does the investment rule from (8ab) imply a “second-best long-run cost function”? In 
principle it does, but we were unable to derive a closed-form expression for it, even for the 
case with explicit functions. The second-best long-run cost function should follow from the 
solution of the following second-best variant of (6a):  

1

f f

D
NN t t

c D K
N N

χ

α β χ ρ
+

∂ −   ∂ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅   ∂ ∂   −
∂ ∂ 

. (9a) 

The first term, in large brackets, can be rewritten as:  
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/
with

/ / 1
1/

D
c NN

c D c N c N K
N N c N N

χ
η χ

η
β

∂− − ∂ ∂∂ = =∂ ∂ ∂ ∂  − − ⋅ + ∂ ∂  

, (9b) 

where we have used that, in equilibrium, c=D. The first term in the denominator is not 
constant for the BPR function, which prevents a closed-form solution from being available. 

However, (9a) and (9b) together imply that the solution of Kɶ  as a function of N depends on 

the ratio K/N only, which suggests that for a model in which (1)-(3) hold, Kɶ  is proportional 

with Nɶ ; that is, if for instance the scale factor δ in (1) grows over time and capacity is 
adjusted in a second-best optimal fashion, we expect the second-best optimal levels of 
average user cost and average capacity cost to remain constant. 

2.2. First-best networks 

The single-link results help interpreting the results we obtain for full networks. We will 
consider a number of regimes for full networks, which differ in terms of the constraints that 
apply for the network regulator when setting tolls and capacities. The first-best case, where no 
such constraints apply at all, is the least realistic regime, but also the analytically most 
transparent one. The first-best tolls and capacities are most easily determined by imagining 
that the regulator can set route-specific tolls, τ

r, besides the link-specific capacities, Kl. From 
the resulting route-toll pattern, we can next determine which link-specific tolls τl are 
consistent with the first-best tolls τr. We find the optimal tolls and capacities by solving the 
following Lagrangian: 

1

,

1 1 1 1 10

11 1 1 1

( )d , ( )

,

R
r

rm
r

N
M L R R L

m r l l c l l
lr l

m l r l

R L R M R
A r l l r m
r lr l rm m

r l m

D n n N c N K C K

c N K D N

δ

ρ
ρ

ρ

ρ ρ
ρ ρ

ρρ

δ δ

δ λ δ δ τ δ δ

=

⋅

= = = = =

== = = =

∑
 

Λ = − ⋅ ⋅ ⋅ − 
 

    + ⋅ ⋅ ⋅ ⋅ + − ⋅ ⋅∑        

∑ ∑∑ ∑ ∑∫

∑ ∑ ∑ ∑

. (10) 

Note that we write OD-flows Nm as the sum of route flows Nr, where δrm is a dummy that 
takes on the value of 1 if route r serves OD-pair m, and 0 otherwise. Likewise, we write link 
flows Nl as the sum of route flows Nr, where δlr is a dummy that takes on the value of 1 if link 
l is part of route r, and 0 otherwise. Note that indices r and ρ are both used to denote routes; 
the latter for summations over routes when keeping r fixed (the index ρ will be used only in 
expressions for with general functions, so where ρ does not appear as the unit price of 
capacity). The first three main terms define the objective of social surplus. The constraints 

with multipliers λr are Wardropian equilibrium conditions, which will be invoked in the 

optimality conditions below only for “active” routes (with A
rδ =1), defined as routes that users 

may choose in equilibrium because the generalized price equals the minimum for that OD-
pair. These are the first-order conditions: 
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1 1 1 1

1 1

( )
( ) ( )

( ) ( )
0 : 1

lM L L R
m l

rm lr lr lr r
m l l

l mR L
A A

lr l rm m rr r
l

c
D c N

N N

c D
r

N N

ρ
ρ

ρ

ρ
ρ ρ ρ

ρ

δ δ δ δ

δ λ δ δ δ δ δ

= = = =

= =

∂Λ ∂ ⋅= ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅
∂ ∂

 ∂ ⋅ ∂ ⋅+ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ = ∀ = ∂ ∂ 

∑ ∑ ∑∑

∑ ∑
, (11a)  

,

,
1

( ) ( ) ( )
0

l c l lR R
r A r

l r r lrl l l l
r r

c C c
N l

K K K K
δ δ λ δ

=

∂Λ ∂ ⋅ ∂ ⋅ ∂ ⋅= − ⋅ ⋅ − + ⋅ ⋅ ⋅ = ∀
∂ ∂ ∂ ∂∑ ∑ , (11b) 

0 : 1r A
rr

rλ δ
τ

∂Λ = = ∀ =
∂

, (11c) 

( ) ( )
1 1

0 : 1
L M

l r m A
lr rm rr

l m

c D rδ τ δ δ
λ = =

∂Λ = ⋅ ⋅ + − ⋅ ⋅ = ∀ =
∂ ∑ ∑ , (11d) 

while: 

( ) ( )
1 1

0 iff 0
L M

A l r m
r lr rm

l m

c Dδ δ τ δ
= =

= ⋅ ⋅ + − ⋅ ⋅ >∑ ∑ . (11e) 

The result that all Lagrangian multipliers λr are zero is typical for first-best problems (e.g., 
Small and Verhoef, 2007, p. 141). It greatly simplifies the solution of (11). In particular, 
substitution of (11c) and (11d) in (11a), and (11c) in (11b), gives the following policy rules: 

: 1
l

r l A
lr rl

l

c
N r

N
τ δ δ∂= ⋅ ⋅ ∀ =

∂∑ , (12a) 

,l c l
l

l l

c C
N l

K K

∂ ∂− ⋅ = ∀
∂ ∂

, (12b) 

where we use Nl to denote link-flows (which in (11) were still written in function of the 
appropriate route flows). The optimal toll rule of (12a) implies that first-best link tolls are not 
necessarily unique,2 but that one possible solution in terms of link tolls is the straightforward 
generalization of the single-link toll of (5a):  

l
l l

l

c
N l

N
τ ∂= ⋅ ∀

∂
. (12a′) 

From this point onward, we assume that the toll rule (12a) is operationalized as specified in 

(12a′). 
The first-best policy rules for links full network are therefore a straightforward 

extension of the single-link results. This means that the long-run optimum can be found using 
the long-run function already identified for the single-link model. For a setting in which the 
specific functional forms (1)-(3) apply, this means:  

                                                
2 An example would be two serial links carrying exactly the same travelers. A constant can then be added to the 
toll on the one link and subtracted from that on the other, without changing route tolls and therefore behaviour. 
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1

1
l lK N

χα β χ
ρ

+ ⋅ ⋅= ⋅ 
 

ɶ ɶ , (13a) 

( )
1 1

1l l
fc t

χ
χ

χ
ρα α β
χ

+
+

 
  = ⋅ + ⋅ ⋅    

 

ɶ , (13b) 

( )
1

, 11c l l
fc t

χ
χχα β χ ρ ++= ⋅ ⋅ ⋅ ⋅ɶ , (13c) 

, ,t l l c lc c c= +ɶ ɶ ɶ , (13d) 

( )
1

11l l
ft

χ
χχτ α β χ ρ ++= ⋅ ⋅ ⋅ ⋅ɶ , (13e) 

l l lp c τ= +ɶ ɶ ɶ . (13f) 

Because (13f) contains constant parameters only, the network optimum can be determined 
very easily, by replacing the conventional short-run generalized price functions by their long-

run counterparts of (13f). The resulting levels of lNɶ  imply the long-run capacities lKɶ  via 
(13a). Applying these long-run capacities in the original short-run cost functions should then 
result in a network that has toll levels of (13e) also as the short-run optimal tolls; that is, 

satisfying (12a′), which for the BPR function implies: 

l
l l

f l

N
t

K

χ

τ α β χ  
= ⋅ ⋅ ⋅ ⋅ 

 
, (13g) 

It is easily verified that (13g), with the ratio lNɶ / lKɶ  as implied by (13a) substituted for Nl/Kl, 
indeed produces a toll level equal to (13e).  
 For the specific functional forms chosen, the long-run optimum can therefore be 
determined as the equilibrium of a network model with the flat link-specific long-run 
generalized price functions replacing the conventional short-run generalized price functions. 

2.3. Second-best pricing and capacity choice 

2.3.1. No self-financing constraint 

We next consider the situation where not all links are subject to toll and capacity 
optimization. The regulator then faces a problem that is characterized by the following 
Lagrangian: 
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Compared to the first-best problem in (10), we now work with link-based tolls from the 

outset. Denote links at which a toll can be set as links for which 1=τδ l , and for which 

capacity can be set as 1=K
lδ  (both dummies are zero otherwise). The Lagrangian in (14) is 

similar to those considered in Verhoef (2002ab), who studies second-best tolling on a sub-set 
of links, but for given capacities. These are the first-order conditions: 

1 1 1 1

1 1
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In contrast to the first-best case, the Lagrangian multipliers λr are now not all individually 
equal to zero. Recall that the equilibrium value of a Lagrangian multiplier reflects the 
marginal impact of a relaxation of the associated constraint upon the optimized value of the 
objective. A non-zero value of λr therefore denotes that social surplus could be increased by 
introducing a marginal route-specific toll (if λr >0) or subsidy (if λr <0) in addition to the 
existing link tolls in the second-best optimum. With imperfect pricing, there will generally be 
routes for which this is indeed the case. 
 It turns out that the possibility to control some of the link capacities does not simplify 
the second-best toll formula that can be deduced from (15a)–(15e), which was presented by 
Verhoef (2002a). Of course, second-best optimization of capacities will affect the second-best 
equilibrium toll levels, and the achievable social surplus, but the general toll expression 
remains unaltered. Because this formula is tedious and has no closed-form solution with the 
Lagrangian multipliers λr substituted out, we will not repeat it here. The intuition behind the 
unchanged toll formula is, in fact, rather straightforward. The toll was originally determined 
for arbitrary capacities. Obviously, these capacities could have been set optimally by pure 
chance, in which case the toll formula should still be correct. The result is also consistent with 
toll choice being a short-run decision, while capacity choice is a long-run decision. 
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 Because there is no closed-form solution for the multipliers λr, it may seem that also 
the investment rule of (15b) yields little further insight. But this ignores that for links at which 
both capacity and toll is optimized, substitution of (15c) in (15b) implies: 

,( ) ( )
: 1

l c l
l K

l ll l

c C
N l

K K
τδ δ∂ ⋅ ∂ ⋅− ⋅ = ∀ = =

∂ ∂
. (15b′) 

Comparing (15b′) with (12b), we find that the second-best investment rule for a link on which 

both capacity and toll can be set, on an otherwise not perfectly priced network, is the same as 
for first-best policies (nevertheless, because flows Nl generally differ between the first-best 
and the second-best optimum, the actual equilibrium capacity levels will of course also 
generally not be equal). The intuition is that, with a link toll τl available, the regulator can 
perfectly control the generalized price pl on that link, and therefore the flow Nl. Whichever 
combination {pl, Nl} the regulator chooses, social surplus is always maximized if that 
combination is achieved against minimized (average) social cost. And this induces the 
regulator to operate ‘along the long-run cost function’, which is defined by the minimization 

of social cost given the flow Nl, as represented by (15b′). 
For our specific functional forms model, we can derive the same long-run average cost 

components as we found in the first-best case:  
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( )
1

, 11c l l
fc t

χ
χχα β χ ρ ++= ⋅ ⋅ ⋅ ⋅ɶ , (16c) 

, ,t l l c lc c c= +ɶ ɶ ɶ . (16d) 

However, since there is no closed-form solution for the second-best toll lτɶ , we also do not 

have a closed-form solution for the long-run generalized price lpɶ ; i.e., no equivalent 

expressions for (13e) and (13f) can be derived. 
 To what extent, then, is the solution in (16) helpful in applied modelling? Probably it 
still is. Knowing the optimal ratio between second-best optimal flow and capacity in advance 
greatly simplifies numerical procedures to find the second-best optimum, since the 
dimensions are reduced by one: capacity is implied by flow. This, of course, is true only for 
capacities on links that are also tolled. For links for which capacity can be adjusted, but no toll 
can be set, equation (15b) implies that the investment rule depends on equilibrium values of 
the Lagrangian multipliers λr. Because there are no closed-form solutions for these 
multipliers, there will also be no closed-form solutions for the associated long-run cost 
functions. 
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2.3.2. Self-financing constraint 

As a final case we consider the second-best situation described above with an additional 
constraint added, namely that some of the links for which the toll and capacity are set should 
be self-financing. For a first-best network and under the appropriate conditions, this constraint 
will be satisfied automatically, as already discussed above. But for the second-best case where 
untolled links exist, the toll formulae change compared to the first-best case of Pigouvian 
taxes equal to marginal external costs, while the investment rule for a tolled link remains the 

same – as the comparison of (15b′) with (12b) revealed. We can therefore no longer expect 

exact self-financing to apply for links on which both the toll and capacity is optimized. 
Imposing it as a constraint, therefore, may be expected to affect both the link’s second-best 
toll and its capacity. 
 Denote the links for which the self-financing constraint is imposed with a dummy 

variable 1l
πδ =  (again, it is zero otherwise). Note that we assume that a self-financing 

constraint will apply only for links on which both the tolls and the capacity can be set, but that 
there may be links without a self-financing constraint on which either the toll, or the capacity, 
or both can be set. The associated Lagrangian follows closely the one specified in Appendix 
A of Verhoef (2007), who considered the case where only for one link in a generalized 
network the toll and capacity can be set under a self-financing constraint. It reads as follows: 
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The final constraint is the self-financing constraint, and a non-zero value of λl reflects that the 
constraint is binding. The first-order conditions are:  
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Despite the tedious appearance of this set of first-order conditions, they imply a simple and 
intuitive investment rule, and a corresponding long-run cost function, for those links on which 
a self-financing constraint applies (and the toll and capacity can therefore both be set). To see 
this, first observe that (18c) implies: 

1
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Substitution of (18c′) into (18b) implies: 
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This means that for any value of λl, the conventional first-best investment rule of (12b) 
applies. Multiplying both terms inside the large brackets with Kl, observing that the second 
term then gives (minus) total capacity cost Kl

·∂Cc,l/∂Kl, and using Euler’s theorem (implying 
that –Kl

·∂cl/∂Kl = Nl
·∂cl/∂Nl) as we did before under (5), it is easily demonstrated that exact 

self-financing for the links with 1l
πδ =  requires:  

: 1
l l

l l l
ll l

c c
K N l

K N
πτ δ∂ ∂= − ⋅ = ⋅ ∀ =

∂ ∂
. (19b) 

Equation (19b) implies that self-financing on these links requires the toll to be set exactly 
according to the Pigouvian rule, which also applies in the first-best case. In other words, for 
these links, on which the toll and capacity can be optimized under a self-financing constraint, 
the conventional first-best rules apply; independent of whether there are other links in the 
network on which a toll is set, capacity is optimized, or a self-financing constraint applies. For 
our specific example, this means that equations (13a)-(13g) apply for these links, so that 
second-best equilibrium results should be relatively easy to find. 

3. Numerical application 

We now turn to a discussion of numerical results that illustrate our main analytical findings. 

Besides a small exercise with a single-link model, the same network model is used throughout 
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this section. It is designed to capture the most important types of link interactions in the 

simplest possible configuration, and therefore has both serial and parallel links. The network 

is illustrated in Figure 1. 

 
 
 
 
 

Figure 1. The network for the numerical example 

 
There are two origin-destination pairs, AC and BC, and four links labelled 1–4. The two 

inverse demand functions have the constant-elasticity form of equation (1). We use a demand 

elasticity of η=–0.35 for both OD-pairs. The scale parameters δ amount to 4.0630·1012 for AC 

and 1.4056·1012 for BC (these are in fact rounded values; they were calibrated to produce a 

base equilibrium with flows of 4000 for AC and 3000 for BC, respectively). 

 The user cost functions take on the BPR form of equation (2) for all links. We set 

β=0.15 and χ=4, which are conventional values for the BPR function. Furthermore, we 

assume that each link has a length of 60 kilometres, which, with a free-flow speed of 120 

km/hr, corresponds with tf=30 for all links (we measure time in minutes). All links have an 

initial capacity of Kl=1500. This was chosen to approximate one highway lane: Kl=1500  

implies a doubling of travel times at a flow of around 2400 vehicles per lane per hour. This is 

roughly in accordance to the flow at which, empirically, travel times double for a single 

highway lane and the maximum flow on a lane is reached (e.g. Small and Verhoef, 2007, 

Figures 3.2 – 3.4). A maximum flow, however, in itself is not defined for BPR functions. 

With travel times measured in minutes, the value of time α was set at 0.125 (Euros), implying 

a value of time of 7.5 Euros per hour, which is in line with the “official” Dutch value. 

 The capacity cost function is as shown in (3). Only the parameter ρ needs to be 

determined. We follow Verhoef and Mohring (2007), who proposed a unit price of capacity of 

7 Euros for a 60 km road, for use with a BPR function.3 Because we define ρ in this paper as a 

value that is to be multiplied with tf, and tf equals 30 minutes for a 60 km road, we set ρ=7/30 

(approximately 0.233). 

 Table 1 shows the equilibrium values of the key variables in the resulting base-

equilibrium. Clearly, there is a divergence between average and marginal user costs on all 

links, reflecting the unpriced congestion externality. 

                                                
3 They wrote: “With a unit of time of one hour, this parameter ought to reflect the hourly capital costs. To derive 
a value from empirical construction cost estimates, an assumption has to be made on whether the model aims to 
represent stationary traffic conditions throughout a day, or during peak hours only. Our parameterization 
concerns the latter. The value of 7 was then derived by dividing the estimated average yearly capital cost of one 
highway lane kilometre in The Netherlands (€ 0.2 million) by 1100 (220 working days times 5 peak hours per 
working day; assuming two peaks) and next by 1500 (the number of units of capacity corresponding with a 
standard highway lane), and finally multiplying by 60 (the number of kilometres corresponding with a free-flow 
travel time of half an hour).” 

A C 

Link 1 

Link 3 Link 4 

Link 2 

B 



Pricing, capacity and long-run cost functions for first-best and second-best network problems 15

 

 Flow 
Average 

user cost € 
Marginal 

cost € Toll € Capacity Revenue € 
Capacity 

cost € 

Volume 
capacity 

ratio 
Link 1 2 000 5.53 12.64 0 1500 0 10 500 1.33 
Link 2 3 500 20.42 87.12 0 1500 0 10 500 2.33 
Link 3 2 000 5.53 12.64 0 1500 0 10 500 1.33 
Link 4 3 500 20.42 87.12 0 1500 0 10 500 2.33 

OD-pair AC 4000 25.95       
OD-pair BC 3000 20.42       

Table 1: Numerical model: base equilibrium 

3.1. Single-link results 

For the single link model, we used the link-based parameters specified above, while the single 

OD-related demand parameters were the same as those for the OD-pair AC. We use the model 

to verify our expectation just below (9b), stating that because the solution of Kɶ  as a function 

of N depends on the ratio K/N only, Kɶ  will be proportional to Nɶ . That is, if for instance the 

scale factor δ in (1) grows over time and capacity is adjusted in a second-best optimal fashion, 

we expect the second-best optimal levels of average user cost and average capacity cost to 

remain constant. We test this hypothesis for three demand elasticities: the base value of η=–

0.35, a low elasticity case with η=–0.1, and a high elasticity case with η=–0.7. We present the 

long-run average user cost  cɶ  and the long-run average capacity cost ccɶ  for different values 

of δ for each of these elasticities, and also show, for comparison, cɶ  and ccɶ  as they would 

apply under optimal tolling, from (6b) and (6c).  
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Figure 2. Long-run average costs for the single-link model: second-best (no tolling) under various 

demand elasticities, and first-best 
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Figure 2 shows the results. We draw two conclusions. The first is that, as expected, the 

second-best long-run average cost functions are flat, so also without pricing these are 

constants, independent of equilibrium demand levels. The second is that the second-best long-

run average cost levels approach their first-best counterparts more closely as demand becomes 

less elastic. This is consistent with the expression we found for the Lagrangian multiplier λ 

associated with the user equilibrium condition, in equation (8b), which showed that the 

adjustment made to the conventional first-best investment rule diminishes as demand becomes 

less elastic. Note that the average user costs cɶ  are, without pricing, above the first-best level, 

and increasingly so when demand becomes more elastic. The average capacity costs ccɶ , in 

contrast, are below the first-best level, and increasingly so when demand becomes more 

elastic. Both results reflect the finding of equations (8a) and (8b), namely that a greater 

correction factor λ is applied to the actual flow N, and therefore less capacity per user is 

supplied, when demand is more elastic and should therefore be discouraged more strongly to 

limit socially unwarranted induced demand effects. 

3.2. First-best networks 

We now move to first-best pricing and capacity choice for a full network. As noted above, 

because (13f) contains constant parameters only, the network optimum can be determined 

very easily, by replacing the conventional short-run generalized price functions by their long-

run counterparts of (13f). The resulting levels of lNɶ  imply the long-run capacities lKɶ  via 

(13a). Applying these long-run capacities in the original short-run cost functions should then 

result in a network that has toll levels of (13e) also as the short-run optimal tolls; that is, 

satisfying (13g) for the BPR functions used here.  

 

 Flow 
Average 

user cost € 
Marginal 

cost € Toll € Capacity Revenue € 
Capacity 

cost € 

Volume 
capacity 

ratio 
Link 1 4 240.61 5.14 10.72 5.58 3379.44 23 656.10 23 656.10 1.255 
Link 2 7 999.45 5.14 10.72 5.58 6374.96 44 624.70 44 624.70 1.255 
Link 3 35.46 5.14 10.72 5.58 28.26 197.81 197.81 1.255 
Link 4 35.46 5.14 10.72 5.58 28.26 197.81 197.81 1.255 

OD-pair AC 4 276.07 10.28       
OD-pair BC 3 758.84 5.14       

Table 2: Numerical model: first-best optimum 

Table 2 shows the resulting flows, costs, tolls and capacities resulting from the application of 

this process.  All links are self-financing and that the volume capacity (Nl/Kl) ratio is constant 

for all links. The first-best solution is characterized by an increase in total capacity on both 

sections of the network. The fact that the capacities of links 3 and 4 have become small, while 

those of 1 and 2 have increased, is meaningless: the solution in Table 2 is just one of an 

infinite number of possible solutions. Due to the symmetry of the network there is no unique 

optimum in terms of individual link capacities and flows. Only the sum of capacities for links 

1 and 3, and 2 and 4, matter under first-best pricing. 
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The total welfare change compared to the base equilibrium is € 92 868.75. We next 

verify that this is an optimum, at least locally, by perturbing the optimal tolls and capacities 

by a small positive or negative value.4  Table 3 shows the welfare values for perturbations of 

+/- 1%.  The results confirm that we have indeed found an optimum welfare solution. The 

welfare surface is, not surprisingly, rather flat around this optimum, and that for perturbations 

of the low capacities (3,4) the welfare levels are nearly identical to the original solution. 

 The example thus illustrates how the long-run cost functions can indeed be used to 
easily identify the long-run optimum for a congested network, with both tolls and capacities 
optimized. We have already applied the same method successfully on a bigger network, 
namely one for Edinburgh, and solved this modified traffic assignment problem using the 
SATURN (Van Vliet, 1982) model. For reasons of space, we will not present these results 
here. 
 

Perturbation +1% Social surplus gain € Perturbation -1% Social surplus gain € 

Toll Link 1 92 868.56 Toll Link 1 92 868.55 

Toll Link 2 92 868.30 Toll Link 2 92 868.29 

Toll Link 3  92 868.70 Toll Link 3  92 868.70 

Toll Link 4 92 868.70 Toll Link 4 92 868.70 

Cap. Link 1 92 863.76 Cap. Link 1 92 863.76 

Cap. Link 2 92 859.92 Cap. Link 2 92 859.64 

Cap. Link 3 92 868.74 Cap. Link 3 92 868.74 

Cap. Link 4 92 868.74 Cap. Link 4 92 868.74 

Note: First-best social surplus gain is € 92868.75 

Table 3: Numerical model: perturbations around first-best optimum 

3.3. Second-best pricing and capacity choice 

For the second-best policies, we consider the case where only link 2 is subject to tolling and 
capacity choice. The network configuration makes sure that our example allows for 
interaction with both a parallel link and with serial links. 

3.3.1. No self-financing constraint 
As pointed out in Section 2.3.1, there is generally no closed-form solution for the second-best 

toll when no self-financing constraint applies. For the present small network, a closed-form 

expression might still be available, but we prefer to pretend to be in the situation that will also 

be faced when working with bigger networks, so that numerical methods have to be applied to 

find the second-best tolls. In this situation, we can use the so-called ‘cutting constraint 

algorithm’ (CCA) of Lawphongpanich and Hearn (2004) to solve for the second-best toll and 

capacity. For details of how this is implemented, we refer to Koh, Shepherd and Sumalee 

(2007). This algorithm is mathematically guaranteed to converge to a local equilibrium point 

of the problem. Table 4 shows the results obtained by using the CCA algorithm. 

 

                                                
4 Each variable (toll or capacity)  is perturbed separately with all others held at the optimal values from Table 2.  



Pricing, capacity and long-run cost functions for first-best and second-best network problems 18

Toll (€) Capacity Flow  
Social surplus 

gain (€) Revenue (€) 
Capacity cost 

(€) 

Capacity 
implied by flow 

and (16a) 

2.67 
 

5219.85 
 

6553.75 
(N/K =1.255) 

81 679 
(87.95% of 
first-best) 

17 467.55 
 
 

36 538.93 
 
 

5222.84 
 
 

Table 4: Second-best pricing and capacity choice for link 2 alone (no self-financing constraint): 

results for link 2 

Table 4 shows that in this case, second-best toll revenues are insufficient to cover the capacity 

costs. The social surplus gain of € 81 679 compared to the base equilibrium is approximately 

88% of the first-best gain. This gain is therefore quite large, which is a direct consequence of 

the assumed network configuration and the fact that initial base capacities are relatively small. 

The final column gives the capacity that equation (16a) would give for the flow level 

obtained by the CAA. This is practically equal to the capacity that the algorithm itself finds. 

This confirms the validity of equation (16a), and suggests that its use directly in the algorithm 

might make it more rapid as it reduces the dimensions of the optimization problem. We intend 

to investigate this possibility further in follow-up research. 

3.3.2. Self-financing constraint 
The final case concerns the above second-best problem with an additional self-financing 

constraint. The discrepancy between revenues and capacity cost in Table 4 of course indicates 

that the constraint will be binding. To find the associated toll and capacity, we can use the 

rules given in (13a) to (13f). As for the first-best case, we thus we solve a standard user 

equilibrium traffic assignment problem, with the only difference that for link 2 we replace the 

conventional short-run user cost function by the (constant) generalized price of (13f). Again, 

once we have found the link-flow from this adapted network problem, the capacity on the link 

to be optimised (link 2) can be inferred from (13a), and the tolls can be computed from either 

(13e) or (13g), which should give the same answer. 

 

Toll (€) Capacity Flow  
Social surplus 

gain (€) Revenue (€) Capacity cost (€) 

5.58 
 

4 408.08 
 

5 531.37 
(N/K =1.255) 

78 618 
( 84.65% of first-

best) 

30 856.54 
 

30 856.54 
 

Table 5: Second-best pricing and capacity choice for link 2 alone with self-financing constraint: 

results for link 2 

The results (for link 2) are shown in Table 5. Note that the gain in social surplus is now 
84.65% of the first-best case, and therefore lower than that without the binding additional 
constraint on self-financing. 

We have verified the results from Table 5 by solving the same problem with the CCA, 
which indeed produced the same results. Moreover, to verify that the solution we have found 
is at least optimal locally, we carried out a perturbation analysis for the toll and capacity 



Pricing, capacity and long-run cost functions for first-best and second-best network problems 19

shown in Table 5. When perturbing the toll (capacity) for link 2, we applied a bisection search 
method to find a corresponding level of capacity (toll) that would preserve the self-financing 
result. The results are reported in Table 6 below. It is clear that all the other perturbation 
levels and the accompanying capacities that satisfy the self-financing constraint would not 
provide a higher level than the welfare that we found. Again, the region around this second-
best optimum is rather flat, and the welfare solutions are very close. Note that the capacity 
perturbation of +1% and the toll perturbation of +1% are nearly identical; the same is true for 
the two –1% perturbations. 
 

Toll €5.58 Adjusted Capacity Toll Revenue Capacity Cost Welfare 

+1%: 5.63 4 451.83 31 162.82 31 162.81 78 607.59 

–1%: 5.52 4 363.66 30 545.64 30 545.65 78 607.19 

     

 

Capacity 4408.08 Adjusted Toll Toll Revenue Capacity Cost Welfare 

+1%: 4 452.16 5.63 31 165.10 31 165.10 78 607.43 

–1%: 4 364.00 5.52 30 547.95 30 547.97 78 607.39 

Note: Second-best social surplus gain is €78 618  (see Table 5) 

Table 6: Second-best pricing and capacity choice for link 2 alone with self-financing constraint: 

perturbations around second-best optimum 

4. Conclusion 

This paper considered the use of ‘long-run cost functions’ for congested networks in solving 

second-best network problems, in which capacity and tolls are instruments. We considered 

second-best cases where only a subset of links in a network is subject to tolling and a subset is 

subject to capacity optimization, where these subsets may or may not overlap. We also 

considered cases with and without a self-financing constraint imposed. 

Our results demonstrate that, under certain assumptions, second-best long-run cost (or 

actually: generalized price) functions can be derived for most of the cases of interest, which 

can be used in an applied network model as a substitute for the conventional short-run user 

cost functions. Doing so reduces the dimensionality of the problem and therefore helps in 

speeding up procedures used for finding second-best optima. 

The most straightforward cases were the first-best problem, in which tolls and 

capacities can be set on all links, and the second-best problem where a self-financing 

constraint applies on a link for which both instruments can be set. It turned out that the long-

run cost functions for these two cases are in fact the same. To find the optimum in a network 

of any size or shape, it suffices to replace the conventional short-run user cost functions by the 

long-run generalized price function. From the resulting network equilibrium, optimal 

capacities and tolls can be immediately derived. 

For the second-best cases where only the toll or the capacity can be set, no such easy 

answers are available. Nevertheless, for the case of tolling, it is true that the ratio of second-

best optimal link flow and link capacity can be determined beforehand, which is valuable 
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information that of course should be exploited in algorithms designed to find the second-best 

optimum. But there is no closed-form expression for the long-run second-best optimal toll. 

The same is true for second-best capacity for links without tolling. The latter result was 

shown in the context of a single-link model, but there is no reason to expect that the 

conclusion would change in a bigger network. Even though things are more complicated in 

these cases, we can observe that the combination of our findings is that for the most general 

second-best network problem – where only tolls can be set on some links, only capacities on 

some other links, and both on yet a third subset of links – there is at most one ‘instrumental 

dimension’ for each link: either toll, or capacity, or toll with capacity implied immediately by 

the link flow. This reduction in dimensionality should have positive consequences for the 

speed of solution algorithms. The extent to which this is indeed the case is an issue that we 

intend to address in a follow-up paper. 

 

References 
Beckmann, M.J., C.B. McGuire and C.B. Winsten (1956) Studies in the Economics of Transportation  

Yale University Press, New Haven, CT. 
Bellman R. (1961) Adaptive Control Processes: A Guided Tour Princeton University Press, Princeton, 

NJ. 
Braid, R.M. (1996) “Peak-load pricing of a transportation route with an unpriced substitute” Journal 

of Urban Economics 40 179-197. 
Dafermos, S. (1973) “Toll patterns for multiclass-user transportation networks” Transportation 

Science 7 211-223. 
De Borger, B., S. Proost and K. van Dender (2005) “Congestion and tax competition in a parallel 

network” European Economic Review 49 2013-2040. 
De Palma, A. and R. Lindsey (2000) “Private roads: Competition under various ownership regimes” 

Annals of Regional Science 34 13-35. 
Koh A., S. Shepherd and A. Sumalee A (2008) “Second-best toll and capacity optimisation in 

networks” Proceedings of the Hong Kong Society for Transportation Studies. 
Lawphongpanich, S. And D.W. Hearn (2004) “An MPEC approach to second-best toll pricing” 

Mathematical Programming 101B (1) 33-55. 
Lévy-Lambert, H. (1968) “Tarification des services à qualité variable: application aux péages de 

circulation” Econometrica 36 564-574. 
Liu, L.N. and J.F. McDonald (1998) “Efficient congestion tolls in the presence of unpriced 

congestion: A peak and off-peak simulation model” Journal of Urban Economics 44 352-366.  
Marchand, M. (1968) “A note on optimal tolls in an imperfect environment” Econometrica 36 575-

581. 
Mohring, H. and M. Harwitz (1962) Highway Benefits: An Analytical Framework  Northwestern 

University Press, Evanston, IL. 
Small, K.A. and E.T. Verhoef (2007) The Economics of Urban Transportation London: Routledge. 
Sumalee, A., A. May and S. Shepherd (2005) “Comparison of judgmental and optimal road pricing 

cordons” Transport Policy 12 384-390. 
Van Vliet, D. (1982)  “SATURN - a modern assignment model” Traffic Engineering and Control 23 

578-581. 
Verhoef, E.T. (2002a) “Second-best congestion pricing in general static transportation networks with 

elastic demands” Regional Science and Urban Economics 32 281-310. 
Verhoef, E.T. (2002b) “Second-best congestion pricing in general networks: heuristic algorithms for 

finding second-best optimal toll levels and toll points” Transportation Research 36B 707-729. 
Verhoef, E.T. (2007) “Second-best road pricing through highway franchising” Journal of Urban 

Economics 62 337-361. 



Pricing, capacity and long-run cost functions for first-best and second-best network problems 21

Verhoef, E.T. and H. Mohring (2007) “Self-financing roads” Discussion paper TI 2007-068/3, 
Tinbergen Institute, Amsterdam-Rotterdam. 

Verhoef, E.T., P. Nijkamp and P. Rietveld (1996) “Second-best congestion pricing: the case of an 
untolled alternative” Journal of Urban Economics 40 279-302. 

Verhoef, E.T. and J. Rouwendal (2004) “Pricing, capacity choice and financing in transportation 
networks” Journal of Regional Science 44 405-435. 

Verhoef, E.T. and K.A. Small (2004) “Product differentiation on roads: constrained congestion pricing 
with heterogeneous users” Journal of Transport Economics and Policy 38 127-156. 

Vickrey, W.S. (1969) “Congestion theory and transport investment” American Economic Review 
(Papers and Proceedings) 59 251-260. 

Wardrop, J.G. (1952) “Some theoretical aspects of road traffic research” Proceedings of the Institute 
of Civil Engineers (Part II) 1 (2) 325-378. 

Yang, H. and H.-J. Huang (1998) “Principle of marginal-cost pricing: how does it work in a general 
road network?” Transportation Research 32A (1), 45-54. 

 


