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1 Introduction

Following the pioneering work of Hasbrouck (1991) and Engle and Russell (1998), there has

been a significant increase in the development and use of econometric models for analyzing

irregularly spaced longitudinal data. Usual applications include empirical studies focusing on

the microstructure of financial markets or on the dynamics of corporate credit risk. Examples

are Engle and Russell (1998), Bowsher (2007), Engle and Lunde (2003), Bauwens and Veredas

(2004), Kavvathas (2000), Lando and Skødeberg (2002), Koopman et al. (2006, 2008) and

Duffie et al. (2006, 2007).

Econometric models for point processes are useful in economic contexts in which the timing of

the events under study is relevant and the interest is focused at the micro level. It is known

that the statistical properties of a time series resulting from the aggregation (or sampling) of

one or more empirical (compound) point processes over a fixed-length time grid are strongly

dependent on the size of the mesh. An excessively large mesh will hide the characteristics of

the mechanism under analysis, while a time unit that is too small will induce artificial volatility

in the resulting time series. The problem becomes serious because, in some applications, there

are no objective criteria for choosing the appropriate length of the time unit.

As it is the case with models for time series data, statistical models for point processes can be

classified as either observation or parameter driven. Self-exciting point process models like the

Autoregressive Conditional Duration (ACD) model (and most derived models) of Engle and

Russell (1998), the Autoregressive Conditional Intensity (ACI) model of Russell (1999) or the

generalized Hawkes processes of Bowsher (2007), are all observation driven models. Conditional

on the observable history of the process, the distribution of future observations is completely

specified. Bauwens and Hautsch (2006) and Bauwens and Veredas (2004) have introduced two

large classes of parameter driven models for doubly stochastic point processes. These were, re-

spectively, the Stochastic Conditional Intensity (SCI) and the Stochastic Conditional Duration

(SCD) models. The dynamic behavior of these models is driven not only by an (appropriate)

observable filtration but also by a latent component, thus combining aspects from both self-

exciting and doubly stochastic point processes. The richer dynamic structure of this class of

models provides added flexibility for describing the patterns in empirical point processes. This

added flexibility, however, comes at a cost. Maximum Likelihood (ML) estimation1 for this class

of models is hindered by the need to integrate out the effect of the unobserved component(s).

This is a common and well-known problem for parameter driven nonlinear or non-Gaussian

1For the SCD model introduced by Bauwens and Veredas (2004) the authors suggest the use of the Kalman

filter as a quasi-Maximum Likelihood method.
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dynamic statistical models. The data-density typically involves a high-dimensional integral,

which has (due to the unavailability of exact closed-form solutions) to be evaluated either using

simulation or (other) approximate methods. In this paper I compare the use of two feasible

methods for conducting Simulated Maximum Likelihood (SML) estimation and inference, for

the Multi-state Latent Factor Intensity Model (introduced in Koopman et al. 2008), against

the approximate (numerical) ML method of Davis and Rodriguez-Yam (2005). The two SML

methods I consider are the Efficient Importance Sampling (EIS) algorithm of Richard and

Zhang (2007) and Liesenfeld and Richard (2003) and the method of Monte Carlo maximum

likelihood of Durbin and Koopman (1997, 2000).

The Multi-State Latent Factor Intensity (MLFI) model is a self-exciting and doubly stochastic

extension of a continuous-time finite state Markov process (also termed a Markov chain in the

literature). The generator matrix giving the instantaneous transition rates between the finite

set of states is not considered a deterministic function of time, but instead, a (matrix-valued)

stochastic process adapted to an appropriate filtration and modulated by latent Gaussian dy-

namic processes. The MLFI model is a powerful tool for analyzing credit rating data, as shown

in Koopman et al. (2006, 2008). Additionally, this statistical model is of potential interest to

other fields as well. In fact, the MLFI model is interpretable as a dynamic frailty multi-state

duration model. Therefore, it is potentially of interest to those scientific areas where frailty

models are extensively used (examples include Biostatistics and Labour Economics).

This paper is organized as follows. Section 2 reviews the general MLFI specification. Section 3

describes the two distinct SML methods. In subsection 3.1, the estimation procedure for the

MLFI model as described in Koopman et al. (2008) is briefly reviewed. The application of

the EIS method of Liesenfeld and Richard (2003) and Richard and Zhang (2007) to the MLFI

model is described in subsection 3.2. The approximate ML method proposed in Davis and

Rodriguez-Yam (2005) is the focus of section 4. Section 5 contains the details and results of

the simulation study. Section 6 concludes.

2 The class of Multi-State Latent Factor

Intensity models

Let (Ω,F , {Ft} ,P) be a given filtered probability space satisfying the usual conditions,2 with t

denoting chronological time. At the heart of every dynamic statistical model with unobserved

components lies the decomposition Ft = Fo
t ∪ F∗

t , where Fo
t is the information effectively

2For a brief discussion see, for example, Andersen et al. (1993)

3



available to the analyst (therefore including the internal filtration of the stochastic process

under consideration), while F∗

t denotes the set of remaining (both dynamic and time-invariant)

factors driving the observable processes. Consider a set of S̃ distinct (right-continuous) counting

processes Ns̃(t) defined on (Ω,F , {Ft} ,P), with s̃ = 1, . . . , S̃, which are observed over the

interval [0, T ]. Let N̄s̃(t) denote the corresponding left-continuous counting processes. Assume

that the pooled counting process N(t) =
∑S̃

s̃=1Ns̃(t) is orderly and the compensator Λs̃(t)

associated with Ns̃(t) is absolutely continuous. The corresponding intensity process is denoted

by λ̃s̃(t). The MLFI model introduced in Koopman et al. (2008), is obtained by considering

that the S̃ distinct counting processes result from recording the transitions experienced by K

statistical units as these move across a set of M possible states.3 Such a multi-state setting is

achieved by defining a set of K Fo
t -predictable vector-valued processes Y k(t) = (Y k

s (t)), with

k = 1, . . . , K and s = 1, . . . , S denoting the observational unit and transition type respectively

(S = M(M − 1)), as

Y k
s (t) =







1 , unit k is ‘at risk’ for a transition of type s at time t−

0 , otherwise.
(1)

This set of rules is defined on a case-by-case basis, depending on the exact nature of the ‘states’

in each application. Note that Y k(t) can be indexed by N̄k(t) =
∑S

s=1 N̄
k
s (t), where N̄k

s (t)

is a convenient notation for the individual, left-continuous, counting processes N̄s̃(t) in the

MLFI setting. In the context of credit ratings, a ‘state’ can, therefore, be interpreted as either

a specific credit rating (ex. AAA,AA,A,BBB and so forth in the case of credit ratings from

Standard & Poor’s) or the combination of the present rating with the information on whether

or not that rating was achieved as the result of a downgrade (i.e. the ‘state’ BBB would be split

into the states “downgraded to the rating BBB”and “either BBB as initial rating, or upgraded

to BBB”).

The intensity process λ̃k
s(t) = Y k

s (t)λk
s(t) for unit k, associated with a transition of type s,

can be parameterized, for example, by specifying the conditional hazard rate as a log-linear

function of fixed effects, observed covariates and a latent dynamic component,

λk
s(t) = exp

[

ηs + γ′sw
k(t) + αsψ

s(t)
]

Hk
s (t). (2)

Here ηs is an unknown scalar, wk(t) is a unit-specific p-dimensional vector containing both con-

stant and time-varying covariates and γs is the corresponding vector of coefficients. Component

s of the vector α = (α1, . . . , αS) represents the semi-elasticity of the intensity of events of type

3Therefore S̃ = M(M − 1)K and there are (M × (M − 1))! possible mappings between the set of transition

types S = {1, 2, . . . ,M(M − 1)} and the set of pairs of states M = {(1, 2), . . . , (M,M − 1)} involved in any

given transition.
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s with respect to the latent factor ψs(t). The function Hk
s (t) introduces duration dependence

in the model, therefore relaxing the Markov assumption. In general,

Hk
s (t) = Hs(t− tk0 , t− tk1 , . . . , t− tkNk(t)),

where t−tki denotes the backward-recurrence time (Cox, 1962) of unit k with respect to its past

ith transition moment. In this case, the resulting multi-state stochastic process is a generalized

semi-Markov one (Glynn, 1988).

In contrast with Koopman et al. (2008), where, in the initial model specification, a single

(scalar) latent component influences the different intensity processes, here a more general ver-

sion of the MLFI model with S independent latent components is described.4 The vector-valued

unobserved stochastic process ψ(t) = (ψ1(t), . . . , ψS(t))′, can change values only at the (dis-

crete) set of points {tn} ∈ [0, T ] satisfying the equation

∆N(t) ≡ N(t) − N̄(t) = 1,

where N̄(t) denotes the left-continuous counting process associated with N(t). Therefore, it is

possible to index the process ψ using N̄(t). In order to capture latent first order dynamics in

the observed transition process, the unobserved vector ψ is specified by the following restricted

VAR(1) equation in continuous-time5

ψN̄(t)+ι′(t)ι(t) = (ρ
∆N1(t)
1 , . . . , ρ

∆NS(t)
S )′ ⊙ ψN̄(t) + ι(t)εN̄(t)+1, (3)

where ι(t) = (∆N1(t), . . . ,∆NS(t))′ acts as a random selection vector. The autoregressive

coefficients ρs are restricted to |ρs| ≤ 1 with s = 1, . . . , S. The (scalar) disturbances εn are

an i.i.d. standard Gaussian noise. Although a first order autoregressive specification is used

throughout this paper, it is straightforward to extend the dynamics of the latent components,

by including in (3) both additional lagged values of ψ and ε.

Over a fixed interval of time, the expected variation of component s of the latent process ψ,

as defined in (3), is proportional to the intensity λs(t) =
∑K

k=1 λ
k
s(t) of the counting process

associated with events of that type. This may not be a desirable property, if, as in Koopman

et al. (2006, 2008), the latent process is intended to model a slow moving economy wide risk

factor. An alternative specification for ψ that behaves more in line with this interpretation is

ψN̄(t)+ι′(t)ι(t) = (ρ
τ1
N1(t)

∆N1(t)

1 , . . . , ρ
τS
NS(t)

∆NS(t)

S )′ ⊙ ψN̄(t) + σN̄(t)+1ι(t)εN̄(t)+1, (4)

4These are the two extreme cases. In an intermediate situation there can be any number, between 1 and S,

of latent components in combination with a particular structure for the vector α of factor loadings.
5“⊙”denotes Hadamard-Schur (i.e. element-by-element) matrix multiplication.
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with

σ2
N̄(t)+1 =

1 − (ι′(t)ρ)2ι′(t)τ̄N(t)

1 − (ι′(t)ρ)2
.

The vector ρ = (ρ1, . . . , ρS)′, stores the (calendar-time) coefficients of mean-reversion, while the

vector τ̄n = (τ 1
N1(tn), . . . , τ

S
NS(tn))

′ contains the amount of time elapsed between two consecutive

transitions of each type.6 The disturbances εn, again form an i.i.d. standard Gaussian noise

process. The specification (4) has small changes in ψs(t) over short spells τ s
Ns(t)

.

In order to obtain a valid intensity process, the latent innovations εn must be assumed in-

dependent from the sequence of increments in the compensator associated with the pooled

process,

Λn =
S̃
∑

s=1

Λs(tn−1, tn), n = 1, . . . , N(T ),

where Λs(a, b) =
∫ b

a
λs(t)dt. A fundamental result, underpinning both the construction of

diagnostic tests for intensity based point process models as well as their numerical simulation,

is the random time change theorem (see Brown and Nair, 1988, for a proof of this result).

This theorem states that every multivariate counting process, whose associated (multivariate)

compensator is both absolutely continuous and unbounded, can be mapped into a vector of

independent Poisson processes, each with unit intensity, by re-scaling the time axis using the

increments in the compensator. In simple terms this implies, in the current context, that

Λn ∼ i.i.d. Exp(1).

The model specification made up of equations (2) and either (3) or (4) is incomplete. Changing

the sign simultaneously for each αs and for the complete path of the corresponding component

of the vector ψ(t) clearly yields the same path for all intensity processes λk
s(t) with k = 1, . . . , K.

Identification of the MLFI model therefore requires as many sign restrictions as the number

of independent components of the latent process ψ. The sign of αs has to be set a priori (i.e.

either αs > 0 or αs < 0).

Specification (2) nests several different models appearing in the literature. For example, when

no latent dynamic factors ψs(t) are included, and there are neither duration (Hs(t) ≡ 0) nor

covariate (γs ≡ 0) effects, specification (2) becomes the standard Homogeneous Continuous-

Time Markov Chain model used frequently in the Credit Risk literature (Jarrow et al. 1997,

Lando and Skødeberg 2002).

As seen in Koopman et al. (2008), for a vector of unknown parameters θ, the likelihood function

conditional on the initial ratings, pre-sample event histories, and on the complete path of the

6That is, τs
n = tsn − tsn−1 and {tsn} ⊂ R

+
0 is the set of solutions of the equation ∆Ns(t) = 1.
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unobserved process, as defined by ΨN̄(T )+1 = {ψi}
N̄(T )+1
i=1 , can be written as

L
(

θ | Fo
T ,ΨN̄(T )

)

=

N̄(T )+1
∏

n=1

K
∏

k=1

S
∏

s=1

exp

(

∆Nk
s (tn) ln{λk

s(tn)} − Y k
s (tn)

∫ tn

tn−1

λk
s(t)dt

)

. (5)

In order to estimate the parameter vector θ, the conditional likelihood function must be in-

tegrated with respect to the complete path ΨN̄(T )+1 of the unobserved process ψ(t). The

maximum likelihood problem becomes

max
θ
L(θ | Fo

T ), (6)

where

L(θ | Fo
T ) =

∫

L
(

θ | Fo
T ,ΨN̄(T )

)

p(ΨN̄(T ))dΨN̄(T ), (7)

and p(ΨN̄(T )) denotes the (unconditional) density function of ΨN̄(T ).

3 Simulated Maximum Likelihood estimation

This section starts by recalling the basic concepts of SML estimation and inference using Im-

portance Sampling acceleration techniques. Some basic ideas from state space modelling are

also briefly discussed. This provides the adequate background to the description of the Durbin-

Koopman methodology in subsection 3.1. This is then followed, in subsection 3.2 by the

description of the EIS algorithm.

The realization that many of the relevant factors underlying most economic settings are inher-

ently unobservable, leads to the specification of models with latent random variables. The data

density implied by these models, therefore, contains an integral which is interpretable as an

expectation taken over the density of the unobserved variables. In general terms, assume that

the statistical model specifies, up to an unknown parameter vector θ, the conditional density of

the observational vector z given the latent vector x, which in many contexts can be interpreted

as a ‘structural’ density. This conditional density is denoted as

p (z|x; θ) . (8)

The unconditional data density then follows from p (z|x; θ) and the assumed density for x,

denoted by p (x|θ)

p (z|θ) =

∫

p (z|x; θ) p (x|θ) dµ(x) = Ex [p (z|x; θ)] . (9)

The basic idea of simulated maximum likelihood consists in employing Monte Carlo integration

to evaluate this integral, by sampling from the density p (x|θ), termed the natural sampler. In

7



fact, in the current context, the Weak Law of Large Numbers states that, as M ↑ ∞,

M−1

M
∑

m=1

p (z|xm; θ)
P
→ Ex [p (z|x; θ)] ,

where {xm}, m = 1, . . . ,M denotes an i.i.d. sample from p (x|θ). Accordingly it is possible

to perform (approximate) Maximum Likelihood estimation and inference for statistical models

with unobserved components using the Monte Carlo estimator

L̂NS (θ) = M−1

M
∑

m=1

p (z|xm; θ) , (10)

as a proxy for the exact likelihood function L (θ) = p (z|θ). The problem with this approach is

that the rate of convergence of the estimator in (10) is very slow due to the fact that the latent

vector x is sampled directly from the statistical formulation of the model without taking into

account the observed data. Therefore for most random draws xm obtained from the natural

sampler, the corresponding contribution to the data likelihood made by p (z|xm; θ) will be very

small, thus requiring many random draws. In other words, the direct Monte Carlo estimator

given by equation (10) is highly inefficient.

The above reasoning suggests that it may be possible to improve the efficiency of the whole

approach by switching from the natural sampler to an auxiliary conditional density s (x|z; θ0)

that takes into account the information on x, which is contained in the observed data vector z.

This is the central idea of Importance Sampling. Assume such an auxiliary sampler is given,

the data density implied by the statistical model (9) can then be written as

p (z|θ) =

∫

p (z|x; θ) p (x|θ)

s (x|z; θ0)
s (x|z; θ0) dµ(x),

and use as an estimator of the data likelihood

L̂IS (θ) = M−1

M
∑

m=1

p (z|xm; θ)
p (xm|θ)

s (xm|z; θ0)
, (11)

where {xm}, m = 1, . . . ,M denotes an i.i.d. sample from the auxiliary density s (x|z; θ0). The

critical question is how to construct such an auxiliary density. Obviously the ‘ideal’ auxiliary

sampler is the conditional density of the latent vector given the data, as implied by the model

itself, i.e. the ‘posterior’ density

p (x|z; θ) . (12)

In fact if it would be feasible to plug this density, as the auxiliary sampler, inside the estimator

(11) this would yield

L̂IS (θ) = p (z|θ) ,
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that is, the MC likelihood estimator would become exact (a degenerate random variable equal

to the quantity being estimated a.s.). Unfortunately, sampling directly from p (x|z; θ) is not

feasible because there is no analytical expression for this density, by exactly the same reason

as for the data density p (z|θ) itself.7

Departing from the same basic idea the two methods described in this section follow, basically,

different directions in order to construct an auxiliary sampler that approximates as much as

possible the ideal auxiliary sampler p (x|z; θ). In fact the framework in which both methods

are placed is somewhat more specific than what has been discussed so far. Until this point

no mention was made regarding the source of the multivariate nature of both the observation

vector z and the state vector x. Therefore, both pure cross-sectional, pure time series as well

as mixed (i.e. panel data or repeated cross-sections) models with unobserved components were

covered by the previous discussion. However, as the main focus of this paper is the estimation

of doubly stochastic point process models, I will not mention any methods for dealing with pure

cross-sectional models. In fact the three methodologies reviewed in this paper were initially

developed in the context of dynamic models. The longitudinal dimension is the main source

(although not the only one) of the multidimensionality of both z and x.

3.1 The Durbin-Koopman methodology

The Monte Carlo Maximum Likelihood methodology of Durbin and Koopman (1997) was de-

veloped for handling nonlinear and/or non-Gaussian models in state space form. Therefore,

this section starts by briefly reviewing the main notions and concepts of (generalized) state

space modelling. The main concept is that of the state of a dynamic system. The state is de-

fined as the smallest vector, such that, the knowledge of its value at time t = t0 together with

knowledge of the path of the input vector for any t ≥ t0 determines completely the behaviour

of the system at any time t ≥ t0.
8.

Denote by zn = (z′1, . . . , z
′

n)′ the (observed) history of the vector process z up to the present

moment tn (zi represents the value of this vector at time ti, i = 1, . . . , N). Similarly, let

xn = (x′1, . . . , x
′

n)′ denote the (unobserved) past values of the state vector x. The general non-

Gaussian state space model is characterized by the two following properties (subsumed in the

7obviously p (x|z; θ) = p(z|x;θ)p(x|θ)
p(z|θ) and therefore sampling from this density would require having already

solved the integral appearing in the data density, which is the source of the whole problem.
8This is the classical definition for deterministic dynamic systems. However, random dynamic systems can

be thought of as deterministic systems subject to a random input. In this case, “knowledge”of the input

vector means knowledge of its probability law. Similarly, the wording “behaviour of the system ”refers to the

(conditional) density of both the output and state vectors
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observation and state equations),

p(zn|xn,xn−1, zn−1, θ) = p(zn|xn, θ) = f(zn;xn, θ), (13)

and

p(xn+1|xn,xn−1, zn, θ) = p(xn+1|xn, θ) = h(xn+1;xn, θ), (14)

where the functions f and h are non-degenerate probability densities (with respect to the first

argument) dependent on the parameter and state vectors θ and xn.

The joint density of the complete data (i.e. observable vector and latent state variables), due

to the Markovian property in equations (13) and (14), can be written as,

p(zN ,xN |θ) =

(

N
∏

n=1

f(zn;xn, θ)

)(

N
∏

n=2

h(xn;xn−1, θ)

)

p(x1|θ). (15)

Therefore, the observable data density is,

p(zN |θ) =

∫

p(zN ,xN |θ)dµ(xN), (16)

which falls under the general setting described in equation (9). The central idea of the Durbin-

Koopman (DK) methodology consists in building a Gaussian linear State Space Model (SSM)

for zN in order to obtain a feasible (Gaussian) auxiliary sampler g (xN |zN , θg). Assuming a

model was already built, the density of the observable data, equation (16), can be re-written

as9

p(zN |θ) = g(zN |θg)

∫

p(zN ,xN |θ)

g (zN ,xN |θg)
g (xN |zN , θg) dxN . (17)

It is interesting to note that in this setting, the density of the observable data is expressed as

the product of an (approximating) Gaussian density, that can easily be computed using the

Kalman filter, by an adjusting factor, that can be estimated by simulation. The closer the joint

importance density g (zN ,xN |θg) is to the non-Gaussian density p (zN ,xN) the smaller will be

the simulated sample required to attain a given accuracy level.

The parameters θg of the approximating linear Gaussian SSM are appropriately chosen to

ensure that the mode of the implied posterior density g (xN |zN , θg) equals the ‘true’ posterior

mode x∗ = (x∗′1 , . . . , x
∗′

N)′ (i.e. the mode of the non-Gaussian posterior density p (xN |zN , θ)).

This can be achieved using the procedure described in Durbin and Koopman (2001, Chapter

11), which, for the MLFI model, is based on the linearization of the observational log-density

using a second-order Taylor polynomial. The details of the application of this procedure to the

class of MLFI models are reviewed later in this section.

9For simplicity of exposition I shall assume from now on that xN is continuously distributed over R
Nq (as it

is the case for the MLFI model), with q the dimension of the state vector x, and µ is the Lebesgue measure.

10



I now proceed by explicitly expressing the MLFI model, as described in section 2, in state space

form. Consider the vector

zn = (τn , Y
1
1 (tn) , . . . , Y K

S (tn) , ι1(tn)′ , . . . , ιK(tn)′)′.

The vector zn contains all observable information on the S̃ point processes at the event-point

tn (ιk(tn) = (∆Nk
1 (tn), . . . ,∆Nk

S(tn))′ is unit k’s random selection vector). The observational

log-density is

ln p(zn|ψn,F
o
t−n

) =
S
∑

s=1

K
∑

k=1

∆Nk
s (tn) ln{λk

s(tn)} − Y k
s (tn)

∫ tn

tn−1

λk
s(t)dt, (18)

for n = 1, . . . , N (set N = N̄(T ) + 1).

All fixed unknown coefficients entering the conditional hazard (2), jointly with the latent dy-

namic process ψ, can be placed in the state vector,

xn = (η1, . . . , ηS, γ
′

1, . . . , γ
′

S, ψ
′(tn))′. (19)

By defining the deterministic (row vector) coefficients

Zk
sn = (e′s, e

′

s ⊗ wk(tn)′, αs),

the conditional hazard rate entering (18) can be written as λk
s(t) = exp

(

Zk
snxn

)

·Hk
s (t). In this

context, Zk
snxn is the signal corresponding to the element ∆Nk

s (tn) of ιk(tn). The state vector

xn can be modelled by the linear Markovian process

xn = Fnxn−1 +Rnεn, εn ∼ NIID(0, Qn), n = 1, 2, . . . , N(T ), (20)

with initial condition x0 ∼ N(a, P ). The vector a and the matrix processes Fn, Rn, Qn and P

are predictable with respect to the observable filtration Fo
t and may depend on the parameter

vector θ. If the vector xn only consists of fixed unknown coefficients, we set a = 0, Fn = Rn = I,

Qn = 0 and P = κI, where κ is the so-called diffuse prior constant. Usually, κ is set to some

large value in numerical software, see Harvey (1989, pp. 367-8). Exact solutions for κ→ ∞ are

available as well, see Durbin and Koopman (2001, Ch. 4). If the vector xn only contains the

latent autoregressive process (for example under equation 3), that is xn = ψn, we set a = 0, Fn =

diag(ρ
∆N1(tn)
1 , . . . , ρ

∆NS(tn)
S ), Rn = ι(tn), Qn = 1 and P = diag((1− ρ2

1)
−1, . . . , (1− ρ2

S)−1). Here

diag(d1, . . . , dS) denotes a square diagonal matrix of order S, containing the vector (d1, . . . , dS)

on the main diagonal. A combination of unknown coefficients and latent time series processes

can be incorporated in (20) in a straightforward way. For example, in the case of (3) with

wk(t) ≡ 0, we have xn = (η1 , . . . , ηS , ψn)′ with a = 0, and

Fn =





IS 0

0 diag(ρ
∆N1(tn)
1 , . . . , ρ

∆NS(tn)
S )



 , Rn =





0

ι(tn)



 , Qn = 1,
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P =





κIS 0

0 diag((1 − ρ2
1)

−1, . . . , (1 − ρ2
S)−1)



 .

Equations (20) and (18) constitute a nonlinear, non-Gaussian state space model.

For obtaining the importance sampling density g (xN |zN , θg), the key idea is to build a linear

Gaussian SSM for the set of rating event indicators at the event-point tn,

{

ι1(tn), . . . , ιK(tn)
}

.

The observation equation of this approximating model takes the form,

ιk(tn) = ckn + Zk
nxn + ξk

n, ξk
n ∼ NIID(0, diag(Ck

n)), (21)

for n = 1, . . . , N and k = 1, . . . , K with the matrix Zk
n = (Zk′

1n, . . . , Z
k′
Sn)′. The s-dimensional

vectors ckn and Ck
n are auxiliary constants to be determined (and constitute θg). Equations (20)

and (21) make up a linear Gaussian SSM. The auxiliary vectors ckn and Ck
n are to be constructed

in such a way that the mode of the posterior Gaussian approximating density g (xN |zN) equals

the true posterior mode x∗. All these unknown vectors can be jointly determined using the

recursive procedure described in Durbin and Koopman (2001, Chapter 11). For implementing

this procedure an initial guess for the mode x∗ has to be found. Denote this by x∗(0). The

linear Gaussian SSM (21) is constructed for a given j by

ckn = ιk(tn) − Zk
n x

∗(j)
n − Ck

n Z
k
n kn,

Ck
n =

[

Zk
n Kn Z

k′
n

]

−1
,

(22)

where

kn =
∂ ln p(zN |xN , θ)

∂xn

∣

∣

∣

∣

xN=x∗(j)

,

Kn = −
∂2 ln p(zN |xN , θ)

∂xn∂x′n

∣

∣

∣

∣

xN=x∗(j)

.

A new guess of the mode x∗(j+1) is obtained by estimating the conditional mean of the state

vector under the approximating linear Gaussian SSM (21) and (20). Because for the linear

Gaussian SSM the conditional mean and mode of xN coincide, this can be computed by the

Kalman filter and smoothing algorithm (KFS). New guesses for the mode are obtained by the

KFS based on (22) for j = 1, 2, . . . until convergence is reached according to some metric.

Usually convergence takes place after 5 to 10 iterations. After convergence, the joint impor-

tance density g(zN ,xN , θ
∗

g) is obtained from (21) and (20) by evaluating (22) at the resulting

(approximate value of the) posterior mode x∗. Random draws xm
N from g

(

xN |zN , θ
∗

g

)

, with

m = 1, . . . ,M , can then be obtained using (for example) the simulation smoothing algorithm
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of Durbin and Koopman (2002).

Because, for the MLFI model, the state equation (20) is Gaussian, the MC likelihood estimator

(11) becomes

L̂DK (θ|zN) = g(zN |θg)M
−1

M
∑

m=1

∏N
n=1 p(zn|ψ

m
n ,F

o
t−n

)

g(zN |xm
N)

. (23)

The parameter vector θ is obtained through the numerical optimization of (23), for example,

using a quasi-Newton algorithm. To ensure a smooth surface in θ, the use of the so-called

Common Random Numbers (CRN) approach is critical. This consists in using the same set of

canonical random draws (in this case, realizations from the white Gaussian noise εn in (20)) to

generate the samples {xm
N} with m = 1, . . . ,M used in the search for the optimal θ.

The state vector xn contains fixed unknown coefficients and the dynamic latent process ψ.

Estimating the posterior mean of the state vector leads to estimates of regression parameters

and of the full path of the latent process ΨN̄(T ). A straightforward estimate of the state

vector, given the data, is obtained by weighting each random draw of the state vector xm
N by

its contribution to the likelihood function, that is

x̂N =

(

M
∑

m=1

wm xm
N

)/(

M
∑

m=1

wm

)

, (24)

where

wm =

{

N
∏

n=1

p(zn|ψ
m
n ,F

o
t−n

)

}/

g(zN |x
m
N). (25)

Standard errors for x̂N are obtained by taking the square root of

[{

M
∑

m=1

wm xm
N ⊙ xm

N

}/(

M
∑

m=1

wm

)]

− x̂N ⊙ x̂N . (26)

3.2 The Efficient Importance Sampling algorithm

This section discusses the application of the EIS technique of Liesenfeld and Richard (2003)

and Richard and Zhang (2007) to the estimation of MLFI models. The EIS algorithm is slightly

more general than the DK methodology, in the sense that instead of assuming the model under

study has the structure described in (13) and (14) it is only required that

p(zn|xn,xn−1, zn−1) = p(zn|xn, zn−1). (27)

Therefore, the latent vector x no longer represents the full state vector of the system under

study. Instead, under the current approach x simply represents a set of relevant unobserved

processes. Additionally, (27) implies that the mechanism through which the latent processes
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affect the observables is Markovian (i.e. memoryless), in the sense that dependence of observ-

ables on unobservables is strictly a contemporaneous phenomenon. Under these assumptions

the observable data density can be written as

p(zN |θ) =

∫

[

N
∏

n=2

p(zn|xn, zn−1)p(xn|xn−1, zn−1)

]

p(z1|x1)p(x1)dxN . (28)

The initial conditions are expressed by p(z1|x1)p(x1). The natural Monte Carlo estimator of

the likelihood function L(θ|zN) = p(zN |θ), as discussed in (10), in the current context is given

by

L̂NS(θ|zN) = M−1

M
∑

m=1

[

p(z1|x
m
1 )

N
∏

n=2

p(zn|x
m
n , zn−1)

]

, (29)

where, for every m = 1, . . . ,M , the sequence {xm
n }

N
n=1 denotes a trajectory drawn from the

natural samplers

p(x1), p(x2|x1, z1), . . . , p(xN |xN−1, zN−1). (30)

However, as already mentioned, this estimator of the likelihood function is very inefficient.

The latent variables are sampled directly from the statistical specification of the model without

taking into account the relevant information contained in the observed values of z. As mentioned

at the beginning of this section, one solution is to sample the latent vector xN conditionally on

the observations zN using an auxiliary density. The EIS algorithm aims to construct a sequence

of auxiliary samplers

s(x1|ϕ1), s(x2|x1;ϕ2) . . . , s(xN |xN−1;ϕN), (31)

selected from a given parametric family of densities and indexed by the auxiliary parameters

ϕ1, . . . , ϕN .

Recalling the discussion at the beginning of section 3, it becomes clear that if it would be possi-

ble to obtain a sequence of auxiliary samplers (31) such that its product s(x1|ϕ1)
∏N

n=2 s(xn|xn−1;ϕn)

is proportional (as a function of xN) to the product of the factors in (28) involving zN , then

the unbiased MC estimator (11) would be equal a.s. to the likelihood of the observable data

i.e. the MC variance of this estimator would be zero. Therefore, the tuning parameters ϕ are

to be chosen in a such a way as to minimize (inside the chosen family of s densities, that is) the

MC variance of the importance sampling MC estimator of the likelihood (11). In the current

context, this estimator can be written as,

L̂IS(θ|zN) = M−1

M
∑

m=1

[

p(z1|x
m
1 )p(xm

1 )

s(xm
1 |ϕ1)

N
∏

n=2

p(zn|x
m
n , zn−1)p(x

m
n |x

m
n−1, zn−1)

s(xm
n |x

m
n−1;ϕn)

]

, (32)

where xm
N denotes a full trajectory drawn from the importance samplers (31). Minimizing

the MC variance of (32) can be achieved by trying to ‘match’ the product in the numerator
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with that in the denominator. That is, minimizing the difference between the numerator and

the product of the denominator by a constant. This minimization problem (which has to be

solved for each θ) takes place in a very high-dimensional space. The key idea behind the EIS

algorithm consists in breaking this problem down into a set of low-dimensional minimization

subproblems. The structure of the likelihood, as seen in the ‘one-step ahead’ factorization (28),

suggests decomposing the large minimization problem into a sequence of subproblems, one for

each time period. Note, however, that for any given values of zN and θ, the integral of

p(zn|xn, zn−1)p(xn|xn−1, zn−1)

with respect to xn does depend upon xn−1, while that of s(xn|xn−1;ϕn) equals 1 by definition.

This shows that it is not possible to secure a ‘good match’ between the factors in the numerator

and in the denominator period by period, independently from one another.

This problem was solved in Liesenfeld and Richard (2003) and Richard and Zhang (2007)

by explicitly writing the importance samplers s(xn|xn−1;ϕn) as the ratio of a density kernel

κ(xn;ϕn) and the corresponding integrating constant χ(xn−1;ϕn), that is,

s(xn|xn−1;ϕn) =
κ(xn;ϕn)

χ(xn−1;ϕn)
,

with χ(xn−1;ϕn) =
∫

κ(xn;ϕn)dxn. Noticing that making κ(xn;ϕn) as close as possible to

being proportional to p(zn|xn, zn−1)p(xn|xn−1, zn−1) would leave χ(xn−1;ϕn) unaccounted for,

suggests sending it back to moment’s n−1 minimization problem. The presence of the (n+1)th

integrating constant at the nth optimization problem binds together the entire sequence.

In practice, the auxiliary samplers are obtained by recursively solving a sequence of low-

dimensional least squares problems (with n = N, . . . , 1) of the form,

ϕ̂n(θ) = argmin
ϕn

M
∑

m=1

{

ln

[

p(zn|x
m
n , zn−1)p(x

m
n |x

m
n−1, zn−1)χ(x; ϕ̂n+1)

cnκ(xm
n ;ϕn)

]}2

, (33)

with the auxiliary condition χ(xm
N ; ϕ̂N+1) = 1.

Summarizing, the EIS algorithm works through the following 3 steps:

1. Generate M trajectories xm
N , m = 1, . . . ,M , drawn from the natural samplers (30).

2. For each n (from N to 1) estimate the parameters ϕn of the auxiliary regression (33) by

least-squares (over the sample made up of the M observations obtained in the previous

step).

3. Generate M trajectories xm
N , m = 1, . . . ,M , from the auxiliary samplers (31) correspond-

ing to the sequence of auxiliary parameters ϕn with n = 1, . . . , N .

15



The last 2 steps should be iterated until the estimates of the auxiliary parameters ϕn

converge, according to some metric. After convergence, the last set of trajectories xm
N are used

to estimate the likelihood with the EIS estimator (32). Liesenfeld and Richard (2003) state

that convergence typically takes around 5 iterations.

Application of the EIS algorithm to the MLFI class of models is feasible as the one-step ahead

observational density (18) falls under the scope of condition (27). The latent vector xN , with

N = N̄(T )+1, can be equated to the full path of the latent process ΨN̄(T ). While the one-step-

ahead latent density p(xn|xn−1, zn−1) is independent of both zn−1 and xn−2, and is given by

either (3) or (4). As for the Durbin-Koopman method, all draws from the auxiliary samplers

should be obtained using the technique of CRN.

The final element required to apply the EIS algorithm to the estimation of the MLFI model

is the choice of the auxiliary samplers (31). The density of the latent vector xN in the MLFI

model is Gaussian, this suggests using Gaussian densities as the importance densities (31).

Because the class of Gaussian densities is closed under multiplication, and our objective is

‘matching’ the denominator with the numerator in (32), the natural samplers are to be included

in s(xn|xn−1;ϕn). In fact, the auxiliary samplers for the MLFI model are completely identical to

those used in Liesenfeld and Richard (2003) for the Stochastic Volatility model, and in Bauwens

and Hautsch (2006) for the (single-state) Stochastic Conditional Intensity model. The mean

µ̃n and variance σ̃2
n of these Gaussian auxiliary samplers at time-step n are given by

σ̃2
n = (1/σ2

n − 2ϕ2,n)−1

µ̃n = (
µn

σ2
n

+ ϕ1,n)σ̃2
n, (34)

where µn and σ2
n represent the conditional mean and variance, respectively, of the latent process

x over the spell (tn, tn+1]. The auxiliary parameters ϕ1,n and ϕ2,n are obtained from the least

squares problems (33). Under the current choice for the importance samplers, these minimiza-

tion problems are linear over the auxiliary parameters ϕ and are, therefore, solvable by the

ordinary least squares method (subject to a positivity constraint over σ̃2
n).

Computationally, the first step of the EIS algorithm in the very first iteration is still inefficient.

Furthermore, when the natural samplers correspond to an integrated process of at least order

one, drawing long trajectories from such a process may lead to numerical instability.

In fact, instead of drawing the initial set of trajectories from the natural samplers, we can

use a sequence of samplers that already takes into account the observed data. Expressing the

observational density (18) as a second order Taylor polynomial in ψ(t) = (ψ(t) − E[ψ(t)]),

provides the moments of a sequence of auxiliary Gaussian samplers that can be used as the

initial samplers.

16



Besides obtaining estimates of the parameter vector θ, by maximizing the MC estimator of

the likelihood function (32), it is also important to be able to obtain smoothed and filtered

estimates of the latent vector xN . In general terms, we are interested in computing filtered

estimates of an arbitrary function φ of the latent process x,

E [φ (xn) |zn−1] =

∫

φ (xn) p (xn|zn−1,xn−1, θ) p (zn−1,xn−1|θ) dxn
∫

L (θ|zn−1,xn−1) dxn−1

, (35)

with n = 1, . . . , N . The dependence in θ is removed by inserting in its place the corresponding

SML estimate. The denominator in the ratio of integrals above is simply the Likelihood asso-

ciated with the first n − 1 components of zN . Accordingly it can be estimated using the MC

estimator (32) with the obvious modification.

The numerator can be estimated with

M−1

M
∑

m=1

{

φ (xm
n )

n−1
∏

i=1

p(zi|x
m
i , z(i−1))p(x

m
i |x

m
(i−1), z(i−1))

s(xm
i |x

m
(i−1);ϕi)

}

(36)

where xm
n−2 denotes a trajectory drawn from the sequence of auxiliary samplers associated with

L (θ|Zn−1) and xm
n is a draw from

p(xn|x
m
n−1, zn−1).

This procedure is computationally demanding, as it requires tuning a new sequence of auxiliary

samplers for each n.

We can of course also obtain smoothed estimates of any functional Φ of x. The corresponding

procedure being less demanding in computational terms than the one outlined above for the

filtered estimates,

E [Φ(xN)|zN ] =

∫

Φ (xN)
∏N

n=1 p(zn|xn, zn−1)p(xn|xn−1, z(i−1))dxN

L (θ | zN)
.

The denominator is simply the unconditional data likelihood associated with θ. As before,

this dependence is eliminated by inserting in its place the ML estimate. We can estimate the

integral in the numerator by using the same set of random draws from the auxiliary samplers

(obtained at the end of the EIS iterations) which were already used to estimate the uncondi-

tional likelihood at the ML estimate of θ. This is done using

M−1

M
∑

m=1

[

Φ (xm
N)

N
∏

n=1

p(zn|x
m
n , zn−1)p(x

m
n |x

m
n−1, zn−1)

s(xm
n |x

m
n−1;ϕn)

]

, (37)

where xm
N denotes one full trajectory drawn from the auxiliary samplers (31) associated with

θ̂ML. In this discussion, and for simplicity, the initial conditions were left implicit. That is I

assumed

p(z1|x
m
1 , z(0))p(x

m
1 |x

m
(0), z(0)) ≡ p(z1|x1)p(x1), s(xm

1 |x
m
(0);ϕ1) ≡ s(x1|ϕ1).
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4 Approximate Maximum Likelihood estimation

This section reviews the approximate Maximum Likelihood approach introduced in Davis and

Rodriguez-Yam (2005) and adapts it to the estimation of MLFI models. The main idea of this

method is to construct a closed-form approximation to the integral in the true data likelihood

(9) by approximating the structural density (8) using a second order Taylor expansion centred

on the mode of the posterior density (12). The main advantage of this method is its (relative)

computational simplicity and resulting speed. No use is made of Monte Carlo integration

techniques. The closed-form approximation to the data density can be directly maximized

(numerically) to yield approximate ML estimates.

Being only an approximate method implies that on top of the (unavoidable) sampling error

there is an additional error term in the resulting estimators. However, the same holds with all

MC based methods, in particular the ones covered in this paper. The only difference resides

in the fact that while the later resort to (pseudo) random number generators to construct

their (pseudo random) approximation to the likelihood function, the present method relies

completely on deterministic numerical methods for achieving the same objective. Theoretically,

the effectiveness of this method depends on whether or not the posterior density implied by the

model is approximately Gaussian.

The second limitation of the method is that it can only be applied to the special case where

the state transition density (14) is Normal. However this still covers a very large class of non-

Gaussian (observation) state space models. The MLFI is one such case.

Consider the model described in equations (13) and (14). Assume that the state equation (14)

takes the linear Gaussian form presented in (20). Under this setting the joint density of the

‘complete data,’ equation (15), becomes

p(zN ,xN |θ) = p(zN |xN ; θ)
|V|1/2

(2π)N/2
exp [−(xN − µ)′V(xN − µ)/2] , (38)

where V−1 = cov {xN} and µ = E [xN ]. The covariance cov {xN} and the mean of the state

vector (20) can be computed analytically.

Let l(θ; zN |xN) = ln p(zN |xN ; θ). The loglikelihood associated with the complete data resulting

from (38) is

l(θ; zN ,xN) = l(θ; zN |xN) +
1

2
ln |V| −

N

2
ln(2π) −

1

2
(xN − µ)′V(xN − µ). (39)

Denote the gradient10 of l(θ; zN |xN) evaluated at the so-called posterior mode of the state

vector, i.e. the mode x∗ = x∗(zN ; θ) of p(xN |zN ; θ), by

k∗ ≡
∂

∂xN

l(θ; zN |xN)|xN=x∗ .

10Here I represent the gradient as a column and not as a row-vector as it is usual.
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Note that x∗ solves the nonlinear (vector) equation

∂

∂xN

l(θ; zN ,xN) = 0, (40)

leading to k∗ = V(x∗ − µ). Let R(xN ;x∗) denote the error associated with the second order

Taylor expansion of l(θ; zN |xN) centred on x∗,

l(θ; zN |xN) = l∗ + (xN − x∗)′k∗ −
1

2
(xN − x∗)′K∗(xN − x∗)

+R(xN ;x∗), (41)

where l∗ = l(θ; zN |xN)|xN=x∗ and

K∗ ≡ −
∂

∂xN∂(xN)′
l(θ; zN |xN)|xN=x∗ .

Substituting (41) in (39) and grouping all the terms containing xN into a single quadratic form

yields,

l(θ; zN ,xN) = −
N

2
ln(2π) +

1

2
ln |V| + l∗ −

1

2
(x∗ − µ)′V(x∗ − µ)

−
1

2
(xN − x∗)′(K∗ + V)(xN − x∗) +R(xN ;x∗). (42)

Recalling that

p(xN |zN ; θ) =
p(zN ,xN |θ)

∫

p(zN ,xN |θ)dxN

,

let pa(xN |zN ; θ) denote the (approximate) posterior density based on the loglikelihood given in

(42) when the error term R(xN ;x∗) is dropped. It follows that pa is a Gaussian density with

mean x∗ and covariance matrix (K∗ + V)−1.

The likelihood associated with the observable data, equation (16), can be written as

L(θ; zN) =
|V|

1
2

|K∗ + V|
1
2

el
∗
−

1
2
(x∗

−µ)′V(x∗
−µ)

∫

pa(xN |zN ; θ)eR(xN ;x∗)dxN .

= La(θ; zN)Erra(θ; zN), (43)

where La(θ; zN) is the approximation to the (true) likelihood function L(θ; zN),

La(θ; zN) =
|V|

1
2

|K∗ + V|
1
2

exp

[

l∗ −
1

2
(x∗ − µ)′V(x∗ − µ)

]

, (44)

that is obtained when the factor exp [R(xN ;x∗)] is dropped in the integral in (43).

The approximation error implied is

Erra(θ; zN) =

∫

pa(xN |zN ; θ)eR(xN ;x∗)dxN = Epa

[

eR(xN ;x∗)|zN

]

. (45)

If pa(xN |zN ; θ) is highly concentrated around x∗, then this multiplier is close to one.

Numerical maximization of (44) with respect to θ yields the (approximate) ML estimate of the
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parameter. An (informal) assessment of the quality of this approximation is given by inspecting

the ‘size’ (expressed in terms of a matrix norm) of the matrix (K∗ + V)−1 at the optimum.

In order to make the closed-form approximation (44) to the true likelihood function (43) op-

erational, it is necessary to know (at least approximately) the value of the posterior mode x∗.

Applying the Newton-Raphson algorithm to the nonlinear equation (40) leads to the following

recursive scheme

x(i+1) = (K(i) + V)−1
(

k(i) + K(i)x(i) + Vµ
)

, (46)

where

k(i) ≡
∂

∂xN

l(θ; zN |xN)|xN=x(i) and K(i) = −
∂

∂xN∂(xN)′
l(θ; zN |xN)|xN=x(i) . (47)

If the number of observations N is small, it is possible to use directly both the recursion (46) and

the approximation (44). However if N is large, inverting the symmetric matrix Γ = K(i) + V

appearing in (46) and computing the determinant |K∗ +V| in (44) directly would be awkward.

The solution to this problem consists in employing recursive computational procedures for the

inversion of symmetrical positive definite matrices. One such procedure can be derived from

the innovations algorithm11. The innovations algorithm provides the following particular case

of the LU decomposition of Γ,

Γ = LDL′, (48)

where D = diag(ν0, . . . , νN−1) and L is the sum of the identity with a strictly lower triangular

matrix. The innovations algorithm enables the recursive computation of the components of

both D and L.

Setting W (i) =
(

k(i) + K(i)x(i) + Vµ
)

, we can write (46) as

x(i+1) = Γ−1W (i) = (L′)−1ζ(i),

where the normalized residuals ζ(i) = D−1L−1W (i) are directly obtained from the output of

the innovations algorithm. Because L is a lower triangular matrix, x(i+1) is obtainable by

solving the linear system L′x(i+1) = ζ(i) by backward substitution. The determinant of Γ

equals |D| =
∏N−1

j=0 νj. Therefore, it is possible to implement the Newton-Raphson scheme for

obtaining the posterior mode x∗ without the need to invert directly a square matrix of order

N × S × (p+ 2) at each and every iteration.

In the particular case where the observation density belongs to the Exponential family, the

approximation to the posterior density pa(xN |zN ; θ) coincides with the importance sampler

11For any given time series {Xn} with finite second moments and zero mean, the innovations algorithm

provides a recursive method for computing X̂n|n−1 = E[Xn|X1, . . . ,Xn−1] from knowledge of the autocovariance

function of {Xn}, see Proposition 5.2.2. in Brockwell and Davis (1991).
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obtained using the DK methodology.

As before, our interest is not limited to the estimation of the parameter vector θ but also to the

estimation of the full path xN of the latent process given all the observations zN . The mean of

the posterior density p(xN |zN ; θ) is normally termed the smoothed state vector,

E [xN |zN ; θ] =
1

L(θ; zN)

∫

xNp(zN ,xN |θ)dxN . (49)

Unlike the case of the parameter vector, estimation of the smoothed state vector requires the

use of Monte Carlo integration with importance sampling. However, the procedure is relatively

simple, because the importance sampling density pa(xN |zN ; θ) was already obtained during the

estimation of the θ vector. The Monte Carlo estimator of the smoothed state vector is,

M−1

L̂(θ; zN)

M
∑

m=1

xm
N

p(zN ,x
m
N |θ)

pa(xm
N |zN ; θ)

. (50)

Where the (observable) data density estimator in the denominator is,

L̂(θ; zN) = M−1

M
∑

m=1

p(zN ,x
m
N |θ)

pa(xm
N |zN ; θ)

. (51)

The common random samples xm
N , with m = 1, . . . ,M , in both estimators (51) and (50), are

drawn from pa(xN |zN ; θ). The dependence on the unknown parameter vector θ is removed by

inserting in its place the (approximate) ML estimate obtained from maximizing (44). Because

in a Gaussian model the mean and the mode coincide, a second method for assessing the

quality of the approximation pa(xN |zN ; θ) to the exact posterior density consists in inspecting

the difference between the posterior mode x∗ and the posterior mean of the state vector (50).

5 Simulation setup and results

In order to illustrate the three different estimation procedures discussed in this paper, I con-

ducted a Monte Carlo study. This section discusses the set up of this simulation study and

reports the corresponding results. Three different MLFI models were considered, each with four

non-absorbing states (in the context of the empirical application in Koopman et al. 2006, 2008,

these are interpretable as four different credit rating classes) and an absorbing one (modelling

the default state). In all three cases there is a single unobserved intensity component ψ, no

covariates and no duration dependence (i.e. Hk
s (s) ≡ 1). That is, for each statistical unit in

the sample, the intensity specification (2) is restricted to

λ̃k
s(t) = Y k

s (t) exp [ηs + αsψs(t)] s = 1, . . . , 16, (52)
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for the counting processes associated with all possible transitions from a non-absorbing state to

another state (absorbing or not). The intensity processes are set to λ̃k
s(t) = 0 for s = 17, . . . , 20,

for transitions from the absorbing state to the four non-absorbing ones.

I consider three different univariate specifications for the latent process. In the first two cases,

the latent process ψ is specified as a standard univariate AR(1). The first AR(1) specification

(model A) has a fixed autoregressive coefficient ρ = 0.9 corresponding to a case where the

latent dynamics of the rating process are fairly persistent. In the second case (model B), an

autoregressive coefficient of 0.5 is used, corresponding to a situation where the latent dynamics

are less clear. In both these cases the latent disturbances are i.i.d. standard Normal. Finally,

in the third model, model C, the latent process follows an autoregressive process with both a

time-varying autocorrelation coefficient and a time-varying innovations variance, by using

ψn+1 = ρτnψn +

√

1 − ρ2τn

(1 − ρ2)
εn+1, εn+1 ∼ NIID(0, 1), (53)

where I set ρ = 0.9. This brings the behaviour of the latent ‘credit cycle’ ψ close to that of an

Ornstein-Uhlenbeck process sampled at the (discrete) set of ‘event moments’ {tn}.

Unit (debt issuer) heterogeneity enters the three different model specifications through the

different ηs and αs parameters used for the different transition types s = 1, . . . , 16. The

parameter values chosen for the simulations appear in the first column of Tables 1, 2 and 3.

Following the empirical application (and corresponding results) in Koopman et al. (2006, 2008),

the constant baseline hazard parameters η were chosen in order to yield the typical structure

seen in credit rating transition matrices. In this setting, the transitions corresponding to both

large downgrades and upgrades typically have low intensity. This is expressed in lower values

of η than those corresponding to those transitions between pairs of adjacent states (ratings).

With regard to the sensitivity parameters α, on the contrary, I chose values that are fairly lower

(in absolute terms) than the values reported in table 4 of Koopman et al. (2008). For a fixed

(non-constant) path of the latent process ψ, the degree of clustering in observed transitions is

directly proportional to the size (in absolute value) of the α parameters. Clearly, a faint signal

is harder to recover than a strong one. Therefore, I chose the α’s in order to yield a challenging

signal extraction exercise.

ML estimation of the MLFI class of models is particularly demanding computationally, not

only because the data density has no (exact) closed form, but also due to the large number

of unknown parameters. These last ones have (at least the sensitivity αs parameters and

the autoregressive ρs coefficients, see discussion bellow) to be obtained through the numerical

optimization of the loglikelihood function, regardless of whether this last one is estimated using

MC methods or approximated using deterministic numerical methods. In any realistic real-
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world application of the model, it is essential not only to allow one distinct baseline intensity

ηs parameter for each type of transition but there should also be a reasonable number of

independent sensitivity αs parameters. In order to make the simulation set up reasonably

realistic, I allow a distinct αs parameter for each different transition type s = 1, . . . , 16. This

means that for all three models there is a total of 33 parameters to be estimated.

One difference between the three methods reviewed in this paper results from the need to

use numerical optimization algorithms (for example quasi-Newton methods). Under the DK

methodology discussed in Koopman et al. (2008) and reviewed in subsection 3.1, the size of

the parameter vector is reduced to just 17, because the ηs parameters are loaded into the state

vector x. Due to the similarities between the MLFI and the basic Stochastic Volatility (SV)

models, I implement directly both the EIS algorithm, as discussed in Liesenfeld and Richard

(2003), and the (deterministic) numerical procedure of Davis and Rodriguez-Yam (2005). This

leads to a parameter vector of size 33. Nevertheless, the EIS algorithm can be slightly modified

to treat fixed effects (like the ηs parameters) as part of the latent vector x (Richard and Zhang,

2007).

The data generating process (dgp) in all three models makes some of the transitions extremely

unlikely (for example from rating class ‘1’ to ‘Default’). This means that in some of the

simulated datasets there are no transitions of this type. In such cases both the ηs and αs

parameters are not identified and, therefore, cannot be estimated. Additionally, when there

is a single transition of a given type, the corresponding αs parameter is not identified as well.

This means that not all ηs and αs parameters can be estimated for every replication. Over a

given simulated dataset, I chose to estimate both parameters only for those transition types

for which at least three events were recorded. Tables 1, 2 and 3 report only the parameters for

which a reasonable number of replications exist (at least 20 out of a total of 100 replications

performed). This number is indicated in superscript and between parenthesis in the columns

containing the MC averages.

For all three model specifications I consider K = 100 units (i.e. debt issuers) being observed

over 30 periods of time. A panel of units and state (rating) transitions is generated as follows.

At time t0 = 0, the sample contains an equal number of units in each state (rating category).

The unobserved process ψ(t) is initialized at zero. Given the parameters, this completely

specifies the intensities up to the event date t1. For the time interval (tn−1, tn], the intensity of

the pooled process is defined by

λ∗(tn) =
K
∑

k=1

S
∑

s=1

λk
s(tn), (54)
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with λ∗(t1) applicable over the first spell (t0, t1]. The length of any spell in the pooled process

can therefore be drawn from the exponential distribution with intensity parameter λ∗(tn). Given

the durations of the spells (tn−1, tn] for i = 1, . . . , N̄(T ), the firm experiencing a rating event is

drawn from the univariate Multinomial{π1(tn), . . . , πK(tn)} distribution where the probability

of drawing unit k is given by

πk(tn) = [λ∗(tn)]−1
S
∑

s=1

λk
s(tn), k = 1, . . . , K. (55)

Next, the type of rating event for unit k is drawn from the multinomial distribution with the

probability of state s being drawn for unit k given by

πk
s (tn) =

[

S
∑

s=1

λk
s(tn)

]−1

λk
s(tn), (56)

for s = 1, . . . , S and k = 1, . . . , K. If the event is a default, the dummy variable Y k
s (t) jumps

to zero. Finally, the unobserved common risk factor ψi = ψ(ti) is updated using either (3)

(with ρ = 0.9, in the case of model A, or ρ = 0.5 for model B), or (4). In the later case I set

ρ = 0.9. The disturbances εi, i = 1, . . . , N̄(T ), are drawn from a standard normal distribution

in all three cases. This process is repeated until all units have entered the absorbing default

state, or until the event time tn exceeds the maximum number of time-periods (30).

The combination of parameters in the dgp with the number of units and the size of the time-

window leads, typically, to a number of events per simulation between 500 and 600.

A rather imperfect12 assessment of the computational efficiency of each one of the three methods

is provided by the average amount of time required to estimate the unknown parameters in

any given replication (using the quasi-Newton BFGS algorithm). These were, for model A,

15 minutes for the Durbin and Koopman (1997, 2000) SML methodology, 50 minutes for the

approximate ML algorithm of Davis and Rodriguez-Yam (2005), and finally 90 minutes required

in average by the EIS algorithm of Liesenfeld and Richard (2003) and Richard and Zhang

(2007).13

12It must be stressed that while both the EIS and DY algorithms were directly implemented in a high-

level language (Ox version 3.30), the Ox implementation of the DK methodology makes extensive use of the

numerical routines contained in the package SsfPack (implemented in the lower level C language). Therefore,

the comparison results reported in this paper, with regard to computational times when including the DK

methodology, cannot be considered as a benchmark. The simulations were conducted on a standard desktop

computer with 1 Gb of RAM and based around an Intel Pentium IV processor with a clock speed of 3.4 GHz

running under Windows XP Professional version 2002 (Service Pack 2).
13In the Ox implementation of the DY-AML algorithm, a relative change threshold of 10−4 was used to assess

convergence of the Newton-Raphson algorithm. To insure convergence of the auxiliary regression coefficients, 5

EIS iterations were used, starting from the 2nd order Taylor polynomial samplers. Convergence of the numerical

approximation to the posterior mode in the DK-SML algorithm was gauged using a tolerance of 10−7.
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All computations were made with the Ox matrix programming language of Doornik (2002)

version 3.30. The DK methodology was implemented using the routines contained in the

package SsfPack version beta 3.05.

I start by discussing the results obtained for model A. These are presented in Table 1.

<INSERT TABLE 1 ABOUT HERE>

For the majority of the baseline hazard parameters η, the most accurate estimates were

provided by the EIS algorithm. This was also the case with respect to the mean MC bias,

which was the smallest amongst the three methods. The second smallest MC bias was obtained

with the Durbin-Koopman procedure, attaining the Davis-Yam algorithm the worst result in

this respect. However, globally, the MC variance of the EIS algorithm was slightly worse

than that resulting from the Durbin-Koopman method. In global terms, as measured by the

Mean Squared Error (MSE), the most accurate η estimates were obtained with the Durbin-

Koopman method, followed by the EIS algorithm. The worst MSE for these eleven parameters

was attained with the Davis-Yam procedure. A different picture emerges with respect to the

estimation of the semi-elasticities α, which are clearly the hardest parameters to estimate.

Here results were somewhat mixed. For the majority of the α parameters the estimates with

smaller MC bias were obtained with the EIS algorithm, followed by the Davis-Yam algorithm.

However, this last method presented the worst average bias over the eleven α parameters for

which there were at least 20 valid estimates. Nevertheless, the Durbin-Koopman presented,

globally, the largest MC variance across the sensitivity parameters. This resulted in the less

accurate estimates of the α parameters across the three different methods (as expressed by the

MSE). The EIS algorithm was the method attaining the lowest MSE. Of particular importance

is the bias and variance of the estimates of the latent autoregressive parameter ρ. Clearly the

best estimates were obtained with the EIS algorithm. The Durbin-Koopman and Davis-Yam

methods providing almost an equivalent level of accuracy (slightly better in the case of the

DK method). The contrast between the results obtained with the DK method for the η and α

parameters may indicate that this method is more effective at smoothing the state vector than

estimating likelihood parameters. The simulation results for model B are presented in table 2.

<INSERT TABLE 2 ABOUT HERE>

Model B represents, clearly, the bigger challenge for the three estimation methods. The

method that performed best overall, as assessed by the average MSE, was clearly the Durbin-

Koopman approach. I start by looking at the estimates of the eleven η parameters. Here the EIS

algorithm and the DK method performed similarly, in the sense that there were equal number of
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cases where each method provided the most accurate MC mean estimate and the smallest MC

variance. Nevertheless, the average MSE attained by the DK method over these parameters

was smaller than that from the EIS algorithm. The Davis-Yam procedure performed poorly in

both respects. With regard to the semi-elasticity parameters α, the EIS algorithm presented the

lowest average MSE amongst the three methods. The DK method attained the second lowest

average MSE. However, for most of these eleven parameters the lowest MC bias was achieved

using this method, while the EIS algorithm provided the lowest MC variance in most of the

cases. The Davis-Yam procedure generated the largest MC variance in most cases, the same

being true globally. Again these patterns provide some evidence that the DK methodology

performs better smoothing the state vector than providing estimates of the nonlinear model

parameters. Particularly interesting were the results concerning the autoregressive parameter

ρ. Despite performing worse for most of the remaining model parameters, when compared to

model A, the EIS algorithm again delivered the smaller MC bias for the ρ parameter. However,

the corresponding MC variance was the largest amongst the three methods. Nevertheless this

resulted in a MSE almost identical to that obtained with the DK methodology. The Davis-Yam

procedure performed particularly bad with regard to the MC bias of the ρ estimates (with low

MC variance). This led to a very large MSE. Finally, Table 3 presents the results for model C.

<INSERT TABLE 3 ABOUT HERE>

Model C, presents perhaps the greatest computational challenge amongst the three models.

The time-varying latent autoregressive coefficient and innovations variance leads to a slight

increase in the complexity of the computations. This increased complexity in turn, can make

the different algorithms slightly less robust to the accumulation of numerical errors. The

most striking result, for this model, was the good performance of the Davis-Yam algorithm.

The performance of this algorithm was particularly good when estimating the semi-elasticity

parameters α. The average MSE (over the eleven α parameters) was the smallest amongst the

three different methods, the same being true of the total squared MC bias. Additionally, for

most of these parameters the MC bias and variance attained by this method were the smaller of

the three methods. Looking at the η parameters, the EIS algorithm yielded the smaller average

MSE. Simultaneously, this method was the most accurate and less variable across most of these

parameters. Overall the best average MSE was delivered by the EIS algorithm, followed by the

Davis-Yam procedure and then the Durbin-Koopman method. Finally the best estimates of

the latent autoregressive coefficient ρ were provided by, in this order, the Davis-Yam procedure,

the EIS algorithm and the Durbin-Koopman method.

<INSERT FIGURE 1 ABOUT HERE>
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Finally, I present a comparison of the signal extraction algorithms associated with the three

different estimation methods. In the first step I fix a representative simulated dataset generated

under the set up of model C, jointly with the underlying (true) path of the latent process ψ.

The next step consists in estimating both the model parameters and the posterior mean of the

state vector using each of the three methods. By comparing the estimated path of the latent

factor with the (true) underlying one, we can assess the relative performance of each method

in recovering the latent process ψ(t).

In figure 1 we can see the smoothed state vector (jointly with the corresponding 0.95 confi-

dence bands) obtained from the Durbin-Koopman procedure, using equations (24) and (26). It

is possible to see that the estimated (smoothed) path of the process ψ(t) follows the true un-

derlying values reasonably well. There are, however, some points where opposite local optima

of both trajectories overlap (for example at moments t = 5, t = 11 and t = 19). The number

of violations of the 0.95 confidence bands seems fairly reasonable.

<INSERT FIGURE 2 ABOUT HERE>

Figure 2 depicts the smoothed path of the latent process ψ obtained using the EIS algorithm.

This can be obtained using formula (37) with the identity Φ(xN) ≡ xN . Although 5 EIS

iterations seem to yield satisfactory estimates of the model parameters (as documented by the

MC results contained in tables 1, 2 and 3), the reliability of the corresponding estimates of

the latent process ψ is very low. This is due to the fact that, typically, under a low number

of EIS iterations, the resulting number of significant importance sampling weights14 is low

(usually only one or two). Not only this implies a high degree of variability for the resulting

estimates of the posterior mean, but also that the estimates of the posterior variance are non-

reliable (in the worst case, a value of zero is obtained). After severall unsuccessful attempts at

obtaining (reasonable) smoothed estimates of the latent process using 5 EIS iterations I decided

to increase this number to 25. Figures 2 and 4 were obtained with 25 EIS iterations. Further,

I have investigated the speed of convergence of the EIS iterations as measured by convergence

of the auxiliary regression parameters ϕn. In order to achieve an accuracy of at least 10−3 in

ϕn approximately 90 EIS iterations were required. An accuracy of 10−5 for example, required

approximately 156 EIS iterations. This is in sharp contrast with the results reported in Richard

and Zhang (2007, sections 3.1 and 5) for several simpler models. Nevertheless, throughout all

simulation experiments, convergence was always attained. The speed of convergence, however,

seems to be very slow for the current target densities (18) when using Gaussian importance

samplers. The question of whether it is possible to choose a different, more efficient, class of

14That is, importance sampling weights significantly larger than zero.

27



auxiliary samplers for the problem at hand is, however, outside of the scope of the current

paper and is left for future research.

As it is possible to see in figure 2, using 25 EIS iterations of the Gaussian importance samplers,

the smoothed estimates of the latent process ψ are very accurate. The posterior mode of ψ

follows closely the true underlying values. The 0.95 confidence bands are very informative,

clearly identifying periods of large up and down movements of the latent process. The number

of violations is reasonable. The clear down-side of using an increased number of EIS iterations

is the required computational time. Obtaining the results reported in figure 2, required more

than two hours in a desktop PC built around an Intel Pentium IV processor running at 3.4

GHz under Windows XP Professional SP2.

<INSERT FIGURE 3 ABOUT HERE>

As seen in section 4, the approximate Gaussian density pa(xN |zN ; θ) is interpretable as

an importance density. Therefore we can obtain smoothed estimates of the state process by

using formula (50). Figure 3 presents the resulting path of the latent process ψ jointly with

its posterior mode (i.e. the mode of pa). The confidence bands were obtained using the

posterior variance of the approximate posterior density pa, and can be used to assess (jointly

with the difference between the posterior mode and mean of ψ) whether or not the (exact)

posterior density of the latent process ψ reasonably resembles a Gaussian density. The answer

seems negative. In fact not only the confidence bands are reasonably wide, but there is also

a noticeable difference between the posterior mode and the (estimated) posterior mean (in

sharp contrast with the results for the SV model reported in figures 5 and 6 in Davis and

Rodriguez-Yam, 2005). Nevertheless the smoothed path of the latent process follows fairly well

the true values. The number of violations of the 0.95 confidence bands is low. Additionally,

the local optima from both trajectories coincides frequently. As it is to expect, the posterior

mode excessively smoothes the true path of the latent process.

<INSERT FIGURE 4 ABOUT HERE>

Finally, figure 4 directly compares the output of the three different smoothing procedures.

The smoothed estimates of the latent process (jointly with the posterior mode from the DY

procedure) are plotted against the true trajectory. In this graphic the confidence bands are

omitted to enhance visibility. The main feature of this figure is the high accuracy of the EIS

smoothed estimate of the latent process. The EIS estimate of the posterior mean of ψ follows

closely the true trajectory. The posterior mode of ψ obtained from the DY procedure presents

an excessive degree of smoothing. The DY estimate of the posterior mean, on the other hand,
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overestimates the true values between periods t = 1 and t = 10, and underestimates between

periods t = 21 and t = 24. The DK procedure provides reasonably accurate smoothed estimates

of the latent process. Nevertheless, there are some noticeable errors, for example around periods

t = 5, t = 11.5 and t = 19.5.

6 Conclusion

This paper reviewed three feasible methodologies for conducting maximum likelihood estima-

tion of parameter driven dynamic statistical models. I described in detail how to apply each

method to the class of Multi-state Latent Factor Intensity models, introduced in Koopman et

al. (2008). A Monte Carlo study was conducted to assess the behaviour of these estimation

methods when applied to a relatively complex econometric model.

Two of the methods reviewed require the use of Monte Carlo integration with importance sam-

pling techniques. In order to construct the importance density, one of these methods, the EIS

algorithm, requires solving recursively a sequence of low-dimensional least squares problems.

Implementing this procedure is relatively simple. Furthermore, the simulation study revealed

that this method provides very accurate parameter estimates. However, this method is compu-

tationally heavy. It was always the slower of the three methods under study. A high number

of iterations of the basic steps of the algorithm is required for yielding a satisfactory level of

accuracy, in particular for signal extraction purposes. The other simulation based approach,

the Durbin-Koopman methodology, requires constructing a linear Gaussian model for the com-

plete data (i.e. observed data plus state variables). This is somewhat complex, as this is done

by solving iteratively a high-dimensional nonlinear equation, using at every step the Kalman

filtering and smoothing recursions associated with the approximating Gaussian model. Never-

theless, the resulting estimation and signal extraction procedures appear to be computationally

efficient. The third method avoids the need for using Monte Carlo integration by resorting to

a closed-form approximation to the loglikelihood function implied by the model. This led, in

some cases, to a noticeable Monte Carlo bias. The Monte Carlo squared bias and variance of

the DK methodology, in general terms, were larger than their EIS counterparts. In this respect

the closed-form Likelihood approximation of Davis and Rodriguez-Yam (2005) seems to yield

the larger estimation errors. However, overall results were mixed. Furthermore, the signal

extraction procedure directly derived from the DY method delivers reasonable estimates of the

latent process.

Finally, this paper shows that, although relatively complex and computationally demanding,

the estimation of Multi-state Latent Factor Intensity Models is clearly feasible, even when there
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is a large number of parameters. This opens the way for other applications of the framework,

not necessarily confined to the analysis of Agency credit rating data.
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Figure 1: Signal Extraction: Durbin-Koopman Method
This graphic illustrates the signal extraction capabilities of the Durbin-Koopman SML methodology, when

applied to the MLFI model
λk

s(t) = Y k
s (t) · exp[ηs + αsψ(t)],

for k = 1, . . . ,K with the number of units K = 100, and the number of transition types s = 1, . . . , 16. A
simulated dataset was generated over a time-window of length 30. The precise simulation set up is explained
in section 5. The horizontal axis represents (calendar) time. There is a single latent discretized O-U process ψ
(the details of this specification are presented in the text). The true parameters of the model are presented in
the first column of table 3. The thick solid line is the true path of the underlying ψ variable, while the thin
solid line represents the estimated values.
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Figure 2: Signal Extraction: EIS Algorithm
This graphic illustrates the signal extraction capabilities of the EIS algorithm, when applied to the MLFI model

λk
s(t) = Y k

s (t) · exp[ηs + αsψ(t)],

for k = 1, . . . ,K with the number of units K = 100, and the number of transition types s = 1, . . . , 16. A
simulated dataset was generated over a time-window of length 30. The precise simulation set up is explained
in section 5. The horizontal axis represents (calendar) time. There is a single latent discretized O-U process ψ
(the details of this specification are presented in the text). The true parameters of the model are presented in
the first column of table 3. The thick solid line is the true path of the underlying ψ variable, while the thin
solid line represents the estimated values.
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Figure 3: Signal Extraction: Approximate ML Method
This graphic illustrates the signal extraction capabilities of the Davis-Yam approximate ML procedure, when

applied to the MLFI model
λk

s(t) = Y k
s (t) · exp[ηs + αsψ(t)],

for k = 1, . . . ,K with the number of units K = 100, and the number of transition types s = 1, . . . , 16. A
simulated dataset was generated over a time-window of length 30. The precise simulation set up is explained
in section 5. The horizontal axis represents (calendar) time. There is a single latent discretized O-U process ψ
(the details of this specification are presented in the text). The true parameters of the model are presented in
the first column of table 3. The thick solid line is the true path of the underlying ψ variable, while the thin
solid line represents the estimated values.
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Figure 4: Comparison of Signal Extraction algorithms
This picture presents a direct comparison between the signal extraction capabilities of the three different

estimation methods covered in this paper, when applied to the MLFI model

λk
s(t) = Y k

s (t) · exp[ηs + αsψ(t)],

for k = 1, . . . ,K with the number of units K = 100, and the number of transition types s = 1, . . . , 16. There is
a single latent discretized O-U process ψ (the details of this specification are presented in the text). The true
parameters of the model are presented in the first column of table 3. The three different estimation algorithms
were applied to the same simulated dataset (DK-SML indicates the Durbin-Koopman SML methodology, EIS-
SML corresponds to the SML technique of Liesenfeld and Richard and DY-SML denotes the simulation-based
smoothing procedure derived from the Davis-Yam approximate ML algorithm). The thick solid line is the true
path of the underlying ψ variable. The precise simulation set up is explained in section 5.
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Table 1: Monte Carlo Results I: persistent AR(1)

This table contains parameter estimates for the MLFI model, λk
s(t) = Y k

s (t) · exp[ηs +αsψ(t)], for k = 1, . . . ,K
with the number of units K = 100, and the number of transition types s = 1, . . . , 16. The true parameters
are presented in the first column. There are 4 rating classes (plus default). Initial ratings are distributed
evenly over these classes. Here I estimate the model with a single latent stationary AR(1) process ψ, with AR
parameter ρ = 0.9. The maximum time T is set to 30 time-units, unless the complete sample has entered into the
absorbing (default) state at an earlier stage. I performed 100 replications for each estimation method using the
same simulated datasets (DK-SML indicates the Durbin-Koopman SML methodology, EIS-SML corresponds to
the SML technique of Liesenfeld and Richard and DY-AML denotes the Davis-Yam approximate ML procedure).
Superscript numbers between parentheses, in the column containing the mean values, indicate the number of
valid estimates used to compute the Monte Carlo statistics over all simulations.

Parameter True DK-SML EIS-SML DY-AML
Value Mean Std.Error Mean Std.Error Mean Std.Error

η1→2 -3.47 -3.55 (0.20) -3.47 (0.16) -3.51 (0.13)
η1→3 -5.88 -6.25(96) (0.80) -6.11(96) (0.89) -6.20(96) (0.86)
η2→1 -5.04 -5.18 (0.49) -5.13 (0.39) -5.72 (1.50)
η2→3 -3.04 -3.17 (0.21) -3.06 (0.14) -3.09 (0.14)
η2→4 -5.84 -6.32(97) (0.82) -5.94(97) (0.50) -6.06(97) (0.95)
η2→D -7 -7.03(25) (1.12) -6.96(25) (0.44) -6.52(25) (0.35)
η3→2 -4.5 -4.58 (0.49) -4.65 (0.38) -5.09 (1.47)
η3→4 -3.1 -3.19 (0.19) -3.13 (0.13) -3.14 (0.12)
η3→D -2.5 -2.61 (0.16) -2.52 (0.13) -2.54 (0.11)
η4→3 -5.2 -5.77(91) (1.48) -5.96(91) (2.40) -6.76(91) (3.60)
η4→D -1.7 -1.69 (0.24) -1.75 (0.24) -1.84 (0.24)
α1→3 -0.1 -0.12(96) (0.24) -0.22(96) (0.31) -0.46(96) (1.02)
α2→1 0.1 -0.11(56) (1.20) 0.15 (0.20) 0.63 (1.32)
α2→3 -0.2 -0.14 (0.43) -0.24 (0.09) -0.22 (0.12)
α2→4 -0.08 -0.26(97) (0.26) -0.17(97) (0.23) -0.26(97) (0.78)
α2→D -0.01 0.05(25) (0.61) -0.17(25) (0.26) -0.12(25) (0.21)
α3→2 0.12 0.68(75) (2.15) 0.18 (0.16) 0.63 (1.34)
α3→4 -0.1 -0.18 (0.40) -0.12 (0.09) -0.11 (0.11)
α3→D -0.2 -0.13 (0.26) -0.23 (0.07) -0.20 (0.12)
α4→3 0.1 0.56(56) (1.74) 0.30(91) (0.38) 0.86(91) (1.51)
α4→D -0.5 -0.26 (0.71) -0.56 (0.11) -0.65 (0.33)
ρ 0.90 0.79 (0.20) 0.87 (0.03) 0.77 (0.24)
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Table 2: Monte Carlo Results II: transitory AR(1)

This table contains parameter estimates for the MLFI model, λk
s(t) = Y k

s (t) · exp[ηs +αsψ(t)], for k = 1, . . . ,K
with the number of units K = 100, , and the number of transition types s = 1, . . . , 16. The true parameters
are presented in the first column. There are 4 rating classes (plus default). Initial ratings are distributed
evenly over these classes. Here I estimate the model with a single latent stationary AR(1) process ψ, with a
somewhat low AR parameter of ρ = 0.5. The maximum time T is set to 30 time-units, unless the complete
sample has entered into the absorbing (default) state at an earlier stage. I performed 100 replications for
each estimation method using the same simulated datasets (DK-SML indicates the Durbin-Koopman SML
methodology, EIS-SML corresponds to the SML technique of Liesenfeld and Richard and DY-AML denotes
the Davis-Yam approximate ML procedure). Monte-Carlo averages and standard errors (in parentheses) are
presented for those parameters that have a sufficient number of occurrences over all simulations. Superscript
numbers between parentheses, in the column containing the mean values, indicate the number of valid estimates
used to compute both Monte Carlo statistics over all simulations.

Parameter True DK-SML EIS-SML DY-AML
Value Mean Std.Error Mean Std.Error Mean Std.Error

η1→2 -3.47 -3.56 (0.21) -3.48 (0.14) -3.63 (0.67)
η1→3 -5.88 -6.18(94) (0.70) -6.30(94) (0.93) -6.66(94) (1.59)
η2→1 -5.04 -5.20 (0.49) -5.39 (0.74) -6.78 (2.20)
η2→3 -3.04 -3.09 (0.16) -3.06 (0.11) -3.18 (0.28)
η2→4 -5.84 -6.15(96) (0.72) -6.09(96) (0.64) -6.72(96) (1.87)
η2→D -7 -7.20(32) (1.03) -7.96(32) (3.00) -7.75(32) (2.13)
η3→2 -4.5 -4.63 (0.52) -4.99 (0.80) -7.22 (2.14)
η3→4 -3.1 -3.22 (0.24) -3.14 (0.13) -3.39 (0.93)
η3→D -2.5 -2.57 (0.16) -2.51 (0.10) -2.61 (0.24)
η4→3 -5.2 -5.65(85) (1.00) -6.16(85) (1.52) -6.32(85) (1.92)
η4→D -1.7 -1.70 (0.12) -1.72 (0.10) -1.83 (0.19)
α1→3 -0.1 -0.09(94) (0.44) -0.50(94) (0.72) -0.01(76) (0.06)
α2→1 0.1 -0.09(71) (0.97) 0.41 (0.63) 0.49 (1.34)
α2→3 -0.2 -0.12 (0.61) -0.28 (0.27) -0.27 (0.62)
α2→4 -0.08 -0.20(96) (0.36) -0.41(96) (0.63) -0.03(77) (0.08)
α2→D -0.01 -0.23(32) (0.81) -0.56(32) (0.92) -0.03(23) (0.07)
α3→2 0.12 0.26(71) (1.44) 0.52 (0.69) 0.44(41) (1.27)
α3→4 -0.1 -0.11 (0.60) -0.24 (0.31) -0.16(96) (0.80)
α3→D -0.2 -0.23 (0.40) -0.23 (0.21) -0.17 (0.47)
α4→3 0.1 0.11(64) (0.93) 0.63 (0.86) 0.42(70) (1.23)
α4→D -0.5 -0.47 (0.94) -0.46 (0.23) -0.57 (0.57)
ρ 0.50 0.56 (0.26) 0.46 (0.28) 0.06 (0.12)
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Table 3: Monte Carlo Results III: discretized O-U process

This table contains parameter estimates for the MLFI model, λk
s(t) = Y k

s (t) · exp[ηs +αsψ(t)], for k = 1, . . . ,K
with the number of units K = 100, , and the number of transition types s = 1, . . . , 16. The true parameters
are presented in the first column. There are 4 rating classes (plus default). Initial ratings are distributed
evenly over these classes. Here I estimate the model with a single latent discretized O-U process ψ (the details
of this specification are presented in the text), with parameter ρ = 0.9. The maximum time T is set to 30
time-units, unless the complete sample has entered into the absorbing (default) state at an earlier stage. I
performed 100 replications for each estimation method using the same simulated datasets (DK-SML indicates
the Durbin-Koopman SML methodology, EIS-SML corresponds to the SML technique of Liesenfeld and Richard
and DY-AML denotes the Davis-Yam approximate ML procedure) as far as possible.a Monte-Carlo averages and
standard errors (in parentheses) are presented for those parameters that have a sufficient number of occurrences
over all simulations. Superscript numbers between parentheses indicate the number of valid estimates used to
compute the Monte Carlo statistics over all simulations.

aIn 4 out of the 100 common simulated datasets the Ox implementation of the DY-AML method collapsed
numerically (providing no estimates). In these cases estimation was performed over 4 distinct simulated datasets.

Parameter True DK-SML EIS-SML DY-AML
Value Mean Std.Error Mean Std.Error Mean Std.Error

η1→2 -3.47 -3.49 (0.29) -3.44 (0.16) -3.54 (0.22)
η1→3 -5.88 -6.47(93) (2.15) -5.92(93) (0.43) -6.18(93) (0.64)
η2→1 -5.04 -5.27 (0.56) -5.15 (0.32) -5.05 (0.31)
η2→3 -3.04 -3.12 (0.42) -2.97 (0.26) -3.19 (0.18)
η2→4 -5.84 -6.17 (1.42) -6.13 (1.70) -6.33 (2.56)
η2→D -7 -6.66(35) (1.40) -6.53(35) (0.63) -6.62(35) (0.42)
η3→2 -4.5 -4.72 (0.64) -4.58 (0.42) -4.47 (0.33)
η3→4 -3.1 -3.22 (0.52) -3.11 (0.19) -3.22 (0.19)
η3→D -2.5 -2.53 (0.32) -2.44 (0.24) -2.65 (0.19)
η4→3 -5.2 -5.32(78) (0.95) -5.11(78) (0.44) -5.15(78) (0.79)
η4→D -1.7 -1.58 (0.45) -1.52 (0.62) -2.04 (0.34)
α1→2 -0.08 -0.079 (0.004) -0.05 (0.08) -0.09 (0.11)
α1→3 -0.1 -0.08(93) (0.19) -0.18(93) (0.31) -0.23(93) (0.29)
α2→1 0.1 -0.033 (2.01) 0.11 (0.17) 0.15 (0.20)
α2→3 -0.2 -0.13 (0.36) -0.07 (0.10) -0.19 (0.09)
α2→4 -0.08 -0.18 (0.15) -0.16 (0.27) -0.17 (0.25)
α2→D -0.01 -0.11(35) (0.41) -0.19(35) (0.34) -0.19(35) ( 0.30)
α3→2 0.12 0.29 (2.23) 0.19 (0.34) 0.17 (0.23)
α3→4 -0.1 -0.09 (0.42) -0.07 (0.11) -0.13 (0.12)
α3→D -0.2 -0.15 (0.20) -0.08 (0.11) -0.20 (0.09)
α4→3 0.1 0.31(78) (1.11) 0.14(78) (0.23) 0.29(78) (0.65)
α4→D -0.5 -0.27 (0.81) -0.18 (0.46) -0.49 (0.14)
ρ 0.90 0.73 (0.28) 0.75 (0.29) 0.79 (0.22)
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