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SUMMARY

State space models with nonstationary processes and fixed regression effects require a state

vector with diffuse initial conditions. Different likelihood functions can be adopted for the

estimation of parameters in time series models with diffuse initial conditions. In this paper we

consider profile, diffuse and marginal likelihood functions. The marginal likelihood is defined

as the likelihood function of a transformation of the data vector. The transformation is not

unique. The diffuse likelihood is a marginal likelihood for a specific data transformation that

may depend on parameters. Therefore, the diffuse likelihood can not be used generally for

parameter estimation. Our newly proposed marginal likelihood function is based on an or-

thonormal transformation that does not depend on parameters. Likelihood functions for state

space models are evaluated using the Kalman filter. The diffuse Kalman filter is specifically

designed for computing the diffuse likelihood function. We show that a modification of the

diffuse Kalman filter is needed for the evaluation of our proposed marginal likelihood function.

Diffuse and marginal likelihood functions have better small sample properties compared to the

profile likelihood function for the estimation of parameters in linear time series models. The

results in our paper confirm the earlier findings and show that the diffuse likelihood function

is not appropriate for a range of state space model specifications.

Some key words: Diffuse likelihood; Kalman filter; Marginal likelihood; Multivariate time series

models; Profile likelihood.
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1 Introduction

Consider the linear regression model y = Xβ+u with observation vector y, covariate matrix X,

regression coefficient vector β and disturbance vector u ∼ N(0, σ2Ω) where σ is the scaling factor

and Ω is a variance matrix depending on the vector of nuisance parameters θ. We therefore

may write Ω = Ω(θ) and possibly X = X(θ). The marginal likelihood function is defined as the

likelihood function of a transformation of the observations in y such that the transformed data

is orthogonal in X and therefore independent of β. The profile likelihood function for the linear

regression model is the likelihood function evaluated at the maximum likelihood estimate of

β. In econometrics, the profile likelihood function is also known as the concentrated likelihood

function. Among others, Cooper and Thompson (1977) and Tunnicliffe-Wilson (1989) argue

that the marginal likelihood is superior to the profile likelihood for the inference of nuisance

parameters collected in vector θ. The marginal likelihood is for a (transformed) random variable

and therefore its score vector has expectation zero, see, for example, Shephard (1993), Rahman

and King (1997) and Francke and de Vos (2007).

The state space form for linear Gaussian time series models is convenient for likelihood-

based estimation, signal extraction and forecasting. State space models can be represented as

linear regression models with specifically designed matrices X and Ω, see Durbin and Koopman

(2001, section 4.11). The likelihood function for stationary time series models can be evalu-

ated by the Kalman filter as it effectively carries out the prediction error decomposition, see

Schweppe (1965) and Harvey (1989). Nuisance parameter vector θ can be estimated by directly

maximising the likelihood function. Time series models with (time-varying) regression para-

meters and nonstationary latent factors require state space formulations with unknown initial
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conditions. In cases where the initial conditions are treated as fixed regression coefficients, the

profile likelihood function can be computed as in Rosenberg (1973). When they are treated

as random variables with large variances converging to infinity, a so-called diffuse likelihood

function can be defined and be computed as described in, among others, Harvey (1989, section

3.4.3), Ansley and Kohn (1985, 1990), De Jong (1988, 1991) and Koopman (1997). The dif-

fuse likelihood function is a marginal likelihood function based on a transformation that is not

necessarily invariant to the parameter vector θ. In this paper we develop a marginal likelihood

function for the state space model that is always invariant to θ in linear models. The evalua-

tion of the marginal likelihood requires a modification of the diffuse Kalman filter. We further

discuss its relation with profile and diffuse likelihood functions.

In section 2 we develop general expressions for the profile, diffuse and marginal likelihood

functions and we discuss their merits. Section 3 shows how the Kalman filter needs to be

modified for the computation of the marginal likelihood function. Illustrations are given in

Section 4. It is shown that different specifications of the same model lead to different diffuse

likelihood functions while the marginal likelihood functions remain equal. Section 5 concludes.

2 Likelihood functions for state space models

For the Nt × 1 vector of time series yt, with t = 1, . . . , T , the state space model is given by

yt = Ztαt + εt, αt+1 = Ttαt +Rtηt, (1)

with p×1 state vector αt and where the system matrices Zt, Tt and Rt are fixed but may depend

on known functions of parameter vector θ. The disturbance vectors εt and ηt are mutually and
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serially independent and distributed by

εt ∼ NID(0, σ2Ht), ηt ∼ NID(0, σ2Qt), (2)

where σ2 is a scaling factor and variance matrices Ht and Qt are fixed but may depend on θ as

well. The state space model specification is completed with the initial state vector modelled by

α1 = a + Aβ + Cξ, ξ ∼ N(0, σ2Q0), (3)

where vector a and matrices A, C and Q0 are fixed system variables of appropriate dimensions.

The random vector ξ is independent of the other disturbances. The k × 1 vector of coefficients

β can be treated in two ways: (i) as a fixed and unknown vector; (ii) as a diffuse random vector,

distributed by β ∼ N(0, σ2Σ) where Σ−1 → 0. The initial state constant a is for known effects,

the coefficient vector β is for unknown regression effects and for initial effects in nonstationary

processes while the random vector ξ is for the exact initialisation of stationary processes. Since

ξ is a random vector with a properly defined variance matrix, we are not interested in case

(ii) with Σ as a regular variance matrix and therefore we assume always that Σ−1 → 0 and

E(β) = 0 without loss of generality. Finally, the (possibly time-varying) system matrices are

fixed and known functions of the vector of nuisance parameters θ. Textbook treatments of state

space time series models are, amongst others, given by Anderson and Moore (1979), Harvey

(1989) and Durbin and Koopman (2001).

The state space model (1) can be represented as a linear regression model. In particular,

we can consider the formulation

y = c+Xβ + u, u ∼ N(0, σ2Ω). (4)
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The equivalence of (4) with the state space model is obtained by defining

y = (y′1, . . . , y
′

T
)′, (c,X) = Z

[

I , T1 , . . . ,
1

∏

t=T−1

Tt

]

′

(a, A), (5)

where Z = diag(Z1, . . . , ZT ) and with Ω representing the covariance structure implied by the

state space model and depending on all system matrices. The dimension of y is n × 1 with

n =
∑

T

t=1
Nt and the dimension of X is n × k. As system matrices may depend on θ, the

explanatory variable matrix X = X(θ) and covariance matrix Ω = Ω(θ) may also depend on θ.

2.1 Profile likelihood function

In terms of the linear regression model (4) with a fixed and unknown β, the likelihood function

is denoted by L = exp{ℓ(y; β, σ, θ)} and the scaled loglikelihood function is given by

−2 logL = −2ℓ(y; β, σ, θ)

= n log 2π + n log σ2 + log |Ω| + σ−2(y − c−Xβ)′Ω−1(y − c−Xβ).

(6)

Analytical expressions for the maximum likelihood estimators for β and σ can be obtained and

are given by the generalized least squares expressions

β̂ = (X ′Ω−1X)−1X ′Ω−1(y − c), σ̂2 = n−1RSS, RSS = (y − c)′Ω−1MΩ(y − c), (7)

whereMΩ = I−X(X ′Ω−1X)−1X ′Ω−1. The loglikelihood function (6) at the maximized location

of β = β̂ is given by

−2 logLP = −2ℓ(y; β̂, σ, θ) = n log 2π + n log σ2 + log |Ω| + σ−2RSS, (8)

and is defined as the profile loglikelihood function. We obtain the concentrated profile log-

likelihood function by replacing σ2 by its maximum likelihood estimator σ̂2 = RSS / n, that

is

−2 logLP

c
= −2ℓ(y; β̂, σ̂, θ) = n log 2π + n log RSS − n logn + log |Ω| + n. (9)
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2.2 Diffuse likelihood function

In terms of the linear regression model with a random vector β ∼ N(0, σ2Σ), the loglikelihood

function is given by

ℓ(y; σ, θ) = ℓ(y|β; σ, θ) + ℓ(β; σ, θ) − ℓ(β|y; σ, θ), (10)

where ℓ(y|β; σ, θ) = ℓ(y; β, σ, θ) is given in (6) while ℓ(β; σ, θ) = ℓ(β; σ) with

−2ℓ(β; σ) = k log 2π + k log σ2 + log |Σ| + σ−2β ′Σ−1β.

The density implied by ℓ(β|y; σ, θ) is obtained as follows. Since E(y) = c + XE(β) = c,

Var(y) = σ2(XΣX ′ + Ω), E(β) = 0, Var(β) = σ2Σ and E(βy′) = σ2ΣX ′, we obtain

E(β|y) = E(βy′)Var(y)−1[y − E(y)]

= ΣX ′(XΣX ′ + Ω)−1(y − c)

= (Σ−1 +X ′Ω−1X)−1X ′Ω−1(y − c),

Var(β|y) = Var(β) − E(βy′)Var(y)−1E(yβ ′)

= σ2Σ − σ2ΣX ′(XΣX ′ + Ω)−1XΣ

= σ2(Σ−1 +X ′Ω−1X)−1,

where we have suppressed the dependence on σ and θ. These results follow from a matrix

inversion lemma and some minor manipulations. The first term in the right-hand side of (10)

becomes

−2ℓ(β|y; σ, θ) = k log 2π + k log σ2 − log |Σ−1 +X ′Ω−1X| + σ−2β ′(Σ−1 +X ′Ω−1X)β

+ σ−2(y − c)′Ω−1X(Σ−1 +X ′Ω−1X)−1X ′Ω−1(y − c) − 2σ−2(y − c)′Ω−1Xβ.

By re-arranging the different terms of the loglikelihood function (10), we obtain

−2ℓ(y; σ, θ) = n log 2π + n log σ2 + log |Ω| + log |Σ| + log |Σ−1 +X ′Ω−1X|

+ σ−2(y − c)′[Ω−1 − Ω−1X(Σ−1 +X ′Ω−1X)−1X ′Ω−1](y − c).
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The diffuse loglikelihood function logLD is defined as

ℓ∞(y; σ, θ) = lim
Σ−1

→0

ℓ(y; σ, θ) +
1

2
log |Σ|, (11)

from which it follows that

−2 logLD = −2ℓ∞(y; σ, θ) = n log 2π + n log σ2 + log |Ω| + log |X ′Ω−1X| + σ−2RSS, (12)

which is equivalent to (8) apart from the term log |X ′Ω−1X|. This result is due to De Jong

(1991). The loglikelihood function (12) at the maximized location of σ = σ̂ is given by

−2 logLD

c
= −2ℓ∞(y; σ̂, θ) = n log 2π + n log RSS − n logn+ log |Ω|+ log |X ′Ω−1X|+ n. (13)

which is equivalent to (9) apart from the term log |X ′Ω−1X|.

The definition of the diffuse loglikelihood function (11) may be regarded as somewhat ad

hoc. For example, an alternative suggestion is to define the diffuse loglikelihood function as

ℓ∗
∞

(y; σ, θ) = lim
Σ−1

→0

ℓ(y; σ, θ) +
1

2
log |2πσ2Σ|, (14)

see De Jong and Chu-Chun Lin (1994). In light of definition (14), the likelihood functions (12)

and (13) remain the same but with n replaced by m = n− k. The alternative definition in (14)

becomes relevant in the discussion of the marginal likelihood function in the next subsection.

2.3 Marginal likelihood function

The concept of marginal likelihood has been introduced by Kalbfleisch and Sprott (1970).

The marginal likelihood function for model (4) is defined as the likelihood function that is

invariant to the regression coefficient vector β. Many contributions in the statistics literature

have developed the concept of marginal likelihoods further and have investigated this approach
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in more detail, for example, see Patterson and Thompson (1971), Harville (1974), King (1980),

Smyth and Verbyla (1996), and Rahman and King (1997). In particular, McCullagh and

Nelder (1989) consider the marginal likelihood function for the generalized linear model. The

marginal likelihood function has also been adopted for the inference of nuisance parameters

in time series models, for example, see Levenbach (1972), Cooper and Thompson (1977) and

Tunnicliffe-Wilson (1989). In the linear model y = c + Xβ + u where u ∼ N(0,Ω) with

X = X(θ) and Ω = Ω(θ), the marginal likelihood function is for a transformed data vector

y∗ = A′y that does not depend on β. The transformation matrix A has dimension n×m with

m = n − k, is of full column rank and is subject to A′X = 0. Apart from these conditions,

the choice of matrix A is irrelevant. In our context of likelihood-based inference for θ, it is

important to assume that matrix A does not depend on θ.

The scaled log-density function of y∗ is given by

−2ℓ(y∗; σ, θ) = m log 2π +m log σ2 + log |A′ΩA| + σ−2(y − c)′A(A′ΩA)−1A′(y − c), (15)

since A′X = 0. The equalities

(ΩA,X)′A(A′ΩA)−1A′ = (A, 0)′, ⇔ (ΩA,X)′Ω−1MΩ = (A, 0)′,

imply that A(A′ΩA)−1A′ = Ω−1MΩ. Furthermore, since

|Ω| · |A′A| · |X ′X| = |(A,X)′Ω(A,X)|

= |A′ΩA| · |X ′ΩX −X ′ΩA(A′ΩA)−1A′ΩX|

= |A′ΩA| · |X ′ΩX −X ′MΩΩX|

= |A′ΩA| · |X ′X|2 · |X ′Ω−1X|−1,

the determinental term in the density is |A′ΩA| = |Ω| · |A′A| · |X ′X|−1|X ′Ω−1X|. Following

Harville (1974) we normalize matrix A such that A′A = Im and |A′A| = 1. The marginal
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likelihood function with respect to β is based on the density of y∗ = A′y. The scaled marginal

loglikelihood function is then given by

−2 logLM = −2ℓ(y∗; σ, θ) (16)

= m log 2π +m log σ2 + log |Ω| + log |X ′Ω−1X| − log |X ′X| + σ−2RSS.

The marginal likelihood (16) is equivalent to (12) apart from the term log |X ′X| and n replaced

by m. When the diffuse likelihood function is defined as in (14), the marginal likelihood only

differs by the term log |X ′X|.

The variance scalar σ2 can also be concentrated out from the marginal likelihood function.

The marginal likelihood evaluated at the maximized value of σ is given by

−2 logLM

c
= −2ℓ(y∗; σ̂, θ) (17)

= m log 2π +m log RSS −m logm+ log |Ω| + log |X ′Ω−1X| − log |X ′X| +m,

and is equivalent to (13) apart from the term log |X ′Ω−1X| and n replaced by m. Expressions

(16) and (17) are new and convenient for our purposes below.

2.4 Discussion of likelihood functions

The close resemblance of the diffuse and marginal likelihoods has been discussed by Shephard

(1993) and Kuo (1999). Their marginal likelihood function does not have the term log |X ′X| in

(16) and the marginal and diffuse likelihood functions are proportional. They also argue that

the marginal likelihood function is based on the density of a random variable and therefore the

score function has zero expectation. Given that the difference between the profile and marginal

likelihoods is the term log |X ′Ω−1X| − log |X ′X| where Ω = Ω(θ) and X = X(θ), it is obvious
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that the score of the profile likelihood function is non-zero and the profile likelihood is subject

to a bias term. As a result, the use of the profile likelihood function introduces bias in the

estimation of θ.

In cases where X does not depend on θ, the marginal and diffuse likelihoods are indeed

proportional to each other and the choice between the two likelihoods is irrelevant for the

inference of θ. This fact is recognised by Ansley and Kohn (1985) in their treatment of the diffuse

likelihood function and they explicitly assume that θ does not influence the transformation

matrix. However, in the next section we consider cases where matrix X does depend on θ,

that is X = X(θ). Then, the data transformation implied by the diffuse likelihood function of

Shephard (1993) and Kuo (1999) is based on some matrix A∗ for which we can assume that

|A∗′A∗| ∝ |X ′X| without loss of generality. In case X = X(θ), the diffuse likelihood function

is not appropriate for a likelihood-based analysis with respect to θ. The marginal likelihood

function defined by (16) is based on the transformation matrix A with A′A = I as shown in the

previous subsection. The orthonormal transformation does not depend on θ in linear models

and therefore can be used for the inference of θ. In other words, the term log |X ′X| in (16) and

(17) cannot be ignored.

In case the regression model (4) implies a time series model in the state space form (1),

matrix X and its dependence on θ should be considered carefully. In case of stationary time

series models without regression effects, this issue does not arise as β is not present. In case

regression effects are present and in case the model includes nonstationary processes, coefficient

vector β is present and the dependence of θ on covariate matrix X must be taken into account.

The use of the marginal likelihood function is recommended for this class of linear time series

models.

11



3 Evaluation of likelihood functions

The Kalman filter effectively carries out the prediction error decomposition for time series

models in the state space representation (1), see Schweppe (1965) and Harvey (1989). The

prediction error decomposition is based on

ℓ(y) = ℓ(y1, . . . , yT ) = ℓ(y1)

T
∏

t=2

ℓ(yt|Yt−1),

where Yt = {y1, . . . , yt}. The prediction error vt = yt − E(yt|Yt−1), with its variance matrix

Ft = Var(yt|Yt−1) = Var(vt), is serially uncorrelated when the model is correctly specified. This

implies that Var(v) = F is block-diagonal with prediction error vector v = (v1, . . . , vT )′ and

associated variance matrix F = diag(F1, . . . , FT ). The Kalman filter therefore carries out the

Cholesky decomposition Ω = L−1FL′−1, or F = LΩL′, where Ω = Ω(θ) is implied by state

space model (1) and n × n matrix L is a lower block unity triangular matrix with |L| = 1. It

also implicitly follows that v = L(y − c).

The Kalman filter for the state space model (1) with β = 0 in the initial state specification

(3) is given by

vt = yt − Ztat, Ft = ZtPtZ
′

t
+Ht,

Kt = TtPtZ
′

t
F−1

t ,

at+1 = Ttat +Ktvt, Pt+1 = TtPtT
′

t
−KtFtK

′

t
+ RtQtR

′

t
,

(18)

for t = 1, . . . , T and with a1 = a and P1 = CQ0C
′. The likelihood function (6) with β = 0 can

be written as

−2 logL = n log 2π + n log σ2 + log(|L||Ω||L′|) + σ−2(y − c)′L′L′−1Ω−1L−1L(y − c)

= n log 2π + n log σ2 + log |F | + σ−2v′F−1v

= n log 2π + n log σ2 +
∑

T

t=1
log |Ft| + σ−2

∑

T

t=1
v′

t
F−1

t vt.
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It follows that the Kalman filter can evaluate the likelihood function (6) with β = 0 in a

computationally efficient way.

3.1 Evaluation of profile likelihood

The evaluation of the profile likelihood functions (8) and (9) focuses on

log |Ω| = log |LΩL′| = log |F |, RSS = (y − c)′L′L′−1Ω−1L−1LMΩL
−1L(y − c) = v′F−1M∗v,

where

M∗ = LMΩL
−1 = I − LX(X ′L′L′−1Ω−1L−1LX)−1X ′L′L′−1ΩL−1 = I − V (V ′F−1V )−1V ′F−1,

with V = LX. It follows that

RSS = q − s′S−1s, where q = v′F−1v, s = V ′F−1v, S = V ′F−1V. (19)

We note that q ≡ (y − c)′Ω−1(y − c), s ≡ X ′Ω−1(y − c) and S ≡ X ′Ω−1X. Given that the

Kalman filter evaluates the block elements of v = L(y − c) recursively, the columns of matrix

V = LX = L(X1, . . . , Xk), where X i is the ith column of X for i = 1, . . . , k, can be evaluated

simultaneously and recursively in the following way

Vt = Xt − ZtAt, At+1 = TtAt +KtVt, (20)

with A1 = A and V = (V ′

1 , . . . , V
′

T
)′. Further, we have

q =
T

∑

t=1

v′
t
F−1

t
vt, s =

T
∑

t=1

V ′

t
F−1

t
vt, S =

T
∑

t=1

V ′

t
F−1

t
Vt.

The Kalman filter with the additional recursion (20) is referred to as the diffuse Kalman filter

and is developed by De Jong (1991).
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The likelihood function (6), for any β, and the profile loglikelihood functions logLP and

logLP

c
can be expressed by

−2 logL = n log 2π + n log σ2 + log |F | + σ−2(v − V β)′F−1(v − V β),

−2 logLP = n log 2π + n log σ2 + log |F | + σ−2(q − s′S−1s),

−2 logLP

c
= n log 2π + n log(q − s′S−1s) − n log n+ log |F | + n,

which can be evaluated by the diffuse Kalman filter in a computationally efficient way.

3.2 Evaluation of diffuse likelihood

The diffuse loglikelihood functions (12) and (13) are evaluated by

−2 logLD = m log 2π +m log σ2 + log |F | + log |S| + σ−2(q − s′S−1s),

−2 logLD

c
= m log 2π +m log(q − s′S−1s) −m logm+ log |F | + log |S| +m,

respectively. Here we have replaced n by m and in effect have adopted definition (14) for the

diffuse likelihood function. All terms can be evaluated by the diffuse Kalman filter.

3.3 Evaluation of marginal likelihood

The marginal loglikelihood differs from the diffuse loglikelihood by the term 1

2
log |X ′X|. It

follows from the design of X in (5), implied by the state space model (1), that the k×k matrix

S∗ = X ′X can be evaluated by the recursion

V ∗

t
= ZtA

∗

t
, A∗

t+1 = TtA
∗

t
, t = 1, . . . , T, (21)

with A∗

1 = A∗ and S∗ =
∑

n

t=1
V ∗′

t
V ∗

t
. The marginal loglikelihood functions are given by

−2 logLM = m log 2π +m log σ2 + log |F | + log |S| − log |S∗| + σ−2(q − s′S−1s),

−2 logLM

c
= m log 2π +m log(q − s′S−1s) −m logm+ log |F | + log |S| − log |S∗| +m,

and are evaluated by the diffuse Kalman filter together with the additional recursion (21).
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4 Illustrations

In this section we explore the differences between estimation based on the profile, diffuse and

marginal likelihood functions. The diffuse and marginal likelihood functions have score func-

tions with zero expectations since they are based on a random variable (the transformed data

vector). As a result, the profile likelihood function does not have this property. The non-

zero expectation of the score for the profile likelihood leads to a bias in the estimation of

θ. Shephard and Harvey (1990), Shephard (1993) and Kuo (1999) have investigated this in

more detail in the context of estimating the signal-to-noise ratio of the stochastic trend model

yt = µt + ǫt with trend µt as the random walk process µt+1 = µt + ηt and signal-to-noise ratio

q = var(ηt) / var(ǫt). Based on a set of Monte Carlo studies, it is found that the estimation

of the signal-to-noise ratio q based on the profile likelihood leads to many zero estimates while

the underlying data generating process used a strictly positive q value. Estimation based on

the diffuse/marginal likelihood function reduces this bias substantially. In this section we con-

firm these findings and review the consequences of considering stationary, nonstationary and

multivariate time series models. Furthermore, we argue that in cases of interest the marginal

likelihood function (16) should be used rather than profile or diffuse likelihood functions for

parameter estimation. Since we focus on differences between likelihood functions, we present

them explicitly in Table 1.

4.1 Stationary time series models

The state space form of a linear stationary time series model without regression effects has

a state vector depending only on stationary processes and with initial condition (3) given by
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Table 1: Differences between the loglikelihood functions. The loglikelihood functions logLP ,

logLD and logLM refer to (8), (12) and (16), respectively, while logLD∗ refers to the diffuse

loglikelihood function as defined by (14) which is equal to (12) with n replaced by m. Matrices

S and S∗ are defined below (20) and (21), respectively. The lower triangular part of the table

represents the differences of the loglikelihood functions. The upper triangular part reports the

differences in the data vector dimensions.

−2 logLP −2 logLD −2 logLD∗ −2 logLM

−2 logLP 0 0 n−m n−m

−2 logLD log |S| 0 n−m n−m

−2 logLD∗ log |S| 0 0 0

−2 logLM log |S| − log |S∗| − log |S∗| − log |S∗| 0

α1 = a+Cξ, that is β = 0. As a result, the matrix X is non-existent and the profile, marginal

and diffuse likelihood functions are equivalent. In case the stationary time series model contains

linear regression effects, the vector β 6= 0 in (3) represents the regression coefficients in the

model. The resulting matrix X in (5) is exogenous and does not depend on θ. The profile

likelihood does not have the term log |S| = log |X ′Ω−1X| while only the marginal likelihood

functions has the term log |S∗| = log |X ′X|. Since |X ′X| is fixed, the diffuse and marginal

likelihood functions are proportional to each other and the estimation of θ is not affected by

the choice between the two. The profile likelihood function will lead to a maximum likelihood

estimator of θ that is different from the one based on the diffuse/marginal likelihood function.
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4.2 Nonstationary time series models

The initial conditions of nonstationary components in a time series model must depend on

the vector β in (3). In such cases, β 6= 0 and as long as vector θ does not enter X, the

diffuse and marginal likelihoods are proportional and provide the same maximum likelihood

estimates of θ. The profile likelihood function leads to a different estimate of θ. Shephard and

Harvey (1990) and Shephard (1993) carry out Monte Carlo studies using the stochastic trend

model with a strictly positive signal-to-noise ratio as the data generating process. They show

that the number of zero estimates of the signal-to-noise ratio based on the profile likelihood is

considerably higher than based on the marginal likelihood. They obtain similar results when

regression effects are introduced in the model, requiring the extension of β with regression

coefficients. We have been able to reproduce their findings.

Testing for unit roots in autoregressive models also provides an illustration of the difference

between profile and marginal likelihood functions. For example, the first-order autoregressive

model with a constant is given by

yt = µ+ ut, ut+1 = ρut + εt, εt ∼ NID(0, σ2
ε
), (22)

for t = 1, . . . , T , where

u1 =















ξ for ρ = 1,

N{0, σ2
ε
/ (1 − ρ2)} for |ρ| < 1,

with ξ as an unknown scalar. The specification of the initial condition (22) is coherent as the

variance of u1 goes to infinity for ρ ↑ 1. The core of this problem is that the profile likelihood

degenerates in the unit root. The marginal likelihood is well-defined for −1 < ρ ≤ 1 where

the profile likelihood is zero when ρ = 1. Francke and de Vos (2007) show that unit root tests
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based on the marginal likelihood ratio outperform other well-known tests in the literature. This

result holds specifically for small samples.

4.3 Multivariate nonstationary time series models

The generality of the state space framework allows different state space representations of the

same time series model. The likelihood value should not depend on the particular state space

formulation that is used. However, we will show that this can be the case for the diffuse

likelihood function while this is not the case for the profile and marginal likelihood functions.

A convenient illustration is given in the context of multivariate time series models. Consider

a model with random walk trends from which some trends are possibly common to all series.

The N × 1 vector of observations yt is then modelled by

yt = γ + Λµt + εt, µt+1 = µt + ηt, ηt ∼ N(0, Ir), (23)

for t = 1, . . . , T , where µt is an r×1 vector of independent random walks with r < N and γ is an

N×1 fixed unknown vector for which the first r elements are zero, γ = (0, . . . , 0, γr+1, . . . , γN)′.

The N × r matrix of factor loadings Λ has unknown fixed elements which are collected in the

parameter vector θ. The properties of disturbance vector εt are not relevant for this illustration

but εt is assumed Gaussian and independent of ηs for t, s = 1, . . . , T .

A valid state space formulation (1) of model (23) can be based on the N × 1 state vector

αt = (µ′

t
, γr+1, . . . , γN)′ and with system matrices

Zt =









Λ1 0

Λ2 IN−r









, Tt = IN , Rt =









Ir

0









, Qt = Ir, (24)

where Λ1 consists of the first r rows of Λ and Λ2 are the remaining N − r rows of Λ. Given
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the nonstationary process for µt, all initial values in αt at t = 1 are treated as unknown

coefficients and collected in vector β of (3). The initial state condition for this time series

model is therefore given by (3) with a = 0, B = IN and C = 0. As a result, we have matrix

X = (Z ′

1, . . . , Z
′

T
)′ in (5) that depends on Λ and therefore X = X(θ). For this state space

formulation, the marginal and diffuse likelihood functions are different. It is easily shown that

|S∗| = |X ′X| = T |Λ′

1Λ1| = T |Λ1|
2 where S∗ is formally defined below (21).

Alternatively, a state space formulation (1) of model (23) can be based on the N × 1 state

vector αt = γ + Λµt and with system matrices Zt = IN , Tt = IN , Rt = Λ and Qt = Ir.

The initial state conditions in (3) remain the same with a = 0, B = IN and C = 0. In this

case, n × N matrix X = (IN , . . . , IN)′ in (5), with n = N · T , does not depend on θ and

the marginal and diffuse likelihoods are proportional to each other. It can be shown that the

marginal likelihood functions for both state space representations are proportional. The diffuse

likelihood functions are different for the two alternative state space formulations. In the first

case, we have, say, S = S1 and in the second case, we have, say, S = S2. It then follows that

S2 = (IN , . . . , IN)Ω−1(IN , . . . , IN)′ and S1 = Z ′S2Z where Z = diag(Z1, . . . , ZT ) and with Zt as

defined in the first state space representation (24) for t = 1, . . . , T . The determinental terms |S1|

and |S2| therefore differ by the term T |Λ1|
2. This term is equal to |S∗| for the first state space

representation. In other words, the marginal likelihood for the first state space representation is

equivalent to the marginal likelihood and (upto proportionality) to the diffuse likelihood for the

second state space representation. The diffuse likelihood for the first representation is different.

Finally, the transformation matrix A, underlying the marginal likelihood function and subject

to A′X = 0, does not depend on θ (as required) since X does not depend on θ. In cases that

X depends on θ in a linear way, matrix A does still not depend on θ.
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Figure 1: Marginal and diffuse loglikelihood functions for a bivariate version of the model (23), represented by the state space

form (24), as functions of ψ =
√

Var(ηt). The true value of ψ is 0.25.
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To illustrate that the diffuse likelihood function may be inappropriate, we consider state

space representation (24) for model (23) with N = 2 and r = 1. We simulate T = 100

observations from the bivariate common trend model (23) with γ = (0, 1)′, Λ = (1, 0.1)′,

Var(ǫt) = I2 and Var(ηt) = 0.252. Figure 1 presents the marginal and diffuse loglikehoods as

functions of ψ =
√

Var(ηt). The diffuse likelihood is clearly not proportional to the marginal

likelihood while the maximum of the latter is in the neighborhood of the true value ψ = 0.25.

The diffuse and marginal loglikelihood functions for the second state space representation are

proportional to the marginal loglikelihood as depicted in Figure 1.

5 Conclusion

In this paper we have argued for the preference of the marginal likelihood function over the

profile and diffuse likelihood functions when we estimate parameters in time series models

with nonstationary components and unknown regression effects. In many cases, the diffuse

and marginal likelihood functions are proportional to each other. However, in cases where

the implied data transformation for the diffuse likelihood function depends on parameters,

estimation based on the diffuse likelihood function will lead to unreliable results. For these

cases, the marginal likelihood as defined by Harville (1974) and adapted for state space models

in this paper should be considered since the implied data transformation does not depend on

parameters in linear models.
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