-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by DSpace at VU

Towardsvery large, self-managing distributed systems
Extended abstract

Maarten van Steen

Vrije Universiteit Amsterdam

I ntroduction

As distributed systems tend to grow in the number of components and in their geograph-
ical dispersion, deployment and management are increasingly becoming problematic.
For long, there has been a tradition of developing architectures for managing networked
and distributed systems [2]. These architectures tend to be complex, unwieldy, and in-
deed, difficult to manage. We need to explore alternative avenues if we want to construct
a next generation of distributed systems.

Recently, solutions have been sought to develop self-managing systems. The basic
idea here, is that a distributed system can continuously monitor its own behavior and
take corrective action when needed. As with many new, or newly introduced, concepts,
it is often difficult to separate hype from real content. In the case of self-management
(or other forms of self-x-ness), the low signal-to-noise ratio can be partly explained by
our poor understanding of what self-management actually means.

A self-managing user-centric CDN

In our own research on large-scale distributed systems at the Vrije Universiteit Amster-
dam, we have been somewhat avoiding the problem of systems management. However,
one of the lessons we learned from building Globe [8], is that supporting easy deploy-
ment and management is essential. Partly based on our experience with Globe, we are
currently developing a user-centric Content Delivery Network to further explore facil-
ities for self-management. This CDN, called Globule, is designed to handle millions
of users, each providing Web content by means of a specially configured Apache Web
server.

An important aspect of Globule is that a server can automatically replicate its Web
documents to other servers. For each document, a server evaluates several replication
strategies, and selects the best one on a per-document basis. This approach allows
for near-optimal performance in terms of client-perceived delays as well as total con-
sumed bandwidth [6]. In a recent study, we have also demonstrated that continuous
re-evaluation of selected strategies is needed, and that this can be done efficiently [7].
The approach we follow is to regularly perform trace-driven simulations for a specific
document, where each simulation entails a single replication strategy. Using a linear
cost function defined over performance metrics such as client-perceived latency and
consumed bandwidth, we can then compare the effects of applying different strategies.
These simulations take in the order of tens of milliseconds in order to select the best


https://core.ac.uk/display/15454352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

strategy for a given document. Clearly, Globule should be able to manage itself when
it comes to replicating documents, and as far as static content is concerned, such self-
management appears to be feasible.

However, much more is needed to develop a CDN such as Globule. For one thing,
if we are to replicate documents to where they are needed, it is mandatory that we can
locate clients and replica servers in the proximity of those clients. One problem that
needs to be solved is letting a Web server determine how close two arbitrary nodes
in the system actually are. Fortunately, it turns out that if we consider latency as a
distance metric, we can represent the nodes of a widely dispersed distributed system
in an N-dimensional Euclidean space [4,5]. In this way, estimating latency is nothing
more than a simple computation. In contrast to existing systems, latency estimations
in Globule can be obtained in a fully decentralized manner, which, in turn, simplifies
overall system management.

By introducing locations and easy-to-compute distances, it becomes feasible to au-
tomatically partition the set of nodes comprising a distributed system into manageable
parts. For example, by grouping nodes into geographical zones (where the geography
is fully determined by the Euclidean space mentioned before), we can assign special
nodes to zones in order to manage services, resources, etc. These special nodes, called
brokers in Globule, are elected as super peers from all available nodes, and together
form a separate overlay network using their own routing protocol. Whenever a node in
zone A requires services from a zone B (such as, for example, a list of potential replica
servers) it simply sends a request to a broker in A which will then forward the request
to a broker for B. In Globule, a zone is defined implicitly: it consists of the servers that
are closest to a given broker. As a consequence, zones do not overlap. Moreover, adding
and removing servers, be they brokers or not, is fully decentralized.

There are many variations on this theme, but it should be clear that grouping nodes
into zones and electing brokers for zones are things that can be done in a fully de-
centralized fashion. There is no need for manual intervention, although there are many
unresolved details concerning how this organization can be automatically done.

Epidemic-based solutions

One could argue that the description of a self-managing system given so far is largely
dictated by automating tasks that are currently handled manually. In this sense, self-
management is just a next step in the evolution of distributed systems. The question
comes to mind if there are radically different alternatives. We are currently exploring
epidemic-based systems for management tasks.

In an epidemic-based system, we are generally concerned with reaching eventual
consistency: in the absence of any further updates, all nodes should eventually reach
the same state. Data are spread by letting each node regularly contact an arbitrary other
node, after which the two exchange updates [1]. The problem with this approach for
very large systems, is that, in principle, every node should know the entire set of nodes
in order to guarantee random selection of a peer. One solution is to maintain, per node,
a small list of peers that represents a random sample from all nodes. Maintaining this
list is now the key to successfully applying epidemics in very large systems.



In the Newscast system, we take a simple approach. Every node maintains a fixed-
size list of length ¢ of newsitems. A news item contains data, the address of its source,
and the time when it was published. Once every AT time units, each node executes the
following steps [3]:

1. Add a fresh (node-specific) news item to the local list.

2. Randomly select a peer from those found in the list.

3. Send all entries to the selected peer, and, in turn, receive all that peer’s list entries.
4. Out of the (up to) 2c cache entries, keep the ¢ newest ones, and discard the rest.

The selected peer from step 2 executes the last two steps as well, so that after the
exchange both nodes have the same list. Note that as soon as any of these two nodes
executes the protocol again, their respective lists will most likely be different again.

The lists induce a communication graph with a link from node ato b if b is contained
in the list of a. As it turns out, for even a relatively small list size (c = 20), we can
show that communication graphs are strongly connected for up to hundred thousands
of nodes, and by simply increasing c, very large overlay networks of millions of nodes
can be accommodated. These networks exhibit properties common to what are known
as small worlds [9]. We have discovered that these networks are extremely robust: in
general, only after the removal of at least 70% of the nodes (and much more for ¢ >
20), the network is partitioned into one giant cluster and several (very) small clusters.
Most important, however, is that there is no need for centralized control — Newscast
networks are completely self-managing.

To illustrate this point, consider how membership is managed in Newscast. First,
nodes that want to leave can simply stop communication: they do not initiate a list
exchange, nor do they react to exchange requests. This behavior is exactly the same as
that of a failing node, and indeed, Newscast treats these two cases identically.

7
6 Stop with adding nodes |
5+ / -

Random with 5000 nodes

average pathlength

Use central server to add nodes

1 1 1 1 1
0 20 40 60 80 100 120 140
number of cycles

Fig. 1. The effect of continuously adding nodes that contact the same initial node.



Second, when a node wishes to join the network, it need only know the address of
one node, with whom it then seeks contact by executing the list exchange protocol (note
that its own list is empty). To see to what extent the selection of the initial contact node
affects overall behavior, we conducted a series of experiments in which all joining nodes
contact the same initial node. Clearly, this is a worst-case scenario. Figure 1 shows the
effect on the average path length while continuously adding 50 nodes until 5000 nodes
have joined. Compared to the “ideal” case, in which each new node contacts another,
randomly selected node, we see that soon after nodes are no longer added, the average
path length converges to that of the random case. Again, we see self-management at
work.

We have used Newscast for various system monitoring tasks, such as estimating the
size of the network, load balancing, and broadcasting alarms. In all cases, only a few
list exchanges per node are required to reach consistency. As such, it forms a powerful
tool for management of large distributed systems, notably because the protocol itself
barely requires any management at all.

Conclusions

Self-managing systems are in many cases not well understood and as a consequence
there is often much ado about nothing. However, it is also clear that we need concepts
such as self-management, self-healing, self-organization, and so on, in order to arrive
at a next generation of very large distributed systems. Fortunately, self-+ matters can be
made concrete and show to form a promising field that warrants further research.

References

1. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart,
and D. Terry. “Epidemic Algorithms for Replicated Database Maintenance.” In Proc. Sxth
Symp. on Principles of Distributed Computing, pp. 1-12. ACM, Aug. 1987.

2. H.-G. Hegering, S. Abeck, and B. Neumair. Integrated Management of Networked Systems.
Morgan Kaufman, San Mateo, CA, 1999.

3. M. Jelasity and M. van Steen. “Large-Scale Newscast Computing on the Internet.” Technical
Report IR-503, Vrije Universiteit, Department of Computer Science, Oct. 2002.

4. E. Ng and H. Zhang. “Predicting Internet Network Distance with Coordinates-Based Ap-
proaches.” In Proc. 21st INFOCOM Conf., June 2002. IEEE Computer Society Press, Los
Alamitos, CA.

5. M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti. “Lighthouses for Scalable Dis-
tributed Location.” In Proc. Second Int'| Workshop on Peer-to-Peer Systems, Feb. 2003.
Springer-Verlag, Berlin.

6. G. Pierre, M. van Steen, and A. Tanenbaum. “Dynamically Selecting Optimal Distribution
Strategies for Web Documents.” |EEE Trans. Comp., 51(6):637-651, June 2002.

7. S. Sivasubramanian, G. Pierre, and M. van Steen. “A Case for Dynamic Selection of Replica-
tion and Caching Strategies.” In Proc. Eighth Web Caching Workshop, Sept. 2003.

8. M. van Steen, P. Homburg, and A. Tanenbaum. “Globe: A Wide-Area Distributed System.”
IEEE Concurrency, 7(1):70-78, Jan. 1999.

9. D. J. Watts. Small Worlds, The Dynamics of Networks between Order and Randomness.
Princeton University Press, Princeton, NJ, 1999.



