
Generative Migration of Agents

F.M.T. Brazier; B.J. Overeinder; M. van Steen; N.J.E. Wijngaards

Department of Computer Science, Faculty of Sciences, Vrije Universiteit Amsterdam;
de Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{frances,bjo,steen,niek}@cs.vu.nl

Abstract

Agents, and in particular mobile agents, offer a means for application developers to build distributed applications. In
current agent systems, mobility of agents is constrained by the environment of the agents: the agent platform (which
supports agents) and the agent’s code base (e.g.,DESIRE, Java). Generative migration is needed to adapt an agent to
conform to its destination agent platform and code base. In this paper generative migration is described as a process of
“transparently adapting” an agent. An agent can continue to function at its new location on a completely different agent
platform.

1 Introduction

Agents, and in particular mobile agents, offer a means
for application developers to build distributed applica-
tions. In current agent systems, mobility of agents is con-
strained by the environment of the agents: the agent plat-
form (which supports agents) and the agent’s code base
(e.g.,DESIRE, Java). Within the same agent platform and
code base, agent migration has been shown to be possible.
However, many agent platforms exist, differing substan-
tially in the support for agents. Write once - run every-
where is not yet true for agents...

This heterogeneity of agent platforms, combined with
heterogeneity in code-bases of agents, leads to an inter-
esting question concerning agent mobility: can an agent
migrate across heterogeneous platforms? The answer is
relatively simple, as an agent needs to be adapted to fit its
destination agent platform and code-base.

In this paper generative migration (see Brazier et al.
(2002)) is described as a process of “transparently adapt-
ing” an agent. Section 2 presents an overview of the prin-
ciples behind agent factories: the entities responsible for
processing blueprints. Section 3 describes the use of the
agent factory for generative migration. Section 4 investi-
gates implications of generative migration for agents and
agent factories. Section 5 discusses transparent adaption
by generative migration.

2 Agent Factory

An agent factory is a facility that creates, and modifies,
software agents, see Brazier and Wijngaards (2001). It
can be used to adapt agents so that they can use specific
programming languages and run on different agent plat-
forms. The design of an agent within an agent factory is

based ablueprint. The blueprint of an agent contains a
configuration of conceptual building blocks which speci-
fies the agent’s functionality and behaviour. The blueprint
also contains one or more configurations of detailed build-
ing blocks, which specify an operationalisation of the
conceptual functionality and behaviour.

A mapping is defined between building blocks at con-
ceptual level and building blocks at detailed level. (Note
that this mapping may be structure preserving, but that
this is not necessarily ideal.) A detailed description of a
building block includes the operational code. For each
conceptual description, a number of detailed descriptions
may be devised and vice versa. These detailed descrip-
tions may differ in the operational language (e.g., C++,
Java), but also in, for example, the efficiency of the op-
erational code. The conceptual descriptions may differ in
the modelling paradigm (e.g.,UML , DESIRE), but also in,
e.g., the detail in which an agent’s functionality is mod-
elled.

Building blocks themselves are configurable, but can-
not be combined indiscriminately. The open slot concept
is used to regulate the ways in which components are
combined. An open slot in a component has associated
properties at both levels of abstraction that prescribe the
properties of the building block to be “inserted”.

A prototype of the agent factory automatically (re-
)designs an information retrieval agent: its blueprint and
executable code. The blueprint of an existing simple in-
formation retrieval agent is briefly described by Brazier
et al. (2002). This prototype agent factory itself is writ-
ten in Java, and contains enough knowledge to (re-)design
simple information retrieval agents.



3 Generative Migration

One of the strengths of the agent factory concept is that
it provides a means to support migration of agents in
heterogeneous environments. Section 3.1 discusses pre-
conditions for successful migration of agents. Section 3.2
describes the approach in agent-factory-enhanced migra-
tion. Section 3.3 describes migration scenarios.

3.1 Migration pre-conditions

A mobile agent is simple an agent having the ability to
move between different machines, e.g. see Tanenbaum
and van Steen (2002). Agent migration entails transfer
of both the agent’s executable code and state. The con-
cept of generative migration is geared to weak mobility:
parts of the state of the agent are migrated to another host.
Strong mobility, i.e. migrating running processes (includ-
ing their memory usage, stack, heap, etc.), is not possible
with generative migration, as in most cases agent executa-
bles change.

Generative migration requires (1) agent factories,
(2) implementation independent representations of agent
functionality, and (3) implementation independent for-
mats of agent’s state (e.g.,XML , RDF or OIL may be used,
see Horrocks et al. (2001)).

Assuming that both the source and the destination
host both have access to an agent factory (for simplic-
ity’s sake), these agent factories need to have building
blocks with comparable functionality. One solution is
that the agent factories share the same libraries of con-
ceptual building blocks, but each have different libraries
of detailed building blocks. Another solution is to have
conceptual building blocks inZEUS (see Nwana et al.
(1999)) andDESIRE(see Brazier et al. (1997)) with com-
parable functionality.

3.2 Migration using the agent factory

Migration using an agent factory diverges from standard
mobility of agents in that it isnot executable code with
state that is migrated, but instead the agent’s blueprint
together with (parts of) the agent’s state. Consider the
following scenario for heterogeneous mobility (also de-
scribed by Brazier et al. (2002)), depicted in figure 1.

An information retrieval agentA currently resides on
host machineH1. This host runs the Ajanta agent plat-
form, developed by Tripathi et al. (1999), and supports
Java agents. The agent wants to move to another host:
hostH2. HostH2 runs theDESIRE platform, and its
agents run code generated by theDESIRE execution en-
vironment, see Brazier et al. (1997).

In the process of migrating the agentA from hostH1
to hostH2, the agent first needs to store information on its
(mental) state. Then the agent factory on hostH1 sends
the blueprint of the agent, together with the state informa-
tion of the agent to the agent factory at hostH2.

Host1 Host2

agent A agent A

�

Ajanta DESIRE

network

Java Desire

Figure 1: Example migration scenario in which agentA
on Host1 (written in Java, running on Ajanta) migrates to
Host2 (where it will be specified inDESIREand running
on DESIRE).

HostH2’s local agent factory receives the blueprint of
the agent and state information. This agent factory con-
structs aDESIRE agentA on the basis of the blueprint of
agentA. This DESIREagentA (i.e., a functionally equiv-
alent incarnation of the Java agentA) runs onDESIRE’s
virtual machine (theDESIRE-interpreter), and is able to
incorporate information on its state.

3.3 Migration scenarios

Migration including re-generation of agents is a more
complex process, requiring more resources, than migra-
tion without agent re-generation. Four migration scenar-
ios are distinguished in Brazier et al. (2002):

• Homogeneneous migration.An agent migrates to
another host without any changes in either the vir-
tual machine or the agent platform. This situation
is most common in practice, and does not warrant
generative migration.

• Cross-platform migration.An agent migrates to an-
other host with the same virtual machine, but a dif-
ferent agent platform. Generative migration may be
used to adapt the agent to the target agent platform,
e.g. by using wrapper interfaces. If both agent
platforms have the same standard interface (e.g.,
advocated byOMG, see OMG (2000), andFIPA,
see FIPA (2001)), the agent need not be adapted.

• Agent-regeneration migration.An agent migrates
to a host with a different virtual machine, but
the same agent platform. Generative migration
is needed to regenerate the agent’s executable code
for the target virtual machine and the agent plat-
form.

• Heterogeneous migration.An agent migrates to a
host with a different virtual machine and a differ-
ent agent platform (see the scenario described in
Figure 1. In this situation, generative migration is
needed to regenerate an agent for the target virtual
machine and the target agent platform.

The authors are unaware of agent platforms support-
ing agent-regeneration migration and/or heterogeneous
migration.



4 (Re)Generation versus Adaptation

Generative migration has implications for both agents and
agent factories. Not only do agents need to understand the
concept oflocality, but also the concept ofincarnation.
Section 4.1 discusses implications for the role of agent
factories. Section 4.2 briefly describes aspects of agent
incarnations.

4.1 Role of Agent Factories

Agent factories are responsible for (re)generating an
agent, while adhering to preferences of the agent and
the (destination) agent platform. An incarnation of an
agent needs to be designed which may be executed by
a virtual machine at the target host, and which can in-
terface with the agent platform at the target host. The
agent (re)generative process is responsible for minizing
the quantity and quality of the changes to the agent. The
process of regenerating an agent mainly depends on avail-
able libraries of building blocks.

The agent regeneration process is facilitated by the
two levels of abstractions distinguished within the agent
factory: conceptual and detailed. In general, agent facto-
ries need to have building blocks with comparable func-
tionality. In the general situation, a configuration of con-
ceptual building blocks needs to be constructed. Agent
factories sharing common libraries of conceptual building
blocks (with equal functionality) is a specific case, pro-
viding common ground to the agent factories involved. In
this case, the configuration of conceptual building blocks
need not be changed. If an applicable configuration of
detailed building blocks is present for the target host, the
agent factory only needs to assemble this configuration
into operational code. In this case the adaptation istrans-
parent to the agent: the agent need not be aware of the
fact that it has another incarnation than before.

When no suitable configuration of detailed building
blocks is available, a configuration of detailed building
blocks may need to be (re-)designed. The agent factory
needs strategic knowledge to decide on a configuration
of detailed building blocks which minimizes the loss of
functionality and services for the agent. In addition, the
agent factory may provide an agent with functionality to
cope with the loss of specific functionality.

An agent may be fitted with functionality for intro-
spection, awareness of its abilities, and understanding
functionality and services needed to achieve (its) goals.
Such an agent can adapt its behaviour, and pursual of
goals, with respect to its current incarnation.

4.2 Agent incarnations

The incarnation of an agent is entails activation of both
the “code and data” of the agent in another environment
(the virtual machine possibly with another interface to an
agent platform.). Figure 2 depicts the concepts related to

Agent Platform

Host

Agent

code + data

Interface

Network

Virtual Machine

Figure 2: An agent’s incarnation involves not only its
code and data, but also its immediate physical environ-
ment.

the incarnation of an agent. An agent’s code and data is
executed in the context of a virtual machine; examples
are the Java Virtual Machine and Prolog interpreters. The
agent has access to an interface to its agent platform via its
virtual machine. Through this interface the agent can ac-
cess services provided by the agent platform, e.g. (group)
communication, generative migration, etc.

The agent needs to conform to both its target virtual
machine and its target agent platform interfaces. For rea-
sons of privacy and security, it is assumed that the state of
an agent does not need to be adapted: an agent can easily
employ a programming language independent representa-
tion format for its state (e.g., on the basis ofXML , RDF or
OIL, see Horrocks et al. (2001)). The (re)generation pro-
cess has the goal to generate an operationalisation of the
(conceptual) functionality of the agent.

In the ideal adaptation process, the agent does not
“notice” any changes to its incarnation. It still has ac-
cess to all of its functionality, can resume execution from
its state, and can access services provided by its current
agent platform. When agent platforms, and virtual ma-
chines, differ extensively, it is up to the agent factory to
mask these differences.

In less ideal situations, an agent may be aware of
classes of services and functionality which may be un-
available during/for specific incarnations. The agent
needs to adapt to this situation, e.g. by employing strate-
gies for circumventing missing functionality and services
(e.g., enlisting support by other agents).

An agent may specify preferences concerning its in-
carnation. With these preferences, an agent can specify,
e.g., which functionality and/or services are of more im-
portance to its (correct) functioning than other function-
ality and/or services. An agent may, in addition, specify
that specific functionality and/or access to specific ser-
vices may be (temporarily) unnecessary at a specific host.

The preferences specified by an agent may also state
how the agent is to be informed of success or failure of
generative migration. Does the agent expect a message



in a specific format? Does the agent expect information
concerning its current (dis)abilities as a facts-base?

Security and trust are of importance in generative mi-
gration. The agent trusts an agent factory to generate the
“right” incarnation. An agent cannot be easily protected
against a malicious agent factory, which e.g. may in-
troduce code to spy on the agent. The administrator of
an agent platform trusts its agent factory and libraries to
generate agents which cannot damage other agents, the
agent platform or the hosts running the agent platform and
agents.

5 Discussion

Mobile agents are currently restrained in their mobility
by their environment. Current agent platforms expect a
homogeneous environment, i.e. hosts running the same
agent platform and the same virtual machine. This pa-
per proposes an approach which transcends homogeneity
of agent platforms and virtual machines:generative mo-
bility. In generative mobility, a blueprint of an agent’s
functionality is transported, together with information on
the agent’s state. At its destination, an agent factory re-
generates the executable code of the agent on the basis of
its blueprint: a new incarnation of the agent. Upon activa-
tion, the agent may restore its state and resume execution.

Ideally, an agent factory is able to (re)generate an
agent such that it retains all of its functionality and access
to services: transparent adaption. However, this may not
be possible in situations requiring heterogeneous migra-
tion. An agent needs to be aware of characteristics of its
current incarnation, including limitations in functionality
provided by its current incarnation and services offered
by the current agent platform.

Generative migration is one of the services researched
within the AgentScape project on worldwide scalable dis-
tributed agent operating systems. Currently a prototype of
the agent factory (namely the libraries of components) is
being built that supports generative mobility.

Acknowledgements

This research is supported by NLnet Foundation, http://
www.nlnet.nl. The authors wish to acknowledge the con-
tributions made by Hidde Boonstra, David Mobach, Os-
car Scholten and Sander van Splunter.

References

F. M. T. Brazier, B. D. Dunin-Keplicz, N. R. Jennings,
and J. Treur. Desire: Modelling multi-agent systems
in a compositional formal framework.International
Journal of Cooperative Information Systems, 6:67–94,
1997.

F. M. T. Brazier, B. J. Overeinder, M. van Steen, and
N. J. E. Wijngaards. Agent factory: Generative migra-
tion of mobile agents in heterogeneous environments.
In Proceedings of the AIMS Workshop at SAC 2002,
2002. to appear.

F. M. T. Brazier and N. J. E. Wijngaards. Automated ser-
vicing of agents.AISB journal, 1(1):5–20, 2001.

FIPA. FIPA agent platform, 2001. http://www.fipa.org.

I. Horrocks, F. van Harmelen, P. Patel-Schneider,
T. Berners-Lee, D. Brickley, D. Connoly, M. Dean,
S. Decker, D. Fensel, P. Hayes, J. Heflin, J. Hendler,
O. Lassila, D. McGuinness, and L.A. Stein.
DAML+OIL. http://www.daml.org/2001/03/daml+oil-
index.html, March 2001.

H. Nwana, D. Ndumu, L. Lyndon, and J. Collis. ZEUS:
A toolkit and approach for building distributed multi-
agent systems. InProceedings of the Third Interna-
tional Conference on Autonomous Agents (Autonomous
Agents’99), pages 360–361, 1999.

OMG. Mobile agent facility specification. OMG Doc-
ument formal/00-01-02, Object Management Group,
Framingham, MA, January 2000.

A. S. Tanenbaum and M. van Steen.Distributed Systems:
Principles and Paradigms. Prentice Hall, Upper Saddle
River, New Jersey 07458, 2002.

A. Tripathi, N. Karnik, M. Vora, T. Ahmed, and R. Singh.
Mobile agent programming in Ajanta. InProceed-
ings of the 19th International Conference on Dis-
tributed Computing Systems (ICDCS’99), pages 190–
197, Austin, TX, May 1999.


