Achieving Scalability in Hierarchical Location Services

Maarten van Steen, Gerco Ballintijn
Vrije Universiteit Amsterdam
{steen,gerco}@cs.vu.nl

Abstract

Services for locating mobile objects are often organized
as a distributed search tree. The advantage of this ap-
proach is that the service can scale as a system grows in
size and number of objects. However, a potential problem
is that high-level nodes may become a bottleneck affecting
the scalability of the service. A traditional solution is to
also distribute the location information managed by a sin-
gle node across multiple machines. We introduce a method
that radically applies distribution of location information
such that the load is evenly balanced across all machines
that form part of the implementation of the service, while at
the same time exploiting locality.

1 Introduction

Efficiently locating and tracking (mobile) objects is im-
portant in any distributed system. With the continuous ex-
pansion of the Internet and in particular the increase of the
number of mobile devices, we need solutions that can effi-
ciently work in small-scale distributed systems but that can
also scale and sustain as these systems eventually expand
across larger networks and support more objects.

Location services that are organized as a distributed
search tree meet this requirement as they exploit locality
for looking up and updating addresses while at the same
time are capable of spanning networks the size of the In-
ternet [5]. However, the hierarchical organization of the
service suggests that high-level nodes may form a potential
performance bottleneck that can severely limit its scalabil-
ity. The Globe location service is also logically constructed
as a tree [8], but avoids scalability problems by distributing
the location information stored at a single node across all
machines that jointly implement the service. The combina-
tion of a logical hierarchical organization and this radical
distribution of location information leads to an efficient and
scalable solution.

In this paper, we present the basic organization of the
Globe location service and discuss its implementation by

means of a collection of servers running on machines that
are spread across a wide-area network. Although we con-
centrate on Globe, our approach is equally applicable to
other location services that assume the underlying network
is organized into a hierarchy of domains. More information
can be found in the extended version of this paper [7].

2 TheGlobe Location Service

The Globe location service is representative for many hi-
erarchical location services. In this section, we briefly dis-
cuss its organization and concentrate only on the main al-
gorithms that can also be found in similar services.

2.1 Genera Mod€

A (mobile) entity is assumed to be represented by a sin-
gle object with a globally unique, location-independent ob-
ject identifier (OID). Each object can be contacted at its
contact address, which is stored by the location service.
When an object moves, it changes its contact address re-
quiring the address as stored by the location service to be
replaced with the new address.

We assume a location service is implemented by means
of several dedicated (nonmobile) processes spread across a
network that store and maintain information on the location
of an object. Such a process is called a location server. A
machine hosting a location server is called a location server
host or simply LS host. Location information is stored in
a contact record and either consists of a contact address
or a pointer to another location server. A pointer means
that the other location server also stores a contact record
for the same object. Cyclic references are not allowed. A
location server may store only one contact record for any
given object.

We assume there is a nonhierarchical (potentially large)
set of LS hosts spread across a network. We organize these
hosts into a hierarchical collection of domains. The top
level, denoted as level O, consists of a single domain that
covers the entire network. Each domain D may be parti-
tioned into a next level of smaller child domains, turning D

Level-0 server

Level-1 server

Level-2 server .

Level-3 server Domain Server

oEOMm

Level 0 , ii

Level 1 1 iEli

Level 2

Level 3

Search tree for one specific object

Figure 1. An example of organizing the collection of LS
hosts into a hierarchical organization of domains, with each
domain having at least one location server.

into their parent domain. A lowest-level domain typically
corresponds to a campus or a city.

Every domain, regardless its level, is assumed to have
at least one associated location server. A server is always
associated to one domain, but there may be several servers
associated to the same domain. Because a server needs to
be hosted by an LS host, it also follows that every lowest-
level domain contains at least one LS host. An LS host
may be running servers from different domains, as shown
in Figure 1.

In our model, when a request related to object O needs
to be forwarded by a server S it can be forwarded only to
the location server pointed to in the contact record for O
stored by S. If Shas no contact record for O, the request
is always forwarded to the same location server at the next
higher-level domain (but which may be different for differ-
ent objects). We thus guarantee deterministic behavior of
lookup and update algorithms.

The problem that we address in this paper is deciding
for each domain what the best server is to store the con-
tact record of a given object, or to forward a request to re-
garding that object. For a given object we always choose
the same server. Having a hierarchical organization of do-
mains, this effectively leads to the construction of a collec-
tion of search trees, one tree per object, as shown in Fig-
ure 1. Note that the collection of root nodes of these trees
may be completely distributed across the servers in the top-
level domain.

2.2 Operations

We use the notation addr(O) to denote the current con-
tact address of object O. Let Dy(A) denote the domain at
level k containing address A with k = 0 being the top-level
domain. S¢(O,A) denotes the unique location server in do-
main Dy (A) that may store a contact record for object O. We
generally omit the first parameter and write S(A). For sim-

plicity and without loss of generality, we can assume that
all lowest-level domains are at the same level, say n.

Consider an object that registers a new contact address
A = addr(O). It contacts the location server Sy(A) in
the lowest-level domain containing A, which subsequently
stores A. Then, for each level k > 0, location server Sx(A)
contacts server Sc_1(A) in the parent domain and requests
it to store a forwarding pointer to Sx(A). The result is that
a path of forwarding pointers is created from O’s top-level
server S(A) down to Sy(A).

A move operation in our simplified model consists of a
pair of (insert,delete) operations. When an object O wants
to move from address A to B, it first initiates an insert oper-
ation for address B. This address is stored in S,(B). Anal-
ogous to the registration of the first address for an object,
each server S(B) requests server S_1(B) in the parent do-
main to store a forwarding pointer. However, instead of pro-
ceeding up until O’s top-level server, the insert request is no
longer forwarded when it reaches O’s server in the small-
est domain containing both A and B, say D|(A). After the
insert operation has finished, the delete operation simply re-
moves the path of forwarding pointers from S;(A) to Sy(A),
after which it removes A from Sy(A) completing the move
operation.

Looking up an object is relatively simple. Assume we
have a client located at address C. The client first contacts
Si(C), that is, the server for O in the leaf domain where the
client resides. If $,(C) does not contain a contact record for
O, it passes the lookup request to O’s server S,_1(C) in the
parent domain. In general, location server Sy (C) passes a
lookup request for O to S¢_1(C), unless it contains a contact
record for O. The first server S¢(C) that stores a forward-
ing pointer for O then passes the lookup request along the
downward path to S,(addr(O)) where the object’s current
address is stored.

2.3 Related Work

Location services that are based on a hierarchy of do-
mains have been proposed for next-generation mobile-
communication networks and general-purpose distributed
systems [5]. Differences between these services are found
in the way domains are used and constructed, and the vari-
ous optimizations to reduce the length of search and update
paths.

Hierarchical location services share the problem that a
server for a high-level domain may become a bottleneck im-
peding the scalability of the service. Several solutions have
been proposed to reduce the load on servers in high-level
domains. One class of solutions comprises the construc-
tion of short-cut links to servers in low-level domains. If it
is known that an object (generally) resides in low-level do-
main D, servers in other domains may cache a pointer to D

North America /’/ ‘\\ North Asia

Washington DC

,,’I Europe /
o= % N East Asia

O Nairobi |

i o
' | South !Jakarta
' i Asia
: O Pretoria |
| Cape Town (=] | Perth Cle—_

South America

Sydney

Africa ' Australasia

Level at which location m World ® Country
server operates: B Subcontinent @ City

Figure 2. A wrong mapping introduces more communica-
tion.

and immediately redirect lookup requests to D, thus avoid-
ing that high-level nodes need to process the request.

Another way to offload servers in high-level domains is
to install redirection pointers. When an object moves from
domain Dg(A) to a same-level domain Dy(B) the server in
Dk (A) stores a pointer to Dy(B) [4]. In other words, servers
in domains at levels higher than k are not informed about
the object’s migration. This approach effectively introduces
a chain of forwarding pointers between servers in different
low-level domains. Additional techniques are needed to re-
duce the length of chains.

Orthogonal to introducing additional pointers is to dis-
tribute the load among servers in high-level domains by in-
troducing a fat tree. In this approach, the set of object identi-
fiers is divided into equally-sized subsets, effectively using
a hashing scheme based on the m most significant bits of
OIDs. Each subset is managed by a separate server. This ap-
proach has also been applied in NLS [1] and resembles the
number-based routing as applied in peer-to-peer networks
[6]. 1t works fine for systems in which locality is not really
an issue, but fails to work efficiently in wide-area systems
in which exploiting locality is crucial for scalability.

3 Object-to-Server Mapping

The situation that we need to deal with can also be
formulated in terms of the following mapping problem.
Given a collection of objects and location servers in a do-
main D, how can we associate each object to a single server,
such that this leads to an efficient implementation of lookup
and move operations across all domains? Let map(O,D)
denote the method that selects a server for O in D. We are
looking for an implementation of map that meets the re-
quirement that for each domain D and parent domain D’,
the costs in communication between the server map(O, D)
and the server map(O,D’) is kept to a minimum. Consider
Figure 2 that shows the division of the network into subcon-
tinents, which are level-1 domains that span a (relatively

large part of a) continent. Each subcontinent is divided into
countries, which, in turn are divided into cities. We use this
same hierarchical organization into domains for our simu-
lation experiments.

Figure 2 shows an object O residing in domain Perth that
is looked up by a client in domain Pretoria. The lookup
request travels from the server in this lowest-level domain
to the server in Cape Town (domain South Africa), to the
server in Nairobi (domain Africa) until it reaches the object’s
server in Washington DC (for the top-level domain). From
there, the request follows a path of forwarding pointers to
Jakarta (domain Australasia), Sydney (domain Australia),
and finally Perth where the object now resides.

A better mapping for this situation would have been to
place the object’s top-level server in New Delhi or even
Jakarta. Of course, the appropriateness of the mapping
depends on where the object currently resides and where
lookup requests come from. Dynamically changing a map-
ping would perhaps be the best thing to do, but this turns
out to be difficult as we discuss in [7].

An Efficient Mapping

A location service that is distributed worldwide should
preferably have the following property. When a client C
issues a request to lookup an object O, the request should
travel along a path of location servers that corresponds to
the (optimal) network route that any message from C to
O would follow. In low-level domains, this routing aspect
plays a less prominent role compared to routing between
location servers at high-level domains.

Returning to our example, suppose a location server S;
in a subcontinent receives a lookup request for an object O
that it has no information on. We need to decide what the
best server & in the top-level domain is to which S; should
forward the request. As S; has no clue on the whereabouts
of O, we can only resort to a good heuristic. In our case,
we assume that an object generally resides in the vicinity of
its home location. The home location is assumed to be the
place where the object is created. As we discuss in [7], this
is not a hard assumption and with some effort we can adjust
our mapping for objects that permanently move to another
home location. Instead of using only object identifiers, we
make use of an object handle that contains an object’s OID
as well the coordinates of the location where an object was
created (i.e., its home location).

In our approach, we let an LS host run one server for
each domain in which that host is contained. (For example,
this is the case only for hosts 2, 4, 5, and 8 shown in Fig-
ure 1.) In other words, if Apome is the address where object
O is created, then all servers Sc(Anome) run on the same LS
host Hhome. Hhome itself is located somewhere in Dp(Anome)
that is, in the lowest-level domain where O was created.

In our example from Figure 2, if object O was created
in Jakarta, then its servers for respectively the top-level do-
main, domain Australasia, domain Indonesia, and domain
Jakarta would all run on the same host, which is some-
where in Jakarta. With this mapping, the lookup request
initiated in Pretoria would travel from Pretoria to Cape
Town (domain South Africa), to Nairobi (domain Africa),
to Jakarta (domains World and Australasia), to Sydney (do-
main Australia), and finally to Perth.

Now consider an arbitrary domain D. Taking a specific
distance metric such as the geographical distance, we al-
ways select the location server Sfor O in D that is closest to
Hhome. Again, note that if O is residing somewhere else than
in D, requests will still travel a route that exploits locality.
We return to choosing a suitable distance metric below.

4 Evaluation

We simulated the behavior of the location service across
a worldwide network that connects all cities having at least
100,000 inhabitants. The goal of our experiment is to see
to what extent our basic mapping scheme establishes good
load balancing while preserving locality. Data from 1986
and 1987 on these cities have been collected in the World
Cities Population Database (WCPD).! The database con-
tains records of approximately 2500 cities, each with their
population size, geographical position, and country. For our
study, we concentrated only on the 2299 cities with 100,000
or more inhabitants.

We treat all cities equal in the sense that we assume they
generate in proportion to their population, as many requests
for objects as other cities. In addition, we make the impor-
tant assumption that the communication delay between two
hosts can be expressed as a linear function of the distance
between those hosts. This assumption is not realistic for the
current Internet. However, taking costs expressed in terms
of another metric would lead only to a different partitioning
into domains, but would not affect the final conclusions.

4.1 Modeling Issues

We divide the world into four different types of domains:
the world, subcontinents, countries, and cities. A subconti-
nent is a large geographical area covering several countries.
In our experiment, we distinguished eight subcontinents,
also shown in Figure 2.

Each domain has at least one associated server. For sim-
plicity, we assume there is a single host available in each
city. In practice, each such host would presumably be im-
plemented as a (distributed) cluster of machines that effec-
tively operates as a high-performance multicomputer.

1These data are available at http://ww. grid. unep.ch/
data/ grid/gnv29. htni.

Mapping
MAP_LOC_AWARE

Description

For the current domain, select the host
closest to city where O was created.
Randomly select a host in D to handle all
requests for O.

Apply MAP_LOC_AWARE for level-0 and
level-1 domains and MAP_RANDOM for
other domains.

MAP_RANDOM

MAP_LA2&RND

MAP_LOGICAL For the current domain, select the host in
the center of D.
MAP_HOME Regardless the current domain, select

the host in the city where O was created.
Figure 3. The five mapping strategies.

Each object is represented only by the city where it was
created. Given an object O and a domain D, we compute
the location of the host in D that is responsible for handling
requests for O. We compare five different mapping strate-
gies, summarized in Figure 3. Strategy MAP LOC_AWARE
is the one described in Section 3. It selects the host clos-
est to where O was created. This strategy should be better
in terms of using network resources than MAP_RANDOM,
which randomly selects one of the hosts in D to han-
dle all requests for O. Strategy MAP_LA2& RND applies
MAP_LOC_AWARE both for the top-level domain and sub-
continents, but randomly selects hosts at all other levels.

For comparison, we also consider constructing a single
tree that is to handle the entire collection of objects. In strat-
egy MAP_LOGICAL, all objects are associated to the same
server, namely the one closest to the center of a domain.
We determine this center by computing, for each city in a
domain, the aggregated distance to all other cities in that
domain. The city with the smallest aggregated distance is
chosen as the center.

A simple, effective, and widely applied strategy for lo-
cating mobile objects is to introduce a single server for each
object and let that server keep track of an object’s current
location. These home-based approaches are used in mobile
IP [3], but also wireless telephony [2]. Our discussion on
hierarchical solutions makes sense only if these solutions
show to be better than home-based approaches. For this rea-
son, we also consider the strategy MAP_HOME, by which
all requests for an object are always forwarded to a server
running on a host in the city where the object was created.

Mobility and lookup patterns. To simulate mobility and
lookup patterns we adopt the following model. Let Anome
be the address of the location where object O was created.
The level of a domain is indicated by a subscript k. Before
simulating a move or lookup operation on object O, O is
placed in a city randomly chosen from domain D y(Anome)-
Domain Dy (Anome) is selected with probability pinitk. For
example, an object created in Perth will initially be placed
somewhere in domain Australasia with probability pipi,z1.
For any object O, we assume there is a probability
Pmovek that O will move to a city randomly chosen from

Dk(addr(O)). Likewise, there is a probability pjookupk that
a lookup request for O comes from a city chosen in domain
Dk (addr (O)). This city from where the lookup comes from
is chosen according to a uniform distribution taking the pop-
ulation size as a weight factor (i.e., larger cities are chosen
more often than smaller cities). In our simulations, we have
chosen the ratio between move and lookup operations for
any object O equal to 0.2.

Modelsfor mobility. Using different values for these three
probabilities, we experimented with six different models for
mobility. Each model has a 3-character mnemonic, each
character denoting a uniformly distributed (U) or localized
(L) pattern for initial placement, migration, and lookups,
respectively. The models we examined where UUU, ULL,
ULU, LUU, LLL, and LLU. In the first three models, we
assume that the initial placement of an object is uniformly
distributed across all levels.

For model UUU, we also assume that after the ini-
tial placement the probability that a migration will take
place within, respectively, the same city, country, subcon-
tinent, or anywhere, is the same. Likewise, each domain
Dk(addr(O)) has the same probability for generating a
lookup request. In model ULL, we assume that an object
generally makes only local movements, and likewise, that
most lookup request come from the same city where the
object is now located. Model ULU reflects that objects gen-
erally move locally, but gives an equal probability that a
lookup comes from the same city, country, subcontinent, or
from anywhere.

The last three models are analogous to the first three, ex-
cept that we make the assumption that the initial placement
is generally in the same city as where the object is created.

Simulation. For each run, we generate 100 million re-
quests. To select an object, we choose a city following a
weighted uniform distribution that takes the population size
of each city into account as explained above. Simulating a
request starts with choosing a domain Dy (Aneme) With prob-
ability pinitk from which we randomly select a city for the
initial placement of O.

For a move request, we then select the domain
Dk (addr(O)) with probability pmoex and choose a source
and destination city in this domain. The effects of the mi-
gration are simulated by registering an update at all relevant
servers. As we explained, migration involves handling an
insert request for an address at the destination, and a delete
request at the source. Each request travels from a server in a
lowest-level domain (located in a city) to the object’s server
in Dy(addr(O)). In our simulation, we add the distances
that the insert and delete request travel, respectively.

For a lookup request, we pretend the object has
moved after its initial placement by selecting a domain

09 F
40 (LOGICAL)

g \ 689 (RANDOM) g
554 (LA2&RND) 1

0.2 Hy 292 (LOC_AWARE) g

o1 263 (HOME) Model ULU g
Il Il Il Il Il Il Il Il Il

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Figure 4. Load distribution for model ULU. The x-axis
shows the accumulated number of hosts after sorting hosts
by their load. The y-axis shows the fraction of operations
that take place.

Dmovek(Anome) With probability pmovek and choosing a city
from that domain as the object’s current location. We then
select a domain Djookupk(addr (O)) with probability piookupk
and choose a city in Djookup k(addr (O)) from where a lookup
request is generated. This city is chosen by taking the pop-
ulation sizes of all cities in Djgokupk(@ddr(O)) into account.
The effect of the request is measured by registering that a
lookup operation is processed at all relevant servers, as well
as measuring the distance the request needs to travel before
reaching the location server at the object’s current location.

4.2 Resaults

As we mentioned, the goal of our simulations is to eval-
uate to what extent load balancing is achieved while pre-
serving locality for lookup and update operations. We first
consider the load distribution across the hosts. We counted
the number of lookup and move operations that each server
(and thus its host) needed to perform and compared that to
the total number of operations that were carried out. Fig-
ure 4 shows the accumulated number of hosts that take care
of processing an increasing fraction of operations. We show
only the results for model ULU; the other models show sim-
ilar results as can be found in [7]. Hosts have first been
sorted by their load; a higher load leading to a higher rank-
ing. If we had perfect load balancing, we would see a
straight line from coordinate (0, 0) to (2299, 1). However,
this is not the case.

For example, we see that with strategy MAP_HOME only
263 of the 2299 servers are responsible for handling 50% of
all operations. This is not surprising considering our as-
sumption that each city has only a single host, while at the
same time we assume that larger cities generate more re-

N\ !

7228 (HOME) g

3359 (LOC_AWARE)

3042 (LA2&RND) 4

Model ULU B

o J T T T T T Y Y Y A
5000 10000 15000 20000 25000 30000

Figure5. The distance that lookup requests travel for ULU.
The x-axis shows the maximum distance that a request trav-
els. The y-axis shows the fraction of lookup requests.

quests.

As it turns out, MAP_LOGICAL shows bad load balanc-
ing for all models. Of course, this was to be expected: the
single root server and the few subcontinent servers will see
most of the requests. When taking a look at the load distri-
bution for MAP_LOC_AWARE, we see that it tends to follow
a similar distribution as that for MAP_HOME. However, it
should be noted that servers in the MAP_HOME approach
generally need to process only 25% of the operations com-
pared to the other strategies. This difference is due to the
fact that we have a tree of height four.

Strategy MAP_RANDOM comes close to a perfect
load distribution. We have not shown the load distri-
bution for MAP_LOC1&RND as it almost identical to
that of MAP_RANDOM. However, note that the distribu-
tion for MAP_LOC2&RND also comes close to that of
MAP_RANDOM. As we discuss below, MAP_LOC2& RND
also exhibits locality, making it a good overall strategy.

To see to what extent locality was preserved, we also
measured the network traffic that was generated. In par-
ticular, we measured for each request the geographical dis-
tance that it traveled before reaching a server where a con-
tact address was found. In the case of migrations, we
measured the distance needed to complete the combina-
tion of an insert request and a delete request. Except for
models UUU and LUU, which reflected almost no local-
ity in the lookup and migration patterns for objects, strat-
egy MAP_LOGICAL gives the best results, closely followed
by MAP_LOC_AWARE and MAP_LOC2& RND. The home-
based approach gives the best result when there is hardly
any locality.

We also measured locality by computing the fraction of
requests against the maximum distance that needed to be
traveled. Figure 5 shows the results for lookup operations

in model ULU (again, the results for other distributions are
comparable [7]). When we consider the maximum distance
traveled by 75% of all lookup requests, the home-based ap-
proach gives 7228 km, whereas the hierarchical approach
gives a maximum of 3359 km. We conclude that our map-
ping strategy establishes load balancing while preserving
locality.

5 Conclusions

In order for systems to expand across wide-area net-
works and to scale in terms of the number of objects they
support, services should sustain and scale along with the
system. Location services for tracking and looking up ob-
jects are important in any distributed system. To meet scal-
ability requirements, such services are often constructed as
a distributed search tree that spans the network underlying
the distributed system.

However, the argument that these hierarchical location
services introduce a scalability problem for higher-level
nodes is not true. We have shown that it is possible to de-
sign a scheme by which location information is distributed
in such a way that the load between hosts is well balanced.
In the extended version of this paper [7], we also show that
the load is also largely independent of lookup and mobility
patterns. Moreover, our study shows that good load balanc-
ing can be combined with exploiting locality, a property that
home-based approaches generally do not have.

References

[1] Y. Hu, D. Rodney, and P. Druschel. Design and Scalability
of NLS, a Scalable Naming and Location Service. In INFO-
COMM, New York, NY, June 2002. IEEE.

[2] S. Mohan and R. Jain. Two User Location Strategies for
Personal Communication Services. |EEE Pers. Commun.,
1(1):42-50, Jan. 1994.

[3] C. Perkins. Mobile IP: Design Principles and Practice.
Addison-Wesley, Reading, MA, 1997.

[4] E. Pitoura and I. Fudos. An Efficient Hierarchical Scheme
for Locating Highly Mobile Users. In Sxth Int'l Conf. on
Information and Knowledge Management. ACM, Nov. 1998.

[5] E.Pitouraand G. Samaras. Locating Objects in Mobile Com-
puting. |EEE Trans. Know. Data Eng., 13(4):571-592, July
2001.

[6] C. Plaxton, R. Rajaraman, and A. Richa. Accessing Nearby
Copies of Replicated Objects in a Distributed Environment.
Theory of Computing Systems, 32:241-280, 1999.

[7]1 M. van Steen and G. Ballintijn. Achieving Scalability in Hi-
erarchical Location Services. Technical Report IR-491, Vrije
Universiteit, Department of Mathematics and Computer Sci-

ence, Nov. 2001.
[8] M. van Steen, F. Hauck, P. Homburg, and A. Tanenbaum. Lo-

cating Objects in Wide-Area Systems. |EEE Commun. Mag.,
36(1):104-109, Jan. 1998.

