
Access Control, Reverse Access Control and Replication
Control in a World Wide Distributed System

B.C. Popescu C. Gamage A.S. Tanenbaum
bpopescu@cs.vu.nl chandag@cs.vu.nl ast@cs.vu.nl

Division of Mathemetics and Computer Science, Faculty of Sciences
Vrije Universiteit, Amsterdam, The Netherlands

Keywords: Distributed Objects, State Replication, Security, Digital Certificates, Role Based Access Control

Abstract

In this paper we examine several access control
problems that occur in an object-based distributed
system that permits objects to be replicated on mul-
tiple machines. First, there is the classical access
control problem, which relates to which users can ex-
ecute which methods. Second, we identified a reverse
access control problem, which concerns which repli-
cas can execute which methods for authorized users.
Finally, there is the issue of how updates are propa-
gated securely from replica to replica. Our solution
uses roles and preserves the scalability needed in a
world-wide distributed system.

1 Security in Distributed Systems

Security in distributed systems differs from operat-
ing system security by the fact that there is no central,
trusted authority that mediates interaction between
users and processes. Instead, a distributed system
usually runs on top of a large number of loosely cou-
pled autonomous hosts. Those hosts may run differ-
ent operating systems, and may have different secu-
rity policies, which can be enforced in different ways
by careless, or even malicious administrators.

The popular trend in distributed systems is to en-
capsulate functionality as objects and provide mech-
anisms for their location, migration, persistence, as
well as for remote method invocation. CORBA [1]
[2], DCOM [5], and Legion [6] are examples of dis-
tributed systems using this paradigm. Each of them
handles security in its own way, and the main ob-
jectives are authenticating the communicating parties,
protecting network traffic, enforcing access control
policies on the object’s member functions, delegating
rights and respecting site-specific security concerns.
There is one feature these systems have in common:

all of them support only nonreplicated objects. This
makes it easy to implement access control mecha-
nisms for individual objects, since such mechanisms
would have to be enforced in only one point, namely
at the host where the object resides.

Globe [15], is a wide-area distributed system based
on distributed shared objects (DSO). The notion of a
DSO stresses the property that objects in Globe are
not only shared by multiple users, but also physically
replicated at possibly thousands of hosts [4].

This paper addresses the security issues arising
from the physical replication of objects. In particular,
we focus on how access control policies can be im-
plemented in a system where those policies need to be
enforced at a number (possibly very large) of distinct
locations, with various degrees of trustworthiness.

The security challenges posed by Globe come
from the fact that millions of users can invoke meth-
ods on any of the possibly thousands of replicas of a
highly distributed object. It makes sense to assume
that in such an object, there is a trust hierarchy (some
replicas are more trusted than others), and this trans-
lates into what kind of actions the various replicas
should be allowed to execute. In nonreplicated sys-
tems, the access control problem is how to prevent
unauthorized users from invoking methods for which
they have no rights. With replicated objects, we also
need to prevent legitimate users from sending security
critical requests to replicas that are not trusted enough
to execute them (we call this the reverse access con-
trol problem). Finally, the replication control prob-
lem deals with enforcing a security policy on the way
replicas exchange state update messages in order to
keep the DSO’s state consistent.

The rest of the paper is organized as follows: Sec-
tion 2 gives an overview of the Globe system, the in-
ternal structure of a DSO, and how replicas interact
to implement the DSO functionality. The following
three sections deal with the access control problem,

reverse access control problem and replication control
problem respectively. Section 6 gives a quick outline
on how one would implement the solutions we pro-
posed for these problems, and Section 7 gives an ap-
plication example. Finally, Section 8 concludes and
outlines areas of future research.

2 The Globe System

A central construct in the Globe architecture is the
distributed shared object (DSO). A DSO is built from
a number of individual objects (called local objects),
each of them residing in a single address. The local
objects part of a DSO communicate to each other over
the network, and together implement the functionality
of that DSO.

Local
Object

A3
A5

Network
Distributed object

Address space

A1 A2

A4

Figure 1: A Globe DSO replicated across four address
spaces

Some of the local objects (possibly all of them, de-
pending on the replication strategy) can store all or
part of the DSO’s state. A local object that stores
some part of the DSO’s state is called a replica.

All the replicas that are part of a DSO work to-
gether to implement the functionality of that DSO.
Replicas consist of the code for the application, the
state they store, and the distribution mechanism. The
internal structure of a local object is shown in Figure
(2).

The semantics sub-object contains the code that
implements the functionality of the DSO. This is the
only sub-object that needs to be written by the appli-
cation developer.

The communication sub-object is responsible for
the communication between local objects residing in
different address spaces. It hides the network com-
munication aspects from all the other sub-objects.

The replication sub-object is responsible with
keeping the state of the local object consistent ac-
cording to the per-DSO replication strategy. This is
accomplished by exchanging state update messages
with the replication sub-objects of the other replicas
that make up the DSO.

Control
subobject

Replication
subobject

Communication
subobject

Semantics
subobject

Security
Subobject

Security
Policy

Communication Infrastructure

Local object

Figure 2: The internal structure of a Globe DSO. The
arrows indicate the possible interactions between the
subobjects

The control sub-object is in general system-
provided. Its job is to take care of invocations from
client processes on the host where the local repre-
sentative resides and to mediate the interaction be-
tween the semantics sub-object and the replication
sub-object.

The security sub-object [8] is responsible for en-
forcing the object’s security policy at the local rep-
resentative level. This is done by having the secu-
rity sub-object mediating the communication flow be-
tween the other local sub-objects. Prior to passing a
protocol message to a lower or upper level in the sub-
object hierarchy, a subobject passes it to the security
sub-object. The security sub-object can apply secu-
rity measures to protocol messages (encrypting data
before sending it to the network, for example) or can
even prohibit the continuation of the protocol if that
would be against the DSO’s security policy (for exam-
ple when an un-authorized user tries a remote method
invocation on a replica).

In the secure version of Globe, all actions (creating
a DSO, running a DSO replica, invoking a method ...)
are done by principals. A principal can be any entity
(human user, group of users, institution ...) that has a
public key and a digital certificate certifying that key.
We assume the existence of a Public Key Infrastruc-
ture used for the distribution and management of these
certificates.

Each Globe DSO must have an owner, who is the
principal that is in charge with the administration and
security policy for that object. The object’s public
key is the public key of the object’s owner.

Any DSO replica must be run by some principal.
The replica’s public key is the public key of the prin-
cipal that runs that replica. The replica’s principal
may or may not be the same as the object owner.

For a DSO, any principal that calls the object’s
methods is a user for that object. Such a user must
have a local representative of the object installed in
its address space.

2

It is important to understand that users and replicas
are orthogonal concepts in our architecture. Repli-
cas are the building blocks of the DSO. They store
parts of the DSO’s state and interact according to a
replication protocol in order to implement the DSO’s
functionality. Users are external world entities that
invoke the DSO’s methods. They see the DSO as a
single logical object through the DSO’s local repre-
sentative installed in their address space (this repre-
sentative could be a replica, if any part of the DSO’s
state would be stored in it, but that is dependent on
the replication policy).

3 The Access Control Problem

As stated before, for a given application, the access
control problem is how to restrict an user to execute
only those operations allowed under the application’s
security policy with respect to that user. For Globe,
access control policies are defined on a per-DSO ba-
sis, so each object can have its own security policy.

The access control problem has been solved in dif-
ferent ways for the various existing distributed sys-
tems. One approach is to associate resources with
Access Control Lists (ACLs) [10]. Such a list would
simply enumerate all the individuals allowed to use
that resource. If that resource is an object, this can be
fine-grained by specifying which methods are acces-
sible to each individual. Another possible approach is
to use capabilities. A capability is a protected identi-
fier that both identifies an object and specifies access
rights to be allowed to the accessor that possesses the
capability [3].

ACLs are not suited for implementing access con-
trol in systems with worldwide replication of objects.
For a heavily replicated DSO, the ACL would have to
be stored by each of its thousands of replicas. Even in
a distributed system where objects are not replicated,
the size of an ACL is proportional to the number of
users. In a system like Globe, the storage needed for
the ACL would also be proportional to the number
of replicas for that object. And what makes the sit-
uation even worse is the need to have strong consis-
tency among all the ACLs stored by the various repli-
cas worldwide.

Capabilities are also unsuited for implementing ac-
cess control in a system like Globe because they suf-
fer from the so-called confinement problem: it is hard
to prevent a capability from being passed from one
user to another without the object’s approval. This
problem can be solved in centralized systems by not
allowing users to directly manipulate their capabili-
ties. Instead, they are stored by the (trusted) underly-
ing system and presented to objects on users’ behalf.
Since there is no underlying trusted system in Globe,
this technique cannot be applied.

Role Based Access Control (RBAC) [11] repre-

sents another approach to the access control problem,
and has been the focus of intense research in the past
few years [12], [9]. The main idea behind RBAC is
that permissions are associated with roles instead of
users. Roles are abstractions that group entities with
equivalent security properties for an application.

In Globe, we identify a role as a subset of all
the methods offered by a DSO. If there are

�
meth-

ods, in theory there are ��� potential roles, although
most of these are not likely to be useful. This two-
level scheme (users to roles and roles to permissions)
greatly simplifies the management of access control
lists. First of all, we expect many fewer roles than
users (since roles group users with the same rights).
This will result in much more compact access con-
trol lists. Second, remember that one major problem
with ACLs in a worldwide system with replicated ob-
jects is keeping them consistent, since users can be
granted or revoked rights at any time. With RBAC,
this is done by assigning that user in a new role with-
out modifying the ACL. In this way, ACLs can re-
main largely static while user roles are dynamically
managed.

A legitimate question to raise is how does a DSO
keep track of which roles have been assigned to which
users? If this is kept as a list, we encounter the same
problems as for ACL’s, namely how to make such a
list available to all replicas, while keeping it consis-
tent. The solution is to use “role certificates”. These
certificates bind the user’s public key with the role
it has been assigned, and are signed by the object’s
owner.

When designing a DSO security policy, the ob-
ject’s owner first has to identify all the meaningful
roles for that object. This is accomplished by careful
examination of the application being implemented;
some roles are needed to represent the various types
of clients (for example a banking application may
need to differentiate between regular members, gold
card members and platinum card members). Other
roles are needed to model the administrative hierarchy
for the application - using the same banking example
- we may need teller roles that are allowed to process
withdrawals/deposits and manager roles who are al-
lowed to approve loans. At the end, all the selected
roles form the user role set for that object.

Now, we can implement the access control scheme
for a given DSO using the user role set we identified
for that DSO: with each user role we associate a bit
vector encoding the methods that role is allowed to
invoke (for example if a user role is allowed to in-
voke methods ��� and ��� , its vector will be 01001...).
Grouping the vectors for all the user roles for a DSO,
we obtain the access control matrix for that DSO,
which is stored in the security sub-object. In this ma-
trix, the first row contains the bit vector for the first
role, the second row contains the bit vector for the

3

second role, and so on. The DSO’s replicas get this
matrix from the object’s owner when they are created.
When a user invokes a method on a given replica, the
security sub-object on that replica first checks the ac-
cess control matrix to make sure the user’s role is al-
lowed to call that method.

Finally, it is important to note that user certificates
are issued with some validity time interval, but they
can be revoked before that interval has expired. For
this, a revocation infrastructure is necessary. The de-
tailed description of such an infrastructure is beyond
the scope of this paper, it is enough to say that certifi-
cate revocation has been subject of extensive research
in the past decade, and a number of practical solutions
have been proposed.

4 The Reverse Access Control Problem

The reverse access control problem is how to pre-
vent legitimate users from sending service requests
to applications not entitled to provide those services.
Those malicious servers can fool legitimate users into
believing that they have performed some action on be-
half of them (a bogus automated teller machine ac-
cepting deposits from naive users), or that certain in-
formation they return to the users is valid, while it
is not (like fake real-time stock quotes). In the real
world, an example of this problem is site authentica-
tion on the World Wide Web. Here the solution is to
require sites to present certificates signed by trusted
CAs, binding their identity to their public key [13].

For distributed systems where objects are not phys-
ically replicated, the reverse access control problem
is reduced to whether or not one trusts an object to
perform a given action. The situation dramatically
changes with worldwide replication: an object can be
replicated on thousands of different systems. It makes
sense to assume that only few of these replicas should
be trusted to perform the most security sensitive op-
erations provided by the object (like changing the ob-
ject’s state). The rest of the replicas are probably there
for performance reasons, acting as caches for exam-
ple.

What we need is a systematic and scalable way
of describing which replicas are allowed to execute
which methods for a given DSO. This can be tack-
led by examining that DSO and answering the ques-
tion “why does this object need to be distributed?”
One answer is that the functionality the object imple-
ments is suited to be divided among many parts – the
replicas – spread across the network. When running,
each of these replicas will implement part of what the
DSO is supposed to do; we could divide the set of
all replicas of a DSO into disjoint subsets with equiv-
alent functionality; such replicas will have the same
role in implementing what the DSO is supposed to
do. We can see that the disjoint subsets we described,

closely follow the replication strategy used for the ob-
ject. For example, a master-slave replication strat-
egy would create two such sets - the masters and the
slaves. We name such a disjoint subset a replication
role. All the replication roles identified for a given
DSO form the replication role set for that DSO.

We now claim that if one replica in a given repli-
cation role is allowed to execute a client request for
a method � of the object, then all the other repli-
cas in that role should also be allowed to execute that
request. Remember that a replication role is the set
of all replicas with equivalent functionality. If some
replicas in the role are allowed to execute method � ,
while others are not, then those replicas would differ
in functionality (some are allowed to execute � and
some not), and this contradicts the assumption they
are in the same role.

Now, we can implement the reverse access control
scheme for a given DSO using the replication role set
we identified for that DSO: with each replication role
we associate a bit vector encoding the client method
requests that role is allowed to execute (for example if
a replication role is allowed to serve methods � � and
��� , its vector will be 01001...). Grouping the vec-
tors for all the replication roles for a DSO, we obtain
the reverse access control matrix for that DSO. The
DSO’s users get this matrix from the object’s owner
when they set up their local representative, and store it
in the security sub-object of that representative. When
a user wants to invoke one of the object’s methods, its
security sub-object will have to search in the matrix
to find a role allowed to execute it.

Finally, a replica needs a role certificate to prove it
has been assigned a certain role. Such certificates are
given to replicas by the object’s owner. They bind the
public key of the principal running the replica to the
replication role assigned to that replica and are signed
with the owner’s private key.

5 The Replication Control Problem

The replication control problem is how to deter-
mine which replicas are allowed to propagate state
updates and to which replicas state updates should be
propagated. In fact, this is access control and reverse
access control on a special method - ���������	��
������� .
This problem is further complicated by the fact that
the various elements of the DSO’s state may have dif-
ferent security properties. This refines the granularity
of the access control decision which is now also based
on the parameters of the ���������	��
������� request - the
state change being propagated.

The problem is simplified by the fact that only the
replicas of the DSO can exchange ������������
�������� mes-
sages. The DSO’s users have no direct access to its
state; they can manipulate it only through method re-
quests.

4

We need to stress an important point here: the
problem we are trying to solve is not when a replica
should start sending state update messages, or how
these state updates should be constructed. That is
outside the scope of the security architecture, and is
determined by the replication algorithm being used.
With replication control, we simply set some data-
flow policies that the replication sub-object must fol-
low. A replica can send state updates once every sec-
ond or once every hour, and those state update mes-
sages can incorporate every small write or batch a
number of such writes, those are all details dependent
on the replication protocol.What we want to ensure is
that a replica will not send state updates to other repli-
cas that are not trusted enough to even see that part of
the object’s state in the update. We also want to ensure
that a replica will not accept a state update created by
another replica which is not trusted enough to modify
the part of the object’s state in the update. For exam-
ple, we may want only the replica storing the master
copy of the DSO’s state to be able to send state up-
dates to the caches. Caches then should be prevented
from updating the state of the master replica or of the
other caches.

We claim that the replication role set we intro-
duced for the reverse access control problem is also
relevant for the replication control problem: consider
two replicas in the same role - if they wouldn’t have
the same rights in sending and receiving ������������
�������

messages, then they would have different functional-
ity, hence they couldn’t be in the same role. There-
fore, replicas in the same role must have the same
rights in sending and receiving ���������	��
������� requests.

Now we need to accomodate the requirement that
������������
�������� exchanges can have different security
requirements based on which elements of the DSO’s
state they modify. This can be done by dividing the
DSO’s state into disjoint subsets of elements with the
same security sensitivity. Those subsets are called
partitions. State updates for elements in the same
partition would then be propagated in the same way
though the DSO.

Using these constructs, we can now implement the
replication control scheme: for each replication role,
we need to specify for which partitions is it allowed
to generate any ���������	��
������� messages, and to which
roles it can send those messages. This information
can be organized in a vector, with one entry for each
partition in the DSO’s state. Each entry would store
the roles to which ������������
������� messages for that par-
tition can be sent. Combining the vectors for all the
replication roles of a DSO, we obtain the replication
control matrix for that DSO. This matrix is again
stored in the security sub-object of each replica.

6 Putting the Pieces Together

The access control matrix, reverse access con-
trol matrix and replication control matrix fully de-
scribe what interactions are allowed between the dif-
ferent replicas and users of a DSO, according to the
security policy set by the object owner. These struc-
tures are kept in the security sub-object, where they
are initialized when local objects are created. In or-
der to ensure that the security policy enforced by a
local object is the one set by the object owner, these
data structures will be digitally signed by the owner
with its private key, and sent to the principal creating
the new local object together with the user role cer-
tificate (and possibly the replication role certificate, if
the principal creates a replica).

Replicas and users can interact only after they have
authenticated each other. The first step is for the enti-
ties to exchange their user/replication role certificates.
A user/replica then authenticates itself by proving it
has access to the private key corresponding to the pub-
lic key in its user/replication role certificate (for ex-
ample by signing a random nonce sent by the other
party with its private key).

Once two entities have authenticated each other,
they can set up a secure communication channel us-
ing some Diffie-Hellman or RSA public key cryp-
tography technique [7]. Secure channels are man-
aged by the security sub-object, and provide at least
data integrity, authenticity, and possibly confidential-
ity. The secure channel (identified by a channel ID)
is the only thing the security sub-object makes visi-
ble to the other sub-objects. All the details regarding
the role assigned to the replica/user at the other end of
the channel, keys and cryptographic algorithms used
to protect the data on the channel, are managed by the
security sub-object only, and hidden from the rest of
the application.

Before any sub-objects part of a local object can
perform any actions, they need to check with the se-
curity sub-object that these actions do not violate the
security policies set by the object owner. When a
user wants to invoke a method � , it needs to make a
call ����� ��� �
�� �	� ��
 �� to its security sub-object. This
will check the reverse access control matrix, find the
replication role allowed to execute � , find a replica
in that role (this is done with the help of the Globe
Location Service [14], but the details are outside the
scope of this paper), establish a secure channel with
that replica and return the channel ID for that channel.
Finally, the method request is sent on that channel.

A similar scenario happens when a replica re-
ceives a request to invoke a method � from one
of the secure channels it has established with the
users. The replication sub-object needs to call
����������� ��� �	� ��
 ��� � ��� ��������� �� to the security sub-
object. The security sub-object uses the ��� � ��� �������

5

to retrieve the role of the user at the other end. It then
checks the access control matrix to see if that user
role is allowed to invoke � , and returns ����� ��� � ��� � �
according to the entry in the matrix.

Finally, replication control decisions are needed
when replicas receive � ����������
�������� messages.
The first step is to identify the partition to
which the state update is targeted. Follow-
ing that, the replication object needs to call
��������� ��
��������
 ��� � ��� ���������
��� � � � � � � � to the se-
curity sub-object, where channelID is the id of the
secure channel where the update comes from. The
security sub-object checks the ��� � ��� ������� to retrieve
the replication role of the replica at the other end.
It then checks the replication control matrix to see
if that replication role is allowed to update that
partition, and returns ��������� � ��� � � according to the
entry in the matrix.

7 An Example

In this section we’ll show an example on how the
security scheme we described in the previous sections
can be used to construct a secure Globe application.

Consider a DSO modeling an electronic newspa-
per: this contains articles and on-line advertising.
Those are stored on a set of core replicas. How-
ever, we want separation between core replicas deal-
ing with articles, and those dealing with advertising,
since the later could be managed by a third party
(Doubleclick for example). Newspaper content is
pushed by the core group toward a much larger group
of caches, which in turn provide this content to the
newspaper’s readers. Readers fall into two roles: (1)
registered users that can only read the headlines, and
(2) subscribers who are be allowed to read full arti-
cles.

We can model such an application with a DSO that
has the following methods: add news(), add advert(),
read headln(), read article(). We identify the user
roles for this application as the Editor (manages ar-
ticles), Advertising Manager (deals with advertising
content), Registered User and Subscriber. Editors
should not be allowed to add advertising; Adver-
tising Managers should not be allowed to add arti-
cles; Registered Users and Subscribers should not be
allowed to add anything. Furthermore, Registered
Users should only be allowed to call �	� � � � � � ��� �
 � .
Figure (3) shows the access control matrix for the ob-
ject.

As for reverse access control, we identify the repli-
cation role set to have three elements - Core Articles
Stores, Core Advertising Stores and Caches. Only
Caches should be allowed to serve the �	� � � requests.
Only Core Articles Stores should be allowed to ex-
ecute ����� � � � ��
 � requests. Only Core Advertising
Stores should be allowed to execute ����� ����� �	� ��
 � re-

Subscriber

 add_news

True True True

True True TrueFalse

False False

False False

False

Registr. User

Advertising Mngr

Editor

 add_advert. read_headln read_article

Methods

U
se

r
R

ol
es

True

True

True

False

Figure 3: The Access Control Matrix for the E-
Newspaper DSO

quests. Figure (4) shows the reverse access control
matrix for the object.

 add_news

True

True

TrueFalse

False

False False

False

False

False

True

False

 add_advert. read_headln read_article

Articles Store

Advertising. Store

Cache

R
ep

lic
at

io
n

R
ol

es

Methods

Figure 4: The Reverse Access Control Matrix for the
E-Newspaper DSO

Finally, for replication control, we separate the
DSO’s state into two partitions, one for article content
(
��), and the other for advertising content (
�). Only
Core Articles Stores can generate � ����������
�������� mes-
sages for
�� , and those messages should be sent only
to other Core Articles Stores (active replication) and
Caches. Only Core Advertising Stores can generate
������������
������� messages for
 , and those messages
should be sent only to other Core Advertising Stores
(active replication) and Caches. Figure (5) shows the
replication control matrix for the object.

Not Allowed

ArtS, Ch

Not Allowed

Articles Partition

ArtS

AdvS

Ch

Articles Store -

Advertising. Store -

Cache -

Not Allowed

AdvS, Ch

Not Allowed

R
ep

lic
at

io
n

R
ol

es

Partitions

Advertising Partition

Figure 5: The Replication Control Matrix for the E-
Newspaper DSO

8 Conclusions and Future Work

In this paper we described three access control
problems we encounter when designing a security ar-
chitecture for the Globe system. The classic access
control problem is extremely general and is found in
distributed systems, operating systems and databases
security. Reverse access control is common to sys-
tems where there is a large number of servers, and
users need ways of identifying which of them are the

6

legitimate providers of a given service. Finally, repli-
cation control is the problem of adding a security pol-
icy to a state consistency protocol.

The general techniques we used to tackle these
problems were to organize entities (users, replicas,
state elements) into sets with equivalent security prop-
erties and to design security policies based on these
equivalence sets. This approach is influenced by
previous work done on Role Based Access Control
(RBAC).

As for future work, we plan to integrate this secu-
rity architecture in the implementation of the Globe
system. We would also like to investigate ways of
adding mandatory (site-specific) access control poli-
cies to the current architecture. Another topic of re-
search is developing more fine-grained access con-
trol mechanisms, based on predicates on environment
conditions (time, geographical location, ...) and on
the parameters of the method requests.

References

[1] The common object request broker: Architec-
ture and specification. www.omg.org, Oct 2000.
Document Formal.

[2] Corba security service specification.
www.omg.org, March 2001. Document
Formal.

[3] M. Abrams, S. Jajodia, and H. Podell, editors.
Information Security - An Integrated Collection
of Essays. IEEE Computer Society Press, Los
Alamitos, CA, 1995.

[4] A. Bakker, M. van Steen, and A. Tanenbaum.
From remote objects to physically distributed
objects. In 7th IEEE Workshop on Future Trends
of Distributed Computing Systems, pages 47–52,
December 1999.

[5] G. Eddon and H. Eddon. Inside Distibuted
COM. Microsoft Press, Redmond, WA, 1998.

[6] A. Grimsaw and W. Wulf. Legion - a view from
50000 feet. In Fifth IEEE International Sympo-
sium on High Performance Distributed Comput-
ing. IEEE Computer Society Press, Aug 1996.

[7] C. Kaufman, R. Perlman, and M. Speciner. Net-
work Security. Prentice Hall, Upper Saddle
River, NJ, 1995.

[8] J. Leiwo, C. Hanle, P. Homburg, C. Gamage,
and A. Tanenbaum. A security design for a
wide-area distributed system. In Second Inter-
national Conference Information Security and
Cryptology (ICISC’99), volume 1787 of LNCS,
pages 236–256. Springer, 1999.

[9] J. S. Park and R. Sandhu. Rbac on the web by
smart certificates. In ACM Workshop on Role-
Based Access Control, 1999.

[10] C. P. Pfleeger. Security in Computing. Prentice
Hall, Upper Saddle River, NJ, second edition,
1997.

[11] R. Sandhu, E. Coyne, H. Feinstein, and
C. Youman. Role-based access control models.
IEEE Computer, 29(2):38–48, Febr. 1996.

[12] R. Sandhu and Q. Munawer. How to do dis-
cretionary access control using roles. In ACM
Workshop on Role-Based Access Control, 1998.

[13] L. D. Stein. Web Security. Addison-Wesley,
Reading, MA, 1998.

[14] M. van Steen, F. Hauck, P. Homburg, and
A. Tanenbaum. Locating objects in wide-area
systems. IEEE Communications Magazine,
pages 104–109, January 1998.

[15] M. van Steen, P. Homburg, and A. Tanen-
baum. Globe: A wide-area distributed sys-
tem. IEEE Concurrency, pages 70–78, January-
March 1999.

7

