
A Law-Abiding Peer-to-Peer Network for Free-Software Distribution

Arno Bakker, Maarten van Steen, Andrew S. Tanenbaum
Vrije Universiteit Amsterdam

Department of Mathematics & Computer Science
De Boelelaan 1081a, 1081 HV
Amsterdam, The Netherlands�

arno,steen,ast � @cs.vu.nl

Abstract

The Globe Distribution Network (GDN) is an applica-
tion for worldwide distribution of freely redistributable soft-
ware packages. The GDN takes a novel, optimistic ap-
proach to stop the illegal distribution of copyrighted and il-
licit material via the network. Instead of having moderators
check the software archives at upload time, illegal content
is removed and its uploader’s access to the network perma-
nently revoked only when the content is discovered. An im-
portant feature of the GDN is that the objects containing the
software can run on untrustworthy servers. A first version
of the GDN has been implemented and has been running
since October 2000 across four European sites.

1. Introduction

Developing a large Internet application is a difficult task
due to the complex nonfunctional aspects that have to be
taken into account. A developer has to deal with a poten-
tially large number of users, high communication delays,
security threats, and machine and network failures. The
key to making large-scale application development easier is
therefore providing the developer with the means for deal-
ing with these complex aspects. Current middleware plat-
forms, such as CORBA and DCOM, however, do not pro-
vide adequate support in this area, as they are mainly aimed
at local-area networks. We are designing and building a
new middleware platform that will provide the developer
with the support needed to build worldwide distributed ap-
plications more easily. This middleware platform is called
Globe [9]. To demonstrate the feasibility of our ideas and
the design of the Globe middleware we have been building
a new large-scale Internet application, called the Globe Dis-
tribution Network. This article describes the design of this
application, in particular its security aspects.

The Globe Distribution Network, or GDN for short, is a
peer-to-peer network for the efficient, worldwide distribu-
tion of freely redistributable software packages, such as the
GNU C compiler, the GIMP graphics package, Linux dis-
tributions, and shareware. Efficiency is achieved by repli-
cating the software near to the downloading clients. The
GDN does not require servers hosting replicas to be trust-
worthy. The server capacity required to host the replicas of
the software can therefore be donated by untrusted volun-
teers. To protect these volunteers against legal action the
GDN takes special measures to prevent the distribution of
illicit content.

We chose the distribution of freely redistributable soft-
ware (henceforth free software) as an example application
for a number of reasons. The most important reason is that
the application itself has many interesting aspects. Many
people are interested in free software, and many people are
creating free software, resulting in an application that is
large both in terms of numbers of users and in the amount of
data that needs to be handled. The application also has in-
teresting security aspects. Unauthorized modification of the
software being distributed must be impossible and neither
should malicious persons be able to use the GDN to ille-
gally distribute copyrighted or illicit material. What makes
the security aspects particularly interesting is our intention
to let the GDN use spare server capacity provided by any-
one who wishes to contribute, implying that the majority of
machines used are not to be trusted.

The remainder of the article is structured as follows. We
start with a description of the basic architecture of GDN,
and explain the basic operation of our application. Sec-
tion 3 comprises the major part of the paper, in which we
present our security measures. The current implementation
is briefly discussed in Section 4. We conclude in Section 5.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15454293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. Architecture

The architecture of the Globe Distribution Network is
shown in Figure 1. The core of GDN is formed by a col-
lection of Globe object servers. A Globe object server is
a user-level process that stores and manages replicas of a
subset of the software packages being distributed through
the GDN. As shown in Figure 1, clients download software
packages from a collection of object servers. Being a Globe
application, the GDN depends on the three standard Globe
middleware services: the Globe Naming Service (GNS), the
Globe Location Service (GLS) and the Globe Infrastructure
Directory Service (GIDS). The GDN Access Control Ser-
vice (GDN ACS) is a GDN-specific service handling key
distribution and validation. These services are discussed
next.

Object servers storing packages

Distributed support services

Client

GLSGNS GIDS GDN ACS

Object
server 1 server 2 server 3

Object Object

Figure 1. The basic architecture of the Globe
Distribution Network.

Clients downloading software from the GDN connect
to the most convenient (e.g. geographically or network-
topologically nearest) object server that holds a replica of
the object containing the desired software package. To
find this most convenient replica, clients perform a two-
step lookup process. In the first step, the symbolic name
of the software-package object is resolved to a location-
independent object handle. The object handle of a software-
package object is its permanent identifier that does not
change during the lifetime of the object [10]. This resolu-
tion step is carried out by the Globe Naming Service (GNS)
[1].

In the second step, the object handle of the package
object is mapped to the contact address of its nearest
replica. This contact address contains, among other items,

the IP address of the object server running the replica. We
have developed a special service for mapping the location-
independent object handles to the actual replica locations,
called the Globe Location Service (GLS) [8]. The special
property of this service is that its lookup costs are propor-
tional to the distance between client and replica. So, if a
replica is located near the client, lookup costs are low. Us-
ing the information in the contact address the client con-
structs a proxy for the software-package object and uses this
to retrieve the software from the object.

Software-package objects replicate themselves over the
object servers following current client demand and the his-
tory of the object. This object-controlled automated replica
management not only makes things easier for the publisher
of a software package, but also allows faster and effec-
tive response to sudden increases in popularity (i.e., flash
crowds). When the popularity of a certain software pack-
age suddenly rises (e.g., there is a new version and every-
body wants to download it) the software-package object lo-
cates additional object servers and requests them to create a
new replica. The additional object servers are located using
the Globe Infrastructure Directory Service (GIDS) which
keeps track of the object servers available worldwide [3].
When popularity drops and it becomes inefficient to main-
tain a replica at a certain object server, the object removes
the replica and deregisters it from the location service.

2.1. Mapping software packages to Globe objects

A software package in our approach is an application, a
library, or any piece of software that is published as a sep-
arately named entity. We assume that a software package
may continuously evolve as bugs are fixed, new functional-
ity is added, or when it is adapted to changing library APIs.
This evolution results in a tree of revisions, that is, versions
that are meant to replace other, earlier versions. Each re-
vision of a package can have a number of variants, that
is, versions somehow derived from a revision that are not
meant to replace it, but instead coexist with that revision
[5]. An example of variants is formed by compiled binaries
for different platforms. However, a revision can also have
multiple source-code variants specifically targeted towards
a particular platform when the code cannot be or is inten-
tionally (e.g. for performance reasons) not made platform
independent.

Software packages are encapsulated in Globe’s dis-
tributed shared objects (DSOs). A distinguishing feature
of a DSO is its ability to manage the replication and loca-
tion of its state, as explained in [9]. We encapsulate each
revision of a software package along with all its variants in
a single DSO. We refer to such a distributed shared object
as a revision object. A variant may be distributed in mul-
tiple file formats, either a generic file archive format (ZIP,



GZIP-ed TAR) or a specialized format for packaging soft-
ware, such as Red Hat’s RPM or Debian’s DEB format. In
other words, a revision object is basically a collection of
archive files, containing the different variants of a particular
revision of a software package.

Consider the following example to illustrate our map-
ping scheme. The GIMP application manipulates images in
various image formats. In the GDN, the package would be
published as a set of revision objects, one for each published
revision. The revision object encapsulating revision 1.1.29,
for example, would consist of the source code in tar.gz for-
mat and binaries for Linux on i386 and Alpha processors in
.deb and .rpm package formats.

We chose this mapping because it allows us to apply dif-
ferent replication strategies to different revisions. Popular
new revisions can be replicated on many hosts, while older
revisions of a software package need to be replicated on just
a few archive sites. This approach allows for efficient use
of the available resources. We may switch to an alternative
mapping where each individual variant is encapsulated in a
separate DSO in the future, if our initial mapping turns out
to be too coarse-grained.

Uploading into or downloading an archive file from a
revision object is done by invoking the methods of the dis-
tributed shared object. To upload a file a user first calls
the startFileAddition method passing the name and size of
the file to be uploaded as arguments. The content of the
file is uploaded in large blocks using a series of invocations
of the putFileContent method. When the upload is finished
the user calls endFileAddition which finalizes the upload and
makes the file accessible for download. The archive files are
written to persistent storage. Downloading is also done in
large blocks using the getFileContent method.

3. Security

Having explained the basic operation of the GDN
we now discuss its security design. We focus on the
GDN application; security of the supporting, application-
independent services such as the Globe Location Service
are not discussed here, see, for example, [2]. For the re-
mainder of this article these services are therefore assumed
to be fault tolerant and run by a trusted organization on
trusted hosts.

The security design of the GDN addresses three issues:

1. How to guarantee the authenticity and integrity of the
software being distributed.

2. How to prevent the illegal distribution of copyrighted
works or illicit material via the GDN.

3. How to guarantee the availability of the GDN given
our design goal to allow object servers to run on un-
trusted machines. This design goal enables anyone

with a permanent Internet connection to run an object
server and participate in the GDN. Measures must be
taken to prevent attackers from disrupting the GDN by
running maliciously modified object servers.

We discuss the issues of authenticity and integrity, con-
tent liability, and availability in turn.

3.1. Authenticity and integrity of the software

People downloading software from the Globe Distribu-
tion Network want to be assured of the authenticity and in-
tegrity of the software downloaded; that is, is the package
that they just downloaded the actual GIMP application or a
malicious Trojan horse?

In our design, establishing the authenticity of software is
the responsibility of the downloading user. In principle, the
GDN guarantees only the integrity of the distributed soft-
ware. It gives only very limited authenticity guarantees, by
providing the verified name of the person who uploaded the
software (which is recorded for traceability reasons, as we
explain later). Stronger guarantees concerning the authen-
ticity of software should therefore come from mechanisms
outside the GDN. The GDN does, however, provide hooks
for such external verification.

Currently, free software distributed via HTTP or FTP
is authenticated using public-key cryptography [6]. Main-
tainers of software packages digitally sign the archive files
with a private key and publish the associated public key
on the well-known Web site of the software package (e.g.
www.kernel.org for the Linux kernel). People that down-
load the software obtain the public key from the well-known
Web site and use it to check the digital signature, thus es-
tablishing the authenticity of the software. We refer to this
signature as the end-to-end signature. Vital to this authen-
tication scheme is that the associated public key is obtained
from a trustworthy source that guarantees that the key ac-
tually belongs to the maintainer of the package. Note that
even though Web sites currently do not meet this require-
ment they are nonetheless used for this purpose in practice.

The GDN supports only the automatic verification of
end-to-end signatures. The GDN makes it the responsi-
bility of the downloading user to obtain the proper public
key. Concretely, when downloading a file from the GDN
the end-to-end signature is downloaded along with it. The
GDN client software then does the end-to-end authenticity
check, using a key ring supplied by the downloading user.
If the key ring does not contain the required public key, the
user is prompted to supply it. People can, of course, choose
to do end-to-end signature verification themselves (using,
for example, PGP [11]) if they do not trust the GDN client
software to do this faithfully.

The most important reason for not having the GDN pro-
vide strong authenticity guarantees is that we expect GDN



users not to trust any statements the GDN makes about
the authenticity of the software they download. We expect
GDN users will want to verify themselves that the soft-
ware they downloaded and which they will be running on
their systems is what they expect it to be. Furthermore,
it is also difficult for a distribution network such as the
GDN to provide strong authenticity guarantees. Consider
the following example. To guarantee that the revision ob-
ject named “GIMP 1.1.29” actually contains revision 1.1.29
of the GIMP application we would have to establish who is
the maintainer of GIMP and make sure that only that per-
son can create a revision object named “GIMP 1.1.29” in
the GDN and can upload files into that object. Making sure
only a certain person can use certain names and edit certain
objects is relatively easy, but establishing who is the main-
tainer of a specific package is, in general, rather difficult.

3.2. Content liability

We must take action to prevent the illegal distribution of
copyrighted works or illicit content via the GDN so that the
owners of object servers do not run the risk of being pros-
ecuted for copyright infringement or the distribution of il-
licit material. In some countries, in particular in the United
States, the computer owner himself is liable for copyright
infringement if copyrighted content is served from his com-
puter even if the owner did not place it there [7]. The same
risk of liability exists for pornography and other illicit ma-
terials.

Avoiding the problem of liability by ensuring that no il-
legal content is uploaded into the GDN is practically im-
possible. The only solution is to manually check each piece
of content before it is allowed onto the network. Manual
checks are error prone and may be defeated by cleverly en-
coding illicit content into inconspicuous content. We can,
therefore, try only to limit distribution of illegal content.

We believe that manual checks at upload time are an un-
suitable mechanism also for limiting the amount of illegal
distribution. Manual checks at upload time, or content mod-
eration as we refer to it, has several disadvantages. Unpack-
ing software archives and checking them for illicit content is
tedious work. In addition, if there is little abuse, we expect
the people doing the moderation to perceive the work as
superfluous. Furthermore, content moderation introduces a
delay between the initial submission for publication and the
actual publication in the distribution network. We expect
that software maintainers wanting to publish via the GDN
will find this delay irritating.

Given the disadvantages of content moderation we chose
a different, novel solution to limit the illegal distribution of
content in the GDN. All content that is published through
the GDN is made traceable to the person who published it.
If it is discovered that a person published inappropriate con-

tent through the GDN all content published by that person
is immediately removed and he or she is banned from the
GDN. Intuitively, the GDN is similar to a world-writable di-
rectory on a UNIX operating system: everybody can place
files in the directory but the files always remain traceable to
the user that put them there because of the associated own-
ership information.

3.2.1. Implementing content traceability

Content traceability is implemented in the GDN as follows.
If someone wants to start publishing the software he main-
tains via the GDN he has to contact one of the so-called
Access-Granting Organizations. An Access-Granting Or-
ganization, or AGO for short, verifies the candidate’s iden-
tity by checking his passport or other means of identifica-
tion. In addition, the organization checks with the other
AGOs to see if this person has not been banned from the
GDN. If the candidate is clean, the Access-Granting Orga-
nization creates a certificate [6] linking the identity of the
candidate to a candidate-supplied public key and digitally
signs this certificate. This certificate allows the candidate
to upload content into the GDN. We call a person who is
allowed to upload content a GDN producer. We call the key
pair of which the public key on this certificate is one part the
trace key pair. The trace key pair may be the same key pair
as used for the end-to-end signature but this is not required.

A producer signs all content that he uploads into the
GDN using the trace key pair. We call this the trace sig-
nature to distinguish it from the end-to-end signature. Con-
cretely, the startFileAddition method invoked at the begin-
ning of an upload has two additional arguments: a digital
signature created with the trace private key, and the certifi-
cate containing the trace public key signed by the Access-
Granting Organization. The trace signature is created au-
tomatically by the GDN upload tool. When the upload is
finished and the producer calls endFileAddition the object
verifies the trace signature. When the signature is false (ei-
ther because the producer has been banned from the GDN,
the certificate did not contain the right public key, or the file
did not match the digital signature) the object removes the
uploaded file from its state. This procedure guarantees that
all content in the GDN is traceable to a particular producer.

The organization owning an object server can decide
which producers it wants to give access to its object servers
by specifying which AGOs it trusts to do a proper iden-
tity and black-list check. Only producers that have certifi-
cates signed by those AGOs will be allowed to place content
on that organization’s object server. Organizations can also
block individual producers.



3.2.2. Revoking access to the GDN

To ban a producer from the GDN when illicit content trace-
able to him is found, the following procedure is executed.
When a downloading user or object-server owner finds il-
licit content in the GDN he contacts a GDN producer who
will make the accusation on his behalf. The accusing
producer notifies all object-server owners and the Access-
Granting Organization that gave the violator access of the
presence of illicit content. The Access-Granting Organi-
zation in addition receives a copy of the signed illicit con-
tent and verifies that this content is indeed inappropriate and
signed by the violator. If this is the case, the violator is then
placed on the central black list shared by all AGOs and is
thus banned from the GDN.

The actions taken by the object-server owners depend
on their policy. They may destroy their replicas of all ob-
jects that contain content signed by the violator, or delete
the replicas of only the objects mentioned in the allegation.
They may do so immediately upon notification by the accus-
ing producer, or only after the allegation has been verified
by the AGO. Object-server owners can also decide not to
remove the content but instead temporarily block accused
producers from their server.

What policy object-server owners will adopt depends on
the requirements imposed by the law, the level of abuse
and whether or not people report the abuse. In principle,
object-server owners are autonomous and can decide for
themselves which policy they adopt. However, the GDN
may also impose a system-wide policy to guarantee certain
system-wide properties with respect to illegal distribution.
We currently require object servers to follow a system-wide
policy where all content published by a violator is deleted,
but only after verification of the evidence. This policy pro-
vides protection against malicious GDN producers trying to
remove well-known software packages from the GDN.

The reason accusation is delegated to a producer is to
keep the number of accusations an AGO has to process low.
More specifically, the accusing producer will be banned
himself if the accusation he makes proves false. It is in the
interest of the accusing producer to make these accusations,
as in the long run, not participating in banning malicious
producers will result in the collapse of the GDN and de-
prive the accusing producer of a cheap distribution channel
for his own software. Although blocking the accusing pro-
ducer himself when the accusation is false may seem like a
drastic measure, it is necessary in order to keep the amount
of work for access-granting organizations low, as we ex-
pect that many false allegations will be made if there is no
threshold for an accuser in the form of a possible sanction.
Alternative sanctions are a future research topic.

3.2.3. Discussion

This scheme for handling the problem of illegal distribu-
tion of copyrighted or illicit content is in line with cur-
rent legal developments. For example, in the United States,
“provider[s] of online services,” such as Internet Service
Providers can request legal protection from copyright in-
fringements by their users. Under this protective measure,
copyright holders cannot seek compensation from the ser-
vice providers for these infringements. To receive this legal
protection ISPs are required only to remove the copyrighted
content once they have been notified by the copyright hold-
ers [7].

The correct operation of the GDN’s scheme for limiting
illegal distribution depends on two factors: (1) the good-
will of the GDN producers and (2) the correct function-
ing of the Access-Granting Organizations. In theory, the
scheme works even if the majority of Internet users want
to abuse the GDN for illegal distribution. Eventually all
abusers will have been black listed and only truthful peo-
ple will have access. However, by the time we have reached
this situation no person with truthful intentions will be mak-
ing object servers available anymore. This scheme therefore
practically depends on the goodwill of the GDN producers.
Given that their good name is at stake (the black list of GDN
abusers is public), we expect most GDN producers will be-
have.

The scheme itself provides some protection against mis-
behaving Access-Granting Organizations. When a truth-
ful Access-Granting Organization mistakenly gives a pre-
viously blocked producer access again, an object server
ends up serving illicit content. However, as before, this il-
licit content will be removed immediately and its uploader
blocked when it is detected. When an Access-Granting Or-
ganization (purposely or not) does not respond to accusa-
tions of abuse by producers it gave access to or (purposely)
gives blocked producers access again, the AGO will get a
bad reputation. Object-server owners will start refusing any
producers the AGO accredited and eventually the AGO will
be ousted from the GDN.

What this scheme currently does not fully take into ac-
count are the differences between countries of what content
may be legally distributed. Moreover, the GDN also does
not currently provide measures to prevent people in a coun-
try with strict laws from downloading illegal content from
countries where this content is legal. These issues require
further investigation. In the meantime, we define our own
policy of what can be distributed via the GDN. Given that
the GDN is to be used for the distribution of free software,
we define inappropriate as anything that is not freely redis-
tributable software or part thereof.



3.3. Ensuring the availability of the GDN

The GDN should have high availability; that is, it must
be up and running most of the time. Two factors influence
availability: failures, and deliberate attacks on the GDN.
We concentrate only on attacks.

Recall that our design goal is to make anyone with a per-
manent Internet connection a candidate for running an ob-
ject server for the GDN. This design goal creates a vulner-
ability as people may attempt to undermine the availability
of the GDN from the inside by running a modified and ma-
liciously acting object server. We, as GDN designers, do
not have and can never have complete control over object-
server machines and thus cannot prevent this malicious be-
havior. We, therefore, take measures which to make sure
these denial-of-service attacks have little effect.

We divide our discussion on countermeasures into two
parts. We first discuss measures that protect against mali-
cious object servers trying to affect the operation of other
object servers. After that, we discuss the measures that pro-
tect a downloading user against a misbehaving object server.
We do not consider denial-of-service attacks by network
flooding.

3.3.1. Protecting object servers

Object servers can maliciously affect other object servers
by sending fake replication-protocol messages. In particu-
lar, they can send fake state-update messages (i.e., method
invocations, a new version of the state, and state invalidates)
and sabotage collective decisions, for example, by report-
ing failure in a two-phase commit protocol or faking replies
from other object servers during such decisions.

Our first measure for protecting good object servers is
to have all revision objects use a safe replication protocol.
In this replication protocol each object has a small number
of so-called core replicas. These replicas run on machines
trusted by the owner of the object (a GDN producer) and
have the authority to update the state of the object. Core
replicas accept only state-update messages that are signed
by the owner’s trace private key.

In addition to these core replicas, an object can have
a number of replicas hosted by untrusted machines. Un-
trusted replicas accept only state updates that are either
signed by the trace private key or that are cryptographically
verified to originate from a core replica. Untrusted replicas
can verify the origin of a state update as follows. Each ob-
ject server has its own public/private key pair and a certifi-
cate containing its public key signed with the owner’s trace
private key. Any state-update messages the object server
sends out contain the certificate and are signed with the ob-
ject server’s private key, allowing an untrusted replica to
verify that this update comes from a core replica with dele-

gated authority to make updates.

Given that only the producer has access to the trace pri-
vate key and the core replicas’ authorization is tied to their
own key pair, no untrusted replica (i.e., malicious object
server) can modify the state of any other replicas. An al-
ternative to delegation via certificates is to use proxy signa-
tures [4]. As indicated above, the machines running the core
replicas have to be trusted by the GDN producer who owns
the object. In particular, these machines should be trusted
not to send out fake updates and act as trustworthy sources
for the state of the object. We expect that finding machines
will not be hard, as they require only limited trust (digital
signatures prevent malicious modification of the software it-
self), and we expect well-known object servers will appear
(as has happened with FTP) that can be used, in particular,
by producers who do not have easy access to trustworthy
servers themselves (through befriended users, for example).

The second measure is to limit the number of collective
decisions, as we illustrate with the following two examples.
When a state-modifying method, for example, deleteFile is
invoked, only the core replicas dictate whether or not this
update operation succeeds. As a consequence, when all
core replicas have successfully executed a state-modifying
method, but an untrusted replica cannot perform the update
for whatever reason, the operation on the object is never
rolled back. Instead, the untrusted replica is no longer con-
sidered a part of the object and is left to destroy itself.

Another example of limiting collective decisions relates
to replica placement. We make each untrusted replica de-
cide for itself if there is a need for a new replica and where
it should be placed. In some cases better decisions could be
made by taking the load and geographic location of more
replicas into consideration, but that requires replicas not to
sabotage this collective decision.

Not all cooperation between untrusted object servers can
be avoided, however, so there can still be some interference
from malicious object servers. For example, when an object
server detects an influx of traffic from a particular region
it will ask an object server in that region to create a new
replica. The latter (malicious) object server could grant the
request, but kill the new replica just after, thus hindering
the former object server. We provide some limited means
to deal with these types of situations. Object-server owners
are allowed to specify which object servers they want to co-
operate with and can block others (e.g. by blocking certain
IP-address ranges). These rules are used in selecting a can-
didate object server (using the Globe Infrastructure Direc-
tory Service, see Section 2) and to evaluate “create replica”
requests the object server receives itself.



3.3.2. Protecting downloading users

It is important to realize that an object server can be only
obnoxious to a downloading user since any malicious mod-
ifications to the software are detected by the end-to-end au-
thenticity and integrity checks discussed in the previous sec-
tion.

One source of interference with normal operation is fake
contact addresses in the Globe Location Service (GLS). Ob-
ject servers need to register the replicas they host in the GLS
such that downloading clients can find them. Object servers
should, however, not be able to insert fake addresses. We
implement this requirement as follows. Object servers are
not allowed to register a contact address for a certain Globe
object, unless they can present the GLS-access ticket for this
object to the GLS. A GLS-access ticket is basically the ob-
ject handle of the object signed by the GDN producer that
created the object and is given to each object server in the
“create replica” request. So to register a fake address an ob-
ject server must first have been asked to create a replica of
the object by one of the existing replicas, limiting the pos-
sibility of malicious object servers inserting fake addresses
considerably.

Even if object servers have been asked to create a replica
of a certain object they can still hinder a downloading user
by putting different content in that replica. This content
could even be traceable (i.e., a malicious object server could
serve the user the content of a totally different object) which
means that users will not notice the problem until they do
the end-to-end authenticity check. This problem makes the
end-to-end authenticity check absolutely vital to the secure
downloading of software from the GDN. By allowing users
to black-list object servers in their client software or to spec-
ify preferences (e.g. preferably connect to object servers
from the .edu domain) we give users a way to also protect
themselves against this type of misbehavior.

4. Current implementation

A first version of GDN has been up and running since
October 2000. It currently spans four European sites: the
Vrije Universiteit and the NLNet Foundation in the Nether-
lands, INRIA Rocquencourt in France and the University of
Erlangen in Germany. We expect to include two sites in the
United States and one in Israel soon. All code is written in
the Java programming language.

The current implementation supports the basic function-
ality for uploads and downloads and replication. The de-
sign of our security framework is currently being imple-
mented. The current implementation consists of the code
for the revisions objects that encapsulate the software, an
object management and upload tool, and a HTTP-to-Globe
gateway used for downloading software via a standard Web

browser.
The current implementation has proven quite stable

and is being used to distribute the GDN software itself,
in addition to a number of operating systems (MINIX,
Amoeba, RedHat Linux and the Linux kernel). Fur-
thermore, it is currently used to replicate a number
of personal Web pages. A live demo can be vis-
ited at http://enter.globeworld.org/nl/vu/
cs/globe/proj/clubglobe. As our priorities lie
with the implementation of the security features, we have
only recently started analyzing and optimizing the perfor-
mance of our implementation, the results of which are not
yet available. The analysis is done in preparation of a large-
scale experiment to distribute the content of a well-known
free-software site through the Globe Distribution Network.

5. Conclusions

The Globe Distribution Network (GDN) is an applica-
tion for the efficient distribution of freely redistributable
software packages. It has been developed as a test appli-
cation for a new middleware platform called Globe which
is designed to facilitate the development of large-scale In-
ternet applications. Distribution of the free software is
made efficient by encapsulating the software into Globe dis-
tributed shared objects and efficiently replicating the objects
near to the clients downloading the software. Replication
of the software is automated because distributed shared ob-
jects manage their replication themselves based on past and
present client demand. An important feature of the Globe
Distribution Network is that it can use untrusted servers to
replicate the software objects on.

Instead of doing content moderation at upload time to
prevent the illegal distribution of copyrighted material or
other illicit content, the Globe Distribution Network takes
a novel approach where publishers are given direct access
to the network. In this optimistic approach all content up-
loaded into the network is made traceable to its publisher
(by means of digital signatures) allowing illicit material to
be removed from the GDN immediately after it is found and
the publisher of this material to be banned from the GDN.

Our experiences with the current implementation of the
GDN in a test spanning four European sites are promis-
ing. We are currently working on a complete implemen-
tation of the described security design and intend to ex-
pand our experiments to involve more sites, in particular
in the United States. In the mid-term future we plan to
add support for facilitating the management of many differ-
ent versions of a software package and downloading groups
of related packages. The source code for both the Globe
Distribution Network and the Globe middleware platform
are freely available under the BSD software license (see
http://www.cs.vu.nl/globe).



Acknowledgments

We thank Chandana Gamage, our staff programmers,
Patrick Verkaik and Egon Amade and our sponsor, the
NLnet Foundation for their support in the development of
Globe and the Globe Distribution Network.

References

[1] G. Ballintijn and M. van Steen. “Scalable Naming in Global
Middleware.” In Proc. 13th Int’l Conf. on Parallel and Dis-
tributed Computing Systems, pp. 624–631, Las Vegas, Aug.
2000. ISCA.

[2] G. Ballintijn, M. van Steen, and A. S. Tanenbaum. “Simple
Crash Recovery in a Wide-Area Location Service.” In Proc.
12th Int’l Conf. on Parallel and Distributed Computing Sys-
tems, pp. 87–93, Fort Lauderdale, FL, Aug. 1999. ISCA.

[3] I. Kuz, M. van Steen, and H. J. Sips. “The Globe Infras-
tructure Directory Service.” Technical Report IR-484, Vrije
Universiteit, Department of Mathematics and Computer Sci-
ence, Jan. 2001.

[4] M. Mambo, K. Usuda, and E. Okamoto. “Proxy Signatures
for Delegating Signing Operation.” In Proc. Third Conf.
Computer and Communications Security, pp. 48–57, New
Delhi, India, Mar. 1996. ACM.

[5] G. Pierre, I. Kuz, M. van Steen, and A. Tanenbaum. “Differ-
entiated Strategies for Replicating Web Documents.” Comp.
Comm., 24(2):232–240, Feb. 2001.

[6] B. Schneier. Applied Cryptography. John Wiley, New York,
2nd edition, 1996.

[7] Digital Millenium Copyright Act. United States Plublic Law
No. 105-304, Oct. 1998.

[8] M. van Steen, F. Hauck, P. Homburg, and A. Tanenbaum.
“Locating Objects in Wide-Area Systems.” IEEE Commun.
Mag., 36(1):104–109, Jan. 1998.

[9] M. van Steen, P. Homburg, and A. Tanenbaum. “Globe:
A Wide-Area Distributed System.” IEEE Concurrency,
7(1):70–78, Jan. 1999.

[10] R. Wieringa and W. de Jonge. “Object Identifiers, Keys,
and Surrogates–Object Identifiers Revisited.” Theory and
Practice of Object Systems, 1(2):101–114, 1995.

[11] P. Zimmermann. The Official PGP User’s Guide. MIT Press,
Cambridge, MA, 1995.


