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Abstract. This paper deals with the single server queue with batch
arrivals. We show that under suitable conditions the waiting time
distribution ¢f an individual customer has an asymptotically exponential
expansion. For the practically important case of phase-type distributions
for the interarrival time and the service time a computationally useful

characterization of the amplitude factor and the decay parameter is given.






Introduction

Queuveing models with batch arrivals are important in many practical
applications but have received relatively little attention in the
literature. An exact analysis for the waiting time distribution of an
arbitrary customer in the single server GI*/G/1l queue with batch
arrivals is given in Cohen [1976]. For the particular case of Poissonian
arrivals and Erlangian services a simple computational method for the
waiting time probabilities was given in Eikeboom and Tijms {1987], cf.
also Chaudhry and Templeton [1983].

For computational purposes an asymptotic expansion for the waiting
time distribution may be very useful. In this paper we show for the
batch arrival GI*/G/1l queues that under suitable conditions the waiting
time distribution has an asymptotically exponential expansion. For the
important case of phase-type distributions for the interarrival time and
the service time we are able to give a computationally useful
characterization of the coefficients of the amplitude factor and the
decay parameter of the asymptotically exponential expansion. Our results
generalize the basic results for the single arrival GI/G/l queue that
were obtained in Feller [1971] and Iglehart [1972] by random walk
arguwents, c¢f. also the altermative approach in Takahashi [1981]. Our
- analysis heavily relies on the basic results in Iglehart [1972].

The organization of this paper is as follows. The model is defined
and described in section 1. In section 2 we derive the asymptotically
exponential expansion for the waiting time distribution in the GI* /G/1
system when the batch size distribution is assumed to be non-arithmetic,
In section 3 we give a computationally useful characterization of the
coefficients of this expansion for the case of phase-type distributions.
In appendix A the results derived for the non-arithmetic case are

extended to the case of arithmetic batch size distributions.

1., The model.

In this paper we consider a single server GI*/G/1 queueing system
with batech arrival and individual services. The inter-arrival times of

the successive batches are independent and identically distributed
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variables having distribufion function A(.) with A(0)=0, average arrival
rate A>0, and finite variance. The service times of the customers are
independent and identically distributed variables having distribution
function B(.) with B(0)=0 and mean u<w. Define

(1.1) E(s) - Of” e StaB(t),

as the Laplace-Stieltjes transform of B(.). The sizes of the successive
batches are independent random variables having a common probability
distribution {gg, k~0,1,...} with go=0. It is assumed that the batch sizes
have a finite mean y. The generating function of the batch size

distribution is denoted by

(1.2) G(s) = kﬁl gksk

The three families of interarrival times, service times and batch sizes are
assumed to be independent. Customers belonging to different batches are
served in order of arrival while customers belonging to the same batch are
served in random order independently of their service times. Also it is

assumed for the offered load that

(1.3) p = dpy < 1,

Let us number the customer in order of the commencement of their
services. Denote the waiting time of the k-th customer by W, . We are
interested in the waiting time distribution of an arbitrary customer. Under
the assumption that the batch size distribution is non-arithmetic, we can

define the limiting distribution fumction

(1.4) W(x) = %iﬂ Pr{WnSK}, x=0.

It is shown in Cohen [19276] that this limit exists and represents a proper
distribution function. For the case of an arithmetic batch size

distribution, it is shown in appendix A that the results, obtained for the
non-arithmetic case, remain wvalid with a proper definition of the waiting

time distribution of an arbitrary customer.
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2. The individual waiting time.

In this section we analyse the waiting time distribution W(.) of an
arbitrary customer belonging te a batch arriving when the system has
reached statistical equilibrium., The anaysis uses basic results obtained
in Cohen [1976], Burke [1975] and Iglehart [1972]. Throughout this
section it is assumed that the batch size distribution is non-
arithmetic, that is, there exists no integer &>1 with .7 zhq=1.

The waiting time of an arbitrary customer, called a tagged customer,
can be considered as the sum of two independent components, namely the
waiting time of the customer who is served as first from the bateh of
the tagged customer and the delay caused by the customers from the batch
of the tagged customer who are served hefore him. To ahalyse the waiting
time distribution of the customer who is gerved as first from an
arbitrary batch we consider a batch as one entity, called a super
customer. In this way we create a standard GI/G/l queueing system with
single arrivals.In this queueing system the interarrival time
distribution is A(.) and the service time distribution of the super

customer is given by

5C *
(2.1 B (x) = & 5B (%),

where B"* (.) denotes the n-fold convolution of B(.) with itself. It is

readily seen that the Laplace-Stieltjes transform of B¢ (.) is given by
G(B(.)).Let WEC denote the waiting time of the n-th super customer. By

its very definition W3C is the waiting time of the customer who is the

first one served from the n-th batch. The waiting times of the super

customers have a limiting distribution function to be denoted by
SC . SC
(2.2) W () = %&g PriW "=x}.

It is important to note that this result does ﬁot require the assumption
that the batch size distribution is non-arithmetic.

Let U, denote the (waiting) time elapsed between the beginnings of the
services of respectively the customer who is served as first from the batch
to which the n-th customer belongs, and the n-th customer. Because the

batch size distribution is non-arithmetic we may define



(2.3) WB(x) - %ig Pr{Unix}.
Then the waiting time distribution W(.) of an arbitrary customer is given
by (cf. also Cohen [1976])
X .00
(2.4) W(x) = OI W (x-y)dWB(y), =0,

Since the batch size distribution is non-arithmetic it is known from
renewal theory (cf, Burke [1975]) that, for j=0,1,...,

iy
%ig Pr{n-th customer belongs to a batch with size j} = pm

Hence
(k-1)% 1
(2.5) Wy(x) = k§1 B ) .3 j§k ;

with B%” (x) the degenerate distribution with mass 1 at x=0. We now make
some mild assumptions to prove that the tail of 1-W(x) decreases

exponentially fast to zero.

Assumption 2,1, For some >0,

(2.6) 1L-B(x) =o(e &), xw,

and for some 0<A<1,
k
(2.7) g = 0(8), T

let oy = sup{e>0|lim,.,(1-B(x))e**=0}. Then the Laplace-Stieltjes
transform of B(.) is anmalytic for seC with Re(s)>-ag. Formula (2.7) implies
that the generating function of {gy ,k=0,1,...} has a radius of convergence
R>1, In addition to assumption 2.1. we need the following technical

assumption.

Asgumption 2.2. Let R be the radius of convergence of the generating
function of {g ., k=0,1,...), that is (see (1.2))

R = sup(seR|G(s)<w), )

and let (see (1.11)),



U = sup{s<a0|§(-s)<R;.
Then,
(2.8) lip GB(-s) [of” e Vaam) = 1,

where the left hand side may be infinite. If in (2.8) the equality sign

holds we also have

E(-@)-g(-s) - k-1 »
@9y P & g el <m

The assumptions 2.1. and 2.2. are satisfied in most cases of practiecal

interest for example for the class of phase-type service time distributions

and geometric batch size distributions (ecf. theorem 3.3.)., In appendix B we

prove that the assumptions 2.1. and 2.2, are equivalent to the conditions
under which Iglehart [1972] has given the asymptotically expomential
expansion of the waiting -time distribution in the standard GI/G/1l queue
with single arrivals. Thus by the results in Iglehart [1972] we have the

following lemma.

Lemma 2.1. The waiting time distribution WSC(x) of an arbitrary super

customer satisfies

. sc (254
(2.10) %&g (1-W" "(x))e = 19,

where 8 is the unique positive solution to

(2.11) G(ﬁ(-e))of” e Raa(x) = 1,

and vy, is a finite, positive constant given by

_ 1.5

y
<) G#QE(NSC)

Here I denotes the length of an idle period in the standard GI1/G/l queue
with interarrival time distribution A(.) and service time distribution
B3C(.), and NSC denotes the number of super customers arriving during one

busy cyele in this GI/G/Ll system. Further,



By = ~G(B(-0))f" xe T¥aa(x)

g P (ke et L 0 e Taw.

With this lemma we are able to prove the following theorem for systems with

batch arrivals, where the batch size distribution is non-arithmetic.

Theorem 2.2, Under the assumptions 2.1, and 2.2. the limiting waiting time

distribution W(.) of an individual customer satisfies

ex
Hm (L-W(x))e = 6,

where 65 is a finite positive constant defined by

5 =y . LGBCO)

® % La-B-en

with 8 and vy as defined in lemma 2.1.

Proof. By the definition of Wg(x) (see (2.3)), (2.3) and the assumptions
2.1. and 2.2, we find

8x 1-G(B(-8))
(2.12) e AW (X)) = 27 L w
of” 8 ¥(1-B(-8))

]

hence g = o["vge®*dWg (x). Next we find from (2.4) that
W) = of7 Q- @ynai

and so,

ox, . _ - 8(X-¥) ;1 _135C u_ . oax
(2.13) e "(1-W(x)) 68 ofm {e (1-W " (x-y)) 7913 dWB(x).
We have to show that for every &£>0 a K>0 exists with

ox
(2.14) Ie (1-W(x))-68| < g for XK,

Let such a £>0 be given. Then by (2.10) and (2.12) there exists a Ky which
satisfies
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|(1-ws°(x))eex-7e| <L (S eeyde(y)}‘l, x2K

2 1°

Let M-79+sup{e°x(I-Usc(x))]xe(-m,K1)}. By (2.12) it follows that a K,

exists with

8x £
Kzf” e W (X) < o -

Now, by splitting the integration interval in (2.13) into two disjoint
intervals [0,K;) and {K,,»), we easily obtain that (2.14) holds for
K=K4+K; . This proves the theorem. Q.E.D.

In the next section we discuss how to compute the constants as mentioned in

Lemma 2.1, and Theorem 2.2, for some special models.

3. Speclal models.

The main difficulty in computing the constant vy, (see lemma 2.1.) is
to find the Laplace-Stieltjes transform of the distribution of the idle
period, This difficulty vanishes for the case of a Poissonian arrival
gtream of the bhatches, whatever the batch size distribution and service
time distributions are. For Ki/K,/l queueing systems with batch
arrivals the constant vy, can be computed by using results from Cohen
(1982) when a weak assumption is made for the batch size distribution.
In these systems both the interarrival time distribution and the service
time distribution have a rational Laplace-Stieltjes transform. The class
of distributlon functions with a rational Laplace-Stieltjes transform
contains phase-type distributions such as mixtures of Erlangian
distributions. If we make the extra assumption that the generating
function of the batch size distribution is rational we are able to
express the coefficients of the exponential expansions of the waiting
time distribution in easily computable formulae of the (complex) roots
of a polynomial with real coefficients. This extra assumption is
satisfied e.g. for geometric batch size distributions and batch size
distributions with finite support, where the latter Includes the
constant batch size distribution.

In the following we first consider the two cases: (i) the MX/G/1

queue and (ii) the KX/K,/l queue. Next we give elaborated solutions to
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the M*/D/1 queue, the MX/E, /1 queue and the MX/C,/1 queue. For each of
these three special cases we consider constant and geometrically
distributed batch sizes.

Theorem 3.1, For the batch arrival MX/G/1 queue satisfying the assumptions

2.1. and 2.2, the constant © is the smallest positive solution to

(3.1) A(G(E(-G))-l) = @,

The constants <, and 8, are given by

l-p Q
(3.2) 4, = +=—t—r , and §_ = g, —x———
8 ~ Apg-1 o~ "8 | B(-ey-1)
where
- G(B(-8))-G(B(-38))
(3:3) 9 - 1 5

Here G(.) is the generating function of the batch size distribution and

R(.) the Laplace-Stieltjes transform of the service time distribution.

EEEE£° Since the arrival process is Poissonian, we have

oJ e stdA(t)=E(e %1 )=2/(A+s) and the well-known fact from queueing theory
that E(NS¢)=1/(1l-p}. It is now a matter of simple algebra to derive (3.1),
(3.2) and (3.3) from lemma 2.1. and theorem 2.2. Q.E.D.

Let us next consider the KX/K,/l queue. Under the assumption that the
generating function of the batch size distribution is rational, we will
show that the batch-arrival KX/K,/1 queueing model can be reduced to a
single arrival K,/K,/l queueing model. Next we apply known results for the
latter queueing model to solve our batch arrival queueing model,

Recall that the Laplace-Stieltjes transform of a K,-type distribution is
the quotient of two polynomials where the denominator is a polynomial of
degree n and the numerator is a polynomial of degree at most (n-1}. Here it
is no restriction to assume that the polynomials have no common zeros. Also
it is no restriction to assume that in the denominator the coefficient of
s" is equal to 1. Let B(.) be a K,-type distribution function with a Laplace-
Stieltjes transform denoted by



(3.4) E(s) = Oj” e Stap(e), Re(s)>z,

; where zy is the real part of the axils of convergence of the integral. By
applying Widder [1946, chapter II, theorem 5.b] we find that zy is a
singularity of B(.). Now, write B(S)-ﬁ1(s)/ﬁz(s) for s with Re(s)>zq.
Because 31(.) is a polynomial we may conclude that Bz(zo)wo. Furthermore,
all the zeros z of By(.) satisfy Re(z)=z,. Because B((.) and B,(.) have
no common zeros and B(s) analytic for s with Re(s)>0 we have zy<0. Since
B,(.) has a finite number of zeros we find that zy<0. So 1-B{(t)=o(e'?), as
t+o, for any z€(zy,0) implying that (2.6) in assumption 2.1. holds.

The following lemma states some known results for the K;/K,/l queueing

system with single arrivals.

Lemma 3.2. Consider a K;/K,/l system with an interarrival time distribution
F(.) and a service time distribution H(.) with respectively Laplace-
Stieltjes transform F(s)=F; (s)/F;(s) and A(s)=f; (s) /B, (s), where

F;(.) and §;(.) are polynomials. Denote the steady state distribution of
the waiting time of an arbitrary customer by V(.). Thils distribution has a

tail satisfying
KX
(3.5) lim ¢ (1-V(x)) = T,

with x the positive solution to F(k)H(-k)=1, and

1-E(e” "L

(3.6) PK. = x.p.xE(N) ’

where I denotes the length of an idle period, N the number of arriving
customers during a wet cycle (see lemma 2.1,) and

B, = & FEOHCR),_

For a K,/K,/1 system the equation F(x)H(-x)=1 is equivalent to

F,(x)H, (-x)-F) (OH (-x) = (-D" I (x-¢) =0,

where the £; are the (complex) roots of the polynomial. It is no
restriction to assume that Re(§;)=Re(£;.,) for i=2,...,n+m. Now the

constants in (3.6) can be further specified by
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] n H,(0)
K=t o, BT =1 LI (egy), B - i ,
Pyt B i
and
1 m n+m
DY I (eeg) T (o€
po= - izl jam+2
.

Fz(m)Hz(-n)

Proof. A combination of the results in Iglehart [1972}] and Cohen [1982] and

the discussion below (3.4) yields, after some rewriting, the desired

result.

Next assume that the generating function of the batch size distribution
G(s) can be written as
G, (s)
Gz(s)

(3.7) 6(s) = &, gksk -

where G; (s) = E?LO gijsi wich gy =0 (i=1,2), such that Gy(.) and Gy(.) have
no common zeros, Note gyo=0, since it is assumed that gg=0. To f£ind R; the
radius of convergence of G(.), we consider the two cases that either D=0
or Dyzl. For the first case, D;=0, it is easily found that R=» because
Gy(.) is a polynomial. For the second case, D;zl, we can define
Ro=inf{ || ;reC, G, (x)=0}. Because Gy(.) is a polynomial, R=Ry. Next, since
[G(s)lsl for s with 15[51 and G4 (.) and G,(.) have no common zeros, each
zero r of Gy (.) must satisfy |r|>l. So,lbecause G>(.) is a polynmomial of
degree D, and has at most D; distinct roots, R=Rg>l. Hence, for all values
of D,, we find that gk-o(ﬁk) for any ge(l/R,1} implying that (2.7) in
assumption 2.1, holds,

In the following theorem we show that for a certain class of queueing
systems with batch arrivals the queueing system with super customers, as
defined In section 2, is of a K,/K,/1 type. Once we have this result we can

use lemma 3.2. to compute the constants as defined in section 2.

Theorem 3.3. Consider a GX/K, /1 queueing system with batch arrivals where

the service time distribution B(.) has the Laplace-Stieltjes transform
B(s)=Bq (s)/Bs(s). The generating function of the batch size distribution
can be written as in (3.7). Then this system fulfils the conditions of the
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assumptions 2.1. and 2.2, Furthermore, letting D=-max{D;,D;), it holds that
the service time distribution of the super customers B5C(.) (see (2.1)), is

a K,p-distribution with a Laplace-Stieltjes transform given by

o1 8¢ )Anl Yo D
. X 18 s)B s AD,-
(3.8) ofm . StdBSC(t) - %21 1371 = ‘J Bz2 l(s)
_ogzjsj(s)s ()

Proof. In the discussion below (3.4) and (3.7) we have already shown that

agsumption 2.1, is satisfied. To verify that the condition of assumption
2.2. are satisfied, define R and ¥ as in assumption 2.2. Let zp be as in

(3.4). Now comsider the case that R=w., For this case U=-z5 and it is easily

seen that
(3.9) g 6(B(-5)) . 7o *Faa(e) = .

Next take R<w. For this case ¥&€(0,-z3) with B(-@)-R. Hence (3.9) also
holds for R<w, so assumption 2.2. is satisfied. To prove the second part of
the theorem take the Laplace-Stieltjes transform of (2.1) and insert (3.7).
Then we find (3.8). Because Gq(0)=0 and G4(.) and G;(.) have no common
Zeros, gzd#ﬂ and so the degree of the denominator of (3.8) is nD. To prove
that the denbminator and numerator of (3.8) have no common zerc, suppose s,
is such a common zero. Now take B, (-s¢)=0, then B;(-sq)/Bs(-5¢) is a
common zero of Gq(.) and Gp(.) and this contradicts the assumption below
(3.8). Next take B, (-s¢)=0. Then either ng e -5g))" P120 or -

g2D (31( -8g)) 2=0 Both equalities imply that 31( so)=0 and so sy is a
common zero of By(.) and Bz(.) which contradicts the assumption below
(3.4). Hence the mumerator and denominator have no common zetro. This

concludes the proof. Q.E.D.

Corollary 3.4. For a Ki&/K,/1 queueing system satisfying the conditions

stated in theorem 3.3. the constants as defined in lemma 2.1. and theorem
2.2, can be found by applying lemma 3.2. to a system where the interarrival
time distribution F(.)=A(.) and the Laplace-Stieltjes transform of the
service time distribution A(s)=BSC(s) with B8SC(s) as in (3.8).

In the remainder of this section we give detailed solutions for a number

of important special cases of the MX/G/1l queue. First we specify some
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foregoing results for the MX/G/1 system with constant and geometrically
distributed batch sizes. For the case of a constant batch size the
generating function of the batch size distribution is given by G(s)=s7
while for the case of a geometrically distributed batch size
G(s)=s/{v-(y-1)s). In the latter case it is easily verified from (3.1) that
for the particular constant ©: B(-8)=y(A+8)/(yi+(y-1)8).

¥

The MX /D/1 queue.

(a) Constant batch size. Then & (cf. theorem 3.1.) is the unique positive
solution to the following equation in s:

2e”P = avs,
where the mean service time u=D. The constants vy and 65 are given by

1- g

Y. = — , and = ————me——
8 YD (A+8) -1 (=] 7A(eGD-1)

(b} Geometric batch size. Then 8 is the unique positive solution to the

following equation in s:

esD y(A+s)

T P+(y-Ds
and the constants vy, and §g are given by

o - (1-p)X and §. = —t1=p)(yA+(y-1)8)
8 DO+8) (vx+(y-1)8)-X’ 8 Dy (A48) (vA+(y-1)8)-Ay ~

kel k1) 14 (1-0)0™ ™ L/ (n-1y1 Ye ®F,

with mean g=(gk+n{l-q))/¢. Here it is no restriction to assume that k=n.
(a) Constant batch size. Then 8 from (3.1) is the smallest positive

The MX/E, ,/1 queue. Let b(t)=( g

solution to the following equation in s:

k -k -
() (p-8)T = 20T (qle-9)" M4 (1-0)e™ ).
The constant v, and §, are given by

(1-p)
kg (p-0)" “en(1-q)e™ ¥ ]_1
a(p-8)" Kr(1-e™ K

Tg

7(A+9)(¢-8)[

and
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s e [ 8(p-0)" ]
8 Al k -k -k '
7 ¢ [9(p-9)" T H(1-q)p" 1~ (e-0)"
(b). Geometric batch size. Then 8 from (3.1) is the smallest, positive

solution to the following equation in s:
-k -]
(118105 (alo-)" B+ (1-0)e™ ) = y(rts) (0=,
and vy and &y are given by

(A-p32

n-k n-k
(YA+(y-1)8) (A+8) (¢-8) [ %4(¢-8) n-;n(l-g)mn-k ]'A

Yo

and

19(7A+(1—1)6)

89 T

The MX /G, /1 gueue. Let b(t)=qp1e-p1t+(1-q)p-#2F with mean p=q/u;+{(1-q)/u;.
Here it is no real restriction to assume that pq=up; and g#0,1 (otherwise
the exponential distribution applies). Put for abbreviation a=quq+(l-q)pu,.
{a) Constant batch size. Then 8 from (3.1) is the smallest positive root to
the following equation in s:

Mpppy-as) = (8) (uy-8)T(uy-9)7 .

The constants vy, and §, are given by

1-p)
| [ﬂ92-2#1#29+#§#§p ]
¥(A+8) -
(plpz'ae) (‘“1-6) (“2'9)

Yg ™

1

and

3

To [ (#1-8)(p,-8)
8 Yx [ HyHoh8 ]

b) Geometrie batch size. Then 8 is explicitly given by
-1 1 2 172
8 = 3y (YA-a-yp po6) - 3 [(vA-c-yp po8) " ~bypy sy (1-p) ] /

The constant vy, and 55 are found by applying corollary 3.3. and are given
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by

) A(ppy-08) X d 5. = Tg{rAt+(v-1)8)
Yo T ik, (38) T x-8 ® X

where x=- (B+-(yA-a-yupap)).

Appendix A. The arithmetic batch size distribution,.

In this appendix we focus on a GI¥/G/l queueing system with batch
arrivals where the batch size distribution is arithmetic. For this model
we give a definition of the waiting time distribution of an arbitrary
customer arriving when the system has reached statistical equilibrium.
The analysis below uses the results derived for queueing systems with a
non-arithmetic batch size distribution.

Consider an arithmetic batch size distribution (g, k=1,2,...} with
period P>1, that iIs P is the largest integer with Z[.g ghp=l. In case
of an arrival of a batch of size KP, let us split this batch into K
groups of consecutive customers. These groups are called composed
customers. We assume that customers belonging to the same group are
served consecutively. Further, the groups are numbered in order of
commencement of the service of their customers. Denote the waiting time
of the customer who is the i-th one served from the n-th composed

customer by W, ;. It is obvious that

(A.1) Wn :

3

= wn,O + Sn,i

where S, ; is the total service time of the first (i-1) individual
customers from the composed customer. Because the service order is assumed
to be independent of the service time requirement it fellows that

<x) = BSE D%y g1, L P,

(A.2) Pr{Sn,i

In oxder to analyze W, ¢ we apply the same technique as in section 2. By
considering a composed customer as ome entity we create a modified GI*/G/1
queueing system with batch arrivals. Then, by the definition of the
composed customers, the batch size distribution for this modified system is

given by
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ék-ng ,k==0,1,...,

and the service time distribution of a composed customer is given by

BP* (x). Note that the batch size distribution in this modified system is
non-arithmetic. Let WEC be the waiting time of the n-th composed customer,
It can be seen that WiC=W, ;. By the same arguments as used to derive
(2.4) and (2.5) we find that the limiting distribution of the WSC, denoted
by W€ (.), satisfies

(a.3) W) = wC * utliny,

where
CC - P(j-l)* ___1___ -
Wy () = jE B @ 78y iy &

Here W€ (.) is defined as the limiting distribution of the waiting time of
a super customer in the modified batch arrival model. A little thought
shows that a super customer consisting of composed customers in the
modified bateh arrival model is nothing else than a super customer
consisting of individual customers in the original batch arrival model.

Hence W€ (.) is exactly the function WSC(.) defined im (2.2).

Now, by (A.1), (A.2) and (A.3) we find by applying the Helly-Bray theorem,
that for iI=1,...,P,

) cC i-1)%
Lm Pr(W ;< x) =W ¥ p{i-1% 0y,

and we denote this limit by W; (x). Next consider an arbitrary customer of a
batch arriving when the system has reached statistical equilibrium. This
customer is with probability 1/P served at the i-th position from a
composed customer. So the following definition of the waiting time
distribution of an arbitrary customer is justified:

a5 W =3 £ v .

Combining (A.3), (A.4) and (A.5) and T (B = Zj=.8j,
for L=(K-1)P+1, ... ,KP, we obtain after some algebra involving interchange

of summation
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(8.6) W(x) = o WC -y (),

with

(k-1)% . 1
vp(y) = 8 B @3 & e

Now (A.6) is exactly equal to (2.4). Therefore we can apply the same
analysis for systems with respectively an arithmetic and a non-arithmetic

batch size distribution. This proves the following theorem.

Theorem A.l. Theorem 2.2. alsc holds for systems with bateh arrivals when

the batch size distribution is arithmetic, provided W(.) is defined by
(A.5).

Appendix B. The assumptions 2.1, and 2.2,

In this appendix we show that the assumptions 2.1, and 2.2. are equivalent
to the assumption Iglehart [1272] made to prove lemma 2.1. We first

state the assumption used by Iglehart [19721.

Assumption E.l., Define C(.) by

5
(B.1) ¢(x) = o (1-A(y-x))aB> (y).
Let a >0 exists which satisfies
(8.2) 6(@) ~ _[° Pacx) - 1,

and
(B.3) de = ~wfw xeede(x) < @

In the following lemma we prove that the assumptions 2.1. and 2.2. are
sufficient and necessary for the model with super customers to satisfy

assumption B.1,

Lemma B.2. Assumption B.l. is equivalent to the assumptions 2.1. and 2.2.

Proof. In the first part we show that assumption B.l. implies the
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assumptions 2.1. and 2,2, while in the second part the converse implication
is shown. For now, let assumption B.l. be given. From (B.l) and (B.2) we

may conclude that
B.4) 6(s) = e Faam f° Fa> ),

is defined on [0,8]. Let oy be the real part of the axis of convergence of
0J°e 3%dBSC (x). Then 8<-uy and so, by Widder [1946, chapter II, theorem
5.b], BSC(s) is analytic for s with Re(s)>8.Therefore C(s) is analytic

for s with Re(s)€(0,0). Let M=sup{e®*(L1-BSC(x)|xeR}. By (B.1) and (B.4)

0 J®e®*dBSC (x)<w, s0

& 7wy = 7 Tl = o), xo,
and hence M<w«. Next, from (2.1),
118 = 8 g 181 = 8 g (1-Bx))e™,

and so (1-B(X))=o(e **) as x+» for any a5(0,8). Denote the Laplace-
Stieltjes transform of BSC(.) by BSC(.). Then, from (2.1), (B.2) and (B.4)
we get :

(B.5) ESC(-S) - G(E(-s)) < © for s=-0.

Because B(-s)>1 for s<0, the generating function G(.) must have a radius
of convergence R>1 and hence gkao(ﬂk)-as k+o for any 8 with 1/R<S<l, This
proves the condition of assumptiom 2.1. To prove that assumption 2.2. holds

we define
_ e -e 3¢
P = 118 J 6s - B &
Then, by (B.S5),

Eﬁ:ﬁl:gi;ﬁl] §1ngn[£(-9)}n-l,

(B.6) oy = ifg [G(B(-9))-G(B(-5))]/6-5 = ifg [ S-s n=

where the last equality holds by monotone convergence. Next, we may write,
by (B.2), (B.3), (B.4) and (B.6),

(8.7) dg = Lig L) 5500y (e Faaixrteg o7 o Faacn),
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where the first equality can be proven in the following way. Write

" ” 8x _sx 8x _sx
Cc(®)-C(s) _ 0 e "-e e -e
s ) [ 5 dc(x) + O| 5 dc(x),
For x>0 we have 0=(e®%X-e%%)/(8-3)1xe®X for st® and so, by monotone

convergence,

eex_esx 8x
(8.8) lip ij o d0(x) = of“ xe ~dC(x).

For %<0 we have 0z(e®*-e%X)/(8-5)ixe®X for s1t® and so (B.8) also holds if
we replace the integration interval by (-«,0]. Furthermore, by the
definition of C(.), we find .mfnxdc(x)>-w and so .wfnxesde(x)>-w for s=20.
Together with (B.8) this proves the first equality in (B.7). Now, because
Of“e'sdi(x) is analytic for s with Re{s)>0 and BSC(-8) is finite we
obtain assumption (2.2) by combining (B.3), (B:5) and (B.7), This concludes
the first part of the proof.

In the following part of the proof we show that the assumptions 2.1. and
2.2. imply assumption B.1l. We first remark that (2.7) implies that R>1.
Then it follows from (2.6) that a £>0 exists with of“efde(x)<R and so >0,
Hence B(s) is analytic for s with Re(s)>-¥. Let us define C(.) as in

(B.1). Then C(.) as defined in (B.2) is, by (B.4), analytic for s with
Re(s)e(0,¥) and from (B.2) it follows that C"(s)>0 for se(0,¥). Hence

C(.) is convex on (0,¥). Then, since $'(0)=u-1/3<0 and &(0)=1, we have

by (2.8) a unique solution 8>0 to the equation

G(ﬁ(-e))of”e'etdA(c) -1.

Now, first consider the case that limg,, G(E(—s))of“e'Stdﬁ(t)wl. Then by
the convexity of C(.) on (0,¥) and &’ (0)<0 we must have limsfwﬁ'(s)>0
and hence ¥<w, By (2.9) and (B.7) ©=¥ gatisfies the condition (B.3)}. Next
consider the case that limg,,G(B(-s)) 4f°e $tda(t)>1l. By assumption 2.2.
¥<-aq, where ap is the real part of the axis of convergence of
Df“e-sde(x). Because 0€(0,¥) we easily find
B(-8)-B(-s)

%*B B-g < @
Furthermore, by the definition of ¥ and because 6<¥, we have B(-8)<R. Hence
¢(.) is analytic in the point B(-8) and so
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2 ngn[r,(-e)]n'l < w.

Together with (B.6) and (B.7) this yields (B.3). This concludes the second
part of the lemma, Q.E.D,
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