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Abstract. This paper deals with the single server queue with batch 

arrivals. We show that under suitable conditions the waiting time 

distribution of an individual customer has an asymptotically exponential 

expansion. For the practically important case of phase-type distributions 

for the interarrival time and the service time a computationally useful 

characterization of the amplitude factor and the decay parameter is given. 
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Introduction 

Queueing models with batch arrivals are important in many practical 

applications but have received relatively little attention in the 

literature. An exact analysis for the waiting time distribution of an 

arbitrary customer in the single server GIX/G/1 queue with batch 

arrivals is given in Cohen [1976]. For the particular case of Poissonian 

arrivals and Erlangian services a simple computational method for the 

waiting time probabilities was given in Eikeboom and Tijms [1987], cf. 

also Chaudhry and Templeton [1983]. 

For computational purposes"an asymptotic expansion for the waiting 

time distribution may be very useful. In this paper we show for the 

batch arrival GIX/G/1 queues that under suitable conditions the waiting 

time distribution has an asymptotically exponential expansion. For the 

important case of phase-type distributions for the interarrival time and 

the service time we are able to give a computationally useful 

characterization of the coefficients of the amplitude factor and the 

decay parameter of the asymptotically exponential expansion. Our results 

generalize the basic results for the single arrival GI/G/1 queue that 

were obtained in Feller [1971] and Iglehart [1972] by random walk 

arguments, cf. also the alternative approach in Takahashi [1981]. Our 

analysis heavily relies on the basic results in Iglehart [1972]. 

The organization of this paper is as follows. The model is defined 

and described in section 1. In section 2 we derive the asymptotically 

exponential expansion for the waiting time distribution in the GIX/G/1 

system when the batch size distribution is assumed to be non-arithmetic. 

In section 3 we give a computationally useful characterization of the 

coefficients of this expansion for the case of phase-type distributions. 

In appendix A the results derived for the non-arithmetic case are 

extended to the case of arithmetic batch size distributions. 

1. The model. 

In this paper we consider a single server GIX/G/1 queueing system 

with batch arrival and individual services. The inter-arrival times of 

the successive batches are independent and identically distributed 
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variables having distribution function A(.) with A(0)=0, average arrival 

rate A>0, and finite variance. The service times of the customers are 

independent and identically distributed variables having distribution 

function B(.) with B(0)=0 and mean /K». Define 

(1.1) B(s) = 0/° e"
StdB(t), 

as the Laplace-Stieltjes transform of B(.). The sizes of the successive 

batches are independent random variables having a common probability 

distribution {gk, k-0,1,...} with go=0. It is assumed that the batch sizes 

have a finite mean 7. The generating function of the batch size 

distribution is denoted by 

(1.2) G(s) - k| x gks
k 

The three families of interarrival times, service times and batch sizes are 

assumed to be independent. Customers belonging to different batches are 

served in order of arrival while customers belonging to the same batch are 

served in random order independently of their service times. Also it is 

assumed for the offered load that 

(1.3) p — Ap7 < 1. 

Let us number the customer in order of the commencement of their 

services. Denote the waiting time of the k-th customer by Wk. We are 

interested in the waiting time distribution of an arbitrary customer. Under 

the assumption that the batch size distribution is non-arithmetic, we can 

define the limiting distribution function 

(1.4) W(x) = lim Pr{W <x}, x>0. 

It is shown in Cohen [1976] that this limit exists and represents a proper 

distribution function. For the case of an arithmetic batch size 

distribution, it is shown in appendix A that the results, obtained for the 

non-arithmetic case, remain valid with a proper definition of the waiting 

time distribution of an arbitrary customer. 
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2. The individual waiting time. 

In this section we analyse the waiting time distribution W(.) of an 

arbitrary customer belonging to a batch arriving when the system has 

reached statistical equilibritim. The anaysis uses basic results obtained 

in Cohen [1976], Burke [1975] and Iglehart [1972]. Throughout this 

section it is assumed that the batch size distribution is non-

arithmetic, that is, there exists no integer d>l with 2£_Q gncj~l. 

The waiting time of an arbitrary customer, called a tagged customer, 

can be considered as the sum of two independent components, namely the 

waiting time of the customer who is served as first from the batch of 

the tagged customer and the delay caused by the customers from the batch 

of the tagged customer who are served before him. To analyse the waiting 

time distribution of the customer who is served as first from an 

arbitrary batch we consider a batch as one entity, called a super 

customer. In this way we create a Standard GI/G/1 queueing system with 

single arrivals.In this queueing system the interarrival time 

distribution is A(.) and the service time distribution of the super 

customer is given by 

(2.1) BSC(x) - 2, g Bn*(x), 
n=l °n 

where Bn*(.) denotes the n-fold convolution of B(.) with itself. It is 

readily seen that the Laplace-Stieltjes transform of Bsc(.) is given by 

G(B(.)).Let W->c denote the waiting time of the n-th super customer. By 

its very definition W^c is the waiting time of the customer who is the 

first one served from the n-th batch. The waiting times of the super 

customers have a limiting distribution function to be denoted by 

er Cf 

(2.2) WS°(x) = lim Pr{W^<x}. 
n-K» n 

It is important to note that this result does not require the assumption 

that the batch size distribution is non-arithmetic. 

Let Un denote the (waiting) time elapsed between the beginnings of the 

services of respectively the customer who is served as first from the batch 

to which the n-th customer belongs, and the n-th customer. Because the 

batch size distribution is non-arithmetic we may define 
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(2.3) W (x) - l i g Pr{U <x). 

Then the waiting time distribution W(.) of an arbitrary customer is given 

by (cf. also Cohen [1976]) 

(2.4) W(x) - 0/
X W^(x-y)dWB(y), x>0. 

Since the batch size distribution is non-arithmetic it is known from 

renewal theory (cf. Burke [1975]) that, for j-0,1,..., 

lim Pr{n-th customer belongs to a batch with size j} 
Jg4 

n-*» ° 7 

Hence 

(2.5) W l W - 1 B ^ ^ V ) X « 
B k2l ^ (x) • - j 5 k g. 

with B°*(x) the degenerate distribution with mass 1 at x=0. We now make 

some mild assumptions to prove that the tail of l-W(x) decreases 

exponentially fast to zero. 

Assumption 2.1. For some a>0, 

(2 .6 ) l -B(x) = o ( e " a X ) , x*» f 

and f o r some 0</3<l, 

(2 .7 ) g k - o( /3 k ) , k—. 

Let a0 = sup{a>0| lim^,,, (l-B(x))e
aX=0) . Then the Laplace-Stieltjes 

transform of B(.) is analytic for seC with Re(s)>-a0. Formula (2.7) implies 

that the generating function of {g|< ,k—0,1, . . .} has a radius of convergence 

R>1. In addition to assumption 2.1. we need the following technical 

assumption. 

Assumption 2.2. Let R be the radius of convergence of the generating 

function of {gk, k-0,1,...}, that is (see (1.2)) 

R = sup{s<=R|G(s)<«>} , 

and let (see (1.11)), 
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tf = sup{s<a JB(-s)<R}. 

Then, 

(2.8) 1 ^ G(B(-s)) [0%T e"
SydA(y)] > 1, 

where the left hand side may be infinite. If in (2.8) the equality sign 

holds we also have 

A A 

/o ns i - B(-$)-B(-s) « . * .,k-l ^ 
(2-9) IW — ¥ r s k5i

 k s k
 [B(*S)] <m-

The assumptions 2.1. and 2.2. are satisfied in most cases of practical 

interest for example for the class of phase-type service time distributions 

and geometrie batch size distributions (cf. theorem 3.3.). In appendix B we 

prove that the assumptions 2.1. and 2.2. are equivalent to the conditions 

under which Iglehart [1972] has given the asymptotically exponential 

expansion of the waiting-time distribution in the Standard GI/G/1 queue 

with single arrivals. Thus by the results in Iglehart [1972] we have the 

following lemma. 

Lemma 2.1. The waiting time distribution Wsc(x) of an arbitrary super 

customer satisfies 

(2.10) lim (l-WSC(x))e9x = yQ, 

where 9 is the unique positive solution to 

(2.11) G(B(-0))o>T e"
eXdA(x) = 1, 

and 7e is a finite, positive constant given by 

T 1-E<g-9I> , 

Here I denotes the length of an idle period in the Standard GI/G/1 queue 

with interarrival time distribution A(.) and service time distribution 

Bsc(.), and Nsc denotes the number of super customers arriving during one 

busy cycle in this GI/G/1 system. Further, 
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MQ = -G(B(-&))0f xe"0XdA(x) 

+ m ;(-Qïi(-a) [A^^-e))1 6] - 0 r e-0xdA(x). 
With this lemma we are able to prove the following theorem for systems with 

batch arrivals, where the batch size distribution is non-arithmetic. 

Theorem 2.2. Under the assumptions 2.1. and 2.2. the limiting waiting time 

distribution W(.) of an individual customer satisfies 

Qx 
lim (1-W(x))e = Sa, 

where Se is a finite positive constant defined by 

S _ y l-G(B(-9)) 

7(l-B(-9)) 

with 9 and yB as defined in lemma 2.1. 

Froof. By the definition of WB(x) (see (2.3)), (2.5) and the assumptions 

2.1. and 2.2. we find 

(2.12) . f eÖXdVx) = IzR^izm < ^ 
7 d - B ( - 9 ) ) 

hence S@ = 0 J
a,7Qe8xdWB (x) . Next we f i n d from (2 .4 ) t h a t 

l-W(x) - Qr ( l-WS C(x-y))dWB(y) 

and so , 

(2.13) eÖX(l-W(x)) - SQ - Q r [e
0(x"y)(l-WSC(x-y))-7Q]e

0XdWB(x). 

We have to show that for every c>0 a K>0 exists with 

(2.14) |e9x(l-W(x))-5Q| < c for x>K. 

Let such a s>0 be given. Then by (2.10) and (2.12) there exists a K.j which 

satisfies 
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|(l-WSC(x))e8x-7e| < § (Qr e^dW^y)}-1, x*^. 

Let M=7e+sup{e
9x(l-Wsc(x))|xe(-oo,K1 )}. By (2.12) it follows that a K2 

exists with 

K r e9XdWB<
x> < fg • 

Now, by splitting the integration interval in (2.13) into two disjoint 

intervals [0,K2) and [K2,«), we easily obtain that (2.14) holds for 

K-K1+K2. This proves the theorem. Q.E.D. 

In the next section we discuss how to compute the constants as mentioned in 

Lemma 2.1. and Theorem 2.2. for some special models. 

3. Special models. 

The main difficulty in computing the constant j e (see lemma 2.1.) is 

to find the Laplace-Stieltjes transform of the distribution of the idle 

period. This difficulty vanishes for the case of a Poissonian arrival 

stream of the batches, whatever the batch size distribution and service 

time distributions are. For K^/i^/l queueing systems with batch 

arrivals the constant 7e can be computed by using results from Cohen 

(1982) when a weak assumption is made for the batch size distribution. 

In these systems both the interarrival time distribution and the service 

time distribution have a rational Laplace-Stieltjes transform. The class 

of distribution functions with a rational Laplace-Stieltjes transform 

contains phase-type distributions such as mixtures of Erlangian 

distributions. If we make the extra assumption that the generating 

function of the batch size distribution is rational we are able to 

express the coefficients of the exponential expansions of the waiting 

time distribution in easily computable formulae of the (complex) roots 

of a polynomial with real coefficients. This extra assumption is 

satisfied e.g. for geometrie batch size distributions and batch size 

distributions with finite support, where the latter includes the 

constant batch size distribution. 

In the following we first consider the two cases: (i) the Mx/G/1 

queue and (ii) the K*/Kn/1 queue. Next we give elaborated solutions to 
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the Mx/D/1 queue, the Mx/Ek n/l queue and the M
x/C2/l*queue. For each of 

these three special cases we consider constant and geometrically 

distributed batch sizes. 

Theorem 3.1. For the batch arrival Mx/G/1 queue satisfying the assumptions 

2.1. and 2.2. the constant 8 is the smallest positive solution to 

A 

(3.1) A(G(B(-9))-l) = 9. 

The constants ye and SB are given by 

(3.2) 7 = , "Pi , and 5 - 7 — * 
9 A p e _ 1 9 9 A(B(-9)-l) 

where 

(•* <n m n™ G(B(-8))-G(B(-s)) 
(3.3) <pQ - lig ^ . 

Here G(.) is the generating function of the batch size distribution and 

B(.) the Laplace-Stieltjes transform of the service time distribution. 

Proof. Since the arrival process is Poissonian, we have 

o/a)e"stdA(t)=E(e"SI )=A/(A+s) and the well-known fact from queueing theory 

that E(NSC)-l/(l-p). It is nova matter of simple algebra to derive (3.1), 

(3.2) and (3.3) from lemma 2.1. and theorem 2.2. Q.E.D. 

Let us next consider the K^/Kn/1 queue. Under the assumption that the 

generating function of the batch size distribution is rational, we will 

show that the batch-arrival K^/Kn/1 queueing model can be reduced to a 

single arrival I^/Ki/l queueing model. Next we apply known results for the 

latter queueing model to solve our batch arrival queueing model. 

Recall that the Laplace-Stieltjes transform of a Kn-type distribution is 

the quotiënt of two polynomials where the denominator is a polynomial of 

degree n and the numerator is a polynomial of degree at most (n-1). Here it 

is no restriction to assume that the polynomials have no common zeros. Also 

it is no restriction to assume that in the denominator the coëfficiënt of 

sn is equal to 1. Let B(.) be a Kn-type distribution function with a Laplace-

Stieltjes transform denoted by 
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(3.4) B(s) - 0f° e"StdB(t), Re(s)>z0> 

where z0 is the real part of the axis of convergence of the integral. By 

applying Widder [1946, chapter II, theorem 5.b] we find that z0 is a 

singularity of B(.). Now, write È(s)-Ê1 (s)/è2(s) for s with Re(s)>z0. 

Because ê^(.) is a polynomial we may conclude that Ê2(z0)=0. Furthermore, 

all the zeros z of B2 (. ) satisfy Re(z)<z0. Because B<| •( .) and Ê2 ( . ) have 

no common zeros and Ê(s) analytic for s with Re(s)>0 we have z0<0. Since 

ê2(.) has a finite number of zeros we find that z0<0. So l-B(t)=o(e
tz), as 

t-*», for any ze(zo,0) implying that (2.6) in assumption 2.1. holds. 

The following lemma states some known results for the I^/Kn/l queueing 

system with single arrivals. 

Lemma 3.2. Consider a 1^/1^/1 system with an interarrival time distribution 

F(.) and a service time distribution H(.) with respectively Laplace-

Stieltjes transform ^(s)-^(s)/F2(s) and Ê(s)-Ê1(s)/È2(s), where 

F,-( . ) and ft,-( . ) are polynomials. Denote the steady state distribution of 

the waiting time of an arbitrary customer by V(.). This distribution has a 

tail satisfying 

(3.5) lim eKX(l-V(x)) - r , 

with K the positive solution to F(/c)ft(-/c)=l, and 

n f i H _ l-E(e'Kl) 
^ • J K Kfi E(N) ' 

K 

where I denotes the length of an idle period, N the number of arriving 

customers during a wet cycle (see lemma 2.1.) and 

For a Knj/Kp/l system the equation F(x)ft(-x)=l is equivalent to 

F2(x)H2(-x)-F1(x)H1(-x) - (-l)
n g j (x-?i) = 0, 

where the £,- are the (complex) roots of the polynomial. It is no 

restriction to assume that Re(£,-)>Re(£i -1') for i=2,...,n+m. Now the 

constants in (3.6) can be further specified by 
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K =W 
-«I 1 • H 2 ( 0 ) 

E(e K 1) = 1 - TT±— . H (K-£ . ) , E(N) - - ^ 

and 

„ i m n+m 

(-Dn L n (/c-̂ .) n (K-C.) 

M ._ J = 1 h L=m±2 L_ 
K F 2(K)H 2(-K) 

Proof. A combination of the results in Iglehart [1972] and Cohen [1982] and 

the discussion below (3.4) yields, after some rewriting, the desired 

result. 

Next assume that the generating function of the batch size distribution 

G(s) can be written as 

k G l ( s ) 

(3.7) G(s) - kS() gks
k - ̂  , 

where G,-(s) - S.1" g,-•• sJ with g *0 (i-1,2), such that G1 •(.')'and G2 (.) have J=u lUj 

no common zeros. Note gio=0> since it is assumed that go=0. To find R1 the 

radius of convergence of G(.), we consider the two cases that either D2=0 

or D2^l. For the first casre, D2=0, it is easily found that R=«» because 

G1(.) is a polynomial. For the second case, D2>1, we can define 

R0=inf { |r | ;reC, G2(r)=»0}. Because Ĝ  (.) is a polynomial, R=R0 . Next, since 

|G(s)|<l for s with |s|<l and G1(.) and G2(.) have no common zeros, each 

zero r of G2(.) must satisfy |r|>l. So, because G2(.) is a polynomial of 

degree D2 and has at most D2 distinct roots, R=R0>1. Hence, for all values 

of D2 , we find that g|<=o(/3
k) for any /3e(l/R,l] implying that (2.7) in 

assumption 2.1. holds. 

In the following theorem we show that for a certain class of queueing 

systems with batch arrivals the queueing system with super customers, as 

defined in section 2, is of a I^/Kp/l type. Once we have this result we can 

use lemma 3.2. to compute the constants as defined in section 2. 

Theorem 3.3. Consider a Gx/Kn/1 queueing system with batch arrivals where 

the service time distribution B(.) has the Laplace-Stieltjes transform 

è(s)=ê1(s)/B2(s). The generating function of the batch size distribution 

can be written as in (3.7). Then this system fulfils the conditions of the 
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assumptians 2.1. and 2.2. Furthermore, letting D~max{Di , D2}, it holds that 

the service time distribution of the super customers Bsc(.) (see (2.1)), is 

a KnD-distribution with a Laplace-Stieltjes transform given by 

DT A. AD1-J 

„ R, r -t^SC,^ Si^liBJ(s)B2 <S> *VD1, , 
(3.8) Q r e dB < t ) - - L — L - — B2 (s) . 

Sj=0S2j
Bi(s)B2 (S) 

Proof. In the discussion below (3.4) and (3.7) we have already shown that 

assumption 2.1. is satisfied. To verify that the condition of assumption 

2.2. are satisfied, define R and * as in assumption 2.2. Let z0 be as in 

(3.4). Now consider the case that R-a>. For this case $=-z0 and it is easily 

seen that 

(3.9) l|m. G(B(-s)) . 0/V
S tdA(t) 

Next take R<«>. For this case tfe(0,-z0) with Ë(-tf)=R. Hence (3.9) also 

holds for R<«>, so assumption 2.2. is satisfied. To prove the second part of 

the theorem take the Laplace-Stieltjes transform of (2.1) and insert (3.7). 

Then we find (3.8). Because G1(0)=0 and G.] (.) and G2(.) have no common 

zeros, ggo^O and so the degree of the denominator of (3.8) is nD. To prove 

that the denominator and numerator of (3.8) have no common zero, suppose s0 

is such a common zero. Now take Ê2(-s0)^0, then &i(-s0)/B2(-s0) is a 

common zero of G^ (.) and G2(.) and this contradicts the assumption below 

(3.8). Next take B2(-s0)=0. Then either g (è, (-s0))°
1-0 or 

D ^ 

g_ ( B ^ - S Q ) ) 2-0. Both equalities imply that B<|(-SQ)-0 and so s0 is a 

common zero of B-| ( .) and B2 (.) which contradicts the assumption below 

(3.4). Hence the numerator and denominator have no common zero. This 

concludes the proof. Q.E.D. 

Corollary 3.4. For a'K^/Kn/l queueing system satisfying the conditions 

stated in theorem 3.3. the constants as defined in lemma 2.1. and theorem 

2.2. can be found by applying lemma 3.2. to a system where the interarrival 

time distribution F(.)=A(.) and the Laplace-Stieltjes transform of the 

service time distribution H(s)—Ësc(s) with Bsc(s) as in (3.8). 

In the remainder of this section we give detailed solutions for a number 

of important special cases of the Mx/G/1 queue. First we specify some 
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foregoing results for the Mx/G/1 system with constant and geometrically 

distributed batch sizes. For the case of a constant batch size the 

generating function of the batch size distribution is given by G(s)-s7 

while for the case of a geometrically distributed batch size 

G(s)-s/(7-(7-l)s'). In the latter case it is easily verified from (3.1) that 

for the particular constant 9: Ê(-9)=7(A+9)/(7A+(7-l)9). 

i 

The Mx/D/1 queue. 

(a) Constant batch size. Then 9 (cf. theorem 3.1.) is the unique positive 

solution to the following equation in s: 

Ae7S - A+s, 

where the mean service time /i-D. The constants 7e and SQ are given by 

1-P . - % 
<V sas %. ariH X = , , 
79 7D(A+9)-l ' 9 ., GD - ' 

7A(e -1) 

(b) Geometrie batch size. Then 9 is the unique positive solution to the 

following equation in s: 

sD = 7(A+s) 
= 7A+(7-l)s ' 

and the constants ye and S@ are given by 

y = HZ£}± a i l d S ^ 
79 D(A+9)(7A+(7-l)9)-A' n Q °9 D7(A+9)(7A+(7-l)9)-A7 ' 

(1-P)A a n d s _ (l-p)(7A+(7-l)9) 

The Mx/EkfI1/l queue. Let b(t)=( qlp
ktk"1/(k-D ! + (l-q)<pntn"1/(n-l) ! )e'cpt, 

with mean /*=(qk+n(l-q))/cp. Here it is no restriction to assume that k<n. 

(a) Constant batch size. Then 9 from (3.1) is the smallest positive 

solution to the following equation in s: 

(A+s)(<p-s)7n - A<p7k(q(<p-s)n"k+(l-q)Ak)7. 

The constant 7e and SQ are given by 

g-p)  
79 " r , . „.n-k. ,. . n-k 

7(A+9)(<p-9) 
kq(y-9) +n(l-q)<p 

. QSn-k, .. . n-k 
q(<p-9) +(l-q)cp 

-1 

and 
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= — 
e 7A 

8(<p-8) n 

<pk[q(9-e)
n"k+(i-q)<pn"k] - (<p-e)n 

(b). Geometrie batch size. Then 8 from (3.1) is the smallest, positive 

solution to the following equation in s: 

(7+<7-l)s)<p (q(cp-s)n" +(l-q)(pn" ) - 7(A+s) (<p-s)n, 

and 7@ and SQ ave given by 

7 Q » 
(1-P)A 

and 

*8 = 

(7A+(7-l)9)(A+9)((p-8) 

7Q(7A+(7-l)9) 

kq(y-9) +n(l-q)<p 

q(<p-9) ' +(l-q)<pn" 

7A 

The Mx/C?/1 queue. Let b(t)=q/i1e ̂
1 + (l-q)/i ̂ 2 , with mean /z=q/ 1̂+(l-q)/jU2 • 

Here it is no real restriction to assume that Mi^2 anc* Q^O.l (otherwise 

the exponential distribution applies).. Put for abbreviation a«-q̂ 1 +(l-q)^2 • 

(a) Constant batch size. Then 9 from (3.1) is the smallest positive root to 

the following equation in s: 

A ( M 1 M 2 -
Q ( S ) 7 - (A+s)(/i1-s)

7(^2-s)
7 . 

The constants 7@ and SQ are given by 

„ Ol£) 

7(A+9) 

• 2 2 2 

K M ^ - * * ® ) (/*!"©) (A*2-
e> J 

-1 

and 

78 
5e = 7^ 

(^-9)0^-9) ̂  

MlM2/i"0 

b) Geometrie batch size. Then 8 is explicitly given by 

-1 1 2 1/2 
9 " JZ (7A-a-7M1M2M)- JZ [ ̂ A-a^/x^/i) "^M^Ci-P) I 

The constant j@ and 5e are found by applying corollary 3.3. and are given 
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by 

\(H-H9-a9) 7o(7A+(7-l)Q) 
•v = ±_£ -2L- a r i f i /r = _ 
70 j» /i2(A+9) " x-8 ' °9 7A 

where x=- (e+^(y\-a-r^ M2/O) . 

Appendix A. The arithmetic batch size distribution. 

In this appendix we focus on a GIX/G/1 queueing system with batch 

arrivals where the batch size distribution is arithmetic. For this model 

we give a definition of the waiting time distribution of an arbitrary 

customer arriving when the system has reached statistical equilibrium. 

The analysis below uses the results derived for queueing systems with a 

non-arithmetic batch size distribution. 

Gonsider an arithmetic batch size distribution {gk, k-1,2,...} with 

period P>1, that is P is the largest integer with 2£ = 0 gnp-l. In case 

of an arrival of a batch of size KP, let us split this batch into K 

groups of consecutive customers. These groups are called composed 

customers. We assume that customers belonging to the same group are 

served consecutively. Further, the groups are numbered in order of 

commencement of the service of their customers. Denote the waiting time 

of the customer who is the i-th one served from the n-th composed 

customer by Wn ,- . It is obvious that 

(A.l) W . = W A + S . n,i n,0 n,i 

where Sn ,- is the total service time of the first (i-1) individual 

customers from the composed customer. Because the service order is assumed 

to be independent of the service time requirement it follows that 

(A.2) Pr{S .<x} = B^1'1^*(x.), i=l P. 
n,i 

In order to analyze Wn 0
 w e aPPly t n e same technique as in section 2. By 

considering a composed customer as one entity we create a modified GIX/G/1 

queueing system with batch arrivals. Then, by the definition of the 

composed customers, the batch size distribution for this modified system is 

given by 
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sk
 = gkp ' k=°.^---. 

and the service time distribution of a composed customer is given by 

Bp*(x). Note that the batch size distribution in this modified system is 

non-arithmetic. Let W£c be the waiting time of the n-th composed customer. 

It can be seen that W^c=Wn 0. By the same arguments as used to derive 

(2.4) and (2.5) we find that the limiting distribution of the Wf*c , denoted 

by W c c(.), satisfies 

(A.3) WCC(x) - WSC * WgG(x), 

where 

CC « P(j-l)* 1 a -
WB (X) - jSl B <x> -(VP7 k̂ j V 

Here Wsc(.) is defined as the limiting distribution of the waiting time of 

a super customer in the modified batch arrival model. A little thought 

shows that a super customer consisting of composed customers in the 

modified batch arrival model is nothing else than a super customer 

consisting of individual customers in the original batch arrival model. 

Hence Wsc(.) is exactly the function Wsc(.) defined in (2.2). 

Now, by (A.l), (A.2) and (A.3) we find by applying the Helly-Bray theorem, 

that for i=l P, 

lim Pr{¥ . < x} - WCC * B(l"1)*(x), 
n-*» n,i v ' 

and we denote this limit by W,- (x) . Next consider an arbitrary customer of a 

batch arriving when the system has reached statistical equilibrium. This 

customer is with probability l/P served at the i-th position from a 

composed customer. So the following definition of the waiting time 

distribution of an arbitrary customer is justified: 

(A.5) W(x) = | 1± Wi(x). 

Combining (A.3), (A.4) and (A.5) and 2k=Kgk " ^j=ië} > 

for L=»(K-1)P+1,...,KP, we obtain after some algebra involving interchange 

of summation 
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(A.6) W(x) = 0/V
C(x-y)dWB(y), 

with 

co (k-D* 1 » 

Now (A.6) is exactly equal to (2.4). Therefore we can apply the same 

analysis for systems with respectively an arithmetic and a non-arithmetic 

batch size distribution. This proves the following theorem. 

Theorem A.1. Theorem 2.2. also holds for systems with batch arrivals when 

the batch size distribution is arithmetic, provided W(.) is defined by 

(A.5). 

Appendix B. The assumptions 2.1. and 2.2. 

In this appendix we show that the assumptions 2.1. and 2.2. are equivalent 

to the assumption Iglehart [1972] made to prove lemma 2.1. We first 

state the assumption used by Iglehart [1972]. 

Assumption B.l. Define C(.) by 

(B.l) C(x) - Qf° (l-A(y-x))dBSC(y). 

Let a 0>O exists which satisfies 

(B.2) G(9) = _J° e0XdC(x) - 1, 

and 

(B.3) d@ = J" xe0XdC(x) < co „ 

In the following lemma we prove that the assumptions 2.1. and 2.2. are 

sufficiënt and necessary for the model with super customers to satisfy 

assumption B.l. 

Lemma B.2. Assumption B.l. is equivalent to the assumptions 2.1. and 2.2. 

Proof. In the first part we show that assumption B.l. implies the 
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assumptions 2.1. and 2.2. while in the second part the converse implication 

is shown. For now, let assumption B.l. be given. From (B.l) and (B.2) we 

may conclude that 

(B.4) C(s) = 0 / V
S X d A ( x ) Q r e S XdB S C(x), 

is defined on [0,9]. Let a0 be the real part of the axis of convergence of 

0J
o)e"sxdBsc:(x). Then 0<-ao and so, by Widder [1946, chapter II, theorem 

5.b], B s c(s) is analytic for s with Re(s)>9.Therefore C(s) is analytic 

for s with Re(s)e(0,9). Let M=sup{e0x(1-BSC(x)|xeR}. By (B.l) and (B.4) 

0/
ffleexdBsc(x)<oo, so 

e 0 X ^ dBSC(y) * ^ e«*dBSC<y) = o(l), x - , 

and hence M<«>. Next, from (2.1), 

e9x[l-BSG(x)] - k|x gk[l-B
k*(x)]eex * & gk(l-B(x))e

0X, 

and so (l-B(x))-o(e'aX) as x-*» for any ae(0,8). Denote the Laplace-

Stieltjes transform of Bsc(.) by È s c ( . ) . Then, from (2.1), (B.2) and (B.4) 

we get 

(B.5) BSC(-s) - G(B(-s)) < co for s>-0. 

Because B(-s)>l for s<0, the generating function G(.) must have a radius 

of convergence R>1 and hence g|c=o(ï8
k) as k-*=» for any /3 with 1/R</3<1. This 

proves the condition of assumption 2.1. To prove that assumption 2.2. holds 

we define 

e - e ,_ SC . * 
e-s d B (x) *e - s48 

o 

Then, by (B.5), 

A A 

(B.6) <p = lim [G(B(-9))-G(B(-s))]/9-s = lim [B('®> ~B('s) ] 2 ng [B(-9) f 1 , 
ü ste ste e"s n = i n 

where the last equality holds by monotone convergence. Next, we may write, 

by (B.2), (B.3), (B.4) and (B.6), 

A A 

/•o -7% J i- C(8)-C(s) *SC. _. ,-» -9x,A/ . ,-» -9xJA. . (B"7) d9 = M 9-s = "B ("9)0J x e teW-^pQ QJ e dA(x), 
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where the first equality can be proven in the following way. Write 

^/„\ ^/ \ A 9x sx 0x sx C ( 9 1 - C ( S ) = J° ï-f^— dc(X) + n r S r 2 - dG<x>-e-s -«* e-s v ' oJ e-s v ' 

For x>0 we have 0<(e9x-esx)/(0-s)txe8x for st6 and so, by monotone 

convergence, 

(B.8) m 

Ir 

r« 0x sx _ 
6
 e ? s dC(x) - Q r xe0XdC(x). 

For x<0 we have 0>(e9x-esx)/(0-s)4-xe8x for st0 and so (B.8) also holds if 

we replace the integration interval by (-«,0]. Furthermore, by the 

definition of C(.), we find . t0J°xdC(x)>-<» and so . a)/
0xesxdC(x)>-« for s>0. 

Together with (B.8) this proves the first equality in (B.7). Now, because 

0J»e'
sxdA(x) is analytic for s with Re(s)>0 and èsc(-0) is finite we 

obtain assumption (2.2) by combining (B.3), (B.5) and (B.7). This concludes 

the first part of the proof. 

In the following part of the proof we show that the assumptions 2.1. and 

2.2. imply assumption B.l. We first remark that (2.7) implies that R>1. 

Then it follows from (2.6) that a £>0 exists with 0/"e?
xdB(x)<R and so $>0. 

Hence B(s) is analytic for s with Re(s)>-$. Let us define C(.) as in 

(B.l). Then C(.) as defined in (B.2) is, by (B.4), analytic for s with 

Re(s)e(0,\?) and from (B.2) it follows that C"(s)>0 for se(0,tf). Hence 

C(.) is convex on (0,t). Then, since C'(0)=/x-l/A<0 and C(0)=1, we have 

by (2.8) a unique solution 6>0 to the equation 

G(B(-e))o/V
0tdA(t) = 1. 

Now, first consider the case that limst$ G(B(-s))0J
ffle"stdA(t)=l. Then by 

the convexity of C(.) on (0,*) and C'(0)<0 we must have limst$C'(s)>0 

and hence $<«. By (2.9) and (B.7) 0*=$ satisfies the condition (B.3). Next 

consider the case that limstïG(B(-s)) 0J
coe'stdA(t)>l. By assumption 2.2. 

f<-a0, where a0 is the real part of the axis of convergence of 

0J
a,e-sxdB(x). Because 0e(O,$) we easily find 

A A 

B(-9)-B(-s) < ^ 
sT0 0-s 

Furthermore, by the definition of * and because 0<$, we have B(-0)<R. Hence 

G(.) is analytic in the point È(-0) and so 
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j ^ ngri[B(-e)]
n"1 < =0. 

Together with (B.6) and (B.7) this yields (B.3). This concludes the second 

part of the lemma. Q.E.D. 
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