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ABSTRACT 

Geographical research is often suffering from inaccurate and unreliable 

data. This paper deals with the treatment of soft (ordinal) data in spatial 

statistics and econometrics. After a brief discussion of soft spatial data, 

a set of recently developed techniques is introduced aiming at drawing 

quantitative (cardinal) inferences from a soft data input. These techniques 

are inter alia multidimensional scaling, rank order statistics, logit analysis, 

interdependence analysis, discriminant analysis and canonical correlation. 

A key stone of this paper is formed by combining Theil's approach to 

logit analysis with Kendall's rank correlation method based on pairwise compar-

isons. The paper offers several new perspectives for the treatment of soft 

data in multivariate techniques (such as multiple regression and clustering 

analysis) and in decision problems. 
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1. Introduction 

Regional and urban modelling is playing an increasingly important role in 

geographical research. Despite much criticism, the use of mathematical and 

statistical tools has become a prerequisite for an operational analysis of 

regional and urban phenomena. Mathematical models in geography are based on 

several assumptions such as: 

-"the complex relationships in a spatial system can adequately be represented 

by means of a limited set of mathematical equations describing the successive 

relevant impacts 

all relevant variables (state variables, goal variables, policy instruments 

etc), can be measured in an accurate (cardinal) way 

technical, economie, social and institutional side-conditions prevailing in 

the spatial system at hand are precisely known and can be specified in an 

operational way 

_̂/' - the policy aspects of models (e.g. decision-maker(s), goal conflicts, policy 

measures) can also be included in an operational manner 

- the time trajectory and the spatial spillover effects of all variables can be 

precisely computed 

- when the state of the spatial system concerned is characterized by uncertainty 

(for instance, due to stochastic variables) the probability distribution of 

the stochastic elements is known. 

The above mentioned assumptions imply that most regional and urban models 

are focussing the attention primarily on precise (sharply defined and cardinally 

measured) variables, so that all Standard numerical operations can be applied to 

them. Qualitative variables, linguistic attributes, fuzzy characteristics and 

orciinal aspects are normally left out of consideration. This holds true for both 

urban and regional models and spatial multivariate methods. 

Recently, however, much more attention has been paid to 'soft econometrics' 

\^^ and 'soft data analysis', in which non-cardinal variables are dealt with (especi-

ally ordinal variables and fuzzy variables). This paper deals in particular with 

the treatment of soft data in spatial statistics and econometrics with a special 

emphasis on ordinal multivariate techniques. 

The essential aim of multivariate methods in spatial analysis is to reduce 

the complexity of phenomena in which many variables or attributes are involved. 

Given this general feature, it is no surprise that these methods have been 

applied in various fields of research, such as economics, geography, medicine, 

biology, etc. (cf. Kendall [1975]). 
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The starting point of multivariate analysis is normally the data matrix 

X = 

11 

\J1 

II 

JI 

(1.1) 

where I denotes the number of members observed and J the number of variables 

concerned; x.. denotes the value of the j-th variable for the i-th member (for 

instance, the i-th region). 

In the majority of multivariate methods it is assumed that the variables 

are measured on a cardinal (interval or ratio) scale. This means that it is 

meaningful to apply numerical operations to these variables such as summation, 

subtraction and multiplication (see Rietveld [1980] for a more accurate defini-

tion of a cardinal scale of measurement). However, in spatial research often the 

assumption of cardinal measurability cannot be maintained. For example, when the 

data are not accurate enough, when variables are involved which can only be 

measured in a qualitative way (e.g., beauty of landscape), or when latent vari

ables are to be dealt with. 

It is important, therefore, to consider the question whether it is possible 

\ to develop multivariate methods which are not based on the assumption of cardinal 

\ measurability. This has of course, important implications for econometrie model-

"'building, since the treatment of soft data has always formed a bottleneck for 

estimating economie models. Soft econometrics is a recently developed approach to 

overcoming this problem. This paper presents some techniques for ordinal data and 

its implications for regional statistical and econometrie analyses. A variable j 
i s ordinally measurable when for a series of observations it is possible to indi-

cate the rank order of the observations, but not the differences between the 

observations. For example, when the rank order of five observations - where the 

smallest value receives rank 1, the one but smallest receives rank 2, etc. - is: 

2, 3, 1, 5, 4, it may be concluded that the first observation is smaller than the 

fourth one, but not that the difference between the first and the fourth one is 

larger than the difference between the first and the third one. 

It is important to note that several techniques can be applied to perform 

a multivariate analysis of ordinal data in a spatial context. Some examples of 

such approaches are given below. 
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. The simplest way of achieving a short circuit is to interpret ordinal data 

as if they were cardinal. Obviously, in this way more information is extracted 

from the data than is actually contained in them. Kendall [1970], p. 125, 

indicates that sometimes such an approach may yield satisfactory results. 

However, since it is based on a questionable assumption, it cannot serve as 

a general device for dealing with ordinal data. 

. Another way of avoiding the necessity to develop ordinal multivariate methods 

is the use of order statistics to assign cardinal values to the observations 

(cf. Rietveld [1980]). A necessary step in this approach is the determination 

of the probability distribution from which the observations are drawn. This 

can only be done on a priori grounds which makes the results arbitrary. The 

arbitrariness can be removed to a certain extent by repeating the cardinal

ization of data for different probability distributions. Obviously, the dis-

advantage of this approach is that it gives rise to extensive computational 

work. 

. A third cardinalization method consists of applying multidimensional scaling 

procedures (cf. Nijkamp [1979, 1980]). These procedures have been devised to 

transform the ordinal matrix X with dimensions J x I into a cardinal matrix Y 

—with dimensions K x I where K < J. Thus, multidimensional scaling procedures 

are a means to transform ordinal data about many variables into cardinal data 

about less variables which reflect as accurately as possible the configuration 

of the original data. Although multidimensional scaling as such is a sound 

procedure, its use in the present context may give rise to difficulties. For 

example, the variables derived may be difficult to interpret, which means that 

the results of the ensuing multivariate analysis may be less meaningful or re-

quire at least a closer examination. 

Another, recently developed approach concerns a set of ordinal regression 

models developed by McCuliagh [1980]. This approach attempts to develop a 

general class of regression models that are especially appropriate for ordinal 

observations on variables. These models are based on various models of stoch-

astic orderings of an ordinality structure. The author proposes two models in 

particular, viz. the proportional odds model (based on a (linear or non-linear) 

logit method for the ordered categories of response variables, given the values 

of covariates) and the proportional hazards model (based on a complementary 

log-log transform of a hazard function for a response variable that depends on 

the difference between covariates). 

An interesting development has also taken place in the field of categorical 

data analysis. Categorical data are very often collected in survey question-

aires, when respondents have to indicate whether or not a certain object is 

regarded as important. The proportions of affirmative or denying responses 

- __.--'" reearding the 
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objects can then be used as data input for the application of a linear logit 

model, so that the differences in the ratio of these proportions (across the 

objects) can next be related to a set of explanatory variables representing the 

attributes of these objects (see, for instance, Wrigley, 1980). 

In light of all these attempts to deal with 'soft' data, it is meaningful to 

study in more detail ordinal multivariate methods. In the field of (regional) 

economics this subject has mainly been neglected, whereas in other disciplines, 

expecially sociology, substantial work has been done on this subject. Given the 

exploratory character of this paper, we will focus our attention on the main ideas 

and less on specific statistical aspects or on the feasibility of numerical pro

cedures. 

We will deal with the following methods: 

Section 2: multiple regression analysis (by means of logit analysis, ordinal 

rank correlation and constrained regression, respectively). 

Section 3: related ordinal regression techniques (such as interdependence and 

discriminant analysis). 

Section 4: clustering and classification methods. 

Section 5: principal component analysis (and related subjects such as canonical 

correlation and partial least squares). 

Multiple Regression Analysis 

Introduction 

Consider the following relationships between y - the variable to be explained ~ 

and K explanatory variables x , ..., x : 
1 K 

y « 6 0 + 8l X l f B2 x2 + ... + 6 K x K (2.1) 

For instance, y might be regional income, while the explanatory variables might 

be regional investments, infrastructure endowment and labour force. 

In this section we consider the question: 'given that I observations are 

available of the variables y and x , ..., x - measured on an ordinal scale -, is 
1 K 

it possible to estimate the values of the B (k = 0, 1, ..., K) or to draw con-

clusions about the extent to which the variables x contribute to the explanation 

of y' . 

There are several ways to approach this question. In subsections 2.2 - 2.4 

we will critically examine a logit formulation, an approach based on multiple 

rank correlation coefficients and a multiple regression procedure undor constraints, 

respectively. 
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1) 
2.2. Logit Analysis 

In this subsection we will show how a logit analysis based on data about 

pairwise comparisons of observations, can be used to determine the relative im-

portance of the explanatory variables. Consider all pairs of observations 

(i, i' ; i =1= i') which will be numbered as n = 1, . .., N, where N = 1 (I - 1) . 

We introducé new variables w and z (k = 1, ..., K) which are related to y and 

x (k = 1, ..., K) by means of the following dominance relationships: 

if for the pair (i,i') 

if for the pair (i,i') 

if for the pair (i,i') 

if for the pair (i,i') 

: y. > y. , , then w = 1 

: y. < y., , then w = 0 
x ï' n 

: x k i > xki, , then z k n = 1 

: x k i < xki, , then z k n = 0 

(2.2) 

These variables can be summarized in a column vector w_ with N elements and an 

N x K matrix Z: 

, Z = 

'11 ' 

JN1 

J1K 

NK 

(2.3) 

Every row of Z consists of a series of zeros and ones. A certain row com-

bination of zeros and ones will be called a regime 1 (1 = 1,..., L) . There are 

in principle L = 2 different regimes. Let F denote the number of rows in Z 

with a certain regime 1. Let F and F denote the number of rows of regime 1 

in Z such that the corresponding value of w is equal to 0 and 1, respectively. 

Then we have by definition: F. = F„, + F., and ÜF, = N. 
1 01 11 1 

A numerical example may clarify the meaning of the symbols defined above. 

Assume that 1 = 4 and K = 2 and that the observations of the y and x„ are: 
k 

The authors thank Professor Franz Palm for his valuable comments on this 
section. 
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il = *2 = 
(2.4) 

When the pairs of observations are considered in the following order: 

(1,2), (1,3), (1,4), (2,1), (2,3), ... , (4,3), we arrive at the following 

results of w and Z: 

0 
0 
0 
1 
0 
1 
1 
1 
1 
1 
0 
0 

1 1 
1 1 
1 0 
0 0 
0 0 
0 0 
0 0 
1 1 
1 0 
0 1 
1 1 
0 1 

(2.5) 

The four regimes appearing in (2.5) are (0,0), (1,0), (0,1) and (1,1). The 

corresponding frequencies are summarized in Table 1: 

r e g i m e 1 

1 = 1 1 = 2 1 = 3 1 = 4 

( 0 , 0 ) ( 1 , 0 ) ( 0 , 1 ) ( 1 , 1 ) 

F l l 
3 1 1 1 

F 0 1 
1 1 1 3 

F l 
4 2 2 4 

Table 1. Prequencies for various regimes of explanatory variables. 

Let y, x and x denote net migration, the vacancy rate and the quality of 

infrastructure, respectively. A regime (1,1) means in this case that when two 

regions A and B are considered, both the vacancy rate and the quality of infra

structure in region A are higher than those in region B. Table 1 shows that 

there are 4 pairs of regions with this regime: in 3 cases the net migration of 

region A is smaller than that of region B; in one case the reverse holds true. 
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The information contained in Table 1 can be used for a Standard logit 

analysis in the following way (cf. Theil [1971a,b] and Upton [1978]). Let ^ 

denote the probability that w is assigned a value 1 when regime 1 holds. A 

regime 1 is described by a (K x 1) vector m consisting of 1 and 0 elements 
mlk (k=l, ..., K) . Then the usual assumption in this type of problem is that 

p depends on the structure of regime 1 in the following way: 

Pl 
l n (__) = Y Q + ^ m n + Y2 m 1 2 + ... + yK m l K (2.6) 

The right hand side of (2.6) shows an additive structure with dummy vari

ables. If desired, interaction effects between the variables k and k' can be 

included by adding parameters 5 (k 4= k') when both m1v and m , are equal to 
K.K. J-K XJC 

1 (cf. Theil [1971a]). The expression ln (p / (1 - p )) at the left hand side 

of (2.6) is termed the logit of p . lts main feature is that it transforms in 

a monotone increasing way p - falling in the [0,1] interval - to a variable 

ranging from - °° to °° . For a further discussion of the specification of (2.6) 

and its relationships with the entropy concept we refer to Theil [1971a]. 

Equation (2.6) does not contain an error term. The reason is that in the 

left hand side no observed variable is included. When we want to estimate the 

parameters y , we have to replace the probabilities p. by the observed relative 
K. X 

frequencies f = F / Fi• I n that case there is a clear reason to include an 

error term, since the relative frequencies f may differ from the probabilities 

p.. Thus the relationship to be estimated is: 
fl 

l n (r^T7) = Y0 + Yl mll + Y2 ml2 + ••• + YK mlK + El (2'7) 

where E is the error term. 

Theil [1971a] shows that a weighted least squares method is appropriate to 

estimate the parameters when it may be assumed that the relative frequencies f, 

are based on independent random samples of size F from binomial distributions 

with probability p of success. In that case it can be shown that the large sample 

expectation and variance of E are 0 and 1 / (F (f ) (1-f )), respectively. 

Consequently, weighted least squares (a special case of generalized least squares) 

can be applied, the weights being proportional to \Z~F~ (f )(1-f ) (which serves 

to take account of the sample size). 

This means that regimes for which f.. = 1 or G do not play a role in the 

estimation of the Y- We also see that the larger F (the number of observations 

in a regime), the heavier the weight of that regime in the determination of the 

parameters. 

file:///Z~F~


An important difficulty inherent in the estimation of (2.7) in the context 

of ordinal data analysis is that Theil's assumption that the f 's are based on 

independent random samples of size F is not valid. The frequencies F. refer 

to pairs of observations which are derived from the original set of observations 

in a systematic way. For our numerical example is this clearly displayed by 

Table 1, where we find that f. + f = 1 and f„ + f_ = 1. 

We conclude that the e, in (2.7) cannot be assumed to be distributed inde-

pendently. Therefore, a generalized least squares estimation of (2.7) is adequate. 

The obvious difficulty is that the covariance matrix V is not known and that it 

seems to be impossible to describe V by means of a small number of parameters, as 

is sometimes done in time series regressions. How can one proceed in this situ-

ation? Three directions can be chosen. 

1. The simplest way is to ignore the problem and to apply ordinary least squares. 

In that case the estimated parameters are unbiased, but the variances will be 

higher compared to the results of generalized least squares (cf. Theil [1971b]) 

2. Another way is the use of iterative procedures. For example: start with an 

estimation by means of ordinary least squares. Use the resulting estimated 

errors to construct an estimated covariance matrix V and apply generalized 

least squares based on V, and so forth. 

3. A third approach aims at directly approximating the covariance structure of 

the e 's as follows: 

Consider the set of I original observations. This set can be used to generate 

I sets of I - 1 observations, each set containing the I original observations 

but one. For each set the values of f and In (f.. / (1-f )) can be determined. 

The series of I values for the logits can be used to calculate the covariance 

matrix of the logits. This matrix can be used as an approximation of V so that 

generalized least squares can be employed. 

It is clarifying to pay some attention to the number of observations and 

parameters in specification (2.7). The number of parameters in (2.7) is equal to 

K + 1. The maximum number of observations (regimes) is equal to 2 . This means 

that when the actual number of observations is equal to the maximum possible 

number, the number of degrees of freedom increases rapidly with increasing K. 

However, there are several reasons why the actual number of regimes in the esti-

mation is smaller than 2 . Especially when I is not so large, for some regimes 

F or F. (or both) may be equal to zero and - as shown above - such a regime 

cannot be used to estimate the parameters. 

Another reduction in the number of observations is due to the interdepen-
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dencies by means of the concept of 'complementary regimes'. A regime 1' is a 

complement of a regime 1 when the sum of m and TCL. , is a vector ji_ , exclusively 

consisting of unit elements: 

m± + m = \_ (2.8) 

In our numerical example the complement of regime 1 is 4 and of regime 2 is 3. 

It follows from the definition of F and 

have the following redundancy conditions: 

It follows from the definition of F and F. that for complementary regimes we 

Foi = Fu' ' Fu = Foi' ' and Fi = Fi' ' and therefore: fi = 1-fi- • 

Consequently for each pair of complementary regimes holds the following condition: 

fl fl' 
In — i - + In -r-i— = 0 (2.9) 

i r_ i X- f 

Combining (2.9) with (2.7) yields for all complementary pairs: 

l n i i ; + l n ^f77 = 2^o + ^ k
 + e i + e i ' = ° (2-10) 

1 1' k 

We may conclude, therefore, that for all complementary pairs (1,1') and (s,s') 

we have: 

e , = e. + e, , - e (2.11) 
s' 1 1' s 

Consequently, when in (2.7) the relative frequency f is givén for the regime 

1, 1' and s, the value of f , does not add any useful information for the deter-

mination of the parameters y . This means that when there are L regimes (L even), 
.K 

only the frequencies of ̂ L + 1 regimes contain useful information on the para

meters (the set of ̂ L + 1 regimes contains only one pair of complementary regimes). 

In our numerical example we have K = 2 and hence the number of parameters is 

equal to 3. 

In such a case, in general, the parameters can be determined, while the 

estimated errors are zero. Indeed, we can derive that e = e = e ^ = 0 and 

Y0 = ~Y1 = -Y2 = m 3 . 

At the end of the presentation of this approach, we may conclude that, 

despite some difficult estimation problems, an ordinal analogon has been developed 

for multiple regression which does justice to the ordinal character of the data. 

What is the essentially new idea of this approach? A close examination shows 

that the approach consists of two building stones: 1) a method to transform the 
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ordinal data matrix X and the vector y in a vector of relative frequencies 

f., ..., f by means of pairwise comparisons; and 2) an estimation procedure 
x L 

based on specification (2.6). The main elements of the building stones have been 

developed by Kendall [1970] and Theil [1971a], respectively. The novelty of the 

method developed here is thus the combination of the two building stones. 

This logit analysis enables us to draw inferences about the probability that 

a certain regime (based on a dominance via pairwise comparisons of individual 

ordinal explanatory variables) will lead to a dominance of the left hand side 

variable (also based on a pairwise comparison of a set of observations). Especially 

in case of soft spatial data, this approach may be a promising one for the deri-

vation of cardinal conclusions from ordinal data. It should be noted that the 

strength of this approach is based on the fact that both the left hand side and 

the right hand side variables may be measured in ordinal units. 

Ordinal Analogue of Multiple Regression and Correlation Analysis 

Beside the previous linear model, one may also use a correlation analysis. 

The approach discussed in this subsection is based on structural similarities 

between product-moment correlation coefficients and rank correlation coefficients. 

We will first show the nature of these similarities. 

The ordinary product-moment correlation coëfficiënt for cardinal data on a 

set of variables u. and v. reads as: 
ï ï 

/ 

i 
( u . • - u) (v. - v) 

X 

I 
i 

(u. -
1 

- ü)2 I (v. -
1 

1 

- 9 V 

V ) 2 

(2.12) 

where u and v are the mean values of the u. and v. respectively. 

We also present the regression coëfficiënt b following from the estimation 

of the relationship between v and u: 

v. = a + b u. 
1 VU 1 

The best linear unbiased estimator of b reads as: 

I (u. - u) (v. - v) 
ï ï 

b = (2.13) 
vu - o 

I (u. - u ) 2 

1 
1 

We turn now to some correlation coefficients proposed for ordinal data. First, 

we will discuss correlations among pairs of variables. 
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Kendall [1970] proposed to use the method of paired comparisons in the 

following way. Consider all h 1(1 - 1) pairs (i, i') of ordinal observations of 

two variables x and y. Let S+ be the number of pairs for which x and y are con-

cordant, i.e., the number of pairs for which {xi > x±I and y± > y±, } or {x± < x±, 

and v < v .}. Let S~~ be the number of pairs for which {x. > x., and y. < y ,} or 

{x < x and y > y..}. Let T and T be the number of ties in x and y, respec-
i i' n Jri' x y 

tively. When no ties appear, Kendall's coëfficiënt of rank correlation is defined 
as the number of concordant pairs minus the number of discordant pairs divided 

by the total number of pairs: 

T = S I_§— (2.14) 

S + + S~ 

When ties are present, the following correction is applied: 

+ 
T = §—ZLÜ (2.15) 
b _ ( „_ _ 

VS + S + T VS + S + T 
x y 

For the latter case, Somers ( 1962 ) provided an alternative measure which will 

later also appear to be meaningful: 

s+ - s" 
d
v x = — 1 (2.16) 
* S + S + T 

y 

For these three measures it can be proved that the extreme values are -1 and 

+1, respectively. 

At first sight there is not much similarity between these ordinal measures 

and the above mentioned measures for cardinal data:the ordinal measures are based 

on counting frequencies of discordant and concordant pairs, while the cardinal 

measures are based on measuring distances with respect to the mean. It will be 

shown, however, that the structure underlying the ordinal and the cardinal 

measures (cf. Hawkes [1971] and Ploch [1974]) is the same. 

The first step to prove the similarity is to rewrite (2.12) and 2.13) such 

that the mean values u and v disappear. It is not difficult to show that for 

cordinal data: 

Z ( u . _ u ) 2 = !_„ (u u ) 2 

1 i j 

I (u - ü) (v - v) = -z- I I (u. - u.) (v. - v.) 
x i 3 J J 



Accordingly, when we set u. . = u. - u. and v. . ^ v.*'-%vV,.flsörrelation coëfficiënt 
i n 1 j i j ;•* _ i 3 ' ' * 

(2.12) and regression coëfficiënt (2.13) cah be ifewfitteh-as: 

X u. . v. 
^ — i 3 (2.12') 

r — v£ u2* . \£ v2/. 
13 1D 

X u. . v.. 

VU 
I u2.. 

13 

( 2 . 1 3 ' ) 

In (2.12') and (2.13') the summation relates to all possible pairs. 

In the second step we introducé the following operation for the ordinal data. 

For all pairs (i, j), we may set: 

X. . 
13 

— 1 if x. > x. 
i 3 

x. . 
13 

= 0 if x. = x. 
i 3 

x. . 
13 

= -1 if x. < x. 
i 3 

The variable y. . carï be defined in the same T?ay.--Thas we arr^ve' at-HÉwo -veetors 
13 

consisting of NA elements being equal to 1, 0, or -1. The term (S - S ) can be 

expressed in terms of x.. and y.. in a straightforward way, so that S - S = 

h X x.. y... Given this result it is not difficult to see that: 
13 13 

T x. . y.. 
x = : , ^? U (2 15') 
b \£x2. . Iy2.\ 

13 13 

and 

Lx., y. 
13 13 

"Vx L xz. 
13 

d__._ = *. .* — (2.16') 

When we compare (2.12') and 2.13') with (2.15') and 2.16') we conclude 

that, although the correlation coefficients are based on different concepts, 

they give rise to completely identical analytical expressions. 

Thus, our conclusion is that there is a strict correspondence between 

cardinal and ordinal correlation coefficients (and between cardinal unci ordinal 

regression coefficients as well) in case of a pairwise treatment of data. 

Hawkes [1971] and Ploch [1974] argue that these similarities provide a 



sufficiënt base for developing partial and multiple correlation coefficients 

for multivariate ordinal data along the same lines as for cardinal data. Because 

this would be a very convenient result, this approach deserves a closer examin-

ation. 

There is at least one argument supporting this. Kendall [1970] has shown 

that, in developing a partial correlation coëfficiënt for ordinal data based on 

T (assuming that no ties occur), one may arrive at a formulation which is com-

pletely similar to the formulation of the partial product moment correlation 

coëfficiënt: 

e, , = KY " T^/kl , - (2.17) 
mk.1 w _ 2.y _ 2 * 

V ml V X T kl 

where 0 denotes the partial correlation between m and k, given 1. 

This expression is obviously an indication that in some cases ordinal partial 

correlation coefficients may be dealt with in the same way as their cardinal 

counterparts. It has to be added, however, that Quade [1974] has indicated 

several ways to conceptualize a partial correlation coëfficiënt for ordinal 

data and that not all of them lead to relationships like (2.17). 

Further correspondences between ordinal and cardinal measures in the multi

variate case have not been found, however. Consequently, the approach of deriving 

regression coefficients by means of ordinal correlation coefficients is only part-

ly justified. For some empirical applications we refer to Ploch [1974], while 

Nambcodiri et al. [1975] and Blalock [1976] give a more thorough discussion of 

the above mentioned approach. Thus our conclusion regarding multiple correlation 

is that ordinal regression and correlation analyses may lead to dissimilar analy-

tical expressions compared to cardinal analyses, except for some specific cases. 

Multiple Regression under Constraints 

In this subsection we will deal with ordinal data on y and x , ..., x from 
1 K 

(2.1) again in an alternative way, viz. by imposing side-conditions associated 

with the ordinal values of these variables. 

Let cy, ex , ..., ex be the unknown cardinal values corresponding to the 

ordinal variables. Thus, when y > y , then cy„ > cy , etc. Accordingly, we 

arrive at a series of 1-1 inequalities (for instance, spatial differences) for 

the cy.: 

cy, > cy > ... > cy ( 2 > 1 8 ) 

1 2 i 
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where i1 is the index of the largest observation, i„ indicates the ono but 

largest observation, etc. The same set of inequalities can be developed for the 

explanatory variables. 

Next one may try to use (2.18) as logical constraints for deriving cardinal 

units. The information that there is a linea!» relationship between y and the 

x may be used to determine the cardinal values corresponding to y and the x . 

As a first step in the analysis we consider a constrained regression procedure 

expressed as the following mathematical programming problem: 

m m : 
cy.,cxk.,ek 

subject to 

f (cyi BlCXli 

cy,- > cy,- > x i 2 

ex,. > ex. . 
• ^ 1 - 1:2 

ex. Kl„ ex KI, 

h cxKir 

> cy. 

> ex 
I j -

ex. KI, 

1 

= 1 

= 1 

(2.19) 

Obviously, in (2.19) the cardinal values of y and'x, and the values of the 

parameters (3, are determined simultaneously. It is a programming problem with 

(K+ 1) (I + 1) variables and (K + 1) I constraints. The variables cy and ex 

have been standardized by imposing that the smallest value is equal to one. 

It is not difficult to see that (2.19) as it stands here attains its minimum 

when all cardinal values are equal to 1 and when Z 3, = 1. This result, when all 

variables form one big tie, is less meaningful; it is an indication that (2.19) 

has been designed to serve too many ends on the basis of too little information. 

When more restrictions can be imposed on the problem, better outcomes may be ex-

pected, however. 

A first way to improving the result arises when for some of the variables 

in (2.1) the cardinal values are known in advance. For example, when all ex

planatory variables are cardinally measured (i.e. the ex . are known beforehand), 

(2.19) can be transformed into the following quadratic programming problem: 

mm; 
c y • • 

i <<*! " 5Q - S1cx1. ?KcxK.r 
(2.20) 

subject to cy. > cy. > ... > cy. 
Xl X2 XT 

= 1 

This reduced ordinal data problem may give rise to more meaningful results. 

Nievergelt [1971] arrivés at essentially the same formulation when he tries to 

estimate the weights B of a utility function, where the x 's are tho .irgumcnts 

of the utility function and where a series of I alternatives has been placed in 

order of attractivity. 
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A second source of additional information for improving the results of 

(2.19) can be obtained when the explanatory variables can be distinguished in 

various classes. For example, Nijkamp [1980] classifies the explanatory vari

able:; of regional income in an economie profile and a socio-geographical pro

file. Multidimensional scaling methods are, then used for each profile to derive 

cardinal values for one or several variables representing the profiles. This 

cardinal information can then be used for an ordinary multiple regression pro

cedure when y is measured on a cardinal scale. When y is measured on an ordinal 

scale, however, formulation (2.20) can be used as a meaningful tooi. 

This approach is obviously a two-step procedure: first the number of ordinal 

variables is replaced by a smaller number of cardinal variables, while next the 

derived cardinal values are used to estimate the weights 6, . Evidently, it is 

worthwhile to consider the possibility of integrating the two steps. This would 

mean that the derivation of cardinal variables by means of multidimensional 

scaling uses also information concerning the position of these variables in a 

larger causal structure. This integration can be carried out in the following 

way. Let the K variables be divided in T profiles or classes (T < K). Assume that 

per profile t only one cardinal variable will be determined. This variable will 

be denoted by z , so that the information on each category t for all members i 

(e.g., regions) is measured in cardinal units. A short-hand description of a 

multidimensional scaling procedure is the following: 

1 min! stress (z..., ..., z ) 

i t l (2.21) 

subject to (z ., J • ••» z T) ^ A. 

Here, stress (z , ..., z ) is a measure of the discordance between the ordinal 

data and the z .'s, while (z , ..., z ) € A denotes the transformation re-

lationships from ordinal to cardinal data used in multidimensional scaling. For 

the ease of notation, the multidimensional scaling variables referring to the 

variable y will be denoted by an index 0. Then the integration we are aiming at 

can be reached by solving: 

fmin: y E (zQ. - T Q - y^. - ... - Y ^ . ) 2 

1 

T 
+ E X stress (z ,..., z ) (2.22) 
t=0 

subject to (z^., ..., z ) E A, t = 0,1, J tl tl t 
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The outcome of (2.22) depends on the weights y and X ,\ , ..., X attached to 

the various terms of the objective function. It is not difficult to see that the 

two-step procedure mentioned above is a special case of (2.22), viz. by first 

solving (2.22) with xi = 0, and subsequently with the values for the z .'s obtained 

in the first step (with X = X = ... = X = 0). It may be concluded that this 

method has more arbitrary elements than the previous ones. 

3. Related Ordinal Multiple Regression Techniques 

The ordinal multiple regression techniques discussed in section 2 can also 

be applied to related problems where regression analysis plays an implicit role, 

for instance, in subselection and classification problems. Two methods that are 

fairly common in geographical research, viz. interdependence analysis and discrim-

inant analysis, will briefly be discussed here. 

3.1. Interdependence Analysis 

Interdependence analysis is a method aiming at selecting a set of variables 

from a larger data set such that the selected variables represent the original 

data set as good as possible (see Kendall [1975] and Blommestein et al [1980]). 

This method is based on multiple regression, since the criterion in the selection 

procedure is the multiple correlation coëfficiënt between each of the discarded 

variables (the variables to be explained) and the selected variables (the ex-

planatory variables). We conclude, therefore, that the approaches to ordinal 

multiple regression dealt with in subsections 2.2 - 2.4 are equally useful for 

ordinal interdependence analysis. 

3.2. Discriminant Analysis 

The aim of discriminant analysis is the determination of a decision rule 

which assigns individuals (in a broad sense) to certain predetermined classes on 

the basis of their characteristics, such that the probability of misclassification 

is as small as possible. Let the characteristics of the individuals be denoted by 

x , ..., x and assume that there are only two classes. Then a frequently used 

form of the decision rule is (assuming that the variables are measured on a 

cardinal scale.): 
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if £ 8. x, . > c , assign x to class A 
k k ki to 

(3-1) 

II ï. [3. x, . < c , .]::.'; u.'ii x Lu rla:;:; H 
K k ki -

1'rom this formulation of a decision rule, it Is clear that there is a high 

nimi.larity betwecn regression analysis and discritninant analysis. For example, 

Kendall [1975, p.94-] considers linear regression with a nominally measured 

regressand y as identical to discriminant analysis. 

When the scale of measurement of the x^'s is ordinal, a decision rule 

can be conceptualized in the following way. It can no longer refer to one 

Individual and therefore we propose referring it to a pair of individuals 

(i,i T). It indicates to which class (A or B) individual i has to be assigned, 

given the characteristics for which individual i is larger than i', given the 

characteristics for which i is smaller than i', and given the class to which 

alternative i' belongs. 

This formulation of a decision rule enables one to employ the logit 

function (2.7) for ordinal discriminant analysis. The only necessary adjust-

ment concerns the right hand side of (2.7), where a dummy variable has to be 

added indicating whether or not alternative i' belongs to class A. It is not 

difficult to determine the reference value c as introduced in (3.1). This 

value is in ordinal discriminant analysis equal to zero, since In p/(l-p) = 0 

implies: p = .50 

It is finally interesting to note, that also in discriminant analyses with 

discrete explanatory variables similar specifications of the decision rule are 

used (cf. Goldstein and Dillon [1978]). 

Our final conclusion is that related ordinal multivariate problems can 

be dealt with in a meaningful way by means of the tools described in section 2. 

4. Cluster Analysis 

Consider the above mentioned data matrix (1.1.) and suppose it is measured 

In ordinal units. Then one may raise the question whether it is possible to 

develop a cluster technique for these ordinal data, especially because cluster 

techniques have gained much popularity in geographical research. 

Clustering aims at deriving sets of "similar" individuals or variables. 

Some authors use the term clustering only in connection with individuals and 

employ the term classification in connection with variables. We will normally 

use the term clustering;only when misunderstandings might arise we will indi-

cate whether we mean clustering of individuals or of variables. It is inter

esting to note that clustering implies the transformation of numerical data to 

data measured on a nominal scale. 
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There are many types of clustering methods (see Hartigan [1975]). Clus

tering methods can be distinguished among others according to: 

- the similarity criterion 

- the objective function (e.g., the objective may be: maximize the similarity 

within clusters, minimize the similarity between clusters, or employ some 

mixed objective) 

- the way in which clusters are combined (hierarchical versus non-hierarchical). 

In this paper we will only deal with the first mentioned feature: the similarity 

criterion. 

When the aim is a clustering of ordinally measured variables, it is not 

difficult to find a similarity criterion. Kendall's rank correlation coëffic

iënt defined in (2.5) is a good indicator for the interdependence between two 

variables, that is closely related to the notion of similarity between two 

variables. When a cluster C consists of more than two variables, an adequate 

similarity index (based on the rank correlation coëfficiënt) is: 

s(C) = m m 
j.j'ec 

T . . 

1,3 
(4.1) 

Thus, s(C) indicates the minimum correlation between all pairs of variables 

in cluster C. 

Serious difficulties arise when the aim is a clustering of individuals 

on the basis of ordinal data. This is clearly exemplified by the following 

data matrix, describing the outcomes of two variables for four individuals: 

1 2 3 4 

3 4 

(4.2) 

It is tempting to state that in (4.2) the first and second individual are 

better candidates to form a cluster than the 2-nd and 3-rd individual, since 

Z (x - x ) 2 < I (x. - x ) 2 (4.3) 

This numerical operation with ordinal data, however, may lead to fa]se con-

clusions. For instance, suppose that the underlying cardinal values were: 

X = 

10 60 65 100 

95 100 90 10 

(M.'l) 
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a cluster between the 2-nd and 3-rd individual should be preferred. Obviously 

the root of this problem is a mis-interpretation of the ordinal data matrix X. 

In the present section, we will show that it is yet possible to draw 

certain conclusions about clusterings based on ordinal data, although in most 

cases the conclusions will not be strong, as the distance metric (4.3) has 

only a limited relevance. A discussion of distance properties of multivariate 

techniques (inter alia in the case of qualitative variates) can be found in 

Gower [1966]. 

Consider a pair of individuals (i,m). Let s(i,m) denote the similarity 

between i and m. Then the following statement is in accordance with an ordinal 

matrix X = (>< , _x_ 5 . . . , x.T ) : 

if x. < x < x , then : s(i,m) > s(i,n) and 
-i - -m - -n - ( 1 + > 5 ) 

s(m,n) > s(i,n) 

Thus we arrive at an ordinal similarity measure. 

It is not difficult to prove that this measure has the following properties: 

reflexivity : s(i,m) > s(i,m) V (i,m) 

transitivity : if s(i,m) > s(l,n) and if s(l,n) > s(k,r) , 

then s(i,m) > s(k,r) V (i,m), (l,n), (k,r) . 

Tt cannot be proved that this measure is complete, however. Completeness 

would mean that for all combinations of pairs (i,m), (l,n) either s(i,m) > 

s(l,m) or s(i,m) < s(l,n); in other words, it would imply that it is possible 

to indicate for all combinations of pairs which of either pair is most similar. 

We will illustrate the similarity measures s(i,m) by means of the matrix X 

in (4.2). An incomparable combination of pairs will be denoted by u. In Table 2 

we represent the results of a combination-wise comparison of the similarity 

index for all pairs of individuals. 



- 20 -

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4) 

= u u u u u 

U = ï̂  U U U 

u _< = u u <_ 

u u u = >. u 

U U U J< = _< 

u u > u > = 

Table 2. Results of a combination-wise comparison of the similarity 
index s (.,.) for the pair of alternatives (i,m) and the 
pair (l,n) 

The table clearly shows that most of the combinations are incomparable. 

We illustrate its meaning for the clustering problem by means of the second 

row. This row implies that a necessary condition for a common membership by 

individuals 1 and 4 of the same cluster is, that also individual 3 is a 

member of that cluster. Thus, the information contained in this row implies 

that a clustering such as C1 = {2,3} and C2 = {1,4} is not consistent with 

the ordinal data matrix X. 

It appears, however, that in general several clusterings exist which are 

in accordance with the information of the type of. Table 2. For example, when 

we consider the ways in which two clusters can be formed that are consistent 

with Table 2, we arrive at: 

1. C1 = {1,2} 

2. C1 = {1} 

3. C1 = {2} 

4. C1 = {4} 

We conclude that we need an additional criterion to reduce the ritunber of 

feasible clusterings. One positive way is to use the median x as a reference 

point. For example, when J = 2, we arrive at 4 possible clusters: 

(i,m) 

(1,2) 

(1,3) 

(1,4) 

(2,3) 

(2,4) 

(3,4) 

(l,n) 

C2 = {3,4) 

C2 = {2,3,4} 

C2 = {1,3,4} (4.6) 

C2 = {1,2,3} 
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C = {x I x > x.m} 

c = {̂ s i Ü < Ü J 

C3 = {~ ' Xl - Xl ' X2 V 

C^ " {ü I xx < xx , x2 > x2} 

(4.7) 
•m, 

When (4.7) is applied to (3.2), we find: 

(̂  = C-2 = 4> , C3 = {1,2} , C^ = {3,4} , 

which is one of the feasible clusters in (4.6). 

It is not difficult to show that a clustering along these lines is always 

in accordance with the information contained in Table 2 (and hence with (4.5), 

irrespective of the number of variables J, the number of individuals I, or the 

number of reference points used (e.g., in addition to the median one may also 

use the quartile positions). The proof reads as follows: 

A general way to describe an arbitrary cluster in this situation is: 

Crs = {x | xr < x < xS} (4.8) 

r s where _x and _x are vectors with reference values. 

Condition (4.5) states that, when x. < x < x and when individuals i and 
—ï - —m n 

n are in the same cluster, also individual m should be in that cluster. This 
condition is satisfied by (4.8), since when x. € C and x € C , (4.8) 

—i —n rs implies that also x € C ^m 

We may conclude that given an ordinal data matrix X, clustering of 

variables is not essentially different from a situation with cardinal data. 

The clustering of individuals is more difficult with an ordinal X, however. 

We proved that a consistent clustering can be achieved by using reference 

points (such as the median). Of course, the cluster results depend on the 

reference points used. 

5. Principal Component Analysis 

5.1. Introduction 

The aim of principal components analysis is the representation of J 

variables by a smaller number of variables (called components) with a high 



- 22 -

degree of accuracy. When the data matrix X is cardinal, this can be achieved 

as follows. We describe X as a series of J row vectors : x', ..., x' . 

—l —J 

Then the first component JD' has to be determined such that the difference 

between each x'. and a. p' is as small as possible. The factor a. is a scaling 
~3 3 - 3 

factor to allow for the fact that the J variables can be measured in different 
dimensions. Thus the first component £ can be found by solving: 

2 
min ! E E (x.. - a .p.) (5.1) 

• • il 1 i a., p. ï : 
3 1 

This means that the matrix X consisting of I J parameters is approxirnated by 

the matrix a_ p_' , based on I + J parameters. 

The second component can be found by repeating this procedure for the 

data matrix consisting of the errors remaining after the first step. In general, 

component n is based on the errors remaining after step n - 1. 

Principal component analysis is also a widely used tooi in quantitative 

geographical research, so that it is extremely interesting to explore the 

possibilities of ordinal principal component techniques. 

Ordinal Approaches to Principal Component Analysis 

Is it possible to extract components when X is ordinal? We will discuss 

several proposals all dealing with the extraction of one component. 

1. Kendall [1970] proposes to base the components on the I sums of the elements 

in the columns of X. Thus, first one calculates: 

s. = E x.. i = 1, .. ., I (5.2) 
3 -31 

Subsequently the I individuals are ranked according to the s. . 

For example, when s., is set equal to I, etc, Kendall proves that this pro

cedure yields the maximum average correlation (of the Spearman type) between 

the rankings in X and the component. Thus by means of this procedure we 

maximize: 

4 Z Pj (5.3) 
J ] J 

where p. is the Spearman type correlation between the component and 

variable j. This component is very easy to compute, and Kendall [1975] 

shows an application of it for an analysis of erop productivity in various 
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countries. He reports that there was a striking agreement between the first 

principal component based on cardinal data and the component based on 

(5.2) for ordinal values being in accordance with the cardinal ones. 

Yet, there is a weak point in this approach. It can be illustrated by 

means of the following data matrix: 

1 2 4 3 

4 3 1 2 

(5.4.) 

In this case the column sums are all equal, which means that the component 

consists of equal outcomes for all individuals. This is a strange result 

when we realize that in (5.1) the scaling factor a. may be positive as well 

as negative. Following the lines of (5.1) we should conclude that in (5.4), 

(12 4 3) or(4 3 1 2 ) would be perfect components, since they do not give 

rise to any remaining errors. 

In more general terms this objection against (5.2) can be formulated 

as follows: 

criterion (5.3) is not meaningful, as it ignores the possibility of negative 

correlations. Better criteria would therefore be: 

max '. — Z |p. | (5.5.a) 

1 

or: 

1 2 
max ! — 1 p. (5.5.b) 

3 J 

It is not difficult to see that these criteria - when applied to (5.4) -

yield the desired outcomes. It is important to note, however, that there 

is no straightforward way to determine the solution of (5.5.a) or (5.5.b), 

as was the case with (5.2). 

2. Another approach discussed by Kendall [ 1970 ] is based on a special hierar-

chical frequency of ordinal outcomes. This will be illustrated by the 

following X matrix: 
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1 2 3 4 

4 3 1 2 

1 3 2 4 

(5.6) 

This method uses the number of variables with outcome I, I - 1, sequen-

tially etc, obtained by each individual. For example, individual 4 will 

receive rank 4 since it includes two outcomes 4 in its column. Individual 

1 will receive rank 3 since it has the other outcome 4. Further, the 

second individual gets rank 2 since it has two values equal to 3 and rank 

1 is for individual 3. 

Kendall dismisses this approach, however, since it is not self-

consistent. This can be seen when the same procedure is foliowed, but now 

starting with the value 1. It is easy to see that a rank order is achieved 

which is different from the order when we start with value 4. This is ob-

viously an unattractive property. 

3. Another approach, suggested by Ehrenberg [1952], is to base a component on 

the number of variables in regard to which individual i is ranked higher 

than i'. It is interesting to note the similarity between this idea and the 

principle of majority voting between pairs of alternatives. Indeed, the 

problem of deriving a common component from a series of rankings is very 

similar to the problem of finding a social welfare function based on a 

series of preference relationships. Arrow [1951] has shown that such an 

aggregation of preferences is only possible under rather restrictive 

assumptions. 

A well-known illustration of the difficulties in this respect is based 

on the following ranking of three alternatives i by three persons j: 

1 2 3 

3 1 2 

2 3 1 

(5.7) 

When majority voting is used to select an alternative from the pair (.1,2), 

alternative 2 will be chosen. Voting between alternatives 2 .iml 3 Le.ids to 

the selection of alternative 3. Voting between alternatives 1 .ind 3 loails 

to the selection of alternative 1. The aggregated preference roLation ob

tained in this way is intransitive (cf. Section 4) which is obvïously un-

satis factory. 
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We conclude that this third approach will give rise to the same 

problems as in social welfare theory. Up to now there has not been much 

progress in solving these problems. Therefore, this approach is not very 

promising, unless less restrictive assumptions are being made. 

4. The last approach is related to the proposals in (4.5), but instead of 

Spearman's correlation coëfficiënt it uses the Kendall approach. Thus the 

component has to be determined such that a maximum is attained for one of 

the two following criteria: 

i E 
J j ' : 

T. (5.8.a) 

or 

i ? T2 (5.8.b) 

For the moment, our conclusion is that especially the (adjusted) 

first method and the fourth method may provide a meaningful approach to 

ordinal principal component analysis. 

5.3. Related Techniques 

At the end of this section, we will also pay some attention to canonical 

correlation and partial least squares, since these methods are closely related 

to principal component analysis (cf. Kendall [1975] and Wold [1979]). 

The aim of canonical correlation analysis is the determination of com

ponents from two data sets X and X such that the correlations between the 

components are as high as possible. Partial least squares can be conceived of 

as a generalization of canonical correlation analysis since it deals with the 

analysis of correlations between components derived from more than two data 

sets. 

We will illustrate for canonical correlation analysis how it can be 

carried out when X and X„ are ordinal. Let the number of variables in X1 and 

X be J.. and J respectively. Then the components p_., and jp are the solution of: 
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max ! 7 ? 1 ^ I + ^ Ü t I t lx | (5 .7 .a ) 
J | I l J i J 2

 J 2 32 151.2 

or 

max 1 Z x-Z + i I x.2 + T 2 ( 5 . 7 . b ) 
J j ^ -Ji J 2 J2 Ü2 -1-'2 

In these formulations, T denotes Kendall's correlation coëfficiënt between 

components 1 and 2. 

Further, x. and T. denote Kendall's correlation coëfficiënt between componen 
Jl ]2 

1 and variable j for 1 = 1,2 , respectively. It should be noted, that in 

(4.9) an equal weight is given to the correlations internal to an X and the 

external correlations between the X ' s. 

In conclusion, ordinal principal component techniques may find fruitful 

applications in geographical research. 

6. Conclusion 

We conclude that it is in principle possible to develop multivariate 

methods for ordinal data that are related to corresponding methods for 

cardinal data without making mis-interpretatiocsconcerning the character 

of ordinal data. The methods developed in this paper show the power of soft 

econometrie methods in regional and urban modelling. Clearly, this field has 

to be explored much further. For example, in further elaborations more attention 

has to be paid to: 

statistical properties of the ordinal data methods (see also McCullagh, 1980) 

statistical tests related to the methods 

- computational aspects 

- the occurrence of ties 

- the possibility that part of the variables are ordinal and others are 

cardinal. 

An important question concerning the newly developed methods is whether 

they give rise to outcomes that differ much from the outcomes of methods based 

on cardinal data. in order to test the sensitivity of the results, it is meaning-

ful to perform both a cardinal analysis and an ordinal analysis to the same data 

set, in which the data in the ordinal analysis are obtained from an ordinal 

transformation of the original cardinal data base (see Figure 1.) . 
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cardinal data 
cardinal 
multivariate 
methods 

statements about 
the structure of 
the data 

cardinal data ordinal data 
ordinal 
multivariate 
methods 

statements 
about the 
structure 
of the data 

Fig. 1. Input-output schemes for multivariate methods. 

In these cases one may analyze the ordinal data matrix of which the cor-

responding oardinal values are known. Then we„will bè able to compare the 

specificity of the outcomes of ordinal and cardinal methods. 

This comparison is also important for several fields of research or 

decision-making where ordinal data are already used as a source of Infor

mation (e.g. certain multiobjective decision methods). We expect that ordinal 

data techniques may have important side-effects on various numerical methods 

in spatial analysis. 
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