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Abstract 

The paper attempts to develop a methodological and operational frame-

work for analyzing soft (ordinal, cateqorical or nominal) data in causal 

tial) econometrie models. After an introduction into causality analysis 

and an exposition of causality principles, the attention is focussed on 

soft data in causal (regional) economie n.odels. 

Several soft data techniques wil! be discussed, inter alia multidimen-

sional scaling techniques and logit techniques. Then it wil 1 be shown 

that graph theory provides an appropriate framework for causality ana

lysis in soft spatial econometrie model!ing. The analysis wil! be il-

lustrated by means of some numerical applications to a causal regional 

income formation model. 
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1. Causality Analysis: An Introduction 

The majority of (spatial) economie models takes for granted the existence 

of wel! defined relationships based on a logical causal foundation for the 

quantitative impact of cause variables on effect variables. Causality ana

lysis has attracted much attention as a cornerstone for model building 

in economics. Assuming a simple linear model of the following type: 

Ay + B x = c , (1) 

where y is a vector of N endogenous variables, _x a vector of K exogenous 

variables, c: a vector of constant parameters, and where A and B are matri

ces of coefficients, then the causality structure of this model is deter-

mined by the structure of matrix A (see also Fox et al., 1966, Rietveld, 

1981, and Simon, 1953). For instance, if A is a (block-) trianguiar matrix, 

the model is (block-) recursive and it reflects an unambiguous causality 

pattern. 

In case of non-linear models, a similar approach can be adopted by ana-

lyzing the causality structure via the existence of potential (block-) 

trianguiar impact patterns (see Rietveld, 1981). A causality analysis is 

also an extremely important element in the analysis of (multi-) regional 

models, especially as far as the presence of a top-down or bottom-up im

pact structure is concerned. Especially in complex regional models, a 

closer examination of the causality structure may shed more light on the 

impact mechanism of exogenous (cause) variables on endogenous (effect) 

variables. 

Usual'ly , causality analysis (cf. Harvey, 1969, and Wold, 1954) presup-

poses the following conditions to be fulfilled in a causality system: 

- the existence of a functional (non-reflexive, asymmetrie and transitive) 

relationship between stimulus (cause) variables and response (effect) 

variables, based on a theoretical foundation and a consistent dependence 

structure. 
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- a predictability of the effects, after a stimullfs has taken place 

(based on controlled or non-controlled experiments), apart from ran-

dom or disturbance factors. 

- the availability of suitable statistical techniques (correlation ana-

lysis, significance tests, e.g.) which may justify the assumption of 

a certain cause-effect relationship (see Blommestein, 1981a). 

In case of an integrated model, very often the condition of a recursive 

structure is imposed to warrant causality (see Wold, 1954). 

In consequence, a causal relationship does not only assume a functional 

relationship among variables, but also a more precise presentation of the 

kind and direction of impacts, so that a testable causality relationship 

is obtained. It should be noted, however, that such a causality relation

ship is not necessarily deterministic, but it may also be probabilistic. 

In addition, a causality relationship is hard to prove: statistical tech

niques (such as correlation and association analysis) indicate only the 

existence of a statistical relationship among variables. Consequently, 

a theoretical foundation of such causal relationships is necessary, 

while the plausibility or justification of such a theoretical framework must be 

based among others on appropriate statistical and econometrie methods. In respect to this, 

Lazarsfeld (1954) and Kendall (1955) have specified 3 necessary condi-

tions for the existence of a causal relationship (see also Leitner and 

Wohlschlagl, 1980; Blommestein, 1981a; and section 3): 

- causal order: the cause variables are realized prior to the effect 

variables, so that the direction of impacts is irreversible. 

- association: a testable (statistical) relationship does exist among 

the causal variables and the effect variables. 

- lack of spuriousness: the causal relationship among cause and effect 

variables does not vanish, when the (partial) impact of other variables 

on this relationship is exactly determined. 

It should be added, that causality is a property to be studied in the 

specific framework of a model; it does not necessarily refer to real-

world impact patterns (see also Simon, 1957). In a spatial context, 

the statistical test of spatial causality patterns is even more compii-
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cated due to the existence of spatial spil lover effects. 

(see also section 3). These phenomena can be studied by means of spatial 

(auto)correlation analysis, although especially in the framework of a 

simultaneous equations system still much research work needs to be done 

(see Cliff and Ord, 1973, Hordijk, 1979, Nijkamp, 1979 and Blommesteih, 

1971c). The next section wi 11 be devoted to a more formal discussion 

of causality relationships in structural models, while in section 3 

spatiotemporal causality problems wiII be dealt with. 

2. Causal and Qualitative Representations of Structural Models 

A model can formally be represented by means of N structural relation-
1) ships ' as follows: 

h. (y, x) = 0 , (2) 

where y is a (NX1) vector with endogenous variables, >< a (KX1) vector 

with exogenous variables, and ĥ  an implicit vector function. 

System (2) represents a particular structure of the pair of sets 

{z, H}; Gilli (1980) notes that the causal structure of model (2) is 

already given, if the set of hypotheses H defines the partition ; 

_z = y^\Jx, as well as a set of binary relationships of the form h-Rz-, 

n • en = Ih-i, rio, ..., hTl and Z:Ez=iZi, Zp, •.., z^, z^, -j, ..., ZMJ.I/-' j 

R stands for "the i relation contains variable z-". Alternatively, 
J 

the causal structure can be defined by the zero entries in the matrix 

of f i r s t -o rde r derivatives (c f . Rietveld, 1981), i . e . , 

1) The term "structural relat ionships" is used here in the well-known 

t rad i t iona l sett ing of simultaneous equation models. 

2) I t is assumed that there is su f f i c iën t pr ior information - for exampie 

from spatial economie theory, i ns t i t u t i ona l knowledge, previous empi-

r i ca l studies, etc. - to define th is p a r t i t i o n . 
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D 
8h 

8y' dx' 
(3) 

Further insight into causality structures implied by (3) can be gathered by exa-

mining the sign of the non-zero elements. The information obtained in 

this way constitutes a so-called calculus of qualitative relations 

(Samuelson, 1947). It should be noted that the zero and non-zero entries 

of (3) can be derived independent from a specific quantification of re-

lationship _h_. Despite the limited information regarding the specific 

quantification of the set of hypotheses Hs substantial prior information 

must be available for defining partitions like z_ = y U x . If the latter 

information is not available, it is necessary to conduct inter al ia more 

empiricaV research or to gather additional institutional information, etc. 

Causality analysis can be carried out at different levels of measurement. 

Consider, for example, the following simple structural model with 3 en-

dogenous variables, viz. income (W), investment (I) and consumption (C), 

and 3 exogenous variables, viz. government expenditures (G), taxes (T) 

and the interest rate (d): 

h1 (C, W, T, d) = 0 

h 2 (W, C, I, G) = 0 

h3 (I, W, d) = 0 

(4) 

where these equations represent the consumption relat ionship, the income 

identity relat ionship, and the investment relat ionship, respectively. 

Putting the non-zero elements of the matrix with the f i rs t -order derivatives 

of each endogenous variable of system (4) with respect to a cause variable 

equal to one, yields a causal structure in the form of the adjacency matrix A 

for the successive variables W, I , C, G, T and d: 

A = 

"1 1 0 0 1 f 

1 1 1 1 0 0 

_0 1 1 0 0 1 

(5) 

The qual i ta t ive structure of model (4) can be expressed in the form of 

a so-called sign matrix S with elements +, - or 0. 
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0 + 0 0 - " 

+ 0 + + 0 0 

0 + 0 0 0 -_ 

(6) 

In (3) and (4), it was necessary to assume that all variables were measured 

on a metric scale. The alternative assumption that some or all variables 

are measured on a non-metric scale requires at least information about the 

direction of the impacts, before the causality analysis - based on the ca1-

culus of qualitative relations - can be ap.plfed. For example, the first 

relationship of system (4) can then be expressed as follows (Blommestein, 1981a) 

hx (f° (C), f° (W), f° (T), f° (d)) - 0 (7) 

in which f° (x) is an (arbitrary, general) order preserving function of an 

ordinal variable x with properties (r. e{ 1, ,R} indicates the i ,tn rank 

order of variable x) : 

f o ( r ^ > f o (r..), i f ^ > ri# 

fx ( r i ) = f? ( r i ' ) ' i f ri = ri 

f° (rfl) = 1; fj (ri = R) = R 

(8) 

I f one wants to go fur ther than the calculus of qua l i ta t ive relat ions 

by also calculat ing the weights which measure the re la t ive strength of 

the relat ionship(s) between the var iables, i t is necessary to construct 

causa! structural models for deal ing with non-metric variables. This 

leads us in to the area of sof t econometri es, which w i l l be discussed 

in section 4. F i r s t , however, some more e x p l i c i t attent ion w i l l be 

paid to causality analysis in a space-time context (see section 3). 

3. Causality Analysis in a Spatiotemporal Context 

The notion of causal relationships in spatial and/or dynamic systems has 

led to the in t r igu ing question as to whether there exists a basic d i f f e -

rence between causality in spat ial and temporal models (see Blommestein, 

1981a). 

http://ap.pl
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I t nas been stressed by many authors (c f . Bennett and Chorley, 1978; 

Harvey, 1969; Blalock, 1972), that the notion of time is crucial for 

analyzing, understanding and interpret ing causal orden'ngs. Time-based 

systerns share usually the fol lowing propert ies: 

- asymmetry: E1 = T^Eg) •*• E2 f T 2 ( E i ) ' 

- t r a n s i t i v i t y : Ej = T-^E,,) A E„ = " M ^ "*" E l = ^ 3 ^ 3 ^ ' 

in which E. denotes an event i , and T. a (time-based) transformation 

operator. Especially the f i r s t property plays an important role in the 

solution of many causal inference problems; for example, in Simon's 

method of drawing causal inferences frojn correlat ion data1 ' . 

Consider the fol lowing system with 3 .variables v, , v„ 

and v3 (see also Simon, 1954): 

A v̂  = ui (9) 

in which A is a (3x3) matrix with unknown parameters a-• (a-• = 1); 

.v = (vp v ? ' v 3 ) ' anc* ü = (up u ? ' u 3 ) ' ^s a v e c t o r vtfi'th error terms. 

System (9) contains 9 unknown elements (6 coefficients a-•, and 3 un-

observable error terms u^), and only 3 equations. To infer causal in

formation from this system, it is necessary to make 2 kinds of a priori 

assumptions (Simon, 1954), viz.: 

a) Certain variables are not directly mutually dependent. An important 

source for this kind of a priori information is the time precedence of 

variables. For example, if v2 precedes v, in time, then oui = 0, i.e. 

v, does not directly influence v2. 

b) The error terms are uncorrelated. In the case of system (9), three 

more relationships are obtained by assuming that: 

E(u1u2) = 0; E(u1u3) = 0; E(u2u3) = 0, (10) 

where E represents the mathematica! expectation symbol. 

1) To avoid misunderstandings, Simon (1953) also notes that there is rio 

necessary connection between the asymmetry of the (causal) relation 

and asymmetry in time. 
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For purely space-based systems, often the properties of asymmetry and 

t r a n s i t i v i t y do not hold: The so-called spatial simultaneity problem -

i .e . spatial events are associated but cannot be ordered - is a typical 

i l l u s t r a t i o n of th is proposit ion. The problem of spatial simultaneity 

arises \jery c lear ly i n , among others, the fol lowing s ta t i s t i ca l problem: 

the log- l ike l ihood function corresponding to the l inear regression model, 

y = Xj3 + _u ' with autocorrelated errors u = pWu + ej e_^NID (0, aV), can be 

wr i t ten i n a concentrated form as (see Hepple, 1976) : 

Lc = - | ( l n 2 n + l ) - | In 
|P|2/R 

(10) 

in which P = I - pW; u = P~ e; V~ = P'P; and R is the sample si ze. 

In the time-series case, W denotes a temporal lag-operator matrix which 

contains zeros, apart from ones on the f i r s t subdiagonal, while 

|P| = (1 - p2)s. Maximizing L is equivalent to minimizing the expres

sion in square brackets in equation (10). For R -> «>, th is expression 

becomes equivalent to ^ ' V 1 ^ , since the Jacobian term |P | ^ ' R is asymp-

t o t i c a l l y equivalent to unity (P can, therefore, asymptotically be con-

sidered as a t r iangular matr ix) . 

In the spat ial case, W denotes a spatial lag-operator - or cont iguity 

matrix - , with typical elements w , (w , ^ 0 ) . Since both 

w r r i and w r i r w i l l probably be nonzero, especially i f the spatial units 

r and r' are adjacent, P w i l l , in general, not be a tr iangular matrix 

( l im | P | 2 / R / 1 ) . 

Assume a set of spatial phenomena A, B and C ( for example regional un-

employment leve ls , regional ac t i v i t y rates, e t c ) . The spatial configu-

rat ion as such of the observations on these phenomena does not allow us 

1) p denotes an autocorrelation parameter; W a temporal or spatial lag-

operator, and e a vector with white-noise error terms. 

file:///jery
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to differentiate between, for example, the following 3 causal orderings 

of these spatial phenomena (no matter the number of realisations): 

A = f(B); 

B =f(A); 

A,B = f(C); 

etc. 

Bennett (1979) discusses 3 methods of resolving the question of the chain 

of dependence or, alternatively, the causal ordering of spatial phenomena, 

vi z., 

a) the use of exogenous a priori information (behavioural or institutional 

information, e.g.); 

b) the estimation of the simultaneous structure of the spatial field; 

c) the use of Markov properties for spatial equilibrium fields. 

The first approach is successful, if it is possible to postulate the hypo

thesis that A causes B, or B causes A. Actually, the formulation and 'so-

lution' of this problem is equivalent to the one presented in section 2, 

viz.: given a structural model, a set of hypotheses H which define the 

partition ^ = yjjx and binary relationships of the form h^Rz-, the cau

sal structure is given as wel!. Clearly, in a purely inductive system, 

this is not a feasible approach. 

If one wishes to test(inthe statistical sense)theset of hypotheses H, 

it is necessary to turn to the second approach, i.e. to estimate the 

simultaneous structure of the observed spatial phenomena. However, com-

pared to temporal data this is a rather complex undertaking (cf. Blomme-

stein, 1981a for more details). 

The third approach deals with the application of the Markov property 

in the case of spatial equilibrium situations. This is a highly restric-

tive approach, as it implies essentially the assumption of time rewer-

sibility (cf. Preston, 1974). Furthermore, this assumption is very un-

likely to be fulfilled in spatial behavioural processes (cf. Blomme-

stein, 1981a). 
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From the foregoing discussion, one can conclude that there is no funda-

mental difference between the notion of causality in temporal and in 

spatial systems. Both notions fit into the 'classical' concept of cau-

sality,as this concept is independent of both the explicit time pattern 

and the functional form of the relationships (see for a discussion of 

this concept also Basman, 1963). However, the operationalization of 

this concept is - due to the problem of spatial simultaneity - more com

plex in purely spatial systems. At this stage, it is also interesting 

to point out some (dis)similarities between models for the estimation 

of simultaneous spatial systems (the second approach) proposed among 

others by Ord (1975) and Hepple (1976), and the traditional time-based 

simultaneous models from econometri es. Like in spatial models, the use 

of OLS (ordinary least squares) in simultaneous - equation models may 

be invalid, because the Jacobian may be nonvanishing. In this context, 

Hepple (1976) points out that the OLS estimators tend to overestimate 

the absolute value of the spatial autocorrelation parameter p. 

Furthermore it is also interesting to mention a dissimilarity between 

the performance of OLS in spatial regression models and in the structu-

ral equations from recursive (temporal) simultaneous - equation models. 

In the case of recursive (temporal) causal systems, OLS has optima1 sta-

tistical properties, i.e. setting the partial derivatives of the (log-) 

likelihood function equal to zero gives the Standard OLS expression for 

each structural equation. This result is not necessarily valid for spa

tial systems. For example, in the following spatial interaction model in 

regression equation form - which may be part of a (block-) recursive spa

tial system - (e^NID (0, er*)), 

y = pWy + Xj$ + e (11) 

the use of OLS is inappropriate. The simultaneous structure (i.e., the 

spatial simultaneity problem) of model (11), requires the estimation of 

the parameters with the help of a maximum likelihood procedure, as pro

posed by Ord (1975). 
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Finally, in mixed (i.e., spatiotemporal) systems the asymmetry and tran-

sitivity properties of time-based systems often do also hold (see for an over-

view of identification, estimation and forecasting problems of mixed models 

also Bennett, 1979). 

The analysis of qualitative relations and qualitative variables in struc-

tural spatial systems, can be pursued in the same way as described in sec-

tion 2. In the next section, more explicit attention wil! be paid to such 

soft information problems. 

4. Soft Spatial Econometrie Models 

Traditional spatial econometrie causal models are (implicitly or expli-

citly) based on the following (non-exhaustive) set of assumptions: 

- the existence of a well defined set of variables that can be measured 

by means of a cardinal metric. 

- the complex relationships among these variables can be quantified by 

means of an operational economie model that describes the various re

levant causal impacts. 

- the technical, institutional, social and economie side-conditions of 

the system concerned are precisely known and can be specified in an 

operational way. 

- the spatial spillover effects (horizontal or hierarchical) can pre

cisely be estimated via a spatial distributional model. 

- i n case of uncertainty concerning the state of the system (for in-

stance, due to stochastic variables), the probability distribution 

of the stochastic elements is assumed to be known. 

- in case of a dynamic model, the time trajectory of all variables of 

the spatial system at hand can be computed precisely. 

The conclusion may be that fuil and precise information is a basic in

grediënt for traditional spatial econometrie model building. In recent 

years, however, several authors have argued that many phenomena can 

hardly be quantified by means of a cardinal metric system (for instance, 

the social climate in a city) (see, among others, Nijkamp, 1979, 1980a, 

Blommestein and Van Deth, 1981). 
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Others have indicated that even cardinal information may imply a serious 

bias, so that only a pseudo-reliability can be claimed (see, among others, 

Adelman and Morris, 1974). Therefore, it may be meaningful to discuss 

measurement scales for variables, v/hich are usually distinguished in 

social sciences: 

- nomina! scale: a classification into distinct groups (green or blue, 

e.g.) or into distinct size classes (smal! or large impacts, e.g.) 

- ordinal scale: a ranking of events or effects in order of magnitude 

- interval scale: a measurement system which allows a calculation of dis-

tances up to a constant 

- ratio scale: a measurement system which allows a calculation of dis-

tances in an absolute sense. 

Usually, the ratio scale and the interval scale are called cardinal scales,while 

the nominal and the ordinal scales are called categorical scales. 

Soft econometrie models are models deal ing with non-metric variables, normally 

measured on a categorical scale. 

Very often ordinal data or categorical data are being used in 

such models. During the last decade, several techniques have been de-

veloped for taking account of soft information in econometrie models. 

The following (non-exhaustive) set of techniques for soft (often ordinal) 

data in econometrie models may be mentioned: 

- ordinal correlation analysis based on rank correlation coefficients for 

pairwise series of ordinal data (for instance, the Spearman coëfficiënt) 

- dummy variables methods especially related to non-metric explanatory 

variables measured on a nominal scale. 

- path models based on proxy variables related to a certain quantitative 

attribute of the original variables (see Blalock, 1964). Two useful 

techniques for path models are: 

• Lisrei: a maximum likelihood approach for latent variables (see Folmer, 

1980, and Jöreskog, 1977). 

• Partial Least Squares: an iterative regression analysis for identi-

fying a block structure among the latent variables (see Wold, 1975). 

- multidimensional scaling techniques transforming ordinal explanatory 

variables into a smaller number of cardinal explanatory variables (see 

Nijkamp, 1980b). This method will be employed in the empirical illustra-

tion in section 6. 
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- categorical data analysis employing nominal or ordinal information on 

objects (based on survey questionnaires, e.g.) in order to transform 

the proportion of certain categorial data into a linear logit form for 

an explanatory model (see Wrigley, 1980). 

- logit and probit analysis for discrete data on (mainly) qualitative 

attributes of objects. This analysis is based on a probabilistic ap-

proach in which usually the frequencies of the occurrence of a pheno-

menon (or the shares of a variable in a whole set) are used as data 

input (see Domencich and McFadden, 1975, Van Lierop and Nijkamp, 1980, 

and Theil, 1971). 

- ordinal regression analysis based on various modes of stochastic orde-

rings of an ordinality structure, for instanee by means of a proportio-

nal odds model or a proportional hazards model via a logit transforma-

tion (see McCullagh, 1980); or non-metric regression analysis based on 

optima! scaling methods (see Blommestein, 1981b, 1981d). 

- contingency tab!e analysis in combination with chi-square methods, 

dummy variable regression, and analysis - of - variance methods (see 

Grizzle et al., 1969, and Lehen and Koch, 1974). 

- pairwise logit transformation of ordinal data on response and covariate 

variables via a pairwise dominance analysis by means of so-called regimes 

leading to probability statements regarding the effect of a specific re

gime of explanatory variables on the occurrence of a dominance of depen-

dent variables (see Nijkamp and Rietveld, 1980). 

Finally, it has to be noted that the abovementioned measurement problems 

of variables are different from uncertainty problems emerging from the 

stochastic nature of variables; probability distributions of stochastic 

elements can be specified for any measurement scale. Obviously, these 

measurement problems may be related to the fuzzy nature of some variables, 

because fuzziness implies that the boundaries of the measurement space of 

variabels are not exactly known, but have to be approximated by means of 

(cardinal) membership grades (see Zaden et al., 1975). Fuzzy set problems, 

however, fall beyond the scope of this paper. 
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After this discussion of soft information problems in spatial econo

metrie and statistical analyses, it is worth while to examine the pos-

si bil ity of studying causa!ity patterns of soft spatial models by means 

of appropriate techniques. It wil! be shown in the next section that 

graph theory provides an extremely useful and also operational tooi for 

soft spatial causa!ity problems. 

5. Graph Theory and Causa!ity Analysis 

The complex relationships in a spatia! system can be represented in 

many forms, for instance, mathematical models, quaütative relation

ships, path diagrams etc. Causa! models (including non-metric models) 

are increasingly analyzed by means of path and graph analyses. Espe-

cially graph theory provides an attractive uniform multileve! language 

for dealing with complex problems (see also Riguet, 1980). 

In regard to soft information, the proof of complex casuality structures 

is fraught with statistical problems. A meaningfu! way of formaüy ana-

lyzing a causality structure based on soft information is the use of 

graph theory. Graph theory is a mathematical too! for reducing the struc-

tural and functional complexity in a system toward a set of systematic 

linkages that allow a further mathematical treatment (see among others 

Andrasfai, 1977, Behzad and Chartrand, 1971, Beineke and Wüson, 1978, 

Christofides, 1975, Lane, 1970, and Marshall, 1971). 

For the analysis of causality relationships especially the directed 

graphs (di-graphs) are important; a di-graph is a finite non-empty 

set of vertices V together with a set E (distinct from V) of ordered 

pairs of individua! elements of V. The elements of E are called ares. 

For instance, (a,b) is an are means: there is a relationship from a to b, 

or 

a b 

A causality relationship between a and b presupposes formally the exis-

tence of an are. The degree of causality can be measured via the degree 
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of the associated vertex (a vertex of degree n is n-valent), where the 

degree is only related to the (unweighted) number of oriented graphs-

The algebraic representation of such a causality analysis may proceed via 

an oriented adjacency matrix. 

In this way, graphs may act as a mathematical representation of structu-

ral models. Suppose, for instance, a structural model with endogenous va

riables y e RN and exogenous variables x. : 

h(i, x) = 0 (12) 

This model is not necessarily a fully specified mathematical model, while 
the sets of variables are not necessarily measured on a cardinal metrie. 
A causal structure of (12) presupposes a set Ji of cause-effect relation-
ships which partitions a set of variables z_ into y (J^i- ^ s e t °f re^a~ 
tionships can then be represented by a bi-partite graph G (see also 
Harary et a l . , 1965, and Gill i , 1980): 

G = (ll, z, q), (13) 

where £ = {(h^, x.)|h^Rx,-} is a set of edges. Clearly, the information 

contained in (13) can also be transformed into a related adjacency matrix. 

Next, a causal structure for a set of relationships can be represented 

by means of an oriented graph GQ: 

G0 = 0l> A> I) <14) 

where ŝ  is a set of arcs. 
In addition, one may also distinguish a directed graph Gd which is based 
on a well-defined contraction of the vertices. 
On the basis of the above mentioned notions of graphs various types of 
causality may be defined (see Gil l i , 1980): 
- di reet causality: 

ZjDZj. «-»• Gd = {are (zj5 Zj.,)} , (15) 

where D represents a relationship based on a directed graph. 

- immediate causality: 

ZjCZj, ^ Gd = {path (Zj, z-,)} , (16) 

where C defines a quasi-ordering with the following properties: 
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z-Cz- ( r e f l ex i v i t y ) Vj 

(z-Cz-,) A ( z . ,Cz . „ ) -* z.Cz.„ ( t r a n s i t i v i t y ) 
J J J J J J 11 

- mutual causali ty ( for endogenous variables) ' : 
ynEYn' ~ {(ynCynO A (yn-Cyn) , (17) 

where E i s a re f lex ive , t rans i t i ve and symmetrie re lat ionship. I t 

should be noted, however, that a symmetrie causality structure may 

be questionable, as th is may be due to the neglect or improper t reat -

ment (e .g . enforced aggregation) of the time dimension. In those 

cases, a reeursive system may be more appropriate (see Wold, 1954). 

F ina l l y , some simple topological measures of network or graph structures 

w i l ! be discussed, together with a possible causal in terpreta t ion. These 

measures are based on so-called gross characterist ics of networks (c f . 

Garrison and Marble, 1962; Kansky, 1963). 

The cyclomatic number is defined as : 

y = E - V + Gs (18) 

where E is the number of edges (links) in the network, V the number 

of vertices (nodes), and G the number of subgraphs. 

The cyclomatic number y defines the number of fundamental circuits in 

a network. A pairwise comparison of networks with the same number of 
variables (vertices) may reveal approximately the differences 

in the causal (recursive/independent) structure of networks. 

The alpha - or redundancy - index gives additional information about 

the connectivity of networks. It is defined as follows: 

Planar graphs : a = *\Y r 
^ (19) 

Non-planar graphs: a = /»_i ww-2'^ 

1) Formally, a new graph for endogenous variables can be obtained by 

elimi nating a l l vertices with in-degree smaller than 1 from the 

or ig inal graph (exogenous variables have vertices with in-degree zero) 
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Since the a-index i s defined as the ra t io between the observed number of 

c i rcu i ts and the maximum number of c i r c u i t s , i t s value provides re la t i ve ly 

sensit ive information about the causa! form of networks, both in the case 

of a single network and pairwise comparisons of networks. 

The bèta-index, defined as 

3 = E/V , (20) 

can be considered as a simple measure of the complexity of causal net

works. The B-index d i f ferent ia tes between simple topological structures 

(with low B-values) and complicated structures (with high g-values). 

The gamma-index is calculated by div id ing the number of edges by the 

maximum number of edges, i . e . : 

Planar graphs : y 

Non-Planar graphs: y = u/v- i W? 

3(V-2) 
E (21) 

Like the a - i ndex j t s value provides information about the connectivity of 

the network. 

Final ly i t can be noted that i t i s possible that d i f fe rent networks y ie ld 

the same values for a - , 3- , y- and y- indices. 

Therefore, i t might be of in terest to compare ' r es t r i c ted ' networks, for 

example, by considering only a l imi ted number of var iables; by deleting 

i den t i t i e s ; by d i f fe ren t ia t ing between directed graphs (G^), homogeneous 

graphs (Gn) and p-graphs (Gp); by focussing on well-defined aspects of 

the causal structure of models such as the relat ionship(s) between nat io-

nal and regional var iables, f i na l demand and supply of production factors 

(see Rietveld, 1980); etc. 

I t should be noted that the abovementioned causali ty analysis can be used 

in a spatial system by making a d is t inc t ion between in t ra-causal i ty and 

in ter -causal i ty of a regional system. Suppose a spatial system is composed 
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of R regions, while each region is described by means of a set of structural 

relations reflecting also interregional linkages. Next, the intra-causality 

structure of a region refers to the causality of the variables and relation-

ships within the region at hand, whereas the inter-causality refers to the 

causality of the whole system including interregional causal linkages. It is 

clear that a poorly interwoven spatial system wil! have a much lower causa

lity degree than a single region. In this way, causality analysis for modules 

of a spatial system can also be used to obtain more insight into the connec-

tivity of the system at hand. 

Empirical Application 

In the foregoing sections three basic elements have been distinguished: causal 

relationships, soft data and graph theory. Graph theory appeared to provide a 

useful framework for causality analysis in case of soft data. This approach 

wil 1 be illustrated by means of a simplified static causal model for regional (i.e. 

provincial) economieinformation in the Netherlands (1970). This model, 

partly based on hard information and partly based on soft information, can be 

represented means of the following diagram: 

infrastructural 

equipment (i) 

regional product 

(Pr) 

activity rate 

(a) 

regional wealth 

(w) 

regional income 

(y r ) 

socio-geographical 

attractiveness (s) 

population (p) employment (e) _ agglomeration (1,) 

T 

accessib i l i ty ( lp) 

- education (1,) 

cent ra l i t y (1») 

Fig. 1: Causal flow diagram of a simple regional income information model 
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The model represented by the arrow scheme in Fig. 1 can be described by 

the following equations: 

- a definitional relationship for the activity rate (on a metric scale): 

a = e/p (22) 

- an explanatory relat ionship for socio-geographical attractiveness de-

f ined by regional agglomeration, access ib i l i t y , educational f a c i l i t i e s 

and cent ra l i t y (the y explanatory variables are measured on an ordinal scale): 

s = f ( l 1 5 1 2 , 1 3 , 14) (23) 

- a so-called quasi-production function that explains regional product from inf ra-

structure capita! and the average rate (on a metric scale;see Nijkamp, 1981): 

Pr = a 0 i a i a a 2 (24) 

- an income formation relat ionship that relates average regional income 

to average gross regional product, average regional wealth and the 

socio-geographical attractiveness ( on a metric scale; see Nijkamp, 1980b). 

y r = K0 + k lpr + K 2 W + K3S (25^ 

F i r s t , the attention w i l l be focused on the causali ty structure of th is model. 

Figure 1 can be conceived of as a directed graph G. = (z^ t_) with a set 

of vertices z = {a , s , p r , y r > U { p , e, w, i , 1 ^ 12> 13» 14> and edges 

(the arrows in f igure 1) t _ = ' { ( z . , z . , ) | ( z . , h - ) A ( h - , z - , ) e m } . Given 

the par t i t i on ẑ  = y l /x> as wel! as a set of binary relat ions of the form 

h-Rz-, h-eH = { h , , h 2 , h 3 , hA, the causal structure of the spatio-eco-

nomic system (22) - (25) can be expressed in the form of the adjacency 

matrix A (c f . section 2) : 

" 1 0 0 0 

0 1 0 0 

1 0 1 0 

0 1 1 1 

1 1 0 0 0 0 0 0" 

0 0 0 0 1 1 1 1 

0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 0 

Replacement of the non-zero elements of A by the 'expected'sign of the 

coeff ic ients in system (22) - (25), may easi ly y ie ld the si on matrix S (see 

section 2) . This is straightforward and w i l l not be presented here. 

The next step of the empirical appl ication w i l l be a calculat ion of the 

causality degree, a discussion of the kinds of causality in F ig. 1 , and 

a calculat ion of the a - , $-9 Y-, and y-indices (see section 5) . This ana-

lys is can be carried out on the basis of the information contained in G^, 

so that even in the case of sof t data input th is causality analysis is a 

relevant approach. 
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According to the approach set out in section 5, the causality degree between 

the successive variables can be calculated via the degree of the associated 

vertex between each pair of variables. The number of edges incident on a 

vertex z. is called the degree (valency) of the vertex, and is denoted by 
ü 

d(zi). This can easily be incorporated in the following table, where the 

entries indicate the causality degree between each pair of variables. 

a s pr y r p e w i h h ] 3 ]4 d(Zj) 

a - 0 1 0 1 1 0 0 0 0 0 G 3 

s 0 - 0 1 0 0 0 0 1 1 1 1 5 

Pr 1 0 - 1 0 0 0 1 0 0 0 0 3 

y IA 0 1 1 - 0 0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

3 

1 p 1 0 0 0 

0 0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

3 

1 

e 1 0 0 0 0 - 0 0 0 0 0 0 1 

w 0 0 0 1 0 0 - 0 0 0 0 0 1 

i 0 0 1 0 0 0 0 - 0 0 0 0 1 

h 0 1 0 0 0 0 0 0 - 0 0 0 1 

\ 
0 1 0 0 0 0 0 0 0 - 0 0 1 

h 0 1 0 0 0 0 0 0 0 0 - 0 1 

\ 
0 1 0 0 0 0 0 0 0 0 0 - 1 

Table 1: Table with causality degrees. 

Concerning the kinds of causality (direct, immediate and mutual) the follo

wing comments can be made. 

Pi reet causality relationships, z-Dz-,, are defined by pairs of edges 
J J 

{Zj, Zj,} e t of Gd viz. , {a, P r) , {i, p }, {w, y r>, {p r , y p , etc. 
Immediate causality relationships, z-Cz-,, are defined by open edge trains 

J J 

in which all the vertices are distinct, i.e. by paths of the graph G. viz., 

{(p, a ), (a, p r ) , (pr, y r)}, {(e,a), (a, y r ) , (Pr, y r)}, {(lp s), (s.y^)}, 

etc. 

Mutual causality relationships, y Dy ,, do not occur in system (22) - (25), 

since the regional development model possesses a recursive causal structure 

[compare also the adjacency matrix A, and equation (26)]. 
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The topoiogical measures for a graph structure can also be calculated 

according to the indices discussed in section 5. 

The cyclomatic number y corresponding to the network shown in figure 1, is 

equal to zero. This means that the recursive causal system (22) - (25), can 

be conceived of as a branching network. From definition (19), it can be seen 

that : y=0 -> a=0. This indicates a 'minimal spanning tree' in which the 

removal of any edge (z- , z..) e t would break G, into two unnconnected 

subgraphs. 

Calculation of the beta-index yields the value 3 = .92, 

indicat ing a very simple network structure (the lower port i on of the 

3-scale - i . e . from zero to one - d i f fe rent ia tes between d i f fe ren t types of 

branching networks). The low value of the gamma-index, y = .37 , confirms the fact 

that the causal structure of the regional development model is 'minimal' 

connected ( for example, in the sense of a minimal spanning t ree) , ind icat ing 

a poorly interwoven spatial system. 

The foregoing causality analysis demonstrates that - even without the use of 

a metric system for the var iables- meaningful conclusions can be inferred 

regarding the causal structure of an interrelated economie model by using 

notions from graph theory. 

The second part of the empirical appl ication concerns the estimation of 

equations (22) - (25), taking into account the non-metric nature of (23). 

The regional structural model can be expressed in the fol lowing stochastic form: 

Yr + XB = U (26) 

where Y = fy j y ,̂ . . . y r . . . y ^ l ' is a (RxN) matrix with as elements the 

(lxN) vectors with data y r on a l l N endogenous variables in a l l regions 

r; r an(NXN) matrix with coeff ieients for endogenous variables; X a (RXK) 

matrix with as elements the (1XK) vectors with data xr on a l l K exogenous 

variables in a l l regions r; B a (KXN) matrix with coeff ic ients of exoge

nous var iables; and U the (RXN) matr ix, each row of which is the (1XN) vector 

U^NID (0, E) with error terms. 
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Since T i s a t r iangular matrix and the variance-covariance matrix l=E (ü r H r ) 

nas a diagonal form , the simultaneous-equation system (26) is a 

recursive equation system. This means that - in pr inc ip le - each equa-

t ion of system (26) may be estimated by OLS. Equation (22) is a de f in i t ion 

and can d i rec t l y be calculated on the basis of available (metric) regionel cross-

section data. Equation (24) is a (metric) quasi-production function of a Ccbb-

Douglas type and can easi ly be estimated, given the ava i l ab i l i t y of data on p , 

i and a (see Nijkamp, 1980b). The resul ts fo r the coeff ic ients are ' : 

In aQ = -0.973 (0.750) 

h 
a2 = 1.017 (0.578) 

al = 0.620 (0.240) R2 = 0.515 

Equation (25) is a l inear relat ionship which can readily be estimated via 
2) 

OLS (see Nijkamp 1981). The results are ' : 

K 0 = 2947.30 [5.46] 

ie 1 = 0.02 [2.90] 2 

K 2 = 0.28 [4.84] R = ° ' 9 2 8 

; 3 = 137.07 [1.29] 

Tne ?ssumption of (25) was that s is a metric var iable. In r e a l i t y , 

however, the socio-geographical attractiveness s is a qual i ta t ive variable 

which cannot be d i rec t l y measured on cardinal scale. I t i s composed of sof t 

data on l p 1 2 , 1 3 and 1^ . These regional indicators have been measured as regional 

ordinal data. In order to use s in equation (25), i t was necessary to trans-

form the ordinal information on I j , ^ lo and 1« in to cardinal information 

via a multidimensional scaling analysis (see section 4) . I t turned out that 

a one-dimensional configuration led already to a f a i r l y high goodness-of-fit 

for the transformation of the ordinal information in to a cardinal configu

ra t ion . Thus, the sequence of operations to be carried out was: ordinal 

data on 1 - , , . . . , 1 , , -» multidimensional scaling of ordinal data -» cardinal one-

dimensional configuration for regional socio-geographical attractiveness •> 

use of provincial configuration of s in (25) (see also Nijkamp, 1980b). 

The l a t t e r part of th is analysis shows that methods for deal ing with 

non-metric variables may form a useful complement to t rad i t iona l techniques. 

So the conclusion can be drawn that sof t econometrie techniques may be use

fu l tools fo r dealing with qua l i ta t ive information in causa! regional model-

l i n g . Of course, i t should be kept in mind that the foregoing model has 

only an i l l u s t r a t i v e meaning and that more extensive research work on soft 

causa! models has to be done. 

1) Figures in brackets are Standard deviat ions. 
2) Figures in square brackets are t -values. 
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