
ET 
Faculteit der Economische Wetenschappen en Econometrie 

05348 

021 Serie Research Memoranda 

\°\cfl Fast Simulation of Markov Fluid Models 

Ad Ridder 

Research Memorandum 1993-21 
mei 1993 

vrije Universiteit amsterdam 





Fast Simulation of Markov Fluid Models 

Ad Ridder 

Free University of Amsterdam * 

April 20, 1993 

1Full address: Dept. of Economy and Econometrics, De Boelelaan 1105, 1081 HV 

Amsterdam, the Netherlands, phone: (+31) 20 548 7070, fax: (+31) 20 646 1440, email: 

aridder@sara.nl 

mailto:aridder@sara.nl


Abstract 

In this paper we study the problem of finding variance reduction for estimating 

probabilities of rare events in Markov Fluid Models via Monte Carlo simulation. We 

propose to apply Large Deviations Theory to the processes for obtaining asymptotic 

expressions of these probabilities. Then we shall consider variance reduction by 

means of importance sampling where the new statistical law of the process is derived 

from the large deviations expressions. 

MARKOV FLUID MODELS • OVERFLOW PROBABILITIES • LARGE DEVIATIONS • 

M O N T E CARLO SIMULATION • IMPORTANCE SAMPLING 



1 Intro duet ion 

Let {Xt}t>o be a continuous time Markov chain on a finite state space E = {l,2,...,d} 

with transition rates {qij}i,jeE, and let ƒ be a real valued function on E. We 

assume that max,-^ ƒ(i) > 0, that {Xt} has stationary distribution TT, and that 

Ei€£ Ti ƒ (0 < 0. Fix B > 0 and define (for t > 0) 

Jt = min!.B,max (o, ƒ ƒ(Xs)ds\ 1 (1) 

The process {Jt}t>o describes the contents of a finite buffer in a so-called Markov 

Fluid Model. That is an input-output system with an incoming stream of packets 

at rate r,- when the chain {Xt} is in state i. The packets flow in a finite buffer of size 

B that is emptied at a constant rate of c packets. When the input rate exceeds the 

output rate, the buffer is filled eventually upto its capacity B. Packets that arrive 

while the buffer is f uil, are lost. When we define the flow function ƒ by ƒ (i) — r,- — c, 

we obtain the process {J t} of (1) that describes the number of packets in the buffer 

at any time t. Equivalently we may write 

Jt+dt = Jt + f(Xt)dt 

whenever the right-hand side is feasible (i.e. 0 < Jt + f(Xt)dt < B), otherwise 

Jt+dt — Jt-

Markov Fluid Models are proposed for modeling buffer behaviours in switches of high 

speed communication networks [2, 4, 11, 15]. The idea is that traffic comes mainly 

in bursts or peaks alternating with quiet moments. During a burst the packets 

arrive (almost) constantly in time rather than due to some random time process. 

Each potential customer of the network is associated with a suitable Markov chain 

for the time durations of the alternating traffic states (peak, quiet,...) and with a 

suitable rate function r for the generation of packets that the customer wishes to 

send through the network. When several customers or connections share the same 

buffer, we may superimpose their chains and rate functions into one chain and rate 

function. 
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Given the traflic characteristics in terms of a chain {Xt} and the rate functions r 

and c, we shall consider the estimation of the probability that a buffer overflow will 

occur. We characterise this probability in the following way. When the buffer process 

evolves in time it generates cycles. A cycle consists of a busy period and an idle 

period (similarly to e.g. M/G/1). However notice that during an idle period packets 

may arrive at the buffer, viz. at a rate less than c. We discern two different cycles 

to indicate whether an overflow occurred during the busy period or not: overflow 

and regular cycles. Let E+ C E contain all states i for which f(i) > 0. Suppose 

that at time 0 the buffer is empty and that the chain starts off in a state i € E+. 

The cycle that is originated, will be an overflow cycle with probability a,-. Now let 

us define the quasi-stationary distribution 

* • ; 

»i = ~ 
2-,jeE+ ""i 

for i G E+, then our overflow probability is 

dB = X) J/iai (2) 

A second issue that attracts attention in these models, is the expected time between 

two overflow events [1,12,17]. If we assume that the buffer contents has returned to 

0 in between, we have to wait for an overflow cycle. In the overflow cycle the buffer 

builds up from 0 to B. We call the time during which this happens, the overflow 

time. We are interested in estimating its expectation Tg. Notice that similarly to 

the evaluation of the overflow probability the expected overflow time may be defined 

by 

TB= YJ ViTi (3) 

ieE+ 

where Tj is the expected overflow time in an overflow cycle that starts with the chain 
{Xt} in state i. 

We have organized this paper as follows. Section 2 presents Large Deviations ex-

pressions of the overflow probability and the overflow time. In Section 3 we use 
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these expressions for getting variance reductions in Monte Carlo simulations. Our 

approach is to apply Importance Sampling and we need the Large Deviations results 

for deriving an optimal change of measure within the class of exponentially twisted 

probabilities. Section 4 contains two numerical examples. In Section 5 we attack 

the problem of multi-input of which the basics are actually done in Sections 2 and 3. 

2 Large Deviations expressions 

In [13] we have shown the following asymptotic expression for the overflow proba-

bility 

lim — log aB = -ff* (4) 

where 0* can be found in two ways, based on the so-called level 1 and level 2 

Large Deviation Principle [7]. For that purpose, consider the chain {Xt} and its 

return times {l^}n>o to some fixed chosen state i*. Assume that the buffer has no 

boundaries at 0 and B, so we define the f ree process 

rt 
Jt= f f(X,)ds 

Jo 

for decribing the contents of a virtual (or free) buffer. The free buffer increments 

between consecutive return times are i.i.d. random variables: 

£n = JYn ~ JV^ (5) 

Notice that the actual buffer and the virtual buffer behave similarly during the 

overflow time in an overflow cycle. Let I^\-) be the Legendre-Fenchel Transform 

(LFT) of the cumulant log Eexp(0&): 

lM(x) = sup{öx - log Eexp(0&)} (6) 

Then 

ff* = OW = inf T / W ( i ) (7) 
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where infimum is taken from all T > 0. The derivation of this expression is based 

on the Large Deviations Principle [5, 9, 18] 

6* = inf ƒ lW{<f>'(t))dt 
Jo 

where the infimum is taken from nonnegative continuous differentiable (almost every-

where) functions <f> with <f>(0) = 0 and T{<f>) = M{t > 0 : <f>(t) = 1}. We find (7) by 

applying convex analysis arguments. It says that the optimal function or 'path' <j> 

is a straight line with positive slope which has to be determined in (7). 

When we recall the actual Fluid Model, we can heuristically argue that during the 

overflow time the chain {Xt} typically behaves according to some distribution n* 

rather than to the stationary ir. Write 77* for the expected return times to the chosen 

state i* under ft*: 

and let r ^ be the minimizer of the right-hand side of (7). Using properties of the 

LFT one can show that there is a unique minimum. Then r ^ equals (approximately) 

the expected number of returns to state i* before the process reaches level 1. So (for 

large B) 

TB « Brj*T{1) 

Furthermore, the buffer process {Jt} follows during the overflow time approximately 

a straight line with slope 

(„vw)-1 

A second expression of 0* uses Large Deviations for empirical distributions. Define 

for any probability measure fi on E the entropy function [6, 16] 

^2)(M) = - i n f E ^ (8) 
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(where u = ( t t i , . . . , Ud) > O componentwise), and denote as usual the inner product 

(/*» /> = £**••ƒ(») = X)^'r«' - c 

Then again from the Large Deviations Principle and from convex analysis [13] 

6* = 0<3> = inf rl^Xn) (9) 

where infimum is taken from all r > 0 and probability measures p on. E such that 

{^f) = \ (10) 

Here the interpretation goes along the following lines. Let T^ and fi^ be the 

arguments that mimimize the right-hand side of (9) - these exist - . Then pS^ is the 

most likely distribution according to which the chain {Xt} behaves during overflow 

time, in the previous paragraph called n*. The buffer will be fiUed with a speed of 

(^2\f) per unit of time, hence from (10) T^ is the expected time until level 1 is 

reached. So for large B 

TB « J3r(2) 

The path that the buffer process will foUow most likely during overflow time is a 

line with slope 

( T » ) - > 

In [13] (Theorem 3) we have shown formally that indeed 

0(2> = 0W 

T(2) = T ( iya) ( 1 1 ) 

where r/(2) is the expected return time under pS2\ previously denoted by 77*. In the 

following section we shall prove that the distribution fi^ is optimal with respect to 

a variance reduction objective. 
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3 Simulation and Importance Sampling 

Now suppose that we wish to estimate the overflow probability OCB by using Monte 

Carlo simulation. For that purpose assume some underlying probability space 

(fi,:F,P) and 

aB = P(A) 

with A the rare event of an overflow. We may specify the sample space fi as follows. 

Each sample u> £ 0, represents either the complete busy period of a regular cycle in 

the buffer process - no overflow - or the first part of an overflow cycle in which the 

buffer process builds up from G to B. In the last case u> belongs to A. An arbritray 

w is of the form 

w = ((i0, t0), (n, < i ) , . . . , (in, Q) (12) 

Each ik indicates the state of the chain after the fc-th jump during the sample cycle 

and tk measures the length of staying in ik- Clearly the cycle starts in a state 

io € E+, and since 121=0 f(h)tk stands for the buffer contents just before the r + 1-

th jump, 0 < 121=0 f(ik)tk < B holds for r = 0 , 1 , . . . ,n — 1. And then either 

12l=o f(ik)tk < 0 in which case u £ A, or XX=o ƒ('*)** > -B in which case u G A. 

It is possible that n = oo but almost all w have finitely many jumps because the 

buffer process has a negative drift. 

Suppose that u G A is of the form (12). The probability density of w is 

<*PM = Un E W i ) exP ( - E 9iktk) dt0 • • • dtn (13) 

(with as usual ?,- = YLj^i^ij)- Notice that in € E+ to ensure that an overflow can 

occur while the chain stays in that state. 

For Monte Carlo simulations we draw arbritary w's of the form (12) and estimate as 

by the relative frequency of the number of occurences in A. For large levels B the 
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number of samples to draw must be large in order to obtain good relative efficiency 

of the estimate since it is of the order of l / a s . E.g. when the confidence should 

be 95% and the efficiency - i.e. relative width of confidence interval - should be 

10%, this number is approximately 400/as. Consider then the possibility of doing 

the simulations based on another probability Q, such that P is absolute continuous 

with respect to Q, a technique called Importance Sampling (e.g. [10, 14]). Let L be 

a Radon Nikodym derivative or likelihood function: 

If we draw m samples u respectively in the original (with P) and in the new simu­

lations (with Q) the estimator has variances 

i^dP-«4)-aI(j(>j-«4) <1 4 ' 

Since fA L2dQ = fA LdP we get immediately a necessary condition of variance re-

duction in terms of the likelihood L 

f LdP < f d? 
JA JA 

Secondly we may try to derive from (14) an optimal Q, i.e. the one that minimizes 

fA L2dQ. It turns out that the optimal Q is not practical [3] and therefore we seek 

an optimal Q in the class of exponentially twisted (or tilted) probabilities [14]. This 

class contains probabilities parameterized by 0 £ R , so we write Pe for a typical 

rnember. Under P6 the chain {Xt} has transition rates {qfj} and the the free buffer 

increments {£„} (see (5)) have cumulative distribution function Fe. Under the 

original probability P the increments have distribution F. Then we characterise our 

class of twisted probabilities by requiring that Pe belongs to this class if and only if 

exp{6x)dF{x) 
f exp(6x)dF(x) 

Let 0 C R be the parameter space of all those 6 for which Pe satisfies (15). Notice 

that 0 € 0 , i.e. the original probability P is an element of the class. 

^W = ̂ ë S -<• /R •*«.**•> < - (") 
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Now Theorem 2 of [5] and Theorem 1 of [13] provide us with the optimal Pe in the 

sense of minimizing 

The optimal twisted probability is P* = Pe* with 6* satisfying (7) (or (9)). When 

we actually execute the optimization in (6) and (7) we find that 

ƒ exp(0*x)<*F(x) = 1 (16) 

So clearly 0* € 0 . The left hand side of (16) is the moment generating function of 

the increments £„ evaluated in 6*. In some "simple" models the moment generat­

ing function can be determined in closed expression. Then equation (16) may be 

appropriate for calculating the optimal 0* (see the examples in Section 4). 

At this stage we are left with the task of finding transition rates {q*j} that go with 

the optimal P*. After we have implemented these rates we may execute the "quick" 

simulations and obtain the best variance reduction within the class of exponen-

tially twisted. First we shall show that the "optimal" stationary distribution ir* of 

the chain under P* is the "most likely" distribution fi^ that we found from the 

optimization program (9). 

L e m m a 1 ir* = fi^ 

Proof. Denote the Large Deviation rate function I^\ expressed in (6), by l£ ' and 

the rate function I^2\ expressed in (8), by Iy. The subscripts £ and X indicate the 

fact that the functions concern respectively the process {£„} and the chain {Xt}. 

The superscripts (1) and (2) indicate Large Deviations Principles for respectively 

sample rneans and empirical distributions. 

Also it is possible to derive a Large Deviations Principle for empirical distributions, 

or equivalently for their associated distribution functions, of the process {£„} (e.g. 
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[7] ch VIII). Denote the rate function by l£ '. According to the contraction principle 

the relation 

/W(x) = inf {I<2\G) : G distribution function on R with f udG(u) = x} 

holds. The infimum is attained at a distribution F6 of the form (15) for a unique 

0. When we execute the optimizations of (6) and (7) and apply the contraction 

principle for x = 1/T^\ we find the optimal distribution to be precisely F* = Fe* 

with 0* as in (7) (or (9)). 

Suppose that the chain {Xt} has stationary distribution (i, assuming a probability 

on the sample space which is not further specified. By TJ we denote the expected 

average return times to a fixed state i* and by G the distribution function of the 

free buffer increments {£„}• Then (see Lemma 5 in [13]) 

JRudG(u) = r,(ji,f) 

42)(G) = I<ë\n)r, 

We particularly concentrate on the triplets (f^2\ri^2\G^) and (ir*,t]m,F*). Here 

pW is extracted from (9) to be the minimizer of 

{f, f) 

Hence 

(TT*,/) ~ <//(*),ƒ) 

Therefore 

42)(n = 4 V K 

(ir*, f) JR V ; 

~ (/*(*>, ƒ) k Ud* {U) 

- r(2)/W2U fudF*(u) 
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By definition, ƒ udF* = l/r*1*, and from (9) and (11) 

„(2)/ (2) f) = V^_ = J_ 

»? ^ ' / / - T ( 2 ) - r ( i ) 

So 

I?\F*) > 42)(GW) 

The <-inequality follows immediately from 

JRudGW(u) = T,W(^\f) = ± 

and from the definition of F*. Because F* is the unique optimum of the contraction 

principle, we must have that G^ = F* and therefore also pfö = 7r*. • 

Finally we shall present sufficiënt conditions for the transition rates {q*j} to fulfill in 

order of getting the optimal change of measure P —» P*. Assume some probability 

P. It induces transition rates {q^} of the chain {Xt} and a distribution function F 

of the increments {£n}. Recall that the original P is given by way of known rates 

{qij} (see (13)). 

L e m m a 2 If {qij} satisfy 

(i) for any i € E 

qi = qi - ö*f(i) 

(ii) for any feasible cycle ofstates io = i*, ii, • . . , ir-, *r+i = **> meaning ii,...,ir^i0 

and qikik+1 > 0 for k = 0 , 1 , . . . , r, 

r r 

I l qikik+i = 1 1 9»'*«M-l 
Jb=0 fc=0 

Then 

F = F* 
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Prooi". Let io = i", h,..., ir, ir+i = i* be a feasible cycle and assume that the chain 

stays a time i* in state i^. The probability density of this realisation to occur is 

r 

( O #*«*+i <*P ( - E »*** 1 dt0dh---dtr 
\fe=o / \ fc=o / 

Using (i) and (ii) of Lemma 2 this density equals 

( t l 9'Vk+i) exP ( - E »*** _ 6* H /(»*)**) *o<fti •••dU 
\jt=o / V fc=o fc=o / 

The event £n € {x, x + dx) is made up of all feasible cycles of the form given and 

of all duration times tf. such that jyk-0 f(ik)tk = £• Summing all the corresponding 

densities, assuming respectively P and P, 

dF{x) = exp(-0*x)dF(x) 

or, using (16), 

dF{x) = exp(6*x)dF(x) = dF"{x) 

D 

After we have determined transition rates {q*j} such that (i) and (ii) of Lemma 2 

are fulfilled, we may run simulations by drawing sample w's using the probability 

P* and compensate their occurences by the likelihood L* == -yp*- Recall that when 

u € A it induces an overflow. Implementing dP(u) as in (13), a similar expression 

of dP*(u>), and applying (i) of Lemma 2, we get for u> € A 

\qiniik=o%ik+1/ 

The drift of a fluid process is the average net amount of fluid per unit of time, 

originally YUeE^ifi}) < 0- Under P* the drift becomes (notation as in Lemma 1) 

This is the slope of the "most likely" path causing overfiows. 

11 



4 Examples 

In this section we work out some of the concepts of the previous sections. 

Example A 

The most simple fluid model consists of a chain with two states, E = {1,2}. So 

q1 = 5i2,?2 = ?2i- Let / ( l ) < 0 < /(2) meaning that state 1 represents the 

quiet moments and state 2 the bursty moments during a communication connection. 

Notice that 

1 
7T = •(92,9i) and (71-, ƒ) < 0 

9i + 92 

gives <?i/(2) + 92/(1) < 0. After some algebra we find 

/ ( l ) /(2) 
T(i) = _ _ _ 9 i 9 2 

9i = 92 

92 = 9i 

9 i / (2) + 92/(1) 

- / ( l ) 
/(2) 
/ (2) 

- ƒ ( ! ) 

Then based on Lemmata 1 and 2 

9i + 92 

T(2) _ ((ir. f))-i _ ^ / i + ^ / i 
- ^ , / ; ; ~ qif(2) + q2f(i) 

L*(u) = ^ e x p ( - ö * 5 ) , uEA 
92 

Table 1 contains the results of simulations that were run on the model with q\ = 

10,g2 = 30, ƒ (1) = -1100, ƒ (2) = 2500. The drift of the system is originally -200 

and after changing the rates to <j£ = 13.2, q^ — 22.73 it is 222.57. We run a number 

of cycles (NC) until the 95% confidence interval of the estimated overflow probability 
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&B has relative width of near 10% to each side, called the relative efficiency (RE). 

In stead of the estimated overflow time rg we present in Table 1 the normalized 

overflow time TB/B (also with relative efficiency of 95% confidence). Furthermore 

we tabulate the fraction of time of staying in state 1 during overflow time, which 

estimates the empirical distribution fi^ (state 2 is omitted since its probability 

is simply the complement). No efficiencies are given there but these are smaller 

than those of the overflow times. Each buffer size is run twice, once with "direct" 

simulations and once with "quick" simulations. The last column of the table contains 

the values based on the Large Deviations expressions given above. 

B 2000 2500 3000 LD 

NC 900K 1500 3M 1500 HM 1500 

aB X 104 6.400 9.131 1.447 2.224 0.301 0.501 

RE 8.16 9.19 9.41 8.94 10.77 9.16 

( - l o g d B / 5 ) x l 0 3 3.677 3.499 3.536 3.364 3.370 3.301 2.909 

( T B / S ) x 103 3.294 3.089 3.524 3.549 3.889 3.497 4.491 

RE 4.34 6.15 4.77 5.73 4.93 5.16 
"(2) 0.610 0.605 0.616 0.616 0.623 0.615 0.633 

Table 1: Direct and quick simulation estimates in Example A. NC means number of cycles, K 
thousand, M million, RE relative efficiency (of the 95% confidence interval) in % of the estimate 
given just above it. 

A couple of remarks: in the quick simulations case the number NC does not grow 

with B because the likelihood ratio L takes care of that. The quick estimates of 

the overflow probability are persistently larger than the direct ones and even the 

confidence intervals do not overlap. The relative difference in the three cases is 42%, 

53% and 66%. Unclear why this phenomenon happens here and not in the following 

examples. The estimates of overflow times and empirical distribution do match quite 
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well: relative difterenees of at most 10% but in most cases much smaller. The Large 

Deviations expressions of (i) the normalized logarithm of the overflow probability, 

(ii) the overflow time and (iii) the empirical distribution are "quite different" from 

the estimates given here. Relative differences are in case (i) between 13 and 26%, 

in case (ii) between 13 and 31%, and in case (iii) between 1.5 and 4.5%. The Large 

Deviations expressions are asymptotic results when B —> oo and we expect that 

estimates for larger buffer sizes should become closer to these. This is done in 

Table 2. 

B (-logd B/B)xl0
3 (TB/B) x 103 -(2) 

01 

5000 3.138 3.818 0.621 

10000 3.028 4.131 0.627 

15000 2.988 4.318 0.630 

20000 2.964 4.407 0.631 

25000 2.954 4.380 0.631 

30000 2.950 4.392 0.631 

LD 2.909 4.491 0.633 

Table 2: Quick simulation estimates for large buffer sizes in Example A. 

Example B In the second example the chain has three states with ƒ(!) < f (2) < 

/ (3): state 1 represents light loaded, state 2 moderate loaded and state 3 heavy 

loaded traffic. We assume that the chain only jumps between states 1 and 2, and 

between states 2 and 3: q\ = 912,913 = 0,93 = 932,931 = 0. We can use equation 

(16) to solve for 6*. After some algebra we find that 6* is the (unique) positive root 

of 

aia2a302 — (aia2 + aia3 + a^a^O + (a2 + 03 + o-iP — c^p) = 0 
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where 

a,- = ana p = — 

«• ?2 

The optimal rates {q*j} follow from Lemma 2: q*2 = 9Ï = 9i — 0*/(l) and 9Ï292i == 

9i292i- Similarly for 9|2>923' From these the stationary distribution ir* = n^ is 

determined and the drift (TT*, ƒ). Suppose / ( l ) < 0 < /(2) < /(3) : E+ = {2,3}, 

then cycles of the buffer process may start in state 2 or 3, overflow can occur while 

the chain stays in 2 or 3. The likelihood ratio L*(u>) on A takes on the form 

.ff.(w)exp(—6*B) with H{u) different in these four cases. 

Table 3 contains results of simulations that were run on the model with q\ = 

10,921 = 20,923 = 30,93 = 40, ƒ (1) = -1500, ƒ(2) = 500, ƒ(3) = 1500. The drift of 

the system is originally —366.67 and after changing the rates to q* = 16.33,921 = 

12.24,9;3 = 35.64, q* = 33.66 it is 343.15. 

B 1500 1750 2000 LD 

NC 500K 500 1.5M 500 3.5M 500 

&B X 104 7.700 9.883 2.567 2.781 0.966 1.007 

RE 9.99 9.03 9.99 10.91 10.66 10.51 

( - l o g d B ) / B x l 0 3 4.779 4.613 4.724 4.679 4.623 4.602 4.223 

TB/B x 103 2.328 2.210 2.436 2.442 2.424 2.516 2.914 

RE 4.17 5.11 4.14 6.23 4.33 6.06 
-(2) 

tA 
0.234 0.226 0.240 0.242 0.240 0.248 0.267 

Ü<2> 0.369 0.370 0.369 0.364 0.368 0.359 0.356 

fl(a) 0.397 0.404 0.391 0.394 0.392 0.393 0.377 

Table 3: Direct and quick simulation estimates in Example B. 

The same remarks as above in Example A can be made here, except that the results 
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show "better": the relative differences between the direct and quick estimates, and 

between the estimates and the asymptotic expressions are less here, except for the 

empirical distribution estimates. This cannot be explained by saying that the buffer 

sizes in Example B lie "closer to infmity" because we observe that the overflow 

probabilities of the two examples are of the same order. 

5 Multi input 

In Section 1 we associated a customer who is connected to a communication network 

and who loads packets into a buffer of finite capacity, with a Markov chain {Xt} and a 

rate function r on the state space of {Xt}. The chain describes the time behaviour 

of the connection and the rate function reflects the loading characteristics. The 

buffer is emptied at a constant rate c. In this section we allow several connections 

loading the same buffer, independently of each other. Suppose that there are K 

customers connected, then customer k is recorded by a Markov chain {Xt(k)} on 

a (finite) state space E(k) with transition rates {qij(k)}, and by an input rate 

function r(fc) on E(k). It is a matter of a simple transformation to obtain the model 

of Section 1. The (vector) process Xt = (Xt(l),... ,Xt(K)) is a Markov chain on 

E = E(l) x • • • x E(K). Transitions take place only when one of the components 

changes (the event of two or more simultaneous changes has probability 0). The 

flow function f on E becomes (for i ~ (i(l),..., i(K))) f(i) — Y%=i ri(k)(k) — c-

Again we are interested in estimating the overflow probability og and the expected 

overflow time Tg via Monte Carlo simulation using importance sampling. We write 

lW(k)((i(k)) for the entropy function (8) applied to the probability measure /x(fc) 

on E(k) and using rates {&ƒ(&)}. The product measure fi = (/*(!),• •• ,n{K)) on 

E may be interpreted as an empirical distribution of the chain Xt. Then by a 

straightforward extension of Lemma 6 of [13] we obtain again (4) with 

r = inf rf;/(2>(fc)Mfc)) (17) 
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where infimumis taken from all r > 0 and probability measures /z = (^(1), • • •, p(K)) 

on E such that 

Jb(P(*)A*))-c=l (18) 

Solving this optimisation program we find again optimal T^ and fi^ such that 

the expected overflow time rg for large B is approximately BT^ and the fc-th 

chain behaves according to the marginal fi^2\k). A remarkable reduction property 

is present in models with identical inputs, i.e. all chains have the same transition 

rates - say {g,j} - and all input rate functions are identical - say rt- - , and says that 

the contribution of all chains to cause an overflow is equally spread [4, 13], 

(^»(*),r)-f = ^ (19) 

and that all optimal marginals fx^(k) are the same as well. That means that the 

estimation of the overflow probability and of the overflow time using Monte Carlo 

simulations may be executed in a single input model by replacing the output rate c 

by c/K. 

In case that not all input sources are identical, the analysis of Section 3 still holds 

and may be executed here to obtain variance reduction in simulations. In partic-

ular Lemmata 1 and 2 are applicable in the multi-dimensional setting. Omitting 

(numerical) details we present below the results for a specific model. 

Example C 

Consider the fluid model with two (independent) sources both consisting of two 

states (numbered 1 and 2) and with the same input rate function r. In the simula­

tions we take gx(l) = 10,g2(l) = 30, ?i(2) = l,q2(2) = 3, rx = 100,r2 = 2100 and 

c = 1500. Notice that the steady state distribution of the two chains are identical 

(7r(fc) = (0.75,0.25)) and that both contribute an input of 600 packets per time 

unit. The equilibrium drift becomes therefore —300 packets per time unit. Af ter 
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solving numerically (17) and (i) and (ii) of Lemma 2 we obtain the optimal twisted 

rates g*(l) = 10.61, q;(l) = 28.27 q*(2) = 1.91,^(2) = 1.57 and drift 342.08 packets 

per time unit. Table 4 shows the simulation results and the corresponding values 

according to Large Deviations. We observe that overflows are mainly caused by 

"non-equilibrium" behaviour of the second chain. 

B 5000 6000 7500 LD 

NC 600K 750 1.5M 750 9M 750 

&B X 104 7.517 18.572 2.433 5.508 0.422 0.932 

RE 9.23 8.97 10.26 9.34 10.05 9.43 

( - l o g d B / B ) x l 0 3 1.439 1.258 1.387 1.251 1.343 1.237 1.168 

(TB/B) x 103 2.188 2.133 2.329 2.277 2.362 2.425 2.923 

RE 4.73 5.28 5.14 5.36 4.80 5.59 

M2)(D 0.722 0.724 0.725 0.723 0.723 0.725 0.727 

M2)(2) 0.399 0.392 0.411 0.408 0.415 0.419 0.452 

Tab le 4: Direct and quick simulation estimates in Example C. 

Again the quick simulations lead to larger estimates of the overflow probabilities (in 

f act twice as large). We expect better performances for larger buffer sizes. Table 5 

shows the convergence of the estimates to the Large Deviations values. 

6 Conclusions 

We have focused on Markov modulated input processes of a continuous buffer sys-

tem. The overflow probability (2) satisfies the asymptotic expression (4) for various 

models. Based on Large Deviations Principles the asymptotic expression may be 
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B (~logaB/B) x 103 (TB/B) x 1Ö3 M2)(D M2)(2) 
10000 1.215 2.564 0.724 0.431 

20000 1.193 2.767 0.727 0.442 

30000 1.186 2.818 0.724 0.448 

40000 1.179 2.780 0.727 0.443 

50000 1.177 2.903 0.727 0.451 

60000 1.176 2.805 0.727 0.445 

LD 1.168 2.923 0.727 0.452 

Table 5: Quick simulation estimates for large buffer sizes in Example C. 

evaluated by (7),(9) or (16). Our main study was to apply this expression for 

variance reduction purposes when executing Monte Carlo simulations in order to 

estimate the overflow probability. With the aid of the Large Deviations expression 

we can change the probabilty measure so that the negative drift of the system (in 

equilibrium) becomes a positive one along the optimal path that causes overflows. 

The quick simulation estimates make it possible to execute various tests on buffer 

sizes and traffic characteristics to gain insight in the consequences for overflow prob-

abilities and times. 
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