
Faculteit der Economische Wetenschappen en Econometrie
ET

05348

Serie Research Memoranda

On a Riemannian Version of the Levenberg-Marquardt

Algorithm

Ralf Peeters

Research-Memorandum 1993-11
March 1993

vrije Universiteit amsterdam

On a Riemannian Version of the Levenberg-Marquardt
Algorithm *

Ralf Peeters *
Free University, Amsterdam

A b s t r a c t

This paper deals with the problem of minimizing a function that exhibits the special structure
of a (possibly nonlinear) sum of squares over a Riemannian differentiable manifold. WelUcnown
minimization algorithms to handle similar problems in the (standard) Euclidean case are the
methods of Gauss-Newton and Levenberg-Marquardt, which latter method may be regarded
as an extension of Gauss-Newton. Since any differentiable manifold can be covered by an atlas
of charts of local coordinates, an obvious approach towards this problem consists of applying
forementioned methods to all relevant charts individually.
Recently, it has been shown ([14, 31]) that the Gauss-Newton method proceeds virtually in
dependent of the choice of local coordinates, which property makes it especially suited for
application to the problem studied here. The method of Levenberg-Marquardt in its present
form (cf. [7, 27]) is not coordinate free, however. This is unfortunate, because when restricting
to just one chart of local coordinates the Levenberg-Marquardt method often is superior to
Gauss-Newton, as it can handle situations where Gauss-Newton breaks down.
In this paper we resolve this situation by constructing a "Riemannian" version of the Levenberg-
Marquardt algorithm, i.e., a version acting on a Riemannian manifold in a coordinate indepen
dent way. Our motivation for this research sterns from the field of system identification, and
therefore we have applied it to some test problems of that type. These are described in a
companion paper [29].

*This research was carried out as part of NWO research project 611-304-019,
'Address: Free University, Department of Economics and Econometrics, De Boelelaan 1105, 1081 HV Amsterdam,

The Netherlands. E-mail: ralf@sara.nl.

1

mailto:ralf@sara.nl

1 Intro duet ion
In the literature one can find a wide variety of algorithms for the (local) minimization of a function
defined on Euclidean n-space R". Depending on the nature of the function to be minimized, some
algorithms are better suited for finding a local mimimum quickly than others, but there does not
exist such a thing as a "best" algorithm, useful to all applications. Various issues play a role in the
choice of an optimization method. These include the size of the problem (the number of variables),
the nature of the function (quadratic, convex, etc.), the ease and cost of obtaining function values,
first and second order derivatives, etc. In practical implementations also the algorithmic complexity
plays a role, but we shall not go into that here.
In the present paper we are interested in the situation where the function to be minimized is a (pos-
sibly nonlinear) sum of squares, defined over a Riemannian manifold. If the domain is Euclidean,
which is the Standard case, there exist algorithms exploiting the sum-of-squares structure of the
function. The most well-known such algorithm is the Gauss-Newton method, of which several vari-
ants exist. lts "standard" version (involving no step-size controlling parameter) exhibits superlinear
convergence under certain conditions, (cf., e.g., [7]). However, this method may fail to converge if
those conditions are violated. Then, introduction of a step-size controlling parameter (with various
possible strategies for operating it) provides a way out in most cases, but usually at the cost of much
slower convergence. Additional problems arise in situations where the Gauss-Newton approxima-
tion to the Hessian of the function is (almost) singular; these cannot be handled satisfactorily. (Cf.
[7, Ch. 10].)
A second way out of these problems is provided by the so-called Levenberg-Marquardt algorithm,
that can be viewed as a method that generates search directions by interpolating between those of
the methods of Gauss-Newton and steepest descent. In [27] an especially robust implementation of
this algorithm was developed, making it of the trust-region type. This implementation is discussed
in detail in Sect. 2, while related issues and modifications are considered in App. A. It is the purpose
of this paper to give a strongly numerically oriented treatment, involving many details, so that an
actual computer implementation can readily be developed.
Our motivation for studying the Levenberg-Marquardt algorithm sterns from the field of system
identificaiion. There we are dealing with the problem of estimating parameters in order to identify
a model from available measurement data. Most available estimation procedures are based on the
concept of trying to minimize an associated criterion function that expresses the misfit of a candidate
model. Commonly used criterion functions often fail into the class of prediction error criteria (cf.,
e.g., [24], [32]). The most popular one consists of the sum of squares of the prediction errors that
emerge when applying the available measurement data to the candidate model with the objective
of one-step-ahead prediction of future outputs. One can get to this criterion in various ways, e.g.
via the principle of maximum likelihood.
In many of these situations, the parameter space actually corresponds to only a part of the set of
candidate models that one has in mind. Indeed, it is a known fact that various model sets that
are commonly being used, e.g. the sets of linear multivariable models of a fixed finite order n, do
not form Euclidean spaces, but differentiable manifolds instead. In the multivariable case it has
been proved that one cannot restrict to just one continuous canonical form as it can never capture
all candidate models (cf. [15]). One therefore has to consider several structures instead, and their
related (pseudo-)canonical forms, which provide a set of overlapping parameter charts for the differ
entiable manifold under consideration. Smooth differentiable manifolds can always be endowed with
a Riemannian metric (cf., e.g., [5]), and for this particular application several choices are discussed
in [13, 30]. Thus, this application has led us to the study of minimization algorithms for functions
that are defined on a Riemannian manifold, covered by a set of overlapping coordinate charts.
This area has turned out to be quite undeveloped. What seems to be common practice is to apply
existing algorithms (that were developed for the Euclidean case) within a number of local coordinate
charts (each describing only a part of the manifold). Such an approach is conceptually unsatisfactory
in the sense that it generally introduces dependence of the resulting iteration path on the coordinate
charts being used — even when applying the same minimization method to every chart (cf. [28]).
Additionally, this approach may also cause problems that are not inherent to the structure of the
function being minimized, but rather due to an inadequate choice of local coordinates.

2

Some work has been done, however. In, for instance, [11, 22, 23, 25], one can find what we will
call "Riemannian" minimization algorithms, i.e. algorithms acting on a Riemannian manifold in a
coordinate independent way. In particular there exist Riemannian versions of the steepest descent
method, (quasi-)Newton methods and conjugate gradiënt methods. Initially, a basic obstacle for
developing such methods lies in the fact that for a function defined on a differentiable manifold its
Hessian is only defined in a coordinate independent way at critical points. In the case of Riemannian
manifolds, however, it turns out that one can use geodesics (being the counterpart of straight lines
in Euclidean space) as a basis for redefining the Hessian in a coordinate free way everywhere. (As a
matter of fact, one then resorts to the use of so-called normal coordinates.) We remark that recently,
the use of Riemannian geometry is being investigated within more areas in the field of optimization,
such as linear programming, cf., e.g., [18, 17].
Other related work of interest, more specific to the application we have in mind, is [12], where a
Riemannian version of a recursive Gauss-Newton system identification procedure is studied. Also,
with respect to nonlinear least squares problems it has recently been shown that one can interpret
the Gauss-Newton algorithm as a Riemannian steepest descent minimization method with a certain
self-induced (local) Riemannian metric, see [14, 31]. These results provide another incentive for the
research of the present paper.
The main subject of this paper is the construction of a Riemannian version of the Levenberg-
Marquardt method, which will be treated in Sect. 3. It can be regarded as an extension of the
Gauss-Newton method (just as in the Euclidean case) and it gives a conceptually elegant basis for
the use of "scaling strategies" that can yield better results than the ones introduced in [27] (cf.
App. C). Additionally, it also supplies us with a geometrical interpretation for the shape of the
trust-regions.
In a companion paper, [29], this method is applied to a few simulated system identification prob
lems, such as briefiy sketched above. Efficiënt implementation of the Riemannian algorithms in these
cases, involving large amounts of data, asks for an alternative organization of certain calculations;
these are discussed in App. B.

3

2 The Standard Levenberg-Marquardt algorithm
2.1 Problem statement

We are concerned with the following problem. Suppose we are given a criterion function $(x),
which is a sum of squares of possibly nonlinear functions fl(x), i = 1 , . . . , m. We are interested in
finding a (locally) minimizing argument for $(x), say i». Let us introducé the following notation
and terminology. Let

1 1 m

M*) = ï\\f(x)\\2 = ïY,{fi(*)? (2-1)

where ƒ : R" —• R m denotes the residual mapping, with corresponding coordinate functions (the
residuals) ƒ ' : R" —*• R, (i = 1 , . . . , m), and where || • || denotes the Euclidean norm (in R m) . *
For reasons of convenience when comparing to Newton's method we assume ƒ to be at least twice
continuously differentiable, though the Gauss-Newton and Levenberg-Marquardt algorithms can
be constructed equally well if ƒ is only once continuously differentiable. The associated Jacobian
mapping is denoted by J : R n —• R m x n and defined in each point x £ R n as

J(x) =

V§£(*) •• §£(«)/
(2.2)

We adopt the notational convention that coordinates (and coordinate functions) are indexed by a
superscript, whereas quantities changing every iteration are indexed by a subscript k, denoting the
iteration number.

2.2 Outline of the Levenberg-Marquardt algorithm

As indicated in the introduction, to solve this nonlinear least squares problem numerically, one can
apply the method of Gauss-Newton (GN), cf., e.g., [7, 31], or make use of an extension of this
method, known as the Levenberg-Marquardt (LM) algorithm. Below we describe a well-known
robust implementation of this method, as first described in [27]. In Figure 1 a flowdiagram of this
algorithm is given. We shall discuss each of its steps in more detail.

ALGORITHM (Levenberg-Marquardt)

STEP I
Initialize all variables. Set iteration counter k = 0.

STEP II
Increase k to k + 1. Calculate a GN step (i.e., a LM step corresponding to A* = 0).

STEP III
Test if the GN step lies inside the trust-region.
If not so, then apply "subalgorithm A" to determine an acceptable LM parameter Afc > 0 for
which the resulting step lies approximately on the trust-region boundary.

STEP IV
Calculate the performance pk, defined as the ratio of actual to predicted reduction of the
criterion function value. This yields a measure of the validity of the linearization of the
residual mapping in the proposed direction.

' I n our applications of the Levenberg-Marquardt algorithm in [29] we shall mostly be dealing with situations
where m is much larger than n. In the present description, however, there will be no such assumption: the algorithm
appljes equally well to the case where m < n. But in the latter case one must be aware that the Gauss-Newton
approximation to the Hessian of $ a t x will always be singular.

4

final acceptance

of calculated step

yes
step VII

step VI

updating of the

trust-region size.

step I
initiahzation. #iterations:= 0.

step II

calculation of a Gauss-Newton
step, i.e. for A = 0.
#iterations:= #iterations+l.

step III
_ ~ 1

test
whether the

Gauss-Newton step lies
jnside the trust

-region.^

no
subalgorithm A :
for determining an
acceptable A > 0.

determination of the
Levenberg-Marquardt step.

L J
step IV

calculation of performance p.

step VIII

display of final

results. STOP.

Figure 1. Flowdiagram of the Levenberg-Marquardt algorithm, according to More's trust-region
implementation.

5

STEP V
Test if convergence has occurred. For this one can use various numerical criteria, e.g. More's
or Marquardt's.
If so, proceed with step VIII, else continue with step VI.

STEP VI
Update the trust-region size Ajt, using pk •

STEP VII
Decide on the acceptance of the proposed LM step, according to the following rule.
If Pfc > 10~4 t n e n accept the proposed step and proceed with step II (i.e., a new iteration).
If pk < 10 - 4 , the trust-region size will just have been decreased in step VI. Therefore, skip
step II and proceed with step III to find a better value of A* > 0.

STEP VIII
Calculate and display the final results. Stop the algorithm.

2.3 Detailed description of the steps in the LM algorithm

The original description of the above implementation of the LM algorithm is given in [27]. However,
we have found that in that paper there are several unclarified issues and inaccuracies. In order to
address and correct these we give a detailed account of all steps in the algorithm. This then also
provides us with the necessary background for quickly developing a Riemannian version of More's
trust-region implementation (see Sect. 3). Moreover, it enables us to come up with new insights
concerning the various scaling strategies involved.

Ad s tep I — Init ial ization.
The initialization involves the choice of a starting poinl XQ € R" and an initial trust-region
of ellipsoidal shape, consisting of all points XQ + p for which ||-DoP|| < &o where Do is a
nonsingular n x n matrix and Ao a positive scalar. All of these must be user supplied, and
good choices will depend on the specific problem at hand.
More advises to choose Do = diag(d0, , dg) with d'0 = \\-Q£Ï(XO)\\, with the aim of improving
numerical scaling. Subsequently he proposes three different ways for updating Dk (see step
VII). An obvious alternative is provided by choosing Dk — / for all k. This implies that one
accepts the scaling corresponding to the choice of basis that is implicit in the coordinates being
used. Other choices are conceivable; as a matter of fact we shall make a well-motivated third
proposal in our extension of the algorithm to Riemannian manifolds (cf. Sect. 3).
For fixed Do the value of Ao determines the size of the initial trust-region. One can choose
Ao = 1, since an inadequate initial size of the trust-region will generally be adapted fairly
quickly. Notice that the trust-region size influences the acceptance of a GN step and also the
determination of a LM step with At > 0. Therefore, the choice of Ao has influence on the
iteration path.
Yet another quantity to be initialized is the flexibility factor a 6 (0,1). More proposes to
choose c = 0.1, which we also have found to be satisfactory. The interpretation of er is as
follows. When calculating an LM step, which is in principle required to lead us to the boundary
of the trust-region, we express by our choice of a that we are going to accept also steps for
which ||.DkPfc|| is not exactly equal to At, but lies in the interval [(1 — cr)Afc, (1 + cr)Ak]-
Further, we must choose some tolerance levels, Xtoi and Ftoi, that are of importance for
detecting convergence (see step V). Following [27] we set Xtoi = Ftoi = 10~8.
Finally, we set iteration counter k — 0 and calculate residual vector fk = f{%k) as well as its
corresponding Jacobian matrix J* = J(xit).

Ad s tep I I — G a u s s - N e w t o n step.
At point Xk the residual mapping can be linearized, yielding

/ (^ + p) = /fc + ^ P + 0(||p||2) (2.3)

6

Thus, minimization of $(xjt + p), being equivalent to minimization of \\f(xk + p)||, can be
approximated locally around i* by the linear least squares problem of finding a minimizer of
H/fc + Jkp\\ (or equivalently of \\fk + Jfcp||2). This approach is known as quasi-linearization.
Let us denote

p*(0) = arg min ||ƒ* + Jkp\\2 (2.4)
peR."

As is well known, in case of Jk having full column rank n, vector pjt(O) is unique and identical
to the step calculated in the (undamped) GN method (cf., e.g., [7]). In this case it is given by
pj.(0) = —{J'kJk)~lJ'kfk- However, in situations where J* does not have full column rank n
(as will always be the case for m < n) the GN method breaks down. Then matrix Jf Jk 1S n o

longer invertible.
Nevertheless, the approximating linear least squares problem above still admits a solution,
albeit no longer a unique one. In More's approach a particular solution is calculated, ap-
plying QR-decomposition with column pivoting to Jk- Such a QR-decomposition can be
accomplished numerically stable, using Householder transformations. We proceed along the
following lines.

• Apply QR-decomposition with column pivoting to Jk, yielding matrices Qk (m x m,
orthogonal), n-* (n x n, permutation and therefore also orthogonal), Tk (rjt x r*, upper
triangular, nonsingular), Sk (rk x (n — nt)) satisfying:

7 — nT I T* ^k \ _T
Jk ~ Qk { O O) W k (2.5)

where r^ denotes the rank of Jk, and the zero matrix blocks are of appropriate size.

Construct a generalized left-inverse J^ of Jk, of size n x m, as follows:

J*" = " (3 è 1 °o)Qk (2.6)

If rjt = n then J^ will be a true left-inverse of Jk- In any case will hold JkJ£ Jk = Jk
and JkJk 1S symmetrie. However, for square, rank-deficient Jk one must be aware that
J£ is in general not equal to the Moore-Penrose pseudo-inverse Jjf (cf. App. A).

Calculate the GN step pt(0) via

Pk(0) = -Jkfk (2.7)

In case r^ = n this is the Standard GN step. Otherwise it still is a step minimizing the
approximating linear least squares criterion.

L e m m a 2.1 Vector pjt(O) obiained by the procedure above yields a minimizing argument of
PkV+fkf.

Proof We have that

\\JkP+fk\? = « ï (o o*)*r!,+/'
2

= (To o)M:)
2

" = ll (Tk

Tk Sk
O O *kP+Qkfk

where the second equality follows from the orthogonality of Qk and the third equality is

motivated by the definition I k) = Qkfk, with Uk an rt-vector and Vk an (m — rt)-vector.

Now, it is clear that the second term of the remaining expression remains uninfluenced by the
choice of p. Furthermore, the choice p = p"fc(0), as calculated above, reduces the first term of
the remaining expression to zero. Therefore, Pfc(O) minimizes ||JfcP + /fc||2- D

7

In case r* < n this minimizing vector Pfc(O) is nonunique. In App. A we show that the set of
all minimizing vectors is given by the affine space {p*fc(0) + «t | s* 6 ker(Jfc)}. There we also
show that among this set there is a unique element for which ||Djbp||2 is minimal, which we
shall denote by pt(0). In view of subalgorithm A, discussed in the comments to step III and
more extensively in App. A, it is of importance to take pk(0) as the GN step.

Ad step III — Levenberg-Marquardt step with At > 0.
We consider trust-regions of ellipsoidal shape, that are described at iteration k by the set
{xk + p | ||-Djfcp|| < A i } . It is our policy never to accept steps that lead us outside of a trust-
region.
Because of the superlinear convergence property of the Standard (undamped) GN method
under certain conditions, see for instance [7], it is in general advisable to exploit GN steps
when they are acceptable, i.e., when they lead to a sufficiënt decrease in the criterion value.
Thus, we start step III of the algorithm by testing whether the GN step pjt(0) lies inside the
trust-region. If this is so, we set Aj, = 0. If not, we proceed as follows.
In this lat ter situation, the idea due to [21] is to minimize sirnultaneously the approximate
criterion ||JkP + fk\\2 and the size of the increments ||p||», where || • ||, denotes some norm
on R" (not necessarily the Euclidean). In the present implementation, the purpose of matrix
Dk is to shape the trust-region, which can be viewed as adopting the norm ||p||» = ||£>tp||.
Apart from choosing the norm || • ||. we have to balance both objectives, which is achieved
by introducing a Levenberg-Marquardt parameter A > 0 and restricting to the combined (i.e.
LM) criterion

||/*P + M | 2 + A||D*p||2 (2.8)

Clearly, in case A = 0 we are dealing with our original (approximate) criterion, whereas any
larger value of A restricts the size of the optimal step.
A minimizing vector p for the above criterion will be denoted by pjt(A), in agreement with
our earlier notation pt(0). Due to the nonsingularity assumption on Dk this LM criterion will
have a unique minimizing solution for A > 0. The remaining question is of course how to
choose an appropriate value Xk for A. In More's trust-region approach the idea is to choose
Ai such that the resulting solution pjt(Ajt) lies on the boundary of the trust-region. Thus, the
step pk is determined via constrained optimizalion of the approximate criterion ||Jj;P+ /it||2

over the trust-region, leaving for Xk the interpretation of a Lagrange multiplier. For the sake
of keeping the computational effort to find Xk small, More introduces a "flexibility parameter"
<x with respect to the trust-region size. We then shall accept Xk if ||-DiPfc(Afc)j| lies in the
interval [(1 - cr)Afc, (1 + (r)Ak}-
An appropriate value for A* is now found using an iterative scheme, originally due to [16]
and speeded up in [27]. We refer to this procedure as "subalgorithm A" and it is discussed
extensively in App. A. But here we first address the problem of calculating pt(A) for a given
positive value of A, thereby exploiting the results of the computations for the GN step.

Calculation of Pfc(A) for given A > 0.

First of all, notice that the problem of minimizing the LM criterion (2.8) is equivalent to
the problem of minimizing the linear least squares criterion

i (A) o + (o) i r (2-9>
Therefore, in view of the comments to step II, we have that: (a) the problem can be
solved using QR-decomposition with column pivoting; (b) its solution is unique, due to
the nonsingularity of Dk and the fact that vA is strictly positive so that full column rank
occurs; (c) pt(A) = -(JJJk+XDjDk^Jlfk.
It turns out that it is possible to make use of the information earlier obtained in step II

8

while calculating the solution to the present problem. Indeed, it was shown in the proof of
Lemma 2.1 that minimizing ||</jtP + /jt||2 is equivalent to minimizing ||(Tk Sk)*Jp +
uk\\

2 + ||üfc||2. Therefore we can just as well consider

f Tk Sk \ T , f uk \
+ KI (2.10)

PremultipUcation of the last block-row in the first term by any n x n orthogonal matrix
does not change the criterion value. More chooses matrix nj for this purpose, motivated
by the fact that his matrices Dk are diagonal, in which case irjDkirk is diagonal also.
Further, we can omit the second term because it is independent of p. So we arrive at the
following expression for the criterion to be minimized:

Tk Sk
Dk(X) *ÏP +

Uk

0 (2.11)

where £>i(A) = VXvjDkiTk-
It is important to notice that the sizes of the matrices and vectors in this final expression

are independent of m. Matrix I n , . , j is of size (n + rk) x n and I . I is an

(n + rj.)-vector, with rk < n. This implies alarge reduction of required computer memory
space for data storage in case m is much larger than n, as compared to the more naieve

h
VXDk

The actual computations now proceed along the following lines.

• Calculate matrix .Dfc(A) = y/X-K^DkiTk-
• Using Givens transformations, which are orthogonal, construct an orthogonal (ra +

nt) x (n + rk) matrix Wk(X) such that

approach where matrix is dealt with explicitly.

(\ÏÏ) - «wr (R t]) (2.12)

where iïjt(A) is an ra x ra nonsingular, upper triangular matrix.

Define (W"W

Calculate the LM step as

= Wk(X)
Uk

0

Pt(A) = -irkRk(X)-lwk(X) (2.13)

Lemma 2.2 Vector pk(X), calculated via the scheme above, minirnizes the LM criterion
(2.8).

Proof We can write

*ÏP+ ("o) f = h (A) T (^) ̂ p+ (Uo) Tk Sk
Dk(X)

Rk Uk

0
ik(X) \ T (wk(X)

= \\Rk(X)TrTp+wk(X)*+\\zk(X)\\> (2.14)

Obviously, the choice p = pk(X) is the unique vector reducing the first term of the latter
expression to zero, whereas the second term is independent of p. D

Subalgorithm A: de te rmina t ion of an acceptable A* > 0.

In order to determine a value for A for which the LM step pjb(A) lies sufficiently close to
the boundary of the trust-region ||Z7jb'p|| < At, we introducé a function fa : R + —• R,
defined by

fa(a) = \\DkPk(a)\\-Ak (2.15)

It is clear that, for a > 0, pjt(a) lies in the acceptable interval [(1 — er)Ajt, (1 + a-)Ak] if
and only if |<£fc(a)| < crAk.
In case fa(0) < 0, the GN step lies inside the trust-region so that subalgorithm A is
not needed. We can therefore restrict ourselves to the case fa(0) > 0. In App. A we
prove that in general fa is a strictly monotonically decreasing convex function on R+,
tending to — Ak < 0 as a tends to infinity. This implies that there exists a unique value
et* for which fa(a") = 0, i.e. pk(a') lies on the boundary of the trust-region. Moreover,
we can apply the Newton-Raphson method to approximate this value of ar with second
order rate of convergence. Due to the convexity of fa the Newton-Raphson iterate will
always yield a lower bound to the optimal value. As pointed out in [16] it is possible
to develop an alternative iterative scheme that is much more efficiënt than Newton-
Raphson. This scheme exploits the expected (approximate) structure of fa(-) and has
quadratic convergence properties too. However, it has to be safeguarded by the use of
upper and lower bounds on the iterates if it is to converge. More developed a modification
to Hebden's original method so that it generally will find an acceptable value of a more
quickly. Actually, More claims that on the average less than two iterations are needed
in practice, something that agrees with our own experience. A proof of convergence of
subalgorithm A can be found in App. A.

S U B A L G O R I T H M A (Hebden-Moré)
STEP A-I Initialization and first iteration.

Set subiteration counter £ = 0 and let ao = 0.
If rk = n, calculate fa(a0) = ||Z3fcpt(0)|| - At and <j>'k(0) (see step A-IV).
Set lower bound lbo — — $\X- If rk < n i set lower bound lbo = 0.

Calculate upper bound ub0 = l l (J ' ' P i t
1) / > " . (See App. A for a validation.)

Set ay+i = ma.x(10~3ubi,y/lbiubt) in order to obtain an estimate in the open inter
val (lbi,ubt).
Set £ = 1. Calculate fa(at) = ||£)j;Pfc(Qr<)|j — A* and <f>'k{at) (see step A-IV).

STEP A-II Test of convergence and adaptation of the bounds.
Test for convergence: if |0fc(<**)| < <rAk then stop this subalgorithm A.
Else, calculate a new lower bound using the Newton-Raphson scheme, i.e. set Ibt =
m a x ^ - L a , - { $ $) .
In case fa(ati) < 0, adapt the upper bound via ubi = min(wè<_i, a^). If not, leave
the upper bound unchanged, that is, set ubt = u6^_i.

STEP A-III Calculation of the next approximate.
To calculate a new iterate at+\ the following formula is used.

_ fa{at) + Ak ffa{at)\
Q < + i - a < - A , U M J (2-16>

If this procedure leads to a value of a<+i that is not inside the open interval (Ibi, ubt),
set at+i = max(10~3u&<, y/lbt ubi) .
Set£ = £+\.

STEP A-IV Determination of fa{at) and 4>'k(at).
The calculation of fa{aci) follows from its definition: fa(ai) = ||Dj;Pi(a^)|| — Ajt,
where pk((*t) should be calculated as discussed earlier.

10

Cakulation of (j>'k{ai) makes use of the following formula, established in App. A.

<t>'k(<*l) = -||«fc(a<)
T / *kDkQk(<*l)

V llïk(a*)ll
(2.17)

Here, qk(att) = Dkpk(oct).
After calculation of <j)k(at) and <f>'k{att), proceed with step A-H.

In this subalgorithm the choice of at+i inside the open interval (lbt,ubt) via at+i, =
max(10 -3u6/, y/lbt ubt) is based on the heuristic that one wants an iterate that is biased
towards Ibi, whence the second argument. The first argument is present to protect against
exceedingly small values of Ibt, in particular against the initial value lbo = 0.
On leaving subalgorithm A, we set Aj. = on. The LM step, vector pk, is set to pk = pk(^k)-

Ad s tep I V — Performance pk.
Computation of the performance pk is organized as follows. By definition we have that

n _ *(xk) - *(*k + Pk) , „ i a v
Pk ~ *(«*)-èHA + tolP (218)

which can be rewritten as

_ VWf) (2 l f l v

"(W+^W)'
where fkt+ denotes f(xk + pk).
As pointed out in [27], the advantage of this last formula is that it prevents us from generating
unnecessary overflows when calculating pk. Since we are only interested in values of pk that
are nonnegative (see step VI), we can set pk = 0 in case ||/jb,+ || > ||/fc||-
The interpretation of pk is obvious. If pk « 1 this means that the linearization applied to ƒ(•)
is almost exactly valid for the step pk at xk. For larger values of pk it shows that the decrease
in $(•) is even more than expected. In those cases the trust-region can be increased, showing
that we expect the linearization to be profitable in a larger area than was currently the case.
However, for smaller values of pk (and especially negative ones) we see that the linearization
is not justified for the step pk. This implies that we should decrease the trust-region size.

Ad s tep V — Convergence detect ion.
There are several ways to test on numerical convergence. Marquardt's test [26] consists of
checking whether for all i = 1 , . . . , n we have that

b l l < 1 0 - 4 (| 4 | + 10-3) (2-20)

If this is indeed the case, then this means that the absolute values of the increments with respect
to all coordinates are relatively small, compared to the absolute values of the corresponding
coordinates themselves, showing that further iterations are not likely to lead to substantial
changes in the approximations. Of course there is freedom of choice with respect to the factor
10~4. The term 10~3 is added to protect against situations where the optimum has coordinates
x{, = 0.
According to [3] this stopping criterion has worked well in practice, but tends to be somewhat
on the conservative side, allowing for more iterations than strictly necessary.

Another test for convergence is provided by More, and it is related to the trust-region approach
of this specific algorithm. It consists of checking whether one of two inequalities is satisfied.
These are

Afc < Xtoi\\DkXk\\ (2.21)

11

and
2

IIf II I ' V v — IIf II ' ^Ft°l (2 > 2 2)

ll/*H) \ \\h\\
The first of these two reflects the desirable property that A* be relatively small (so that
the trust-region be small), compared to the norm of x\.. This norm of n is taken to be
HxfcH» = ||DjtXfc||, so that the components of xjt are weighted in a similar way as the components
of p i , when calculating astep. Of course, this expresses the fact that one wants the components
of possible future steps to be small, compared to the absolute values of the correspondmg
components of x*.
The second reflects that the denominator of pk be small, that is, the relative expected reduction
in the criterion value should be small. Of course, at a stationary point this quantity would
be zero. (One does not address the numerator of pk because of Lts unreliability in case the
applied linearization is not valid.)
The choice of the tolerances Xtoi and Fioi is up to the user. They should be such that, in
combination with the choice of Do and Ao, the algorithm does not immediately stop after one
iteration, something that can happen when the initial trust-region is too small.
Our choice of stopping criterion is More's. It has worked satisfactory in all of our experiments.
For a comparison between the performance of the criteria of More and Marquardt, see App.
C.

A d s tep V I — Trus t - reg ion size upda t ing .
The updating of the trust-region size, in particular of At , is based on the value of pk- As
explained under step IV, a value of pk approximately equal to 1, or larger, asks for an increase
of At , whereas a value close to 0, or less, demands a decrease. Therefore, assuming At > 0,
More distinguishes between three situations.

1- Pk<\-
The trust-region should be decreased. This is done by a factor that lies in between ^
and ^. We denote this factor by p.k> s o that the updating formula becomes Aj,+i = Pk&k-
The exact value of fik is calculated in accordance with [8]. The idea is to fit a quadratic
to the function £*(•), defined at 0 £ R by

6k(O) = *(xk+0Pk) (2.23)

We require 6k(0), 6'k(0) and ójt(l) to coincide with the corresponding values of the
quadratic fit. Then p-k is chosen as the unique minimizer of öfc(-). This is easily seen to
lead to the formula

(2.24) Uk =
2?*

7t + è (W
„ T ,

where yk = P\J^{" € [-1 , 0] is given by

Notice that jk is different from the denominator of pk, since a factor 2 no longer appears
under the square-root sign.
In case these formulas do not lead to a value in the required interval we replace p,k by
the closest endpoint. Obviously it is only necessary to perform calculations for ||/fc||2 <
||A,+||2 < io||Mp.

In this case we still achieve substantial reduction in the actual criterion, albeit not as
much as predicted by the linearization of the residual function. Therefore we think an
increase of the trust-region size to be unjustified, whereas a decrease is still not necessary,
so that Afc is left unchanged: A i + i = A*.

12

3 • PX z f •
The trust-region can be increased, since the linearization is apparently valid. This is
done by roughly a factor 2. We set Ak+i = 2||£>fcpit|| « 2Ajt.

We shall shed some light upon the situation where A* = 0. This means that the GN step
is accepted. But the GN method is known to have superlinear convergence properties under
certain circumstances, particularly when the linearization of the residual function is valid for
the corresponding steps. Therefore, we regard an accepted GN step as something special,
so that, if pk > \, we set Ajt+i = 2||.Dj:pj;||. This strategy incorporates the possibility of
automatically decreasing A& as long as GN steps are accepted, so especially when GN is
converging. Notice that this is necessary for the algorithm to terminate if the problem has a
zero residual, in view of the first criterion of More for convergence.
In case pk < \ we modify At in the same way as described above for At > 0.
We conclude by remarking that of course the choice of the boundary values | and | is in
principle up to the user, but they appear to work well. A similar statement applies to the
interval [^, \] for nk, if pk < \-

Ad step V I I — Acceptance of a calculated s tep .
We have the policy of not adapting the shape of the trust-region, unless we have come to
another point Xk+i- This point xt+i is found, after calculation of a step pk, as

Xk+i = Xk+pk (2.26)

but we accept it only if pk > 10 - 4 , because then there is still some substantial improvement in
the criterion value. We use a strictly positive bound 10 - 4 in order to avoid problems caused
by numerical round-off errors in case pk « 0.
In case pk < 10 - 4 , the trust-region size has just been decreased in the previous step VI, so
that new calculations may now turn out to be more successful.
Adequate shaping of the trust-region is a subject in itself. As already rnentioned in the
comments to step I, there are several possible strategies and the best strategy is most likely
to depend on the specific optimization problem at hand. Actually, More has compared three
different strategies ([27]) of which the following rule, the so-called adapiive rule, turned out
to be most successful. Here one puts

Dk+i = diag(4+i, • • • ,d^+i), with 4 + i = m a x ^ ,) (2-27)

However, this strategy is only justified heuristically, and particularly the fact that what More
calls the continuous strategy is inferior, makes the use of the present rule doubtful. This
continuous strategy is defined by putting

Dk+i = diag(4+i, • • • ,dfc+i), with 4 + i =
df(, \ (2.28)

A third possible rule is called the iniüal strategy, where Do, as specified in the comments to
step I, is left unchanged throughout the further algorithm.
These three scaling strategies share the property that they make the algorithm scaling invari
ant, that is, if we transform to new coordinates by scaling in the old coordinate directions,
also the iteration paths will be scaled versions of each other.
However, we are the opinion that it is more safe, in some sense, to rely upon a fourth possible
scaling, implicit in the coordinates being used. This consists of applying a nonscaling strategy,
and choosing Dk = I for all k > 0. Of course, this requires from the user of the algorithm a
certain intuition about what are good and bad coordinates, but on the other hand we found
that application of this very strategy to the four test-problems treated in [27] (on which the
choice in favor of the "adaptive" strategy is founded) led to superior convergence behaviour!
This can be explained as follows, using a counter-argument against More's heuristic. The

13

automatic scaling strategies (either "adaptive" or "continuous") tend to put a heavy penalty
on those directions for which the function decreases rapidly. Thus, they not merely prevent
unreliably large steps in such directions, but they have a tendency to block the most prontable
ones. As a result, only small steps are taken. But there is no apparent need for such a strategy,
since the updating scheme for At is especially suited to handle such situations. In App. C we
present the results of our own experiments, carried out with the four test-problems studied in
[27], supporting our point of view in the discussion above.
Another aspect of More's scaling strategies is that restriction is made to diagonalmatrices Dk,
which might be another cause of the "failed convergence" results in some of his experiments.
In Sect. 3 we discuss an alternative approach towards the choice of Dk that forms the basis of
our Riemannian version of the LM algorithm. There we translate the problem of determining
what is a suitable scaling to the problem of choosing an adequate Riemannian metric on the
manifold at hand. This will make the algorithm completely coordinate independent.

Ad s tep V I I I — Final resul ts .
Among the final results one could present, apart from the point x^, also the length of the
gradiënt and the value of Ajt, as well as the number of iterations k itself. Another thing in
which one might be interested is whether convergence took place via GN steps or if LM steps
were essential to reach the optimum.

14

3 A Riemannian version of the Levenb er g-Mar quardt al-
gorithm

We shall now exposé how the Standard version of the LM algorithm, as described in the previous
section, can be modified to act on a Riemannian manifold in a parametrization independent way.
We start by introducing some notation appropriate for the new problem setting, mainly based on

Let M denote a (smooth) differentiable manifold of dimension n, with for each point p £ M the
tangent space to M at p denoted by Tp(M). Further, let H : TP(M) x TP{M) —<• R denote a positive
2-form on M which defines a Riemannian metric. It is a key result in differential geometry that
each (smooth) differentiable manifold can be endowed with a Riemannian metric (cf.,e.g., [5]).
Suppose (U, <f>) is a coordinate neighbourhood containing p, corresponding to local coordinates de
noted by i 1 , . . . , x". (Thus, U is an open subset of M and <f> is a homeomorphism of U to an open
subset of R". The local coordinates relate to the image space of 4>.) The 2-form Tl induces a norm
on Tp(M) that can be represented in these local coordinates x = (x1,... ,xn)T by a positive definite
matrix R(x) such that for each tangent vector p £ TP(M)

\\pWl = xTR(x)x (3.1)

where x — (x1,...,xn)T denotes the vector of coefficients corresponding to p with respect to the
naturally induced basis {gfr | ,-••, -^r\ } for TP(M), and || • \\-JI denotes the norm on TP(M)
induced by the Riemannian metric.
If (V, i/>) denotes an alternative neighbourhood containing p, with local coordinates denoted by
y1,..., yn, we have similarly (with a slight abuse of notation) that

IIPII* = fR(y)y (3.2)

The matrix representations of Tl, in local coordinates z and y respectively, are related by

ïlY RM (*L\ pM = fdyV R(. (dy
R(y) = [Ty) R(*) [Ty) , *(«) = [fx) R(y) [fx) (3.3)

all evaluated at the same point p € M. Now let $ be redefined as the function $: M —• R given by
$(p) = | | | / (p) | | 2 , where ƒ : M —* R m is redefined to be an at least twice continuously differentiable
mapping from M to R m . As before in Sect. 2, we call $ the criterion function and ƒ the residual
mapping. It is again our objective to minimize $, but this time over M. (With the same abuse of
notation as already introduced above we shall write $(x) and f(x) when using local coordinates z,
and $(y) and f(y) when using local coordinates y.)
In local coordinates x, the Jacobian J(x) of the residual mapping ƒ at x is given by

J(x) = g(z) = (3-4)

dxi \x) ' ' ' dxn \x) '

Thus, we have that J(x) and J(y) are related by

J(y) = •/(*) (~) , J(x) = J(y) (|) (3.5)

In local coordinates i , the gradiënt of $(x) is given by the row vector (by convention):

V*(*) = ^-(x) = f(x)TJ(x) (3.6)
ox

Therefore V$(x) and V$(y) are related by

V$(y) T = (^) T V*(x) T , V*(x)T = (g) T V*(y) T (3.7)

15

file:////pWl
file:////-ji

This shows that in general the gradiënt of a function $ on M is not independent of the coordinates
being used. To obtain a parametrization free object one has to make use of the Riemannian metric
that is available. One then can define the so-called Riemannian gradiënt (cf. e.g., [1]), which i's
coordinate free, as

V**(a:) = V$(x)i?(x)-X = f(x)TJ(x)R(x)-1 (3.8)

Indeed, one has

V * * (y) T = (g) V * * (*) T (3.9)

showing that the Riemannian gradiënt can be identified with a tangent vector to M, and therefore
is independent of the choice of coordinates. As a matter of fact, the Riemannian gradiënt occurs
as the maximizing normalized tangent direction, where the normalization is in terms of the local
Riemannian metric.
If one has the intention of using a gradient-based algorithm for minimizing $ over M then, from a
conceptual point of view, it is desirable that the search directions that are generated are independent
of the local coordinates being used. It will then be possible to address the problem of minimizing
$ independent of the problem of choosing adequate local coordinates. As we have seen above, the
method of steepest descent is in general noiindependent of the choice of local coordinates (cf. [28]),
as opposed to its Riemannian version, and a similar statement holds true for Newton's method and
related quasi-Newton strategies. It is worth noticing, however, that in the present case of nonlinear
least squares the GN method can be applied and that this method does generate parametrization
free search directions. See [14, 31]. As a matter of fact, the search direction generated in local
coordinates x by the GN method is given by

s(x) = -[JixfJix)]-1 J(x)Tf(x) (3.10)

When switching to local coordinates y we see that s(x) and s(y) are related according to

s(y) = (^) *{*) • (3.H)

showing that we can identify this search direction with a tangent vector to M. (It is actually possible
to regard the GN method as a Riemannian steepest descent method, with the Riemannian metric
induced (locally) via the imbedding of the image space of residual vectors f(p) (p € M) in Euclidean
m-space. This induced Riemannian metric depends on the residual mapping only and is completely
independent of Tl. Cf. [14, 31].)
Since the LM method is based on the GN method and in certain situations even exploits the same
search direction, we can hope to be able to modify the Standard LM method to a parametrization
free one. Using the interpretation of the LM method (without scaling) where it is considered to be an
interpolation between the GN method and the method of steepest descent, it is natural to attempt
to design a Riemannian version by requiring it to be an interpolation between the GN method and
the Riemannian steepest descent method. This is achieved by choosing matrix Dk in iteration k of
the algorithm such that

DT
kDk=R(xk) (3.12)

We will presently discuss the interpretation and further consequences of this choice.
First of all, notice that there is still some freedom left in the above choice for Dk- Premultiplication
of Dk by an arbitrary orthogonal matrix will not disturb the property required above. (Actually,
premultiplication of Dk by elements of the group of orthogonal matrices precisely generates all valid
choices.) However, this freedom does not imply that the method would be ill-defined. What really
is of importance for the algorithm is the value of DjDk and that is well-defined. Indeed, if we take
a look at the LM criterion we see that the term ||.Dfcp||2 occurs, which can be written as pTDjDkP-
Therefore, on the contrary, the freedom left in the choice of Dk does not make the algorithm ill-
defined but can be exploited for optimizing numerical properties.
Second, notice that the fact that 71 defines a Riemannian metric on M implies that R(x) is always
positive definite. This guarantees the existence of Dk satisfying the requirement. We can for instance
take a Choleski factor of R(x).

16

Third, we not only have the interpretation of the LM method as an interpolation between the
GN method and the method of steepest descent, but we can also regard the alternative point of
view, where we consider it a trust-region algoriihm. We now have that the trust-region is not
merely shaped on the basis of a heuristic with respect to expected numerical properties, but instead
related to the Riemannian metric defined by 71 on M. Indeed, the "trust-region" ||Dfci|| < At
now indicates that we shall accept only search directions related to tangent vectors x which have
Riemannian norm at most A*. This has the following consequences.

1. Suppose at point ifc we are dealing with a trust-region that is shaped by R(xk), with its size
determined by Ajt. If we want to change to coordinates y, then we need not adapt the value
of Ajt, because it is related to a "geometrie" object: just changing x to y and R(x) to R(y)
suffices.

2. In the GN method the induced Riemannian metric is independent of the Riemannian metric
given by 71 on M. In the LM method the latter does play a role. It provides us with a means
of expressing local numerical properties by adequately choosing a 2-form 71. This way one can
imitate the situations in [27] occurring for the "initial" and "continuous" scaling strategies by
choosing an appropriate Riemannian metric on M = R n . Of course, the "unscaled" algorithm
can also be obtained this way, which merely comes down to accepting the standpoint that
all coordinates are already properly scaled and that a change in each of them is of equal
importance.
Furthermore, More's arguments against the "continuous" scaling strategy now seem to be not
really to the point: the gradiënt of a function already balances the sensitivity of it with respect
to changes in each coordinate individually, so that a "discontinuous" scaling strategy, where
the sensitivity of the function with respect to the coordinates at old iterates keeps on playing
a role at the current point, is not properly based. As a matter of fact, one can consider his
discouraging results using the "continuous" strategy as an argument against the use of the
other scaling strategies as well. In this light it is perhaps of interest that application of the
Standard LM method without further scaling to the same four test-problems as reported in
[27] has led to considerably faster convergence in all difficult situations. (See App. C).

3. One can regard each step in the LM algorithm as following from a constrained optimization
procedure: the approximating (quasi-linearized) criterion is optimized over the trust-region.
This same interpretation holds true for its Riemannian version if we use normal coordinates.
Then the trust-region, which is currently defined on the tangent space to the manifold at x j ,
defines a neighbourhood on the manifold.

So far we have only touched upon one aspect that is necessary for constructing a parametrization
free algorithm, namely that the generated search direction should be related to the geometrie object
of a tangent vector (and therefore is parametrization free). However, in practice one will be working
with coordinates from a certain coordinate chart and it is usual to take a step from the current
iterate in the proposed direction with respect to these coordinates. This introduces a second source
of parameter dependence. But there is a Standard way to overcome it.
For this purpose one has to introducé the notion of geodesics, which play a similar role on a Rie
mannian manifold as straight lines do in Euclidean space. In particular, the shortest path that is
entirely in the manifold M connecting two points p and q constitutes a geodesie. (For a definition
and further discussion, see [5].) The fact that M is a Riemannian manifold plays a crucial role in
the existence of geodesics: one needs to have a notion of length, which is provided by the 2-form 71.
It is a Standard result in differential geometry that in case of a Riemannian manifold M, one can
construct around each p 6 M an open coordinate neighbourhood with coordinates that are related
to the geodesics through p. More precisely, we have that: (a) we can associate with each geodesie
through p a unique unit tangent vector in TP(M) and conversely with each unit tangent vector in
TP(M) a unique geodesie through p; (b) we can construct an open neighbourhood of p such that
for each q in it there exists a unique geodesie connecting p and q. Thus, one can assign coordinates
to each q in the neighbourhood of p by specifying a tangent vector from Tp(M): then its direction
(i.e., after normalization to unit length) is associated with the geodesie connecting p and q and

17

its (Riemannian) length corresponds to the distance between p and q. Such coordinates are called
normal coordinates.
Then the Standard way of removing this second source of parameter dependence consists of pre-
scribing that the step to be taken in the proposed search direction should be taken with respect to
the normal coordinates around Xk- That is, one must take a step along the geodesie related to the
search direction, of appropriate length as measured by the Riemannian metric. One can find this
approach for instance in [11, 22, 23, 25]. (As a matter of fact, the approach using geodesics and
normal coordinates admits also the construction of coordinate free versions of (quasi-)Newton and
conjugate gradiënt methods. One then deflnes the Hessian of a function on a Riemannian manifold
at a point p as the Hessian that occurs for normal coordinates.)
To conclude this section we remark that an exact implementation of a coordinate free version of any
minimization algorithm on a Riemannian manifold is in general hard to obtain. This is due to the
necessity of following geodesics, which can be characterized as solutions to a system of coupled non-
linear second-order differential equations, specified by the so-called ChristofFel symbols. Therefore,
in practice the computationally most efficiënt way of minimizing a nonlinear least squares criterion
with the Riemannian version of the LM method as presented above, is probably to take steps, as
usual, with respect to the current coordinates being used and to switch to a better conditioned
coordinate chart when necessary. This asks for a coordinate chart selection strategy, which might
very well be problem dependent. We shall confine ourselves to this approach in the application and
experiments discussed in the companion paper [29].

18

4 Summary and Conclusions
In this paper we have studied the problem of minimizing a criterion function that is a possibly
nonlinear sum of squares, defined on a Riemannian manifold M. In Sect. 2 we have discussed in detail
an existing robust implementation (due to [27]) of the Levenberg-Marquardt algorithm (an extension
of the well-known Gauss-Newton method) which is especially suited for solving such problems in the
Euclidean case. We have pointed out some weak points and inaccuracies, in particular the heuristic
scaling strategies and a sometimes incorrect calculation of a Gauss-Newton step in degenerate cases.
These are analyzed and resolved in App. A and C.
In App. B we have proposed alternative ways of organizing the calculations involved in the LM
algorithm such that only a limited amount of computer memory space for data storage is required.
Theoretical results relating the behaviour (viz. the iteration paths) of these modified methods to
that of the Standard version are presented. These alternative calculations are particularly useful for
large data fitting problems, where the number of datapoints m exceeds the number of parameters
n by several orders of magnitude. Such applications are studied in the companion paper [29].
In Sect. 3 the LM algorithm has been modified to a so-called Riemannian version, acting on a
Riemannian manifold in a coordinate independent way. This substantially enlarges its area of
applicability and constitutes the main result of this paper. Moreover, the approach allows for
a natural choice with respect to the shape of the trust-regions, thus by-passing the problem of
finding adequate scaling strategies.

19

Appendix A : Subalgorithm A
In this appendix we consider "subalgorithm A" for the determination of an acceptable value for the
LM parameter A*. The algorithm is based on an iterative scheme originally due to [16] but modified
in [27]. The scheme involves a protection mechanism to prevent approximants to lie outside an
interval containing the optimal value; the sequence of successive intervals is decreasing in length
and we shall prove second order convergence of the approximants to the optimal value.
First of all we have to prove right-continuity at zero of function 4>k '• R-+ ~~• R-i defined by < ĵt(a) =
||öibPfc(o)|| — At , with, for a > 0, Pk(ot) defined as the unique minimizing vector for criterion ca(p),
and, for a — 0, pjb(0) defined as the unique vector minimizing ||Dtp||2 among the set of vectors
minimizing criterion co(p). Here, for a > 0, ca(p) is defined as

ca(P) = \\JkP+fk\\
2 + a\\Dkp\\2 (A.l)

It will be assumed that Dk is invertible, A^ > 0 and that Jk is not identically zero (in which case
the situation would be trivial).
Next, we shall prove that <j>k is a siricily monotonically decreasing function of a that converges to
—Ak for a tending to infinity. Moreover, we will show that <j>k is convex on R + .
Then, in case <f>k(0) > 0, this will imply that there exists a unique value a* > 0 for which <f>k(ct*) = 0
and we will show that subalgorithm A converges quadratically to it.

The proof of right-continuity of <j>k at zero is added here explicitly because of the fact that in [27] a
GN step is calculated that leads to a value of </>fc(0) for which right-continuity does not necessarily
occur. As a result, in case of a rank-deficient matrix Jk there generally will exist vectors fk for
which, in More's original scheme, subalgorithm A will be activated but will never terminate, because
of the fact that <j>k does not have a zero. By the analysis presented here we show how to avoid such
a situation.

To start with, consider the situation for Q = 0. Now ca(p) = co(p) = \\JkP + fk\\2-
Apply QR-decomposition with column pivoting to J^, as explained in Sect. 2 in the comments to
step II of the algorithm, so that we obtain

Jk = Ql(o o J *'• (A.2)

where Qk is an m x m orthogonal matrix, T^ i s n x n permutation matrix (hence also orthogonal),
Sk is an rjt x (n — rk) matrix, Tk is an r^ x r^ nonsingular, upper triangular matrix and the zero
matrix blocks are of appropriate size, with rk denoting the rank of Jk • This can be achieved with
Householder transformations in a numerically stable way.

Define I 1 = Qkfk, vvith uk an r^-vector and vk an (n — rj.)-vector. Then

co(p) = i iAp+Mi2=|or(^ o) 7 r ? p + / i ir = ll(o Sd)*ip+Q*f*
= \\(Tk Sk) ^ p + Ufc||

2 + |K||2 ?fc Sk \ T„,

o o r*p+
uk
Vk

(A.3)

Obviously, the last term \\vk\\2 remains uninfluenced by the choice of p. Choosing p = pfc(0)

—Tfc rr1
JL) Uk, as calculated in [27], we find that (Tk Sk) irJèPfc(0) + uk = 0. This shows that

Pfc(0) is a minimizing vector for c0(p).
To find the set of all minimizing vectors p, we write p = pjt(0) + Sk and consider the equation

(Tk Sk)wl(pk(0) + sk) + uk=0 (AA)

This is equivalent to

(Tk Sk) *lsk = 0
Tk Sk

O O
irjsk = 0

20

file:////JkP

Qï(TQ § W « * = 0 ^=> Jk*k = 0 <=> sk£ket(Jk) (A.5)

It shows that the set of all vectors p minimizing co(p) is equal to the affine space {pjt(O) + sk | sk £
ker(Jk)}.
As stated before, we define pjt(O) to be the unique element in this set for which ||Djtp||2 is minimal.

It can be calculated as follows. Define h = wjp and partition h as I , I with h\ an r*-vector

and h2 an (n — rjt)-vector. Then (Tk Sk) irkp + uk = 0 •*=*• Tkhi + Skh2 + uk = 0. We can
choose h2 freely; it then determines hi according to

h^-T^iSthi + ui) (A.6)

As a result we find that

\\DkP\\3 =
2

2 !>***•(Tfc
7
 Sfc]h2 + Dkpk(0) (A.7)

/ T - 1 Q \

This is a linear least squares problem in which matrix £>fc7rt f * j has full column rank.

Accordingly, it can be solved in a Standard way, yielding a unique solution for h2- From this

minimizing vector h2 we then can calculate vector pfc(O) = ir* I J? k
T) f , 1.

Taking pt(0) to be an alternative particular solution to the problem of minimizing co(p), we can
rewrite the set of all minimizing vectors p as {pt(0) + sk | «it £ ker(Jk)}-

We now introducé some more notation. By q we denote vector Dkp and accordingly we let qk(a) =
Dkpk(a) for all a > 0. Also, we define Jk = JkDk

l. Thus the problem of minimizing ca(p) is
equivalent to the problem of minimizing ca(q) where

ëa(q) = \\Jkq + fk\\2 + c*\\q\\2 (A.8)

Moreover, for a = 0 the extra requirement that | |Dip||2 be minimal among the set of minimizing
solutions translates to the requirement that ||g||2 be minimal.
The set of minimizing solutions to c0(q) is given by

{ï*(0) + t t | t k ' € k e r (J t) } (A.9)

Now, qk(0) can be viewed as the orthogonal projection of zero onto this affine space.

L e m m a A . l Let q 6 R n , J E R m x n . Then the following two statements are equivalent.

1. 0 = argmin t 6 k e r (J) | |g + i||2.

2. V< € ker(J): qTt = 0.

Proof (1. ==> 2.) By contradiction.
Suppose 0 = argmin16ker(j) ||g + t||2, then for all t 6 ker(/): ||g||2 < |.|g + t\\2.
Suppose there exists t £ ker(J) for which qTt ^ 0. Then obviously t ^ 0. Consider t defined as
t = — ((qTt)/\\t\\2)t. Since ker(J) is a linear space we have that t £ ker(J).
Then \\q +1\\2 = ||g||2 — 'f.V|j < ||g||2. This is in contradiction with the minimality of t = 0 over

ker(J).
(2. = > 1.) Assume V< e ker(J): qTt = 0. Consider for t £ ker(J): ||g +1\\2 = \\q\\2 + 2qTt + \\t\\2 =
Ikll2 + ll<H2 > ll?l|2> with equality if and only if | |tj|2 = 0, i.e. if t = 0. This shows minimality at
t = 0. ü

Application of this lemma to the present situation, so with 9^(0) assuming the role of q and Jk the
role of J, yields the fact that gt(0) is the unique point among the set of vectors q that minimize c~o(q)

21

for which qTt = 0, Vt € ker(Jfc). In other words, qk(0) is the single point of intersection of the affine
space of vectors q minimizing ëo(q) with the linear space ker(Jjt)x, the orthogonal complement of
ker(Jfc), or equivalently, we have that the intersection of the linear space ker(Jfc)x with the set of
points q in R n for which co(q) — ||wjt|j2 consists of the single point 9t(0).

We next address the situation for a > 0. We can rewrite ca(q) as

ca(q) = (&M h - 2

0
(A.10)

For a > 0 matrix I JL 1 is nonsingular, so that qk(a) yields a unique solution that can be

expressed as
qk(a) = -{J£Jk + aiy'Jlh (A.ll)

These solutions have the special property that for all a > 0 they are elements of the linear space
ker(Jfc)-1. To prove this, notice the following lemma.

L e m m a A.2 For all matrices M and N and values of a for which the following expressions are
well-defined we have that

N{MN + aI)-1 = (NM + aI)~1N (A.12)

Proof Consider matrix NMN + aN and assume that both inverses in this lemma exist. Apply
postmultiplication by (MN + al)-1 and premultiplication by (NM + al)'1. Notice that one can
write NMN + aN both as N(MN + al) and (NM + aI)N. The lemma then readily follows. ü

For t £ ker(Jfc) consider the product qi-(a)Tt. This can be written as

qk(a)Tt = -fiJkUlJk + aI)-H (A.13)

Now, apply Lemma A.2 with N = Jk and M = J j . Then

qk(a)Tt = -fKhJÏ + od)-lJkt = 0 (A.14)

because, by assumption, t € ker(Jfc) so that Jkt = 0. This shows that indeed qk(a) € ker(Jjt)-1.

Another property of the vectors qk(a), a > 0, is that they are bounded in length by ||?t(0)|'|. To
prove this, notice that by definition qk(0) minimizes c0(q) = \\Jkq + /jt||2 and qk(a) minimizes
c«(q) = ||/*9 + h\? + «|M|2, so that

IJÏtït(O) + h\\2 < Whqk(oc) + fk\\
2 (A.15)

whence

\\Jkqk(0) + fk\\
2 + a\\qk(a)\\2 < \\Jkqk(a) +fkf+ a\\qk(a)f < | | J t ^ (0) + M | 2 + a||gfc(0)||2 (A.16)

Therefore
« | M a) | | 2 < a\\qk(0)\\2 (A.17)

or equivalently
ll?.(«)||2 < | |9 i(0)| |2 (A.18)

proving the statement.
In a similar fashion we can prove the fact that limajo Co(?k(a)) = Co(?t(0)). For this we must notice
that

co(ft(0)) = \\Jkqk(0) + fk\\2 < ||Jfc«(a) + M | a <

< \\Jkqt{a) + M | 2 + a||?fc(a)||2 < \\Jkqk(0) + fk\\
2 + a\\qk(0)\\2 (A.19)

For a J. 0 we see that the last expression converges to the first one, cQ(qk(0)), because a||gjt(0)||2

converges to 0. Therefore, also the second expression c0(qk(a)) = ||Jjt9t(a) + fk\\
2 converges to

co(9t(0)). Summarizing, we have established the following facts.

22

1. c0 : R" —* R is a continuous function, by its very definition.

2. ker(Jj;)x is a linear subspace of R", also by definition.

3. For at > 0 the corresponding points gfc(a) are elements of ker(Jfc)x.

4. For a > 0 the points gjb(a) are bounded in length, since we have proven ||gfc(a)||2 < lkfc(0)||2.

5. The limit limaj.o êo(gfc(c*)) exists and is equal to co(gjk(0)).

6. The intersection of ker(Jfc)x with the set of points g in R" for which ëo(q) = c"o(qk(0)) consists
of the single point gjt(O).

Now consider the following lemma.

Lemma A.3 Let f : Rn —+ R be continuous and i C R ° a linear subspace.
Let {qi}i£ti be a sequence of points in L which are bounded in length, and for which lim,_oo ƒ(<&)
exists and is equal to, say, d £ R.
Suppose that the intersection of L with the set {q £ R n | ƒ(q) = d) consists of a single point q*.
Then lim,_oo 9; exists and is equal to q*.

Proof By assumption we have that {gi}igN is bounded, so there exists M £ R + such that for all
* ' €N: | |ffi-«*| | < Af.
Define K = L n {q £ R" | ||g - g*|| < M}.
Notice that any linear subspace of R" is closed so that L is closed. Notice also that the set
{q £ R n |||g — g*|| < M} is closed and bounded in R" and therefore compact. Thus, K is also
compact.
Define g : R" —+ R by g(q) = \f(q) — d\2. Because ƒ is continuous, g is continuous too. Moreover,
q* is the unique point in K for which g{q') — 0. For all other points q in K we have g(q) > 0.
Let 6 > 0 be given. Define Â{ = K n {q £ R" | ||g -q*\\<6).
Then Ne is open in K, so that its complement with respect to K, denoted by K — Ni, is closed
and therefore compact. So, if K — N} is nonempty, there exists ff^in = minK-Ns ff(<?) > 0, which is
actually assumed for some element of K — Ni. The fact that 3^ i n > 0 follows from the observation
that q* is the unique point in K with g{q") = 0 and that for all other points q in K we have g(q) > 0,
but q* fc K — Ni since q* £ Ns by construction.
By assumption we have that lim,-_00 f(qt) = d exists, so that lim,-_oo ff(ïi) = 0. Thus, 3/^ £ N
such that Vi > Is'. g(qi) < 5min- -^s a consequence, Vi > I&: g,- £ N$.
By letting 6 decrease to zero we obtain that lim,^,» g,- = q". ü

We can apply this lemma to the situation at hand. Indeed, the six items above that summarize the
results found so far make clear that the assumptions for Lemma A.3 are fulfilled if we identify L
with ker(J fc)x, ƒ with c0, d with co(qk(0)), q" with gjt(0) and if we take g,- = gt(a,) where {«tlieN
is a sequence of positive numbers with lim;_oo <*i — 0.
Thus, we find that limQ^o <lk(o<) — 1k{0)- Because of nonsingularity of Dk this implies that also
\imaiopk(ct) = Pfc(0). This means that we have proven the following proposition.

Propos i t ion A.4 For a > 0, let pk(&) be defined as the unique vector in R" minimizing ca(p) =
\\JkP + fk\\2 + <*||öfcp||2, where Dk is nonsingular.
For a = 0 define pjb(0) as the unique vector in the set of vectors minimizing Co(p) = ||</fcP+ fk\\2

that minimizes ||jDtp||2.
ThenlimaiOpk((x)=Pk(0).

As a corollary we find that all vectors p £ pjt(0) + ker(Jt) unequal to pt(0) will have ||jDfcp|| >
||2DfcP*(0)|j = limQ;o ||£>fcPfc(o:)||! so that in particular the use of pjb(O) for a GN step in case of a
rank-deficient Jjt (as in [27]) will in general lead to the loss of right-continuity at zero of 4>k{a).
Right-continuity at zero of <j>k is obtained only when using pjt(0), as constructed above. Clearly,
when following More's description one might encounter a situation where ||£)tpit(0)|| is too large
(i.e., leads us outside the trust-region), but where ||Djtpt(0)|| is small enough (i.e., still inside

23

the trust-region). In such a case there will not exist a value a" for which <j>k(a') = 0, because
||Dfcpjfc(a)|| = l;|gjt(a)'|| < ||9i(0)|| for all a > 0. In such a situation subalgorithm A as described in
[27] breaks down. The use of Pfc(0) instead of PJL-(0) prevents this. (Of course it requires an extra
amount of computation, but it is good to remember that this is only necessary in a situation where
rk < n.)

Next we shall prove some further properties of <^t(-), in case Pk(0) is used as described above.

Propos i t ion A.5 Suppose <j>k : R + —• R is defined by <£*(<*) = ||<Zfc(<*)|| — A^ (where A* > 0), with
qk(a) as described bef ore. Suppose that gt(0) ^ 0.
Then <j>k is strictly monotonically decreasing and convex, wiih limQ_00 4>k(oc) = — A*.

Proof

a. The assumption git(0) ^ 0 is equivalent to g*(a) ^ 0 for each value of a > 0, and also to
Jffk ^ 0. This follows from the fact that git(a) = 0 for some a > 0 implies that —(J%Jk +
al)~1j£fk = 0 so that Jj fk — 0. Therefore, gt(a) = 0 for any a > 0. But we already
have shown that limajo 9Jfc(a) = 9fc(0). Thus, also qk(Q) would be zero, which contradicts our
assumption. The fact that ||git(a)|| < ||gjt(0)|| provides us with the converse implication.
Thus, for use in the rest of this proof we can assume that qk(a) ^ 0 and ||gjt(ar)|| ^ 0.

b. We shall prove that limc^oo <^t(a) = — A^.
Denote the eigenvalues of matrix JjJk by //,-, (i = l , . . . , n) . Since JjJk is positive semi-
definite by construction we have that all eigenvalues are real and nonnegative. Denote the
smallest eigenvalue by [im\n and the largest by pmax- Notice that for a > 0 the eigenvalues of
(Jjjjfc + al)-1 are given by ^ - ^ , (i = 1 , . . . , n).
According to Rayleigh's principle we have for all vectors u G R" that

1 ""II < Wïh + airlu\\ < l—-\\u\\ (A.20)
+ a

Taking u = — J j / t we find

„ \nPïh\\ < U(<*)\\ < T - ^ I ^ T A I I (A.21)

For a —* oo both bounds tend to zero, so that limQ_oo ||gfc(a)|| = 0. Thus, lim0r_oo <£fc(a) =
- A t .

c. For a > 0, notice that <j>k is infinitely often continuously difFerentiable. We will now calculate
the derivative of <f>k at a, denoted by <j)'k{a).

'(") = £ {[«*(«)T«*(°)]h} = £ { {flMJ'Ih + <*i)-2JÏh]i} =

ll«*(«)l| < U {A-^>

Here we make use of the fact that, for all n G Z and for all matrices A of size n x n, the
following relation holds at points where the derivative exists:

-£-{(A + al)n } = n(A + al)"-1 (A.23)
da

We also use the fact that (J^Jk + al)~3 is positive definite by construction. Thus, the
numerator of the fraction above would be zero if and only if Jk fk = 0. But in part a. we have
shown that jj fk = 0 cannot occur. There we also found that the denominator is unequal to
zero.

24

d. We will now show that the second derivative function of <f>k, denoted by < '̂t', is strictly positive.
This then establishes convexity of 4>k-
Indeed, straightforward differentiation of the expression already obtained for <j>k(a)< while
noticing that the denominator in that expression equals <frk{a) + A*, yields

' (a) = ±{ # (a) } = Ü ^ Ü [Zflhi Jïh + oJ)-4JÏh ~ (^ («)) 2] (A.24)

Multiplication by the positive factor ||gfc(a)||3 yields the expression

-IflMJlJk + ocI)-3JT
kfk}[flh{Jïh + al^Jlfk] (A.25)

Using qk(oc) = —(J^Jk + a/)"1Jk fk we can write this as:

Z[qk(c<)T(JlJk + a/)-2
gfc(a)][g,(a)Tg f c(a)]+

-Mc*)T{JÏJk + o /) " W * (< *) Ï V 7 ' ' * + <*')_19*(<*)] (A.26)

Notice that the Cauchy-Sehwarz inequality gives us for any pair of vectors (a, 6) that aTb <
VaTa bTb, so that aTa bTb — aTb aTb > 0, whence 3 aTa bTb — aTb aTb > 0 in case both a and
b are nonzero. Using a = (j jJ k + al)~lqk{a) and b — qk{ot) we obtain <£jj.'(a) > 0. Observe
that according to part a. both a and b are indeed nonzero. This completes the proof of the
proposition. Q

Remark 1. From the discussion in part a. of the proof we see that qk(0) = 0 if and only if J^fk = 0,
i.e. if we are in a stationary point of $. Notice that subalgorithm A is only invoked for <fo(0) > 0,
which implies ||gfc(0)|| > A* > 0. Therefore, we will only meet situations where <j>k is indeed strictly
monotonically decreasing and strictly convex on R + .

Remark 2. The numerator of the expression obtained for <%(<*) can be rewritten as

qkiafiJUk + a^qtia) (A.27)

Here we can write (J^Jk + al)'1 as Dk{J^Jk + aDf Dk)~
lDj. Now (JjJk + aDjDk) can be

seen to be equivalent to nkEkia)7 Rk{a)ir^ in the light of the decompositions obtained in step II
and step III of the algorithm (see Sect. 2). This shows that we can rewrite the expression for the
numerator of (j>'k(a) as

qk(a)TD^k(Rk(a)TRk(a))-17rlDjqk(a) =

= qk(a)TDk7rkRk(a)-
lRk(a)-TTtjDlqk(a) = (A.28)

= \m<*rT*iDUk(*w
This shows the correctness of the formula presented in Sect. 2 for the calculation of <j>'k{a).

As a corollary of Prop. A.5 we have that in case <j>k(0) > 0 there exists a unique a* > 0 for which
<j>k(a*) = 0. Convexity of <j>k implies that the Newton-Raphson method applied to <j>k will always
yield iterates giving a lower bound for at*. That is, for all a > 0 we have that

This explains the updating rule for the lower bound for a*.
The updating rule for the upper bound of a* is clear: if 0fc(a) < 0 then we must have a > a*. Thus,

25

the only thing to be proven for this bound is the correctness of the rule by which it is initialized,
namely

ubo = J 1 £ L M (A.30)

Considering step b. in the proof above, we see that for all a > 0

IM")H < -^T-PlfkW < hiïfkW (A.31)

Recalling that fa(a) = ||gjt(<*)|| — A*, we get for a = w60 that 4>k(a) < 0, so that ub0 provides an
upper bound ona* .
In fact, this upper bound will be strict, provided gt(0) ^ 0, that is Jjfk ^ 0 (see part a.). Indeed,
the inequality mentioned above will become an equality if and only if Jffk is a vector in the
eigenspace of (jTjk + al)-1 corresponding to eigenvalue }+„, with /*min = 0. Therefore we have
that

(Jjjk + aI)-lJJfk = -Jl'fk (A.32) rT 1. , „ .n - i IT r. _ i . ? T (

'T so that upon premultiplication by (JkJk + al) it follows that

Jïh = -{Jlh + aI)Jlfk = -JÏhJïfk + Jlfk (A.33)
a a

Hence J^ Jk-^ï fk — 0, from which we deduce by premultiplication by f£Jk that ||/fc^J/fc||2 = 0,
whence JkJffk = 0. Now premultiplication by fj does the job. It yields ||^J/fc||2 = 0, whence
Jk fk = 0. This shows that equality will occur if and only if <7fc(0) = 0, which is excluded by
assumption.

We shall now consider convergence of subalgorithm A and point out some relationships to the
Newton-Raphson procedure for finding a zero of a convex, monotonically decreasing function.
The updating scheme for at in subalgorithm A is given by

_ fa{at) + Ak ffa(at)\ ,A „. ,

**+* -at AI— {w^)J (A-34)

This scheme can be motivated as follows. The idea is to approximate fa(a) locally around at by
some function fa (a) of the form

fa(a)=T^—-Ak, (A.35)
dk + a

where c* and dk are constants that are chosen such that

fa(at) = fa(at), t'k(at) = fa(at) (A.36)

Notice that, just like fa, function fa is monotonically decreasing and convex for a > — dk, provided
e* > 0. Moreover, l im a_ 0 0 fa(a) = —Ajt = limo-.oo fa(a). In the Newton-Raphson procedure
the idea is to approximate fa(a) locally around at by the line tangent to fa at at. In view of
the properties of fa mentioned above, we expect fa to yield a better approximation to fa than is
provided by the tangent line.
Some easy calculations show that Ck and dk are given by

(fa(at) + Ak)
2 fa(ai) + Ak

Ck = 777—\ ' dk = ~at 177—\— (A.37)

We see that indeed c* > G.
The zero of fa is given by a / + i = ^ — dk- This precisely leads to the updating formula for at
given above.

26

Local quadratic convergence to a* of this scheme is easily proven by Taylor series expansions of <j>k
and <j>'k around at = a* + h, with / i < l . We have

M«t) = M*') + Wi(«') + \h24>l{^) + 0(h3) = hM<*9) + f AV*(«') + 0(/i3) (A.38)

because <j>k(ot*) — 0, and
M"t) = M«') + hM«) + 0(h2) (A.39)

Thus,

^ y = 1 + A**gp + \h2&gp- + 0(/i3) (A.40)

Jjgtf = * - * * ' $ $ + 0<fcS) (A.41)
This shows that

al+1 = at - ft + H 2 f g j - Z . 2 ^ + 0(ft3) =

= *• + Ih* [| f g n - 2*%p] + 0(/z3) (A.42)

Therefore, local quadratic convergence occurs.
We conclude this appendix by presenting a rationale for the approximation of <f>k (a) by a function
<f>'k(a) of the particular form above, based on an expression for ^jt(a) in terms of the singular values
of Jfc. The derivation is slightly different from that in [27], but based on the same ideas. We shall
also prove that Heb den's algorithm has indeed faster local convergence properties than the Standard
Newton-Raphson method.
Consider qk(oc) = —(JfJk + aI)~lJ^ fk- In view of Lemma A.2 we can write this alternatively as
-JïiJkJ? + <*I)~1fk. Therefore

ll9Jb(a)||2 = fli JkJj + aiy^kJliJkJÏ + a l) " 1 / * (A.43)

Notice that JkJj is a real> square, symmetrie matrix that is positive semi-definite and therefore it
can be decomposed (via a singular value decomposition, cf., e.g., [33, p.142,293]) as

JJI = PkAkP? (AM)

where Pk is orthogonal and Ajt is diagonal, containing the eigenvalues of JkJk > which are all real
nonnegative, in decreasing order. Let E* = diag(o-£,... ,<rk

n) with <r'k > 0 such that A<; = E2.. Then
a\ denotes the z'th singular value of Jk. (For z' > min(n,m) we have ak — 0.) Also, define vector gk,
with components g'k, as gk — Pk fk- Then

lk*(«)ll2 = fïiPkAkPÏ + air'PkAkPÏiPkAkP? + e*/)"1 h =
= flPk(Ak + aiy'PiPkAkPÏPkiAk + <*I)-lPÏfk =

= gT(Ak + al)-1 Ak(Ak + al)-lgk = (A.45)

_ v m K)2(g;)2

- Z - i = i ((< T ;) S + «) 2

This shows that

- Ai (A.46)
£?(K)2 + <*)2.

providing the rationale for the choice of <£k(a).

When comparing to the Newton-Raphson procedure, given by the alternative updating formula

27

we see that in subalgorithm A a factor <M°^)+A|' = 1 + 0(h) is added, which does not affect the
quadratic convergence property. Actually, one should notice that in the Newton-Raphson scheme,
as a result of the linear approximation to a convex function, the resulting approximant ai+i always
provides a lower bound for ar*. However, we see that or/+1 > ai+i when starting from the same
initial approximant ai = ai. This shows that the approximant ar/+i for a* will be larger than
the lower bound resulting from the Newton-Raphson procedure and therefore closer to a* in case
<*i+i < a', whereas in the opposite case (07+1 > a") the upper bound on a* is likely to be adapted
to a value that is close toa* .
In fact, for small h, we can prove that a< + 1 resulting from Hebden's algorithm will lie in betwèen
öi+i (resulting from the Newton-Raphson scheme) and a*. This then proves that subalgorithm A
is more efficiënt than Newton-Raphson.
To show that this statement holds true, we have to reconsider the Taylor series expansions of 4>k(a)
and <£'fc(a) around ai = ar* + h, and compare the second-order terms for both schemes. One easily
finds that in the Newton-Raphson case

011+1 = a + 2h
W A O + 0(h3)

whereas for Hebden's algorithm we already had that

<*t+i = a + i* - 2 *' t(« ')
Afc

+ 0(h3)

(A.48)

(A.49)

Since <j)'k(a*) < 0 and $'t'(ar*) > 0 it is clear that the second-order term in the Newton-Raphson
case is negative, and because A* > 0 it is also clear that the second-order term in Hebden's scheme
is larger than the second-order Newton-Raphson term. To get more precise results, it is easiest to
start by considering the formula for <f>k(a) in terms of the singular values of J*.
From the fact that a* constitutes a zero for <£jb(a), we have that

Afc = E K)2(g[)2
1/2

[£ï(K)2 + «)2

Therefore, we can express the second order term in the Hebden scheme as

(A.50)

i / 1 2
2™ «fë*7

- 1

+

- (Er=i :) (E™ 1
W(<,1)3 \ - 1

(A.51)

This follows from the fact that

+
(V™ J«i£W_\ (T

m W(9l? yl

and

because

and

A t
= - E (4)2(gl)2

*;(«•) = - E (4)2(gQ2

èt(K)2+«*)2

KIM)2 N -1/2

r?((<r>)2 + a*)3y \ ^ (K) 2 + a*)

(A.52)

(A.53)

(A.54)

ó"(a') - 3 (rm ww3) (rm w w)
<MQ) - * {L.i=1 ((c'kf+a'Y) ^ . = 1 ((„ ;)H«-) ' j

-1/2

+
-3 /2

(A.55)

28

Therefore, by taking vectors a and 6 as

I ((<ri)5+<*«)3 \ AiL
b =

(M)2+«*)

((<rj»>+a') /

(A.56)

application of the Cauchy-Schwarz inequality aTabTb — (aTb)2 > 0 immediately gives that

^fc J
< 0 (A.57)

(Notice that this constitutes an alternative proof of the fact that <f>'l(a) > 0 for all a > 0.) Equality
occurs if and only if vector a is a multiple of 6, that is, if and only if for all indices i for which <r\g\
is nonzero, the singular value o\ is the same. This automatically includes the scalar case (m = 1),
which should be, because <j>k then indeed has the structure assumed for fa, so that a perfect fit
occurs.
We now have shown that, for h small enough, the approximate resulting from the Hebden scheme
will be in between the Newton-Raphson approximate and the optimal value a*. It follows that, in
our application, subalgorithm A is more efficiënt than Newton-Raphson.

29

Appendix B : Calculations with reduced memory storage
capacity

In [29] we discuss an application of the Riemannian LM algorithm where in general the number m
of residuals is very large compared to the number n of parameters. This can cause serious problems
on the level of required computer memory space for data storage. Indeed, for the experiments in
[29] where n = 16 and m = 4000 we need to store vector fk, of size 4000, and matrix Jk, of size
4000 by 16. (Notice that in that example p = 2, i.e., there are only 2 outputs associated with every
datapoint; it is the amount of available observations that makes the size of the matrices and vectors
so large, and not the complexity of the model to be estimated.) Moreover, we need to apply QR-
decomposition to matrix Jk, leading to an orthogonal matrix Qk of size 4000 by 4000. Fortunately,
it turns out to be unnecessary to calculate this extremely large matrix explicitly, because what is
needed really is vector Qkfk (which by the way is another vector of size 4000). What should be
immediately clear from this example is that a naieve approach concerning the organization of the
calculations will not do. A more sophisticated approach is desirable an in some sense even necessary.
This appendix is devoted to the problem of obtaining the desired quantities in the LM algorithm
with a reduced amount of required memory space for storage of variables. We shall discuss two
approaches. The first one involves a recursive strategy with respect to calculation of the QR-
decomposition of Jk and of vector Qkfk, where the recursion is applied with respect to the m rows
of Jk • The second concerns the problem of obtaining all desired information from the knowledge of
GN matrix T* = Jj Jk and gradiënt gk = Jj fk instead of from Jk and fk- lts motivation, apart
from the fact that the sizes of Tk and gk are independent of m, sterns also from the observation
(see [29]) that in our application it is possible to obtain those with reduced computer memory space
requirements.

B. l Recursive calculation of the QR-decomposi t ion of J^

Close inspection of what is really needed in the calculation scheme to obtain the GN or LM step,
shows that it is essential to obtain matrices Tk, Sk and Vk a n d also vector tij, that consists of the
first rk components of vector Qkfk- Matrices Tk and Sk represent the nonzero part of QkJk^k- It
is not essential that matrices Qk and x* are identical to those obtained in the original algorithm,
but we must have that the properties of itk being a permutation, Qk being orthogonal and Tk being
nonsingular, upper triangular, still hold. At least, this is the case if we want to stay close to the
further calculations performed in More's implementation of the algorithm.
The present subsection shall be devoted to obtaining a scheme for calculating a QR-decomposition
(with column pivoting) of Jk, that uses a recursion on the rows of Jk • The advantage of such a scheme
lies in the fact that the essential quantities mentioned above all have sizes that are independent of
m, so that also the required amount of computer memory space will be independent of m. We
propose the following scheme.
Suppose J is an m x n matrix, which can be QR-decomposed as

J = Q?{T
0

 S
0)S (B.l)

with Q an m x m orthogonal matrix, T an r x r upper triangular, nonsingular matrix and x an
n x n permutation matrix, where r denotes the rank of J. The zero blocks are supposed to be of
appropriate size.
Let J be defined as the matrix obtained by adding an extra row xT to J , that is,

Then obviously the following relation holds.

' - (? ï) ' (y)-
30

(B.2)

(Notice that the premultiplying matrix is still orthogonal.) This makes clear that we have to find
an orthogonal matrix Q of size (m + 1) x (m + 1) and a postmultiplying permutation f such that

« (S J)•=(£!) <B-4)
where f is still upper triangular and nonsingular, of size f x r, with f denoting the rank of J.
Now, this problem is not too difficult to solve: we can do exactly the same as in the original algorithm
when matrix (Tk St) is augmented by an extra block row containing y/XDkitk (see Sect. 2,
the comments to step III), that is, we can premultiply by (orthogonal) Givens transformations in
order to obtain the required form. As a matter of fact, there is no need for a postmultiplying
permutation matrix (which is not so surprising, since one can always apply QR-decomposition also
without column pivoting). But notice that in case one does apply an extra column permutation,
the structure of the augmented matrix (which is already almost in triangular form) gets distorted,
so that the number of required Givens transformations can increase considerably. (In the present
situation we only need n of them.)
After having obtained Q (and possibly w) we can calculate the new over-all matrices Q and f as

Q = 0[Q
0 ?) . * = ** (B.5)

Next we proceed with matrices T and S, after adding a next row, in a similar fashion.
Remark that we can keep the amount of required memory space for storage of variables limited,
because we know that the rank of the augmented matrices can never exceed n. Furthermore, the
zero block row is of no interest for the calculations and can be deleted, provided we introducé some
bookkeeping. This should involve especially the calculation of ut . Indeed, if Jk is obtained by adding
rows, then in a similar way fk is obtained by adding more and more elements. Premultiplication by
the orthogonal matrix that is obtained in a step of the recursive procedure sketched above should
also be applied to vector ƒ*. After that operation the orthogonal matrix is no longer needed and
can be deleted, leaving memory space for the orthogonal matrix to be obtained in the next step.

B.2 Calculations from the knowledge of Tk = J^Jk and gk = J^fk

In [29] we discuss an application to the field of system identification, where Tk and gk can be
obtained with a reduced amount of required memory space, independent of m. We shall presently
indicate how these quantities can be used as an alternative startingpoint for the calculations in the
LM algorithm, instead of the quantities Jk and fk-
In the notation of App. A, the calculations in iteration k of the LM algorithm are motivated by
minimization of criterion c\(p) = \\JkP+ fk\\2 + A||Djtp||2. We can rewrite this expression as

cx(p) = PTJÏhp + 2pT Jl fk + flfk + XpTDlDkp (B.6)

Therefore, minimization of c\(p) is equivalent to minimization of

pTTkp + 2pTgk + XpTDT
kDkP (B.7)

Thus, the problem of minimizing c\(p) is still well-defined if Tk and gk are available instead of Jk
and fk- It is our purpose, however, to solve the latter problem in a way that is as closely related as
possible to the LM algorithm of [27], in order to be able to take advantage of that approach. In the
sequel we show how this goal can be achieved.

We have the following alternative algorithm for the calculation of pt(A) from Tk and gk, that should
be compared with the algorithms given in the comments to steps II and III in Sect. 2.

Al te rna t ive calculation of pt(A)

* Determine Tk and gk-

31

* Apply Choleski decomposition to Tk. This gives a factor Gk (upper triangular, with possibly
zeros on its main diagonal) such that Tk = G^Gk-

* Apply QR-decomposition with column pivoting to Gk- This yields a permutation matrix
ir*, an upper triangular, nonsingular r* x r* matrix Tk, an rk x (n — r*) matrix Sk and an
orthogonal n x n matrix Qk such that

Gk = QÏ^ §*)*I (B-8)

where r* denotes the rank of Gk, which is equal to the rank of Tk and also to the rank of Jk
(accounting for the omission of a tilde).

* Calculate
ö* = (Tk-

T O) rtlgk (B.9)

* Use ük as Uk, ^k as itk and (Tk Sk) as (Tk Sk) in all further calculations, that is:
define

P*(0) = n(%) ük (B.10)

to be the GN solution to the minimization problem (with A = 0), and next apply further
calculations for obtaining pt(A) as described in the comments to Sect. 2, step III.

We have the following lemmas that are useful for proving the validity of the scheme above and
pointing out some further relationships between the two alternatives.

Lemma B.1 Let A and B be r x n matrices of full row rank r(< n), such that ATA = BT B. Then
there exists a (unique) orthogonal matrix Q of size r x r such that A = QB.

Proof Matrix A has full rank r, so we can select r independent columns from A, or equivalently r
independent rows from AT. The i-th row of ATA is formed as the product of the i-th row of AT

with matrix A. Thus we see that the row space of ATA (the space spanned by its rows) is identical
to the row space of A.
Similarly, we see that the row space of BTB is identical to the row space of B. Because, by
assumption, ATA = BTB we find that A and B have the same row space. This means that the
rows of A can be expressed as a linear combination of the rows of B (and vice versa).
Therefore, there exists a (nonsingular) r x r matrix Q such that A = QB. (As a matter of fact we
also see that Q is unique.)
Now the identity ATA = BTB leads us to BTQTQB = BTB, which can be written as BT(QTQ -
I)B = O, the zero n x n matrix.
From B we can select r independent columns. Putting them in an r x r matrix C we see that the
product CT(QTQ — I)C forms a submatrix of BT(QTQ — I)B and therefore equals zero as well.
But C is invertible (and CT also) so that we find QTQ — 1 = 0.
This shows that QTQ = / , whence Q is orthogonal. D

A special case of Lemma B.1 occurs for r = n, i.e. when we have square matrices A and B of full
rank.
For matrices that are not of full rank we have the following result, for which its proof shows that
we no longer have uniqueness of Q.

L e m m a B.2 Let A and B be m x n matrices of rank r, such ihat ATA = BTB. Then there exists
an orthogonal matrix Q of size m x m such that A = QB.

Proof We first make use of the well-known fact that one can apply QR-decomposition to matrix
A, yielding an m x m orthogonal matrix QA and an m x n matrix RA of the following structure:

RA=(TS 'o*) (B.11)

32

where TA is r x r, upper triangular, nonsingular and SA is r x (n — r).
Similarly, one can apply QR-decomposition to B, yielding matrices QB, RB, TB and SB-
We have

(TA SA f (TA SA) = ATA = BTB={ TB SB f (TB SB) (B.12)

Application of Lemma B.l to (TA SA) and (TB SB) then yields the existence of a (unique)
orthogonal matrix Q of size r x r such that (TA SA) = Q (Tg SB)• Thus, RA and RB are
related, for instance, by

RA=(O °I)RB (B-13)

(Notice that instead of block I one can put any orthogonal matrix of the appropriate size. This
shows the nonuniqueness mentioned earlier.) We find

A = QARA = QA(S °)RB = QA(% °T)QTBB (B.14)

Q = QA{% °T) Q T
B (B.15)

Q j j »» - VA y Q j

Defining Q by

n — n . (

we finally see that A = QB, where Q i s m x m orthogonal. O

We now can prove the following result, which is essential for the correctness of the alternative
algorithm.

Lemma B.3 Let Jk be an m x n matrix of rank rk- Define Tk = JjJk, of size n x n. Let Kk be
any matrix such that K\Kk — Tk-
Apply QR-decomposition with column pivoting to Kk, yielding an appropriately sized orthogonal
matrix Qk, annxn permutation matrix itk a-nd an appropriately sized matrix Rk with the structure

Rk = I * ~. 1, where Tk is r^ x r^, upper triangular and invertible, with rk denoting the rank

of Kk (tqual to the rank of Jk), such that holds Kk = Q^Rk^ •
Then there exists an mx m orihogonal matrix Qk such that Jk = Q^Rk^l'» where Rk is defined as

the m x n matrix I * *] (so with the zero blocks in Rk adapted to the appropriate size).

Proof We can write
Tk = KT

kKk = *kRT
kRk*ï (B.16)

so that
TclTkrck = RÏRk (B.17)

Notice that, by definition of Rk, we also have

ïlTkïk = RÏRk (B.18)

Introducé m x n matrix Lk, to be defined as Lk = Jk^k- Then Lk and Rk are of the same size,
with L^Lk = RjRk- Application of Lemma B.2 then yields the existence of an m x m orthogonal
matrix Qk such that Rk = QkLk-
This leads to

Jk = Lk*I = QÏRkH (B-19)

which proves the proposition. •

T h e o r e m B.4 The alternative algorithm for calculating pt(A) is correct.

33

Proof From Lemma B.3 we see that application of the alternative algorithm leads to matrices Tk,
Sk and #* that might have occurred in the original version also, when QR-decomposing Jk with
column pivoting. Since the column selection strategy is of no importance for the validity of the
further calculations (it is only the structure of the achieved decomposition that matters), there is
no incorrectness in using these matrices instead of their counterparts without tilde.
Further inspection of the original calculations shows that what is further needed to obtain pk(0)
(and in at later stage Pfc(A)), is vector ükl consisting of the first rk components of Qkfk (in the
notation of Lemma B.3).
Now, notice that we have the gradiënt gk at our disposal. We can write

9k = Jjfk = ïkRÏQkfk (B.20)

so that üj; is obtained as

Ük = (fk-
T 0)7cT

k9k = {f;T 0) (f | °0^Qkh = {l 0)Qkfk (B.21)

This shows that ük as calculated in the alternative algorithm represents the first rk components
°f Qkfk and is indeed playing the role of Uk in the original calculations. Hence, the alternative
algorithm is correct. O

The importance of the above theorem, showing that we can perform the required calculations for
the LM algorithm with a reduced amount of computer memory capacity for data storage that is
independent of the value of m has already been discussed before. However, one still may argue that
the alternative procedure given above might have numerical properties that are inferior to those of
the original one. Apart from the numerical round-off stemming from the explicit calculation of Tk
that might affect the final results, we shall show that there is in general good reason to expect the
alternative algorithm to yield results similar to those of the original one. The point we will make
in Theorem B.6 is that the quantities Tk, Sk, tf* and ü* are in fact identical to their counterparts
without tilde, provided the selection strategy applied when performing QR-decomposition with col
umn pivoting is based on the principle of selecting the column of which the remaining part that is
of interest has the largest norm, and moreover an additional sign convention procedure is applied.
This strategy (apart from the sign convention procedure) is a very common one and actually we
have been using it in the experiments of [29]. (It enables one pretty easily to determine the rank of
a matrix in the presence of numerical noise by setting a level for deciding on significant difference
from zero.) Before stating the actual theorem we shall discuss the algorithm for QR-decomposition
with column pivoting based on this strategy in some more detail.
The procedure can be sketched as follows. In the first iteration, select the column with the largest
norm of the matrix to be operated on. Interchange this column with the first one by postmulti-
plication with a suitable permutation matrix. Next, premultiplicate with a suitable Householder
transformation (as in Standard QR-decomposition) to obtain a first column that is a multiple of
the first unit column vector ei. In subsequent iterations we proceed in a similar way, now leaving
the rows and columns that have already been handled out of it. Each postmultiplying permutation
matrix is now formed as a 2 by 2 block matrix with the (l,l)-block equal to / , the (l,2)-block and
(2,l)-block equal to zero and the (2,2)-block containing the actual permutation (all of appropriate
size). Each premultiplying orthogonal matrix has a similar structure, with the (2,2)-block contain
ing the actual Householder transformation. (Notice that each 2 by 2 block matrix in such a case is
itself still a Householder transformation matrix.) When selecting a column in a new iteration we
only calculate the norms of the lower parts of the columns that are still of interest, and compare
these. As soon as the last column has been handled we stop. If we encounter a situation where
the largest norm (of the remaining parts of the columns) is less than a certain specified tolerance
value (e.g. 10~12), we set all remaining matrix elements to zero. All postmultiplying permutations
then build the overall permutation matrix n, and all premultiplying Householder transformation
matrices build the overall orthogonal matrix Q. The matrix itself has been transformed into the
upper triangular factor R.

34

Lemma B.5 Let J be an m x n matrix and K be a p x n matrix such that JTJ = KTK. Then
if we apply QR-decomposition with column pivoting to J and K respeciively, based on the column
selection strategy described above, we find (in the same notation as before) that J = Q RIT and
K = QTRiïT, where f = ir, T = DT and S = DS, with D a diagonal matrix with all elements on
its main diagonal from the set {—1,1}.

Proof By induction. To start with, notice that the squared values of the lengths of the columns
of J appear on the main diagonal of JT J in the same order. Because JTJ = KTK we see that the
selection procedure, when applying QR-decomposition with column pivoting to J and K, leads in
both cases to the same initial permutation matrix by which is postmultiplied. Denoting the fitst
post- and ptemultiplying matrices with a subscript 1, we have that after the first iteration of the
QR-algorithm we are left with

QiJ*i = (^ Vl) and QiA-Th = (^ #) (B.22)

where TT\ = TT\, and with xi and xi denoting nonzero scalars (provided J and K are nonzero
matrices).
Since JT J = KTK and ir\ = iri, whereas Q\ and Qi are orthogonal, we see that

Hence

(QiJ*iY QiJni = (QiKTri)1 QiKvi (B.23)

V *iii JÏJi+vivï) = \ïiiii KÏKi+myï) (B,24)

Define di, the first diagonal element of D, as Xi/xj. From the matrix identity above we have that
di € {—1,1}, since x\ — x\. As a result we also have that yi = ^ïj/i- Therefore yiyj = yiyf,
whence JfJi — K^Kl.
In the next iteration of the QR-algorithm we proceed with J\ and Ki in a similar way. The obtained
elements x%, x\, j/i and j/i remain unaffected. Thus, we can conclude (since the squared values of
the lengths of the remaining parts of the columns, i.e. of the columns of Ji and KY respectively,
appear on the main diagonal of j \ J\ = KjK\), that 7r2 = ür2.
By induction we obviously find that 7r = f. Moreover, from the way di is obtained we see, by
induction, that D = diag{cfi,... ,dr] will satisfy the required properties, while T — DT and S — DS.
The latter conclusion can alternatively be obtained from the result that ir = TT in the following way.
If ir = Tt we have from JTJ = KT K that

(^) (T 5) = (| ^) (f S) (B.25)

Therefore T^T = f7f. By Lemma B.l we see that there exists an orthogonal matrix D such
that T — DT. But T is invertible and upper triangular, so its inverse is also upper triangular.
Consequently, D = TT-1 is upper triangular. Hence, also the inverse of D is upper triangular.
But since D is orthogonal we know that D _ 1 = DT, which must be lower triangular. So D must
be diagonal. Orthogonality of the diagonal matrix D then implies that all its elements are from
{-1,1}, since D2 =1.
Next, we use that T1'S = f7'S = TTDTS, whence S = DS. This completes the proof. D

The next theorem then easily follows.

Theorem B.6 When applying the alternative algorithm for calculating pt(A), the quantities Tk, Sk,
if* and ük are identical to their counterparts without tilde, provided the selection strategy applied
when performing QR-decomposition with column pivoting is as described above, i.e. based on the
principle of selecting the column of which the remaining part of interest has the largest norm, with
the modificaiion that we also apply a sign convention procedure, making sure that the diagonal
elements ofTk and Tk are all positive.

35

Proof This is an immediate consequence of Lemma B.5, since we have that Jj Jk — Tfc = Kj^k a n < l
we apply QR-decomposition with column pivoting to either Jk or Kt- The extra sign convention
consists of choosing matrix D (in Lemma B.5) appropriately, that is, by requiring the diagonal
elements of Tk and Tk to be positive. O

Remark In the first case that has been studied in this appendix, where a recursion was applied to
the rows of Jk using Givens rotations, we shall in general not obtain the same matrices T and S as
for the original algorithm.

In order to complete the discussion about these approaches for calculating the LM steps, using a
reduced amount of memory space for the storage of variables, we must also pay attention to the
following. In the LM algorithm implementation of [27] there is also a step where the trust-region
size is adapted, based on the experienced validity of the linearization around the current iterate.
For that, use is made of the quantities ||</fcPfc||2 and ||/fc||2, in particular in the definitions of pk and
7it and in the convergence criterion (see Sect. 2, the comments to step IV, V and VI). Notice that
2 ll/*ll2 denotes the current criterion value, which can be computed recursively in our application as
well (being the sum of squares). Also ||JfcPjfc||2 can be computed without explicit knowledge of Jk,
since it is identical to pJJ^JkPk — Pk^kPk< where Tk is available. Therefore, steps IV, V and VI do
not require the explicit knowledge of Jk and fk either, making the above approaches applicable.

36

Appendix C : Analysis of More's scaling strategies

In Sect. 2, in the comments to step VII of the LM algorithm, we have claimed that the scaling
strategies proposed in [27] are unsatisfactory and not properly based. The purpose of this appendix
is to motivate this claim by presenting the results of experiments carried out with the same four
test-problems as studied in [27]. The second objective of this appendix is to investigate and compare
the performance of the stopping criteria of More and Marquardt (see Sect. 2, step V).
The test-problems under consideration are the following.

1. Fletcher and Powell [10], n = 3 and m = 3.
The residual mapping ƒ is described by

/V>*V*3) = io[x3 - IOÖCX1,*2)],

/V,* 2 ,x 3) = io[vVl2 + [*2P -1],

/ V , x 2 , x 3) = i 3 ,

with

^-arctan (§H i f x ^ O , 2w

^rarctan (=£) + ± i f x J < 0 .
6>(x\x2) =

The starting point is

x0 = (-1 ,0 ,0) .

There exists a global minimum at (1,0,0) with residual norm 0. There is a discontinuity along
the plane x1 = 0, which must be crossed in order to get to the optimum.

2. Kowalik and Osborne [19], n = 4 and m — 11.
Here ƒ is given by

([u'j- + xóu' + x4)

where

(u 1 , . . . , u11) = (4,2,1, .5, .25, .167, .125, .1, .0823, .0714, .0625),

(y1. • • •, y11) = (-1957, .1947, .1735, .1600, .0844, .0627, .0456, .0342, .0323, .0235, .0246).

The starting point is

x0 = (.25, .39, .415, .39).

A global minimum occurs at (.1928, .1938, .1246, .1370) with corresponding residual norm
1.76188 • 10 - 2 . (In [27] the value 1.7536 • 10 - 2 for the optimal residual norm is given,
which is equal to the value specified in [19]. There the optimum is said to be located at
(.1928, .1916, .1234, .1362). These small differences are probably caused by numerical round-
off contained by the printed data in [19].) This is a data fitting problem with small residual
norm. There exist infima at infinity for which some parameters are drifting away and others
remain bounded.

3. Bard [2], n = 3 and m = 15.
In this case ƒ is given by

37

f(xl,x\x3) = yi- xl + (i = 1 , . . . , 15)
(x2v' + x3wl)

where u', v' and w' are defined as

u' = i, vl = 16 — i, w' = min(u', v'),

and y' is given by

(y \ • • •, y15) = (-14, .18, .22, .25, .29, .32, .35, .39, .37, .58, .73, .96,1.34,2.10,4.39)

The starting point is

*o = (1,1,1).

This is again a data fitting problem for which infima at infinity exist. lts global minimum
occurs at (.0824,1.1330,2.3437) and leads to a residual norm 9.063596.

4. Brown and Dennis [6], n = 4 and m = 20.
For this problem ƒ is given by

f(x\x2,x3,x4) = (x1 + x ¥ - exp(i'))2 + (x3 + x 4 s in(Ó - cos(<i))2, (t = 1 , . . . ,20)

where <*' = (.2)z.
The starting point is

x0 = (25,5, -5 ,1) .

The global minimum occurs at (-11.5944,13.2036, -.4034, .2368) with residual norm 292.9543.
There are no other local minima. This is a problem with a large residual.

We have carried out experiments with these test-problems, starting from three different starting
points: xo, 10xo and lOOxo- We investigated four different scaling strategies, being

1. No Scaling. Here we choose Dk = / at each iteration, irrespective of the value of Xk-

2. Initial Scaling. We choose Dk = -Do, with Do chosen as explained in Sect. 2, steps I and VII.

3. Adaptive Scaling. See Sect. 2, step VII.

4. Continuous Scaling. See also Sect. 2, steps I and VII. Dk is chosen at xjt like Do is chosen at
xo for strategy 2.

Furthermore we have compared the effect of the stopping criteria of More and Marquardt on the
number of iterations required to reach an optimum. The results of the experiments are given
in Tables 1-4. In a number of situations FC is specified, indicating "failed convergence." The
experiments were carried out using the MATLAB environment, so that certain automatic warnings
in case of bad conditioning of matrices or division by zero were issued. In principle, all experiments
were started with Ao (the initial trust-region size parameter) set to 1. In contrast with Figure 1 of
Sect. 2 we have counted an iteration also in case the step was not accepted (i.e. p < 10 - 4) . This in
order to make a fair cornparison with the results of [27].

Tes t -p rob l em 1.
1 In the last iteration a "division by zero" warning was issued by MATLAB. After 17 itera
tions we had a residual norm 2.0134 • 10~15 at (1,-1.265 • 10 - 1 6 ,0) . This coincides with the
result after 16 iterations (see the result obtained for Marquardt's stopping criterion), so that
apparently no step was accepted in the 17-th iteration.
2 In the last iteration a "division by zero" warning was issued by MATLAB. After 26 iterations
we had a residual norm 8.9754 • 10 - 1 7 at (1,5.6394 • 10 - 8 ,0) .
3 FC indicated because convergence was very slow. (Several thousands of iterations required.)
Typical gradient-like behaviour takes place: zigzagging of some variables and slow, smooth
convergence of other ones. Obviously, the problem is now badly scaled.

38

starting
point

scaling
strategy

More's stopping criteria Marquardt's stopping criterium More's
results

starting
point

scaling
strategy # iterations residual norrn # iterations residual norm

More's
results

xo 1 15 2.7878 • 10~4!> 13 4.3160 • 10"14 —

xo 2 15 0 14 1.7919 • 1 0 - " 12
xo 3 15 1.2261 • 10~3* 14 8.4338-10- l ' 11
xo 4 I S 1 0 16 2.0134 • 10"15 12

10x0 1 19 0 18 6.0804 • 10" i ö —
10x0 2 27 1.1419 • 10"41 26 6.4282 • 10"*" 34
10xo 3 23 3.6540 • 10"4U 22 2.5022 • 10~*4 20
10x0 4 26 0 25 4.4882 • 10~*u 14

100x0 1 27 * 0 25 8.9754-10" w —
lOOxo 2 F C 3 — F C 3 — FC
lOOxo 3 101 0 100 8.5246 • 10- a ü 19
lOOxo 4 227 0 226 1.9686 • ÏO"** 176

Tab Ie 1. Results for test-problem 1.

starting scaling
strategy

More's stopping criteria Marquardt's s stopping criterium More's
point

scaling
strategy # iterations residua norm # iterations residual norm results

xo 1 23 1.7619 io~* 25 1.7619 10"* —
xo 2 10 1.7619 10-* 13 1.7619 ïo-* 19 4

xo 3 10 1.7619 • iö-* 13 1.7619 ïo-* 18 4

xo 4 10 1.7619 • 10-* 13 1.7619 io-* 18 4

10x0 1 33 1.7619 • io--' 35 1.7619 io-* —
10xo 2 44 1.7619 • ï o - - ' 46 1.7619 10"* 81
10x0 3 42 1.7619 • i ö - * 44 1.7619 io-* 79
10x0 4 53 1.7619 - 10-* 56 1.7619 io-* 63

100x0 1 99 1.7619 • i o - a 101 1.7619 io-* —
lOOxo 2 113 1.7619 • 1 0 - - 115 1.7619 io-* 365 4

lOOxo 3 111 1.7619 • 10-* 113 1.7619 io-* 348 4

lOOxo 4 F C 5 4.2317 • io~* F C 0 4.2317 io-* F C 4

Table 2. Resu ts for t est-problem 2.

Tes t -p rob lem 2.
4 More states that in all these cases convergence to an infimum at infinity took place.
5 In these cases "division by zero" occurred after 106 iterations. The residual norm reported
corresponds to the estimate then; this is (11.6,1.066-104,5.335-105,2.169-105). A logarithmic
plot of the estimates shows that x2, x3 and x4 are drifting to infinity at almost the same rate.
Convergence to an infimum at infinity seems to take place, but notably a different one as
specified in [27].

39

starting
point

scaling
strategy

More's stopping criteria Marquardt's stopping criterium More's
results

starting
point

scaling
strategy # iterations residual norm # iterations residual norm

More's
results

xo 1 5 9.0636 • 10-* 5 9.0636 • 10-* —
x0 2 7 9.0636 • 10-- 6 9.0636 • 10-a 8
xo 3 7 9.0636 • 10- a 6 9.0636 • 10- a 8
xo 4 6 9.0636 • 10- a 6 9.0636 • 10"2 8

10x0 1 14 9.0636 • 10 -* 14 9.0636 • 10-a —

10xo 2 48 r 4.17477 4 8 ' 4.17477 37*.
10xo 3 48 8 4.17477 48 8 4.17477 3 7 "
10x0 4 7 y 4.17477 7 y 4.17477 F C 6

100x0 1 23 9.0636 • 10 - 2 23 9.0636 • 10- a —
lOOxo 2 19 l ü 4.17477 19 l ü 4.17477 14 «
IOOXQ 3 19 Ll 4.17477 19 u 4.17477 14 o
lOOxo 4 F C 1 2 — F C " — F C b

Tab Ie 3. Results for test-problem 3.

starting
point

scaling
strategy

More's stopping criteria Marquardt's stopping criterium More's
results

starting
point

scaling
strategy # iterations residual norm # iterations residual norm

More's
results

xo 1 27 292.9543 31 292.9543 —
xo 2 424 292.9543 382 14 292.9546 268
xo 3 424 292.9543 382 14 292.9546 268
xo 4 F C 1 3 — F C 1 3 — FC

lOxo 1 35 292.9543 41 292.9543 —
10x0 2 441 292.9543 1089 15 292.9543 423
10x0 3 288 1B 292.9543 60 l b 292.9543 57
10x0 4 F C 1 3 — •pQ 13 15 — FC

IOOXQ 1 37 292.9543 43 292.9543 —
100x0 2 1108 292.9543 750 w 292.9543 FC
100x0 3 169 1S 292.9543 91 " 292.9543 229
IOOXQ 4 F C 1 3 — FC 13 i y — FC

Table 4. Results for test-problem 4.

Tes t -p rob lem 3.
6 More states that in all these cases convergence to an infimum at infinity took place.
7 MATLAB issued "division by zero" and "matrix singular to working precision" warnings
since iteration 42. Convergence to infinity, as specified in [27], took place. We notice that
x1 converges to YHJ = 0.84066667, and the other coordinates to infinity. The fact that the
number of iterations is equal for both stopping criteria is a consequence of the way MATLAB
proceeds after the warnings being issued. Stopping occurred because the norm of the proposed
step p was of order 10 - 8 .
8 As under 7, now with warnings since iteration 43.
9 As under 7, now with warnings since iteration 13.
10 As under 7, again with warnings since iteration 13.
11 Convergence as under 7 took place. Warnings were issued only during iteration 5. In these
cases the estimate of x1 after 7 iterations was very close to the specified asymptotic value.
12 Numerical inaccuracies detected since iteration 4. (Condition numbers of order 10 - 1 9 .) A
crash occurred after 8 iterations.

40

Test-problem 4.
13 FC indicated because convergence was extremely slow (thousands of iterations required).
In these situations the scaling is very bad.
14 Notice that convergence was detected with less accuracy than in all other cases.
15 The initial value for Ao was taken to be 100. For the Standard choice Ao = 1 termination
after 1 iteration occurred. Compare with the remarks to step V in Sect. 2.
16 The initial value for A0 was 1. For A0 = 100 only 60 iterations were needed.
17 The initial value for Ao was taken to be 10000. For the choices Ao = 1 and Ao = 100
termination after 1 iteration occurred. Compare with the remarks to step V in Sect. 2.
18 The initial value for Ao was 1. For Ao = 10000 only 84 iterations were needed.

From these experiments we draw the following conclusions.

1. The scaling strategies of [27] are unsatisfactory. Nonscaling generally has led to superior
convergence in all difficult situations. Of course one cannot state that nonscaling is optimal,
because the "initial scaling" strategy can be considered as corresponding to nonscaling in
a situation where one started with other coordinates. But apparently the proposed scaling
strategies did not exhibit good behaviour.

2. There is little difference between the numbers of iterations required for More's stopping cri
teria and those required for Marquardt's criterium. More's criteria are more conveniently
interpreted, but Marquardt's has the advantage of being applicable to other optimization
routines as well, making a comparison between different methods easier.

3. The matter of choosing an initial value for Ao deserves more attention, as it turns out to play
an important role in some experiments with test-problem 4.

41

References
[1] R.A. Abraham, J.E. Marsden, Foundations of Mechanics (2nd ed.). Reading, Mass.: Benjamin

k Cummings, 1978.

[2] Y. Bard, Comparison of gradiënt methods for the solution of nonlinear parameter estimation
problems, SIAM J. Num. Anal. 7, 157-186, 1970.

[3] Y. Bard, Nonlinear Parameter Estimation. New York: Academie Press, 1974.

[4] G.J. Bierman, Factorization Methods for Discrete Sequeniial Estimation. New York: Academie
Press, 1977.

[5] W.M. Boothby, An Introduction to Differentiatie Manifolds and Riemannian Geometry. New
York: Academie Press, 1975.

[6] K.M. Brown and J.E. Dennis, New computational algorithms for minimizing a sum of squares of
nonlinear functions, Department of Computer Science, Report 71-6. New Haven, Connecticut:
Yale University, 1971.

[7] J.E. Dennis, Jr . and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Englewood Cliffs: Prentice-Hall, 1983.

[8] R. Fletcher, A modified Marquardt subroutine for nonlinear least squares, Atomic Energy
Research Establishment, Report R6799, Harwell, England, 1971.

[9] R. Fletcher, Practical Methods of Optimization, Vol. 1: Unconstrained Optimization. New York:
John Wiley and Sons, 1980.

[10] R. Fletcher and M.J.D. Powell, A rapidly convergent descent method for minimization, Comput.
J. 6, 163-168, 1963.

[11] D. Gabay, Minimizing a Differentiable Function over a Differentiable Manifold, J. of Optimiz.
Th. and Appl. 37, 177-219, 1982.

[12] B. Hanzon, On a Gauss-Newton identification method that uses overlapping parametrizations,
IFAC Identification and System Parameter Estimation 1985, York, UK, 1671-1676, 1985.

[13] B. Hanzon, Identifiability, Recursive Identification and Spaces of Linear Dynamical Systems,
CWI Tracts 63, 64. Amsterdam: Centre for Mathematics and Computer Science, 1989.

[14] B. Hanzon and R.L.M. Peeters, On the Riemannian Interpretation of the Gauss-Newton Algo
rithm, in: M. Karny and K. Warwick (eds), Preprints of the IFAC Workshop MICC '92, 65-70.
Prague, 1992. (To appear in the proceedings.)

[15] M. Hazewinkel, Moduli and Canonical Forms for Linear Dynamical Systems II: The Topological
Case, Mathematical Systems Theory 10, 363-385, 1977.

[16] M.D. Hebden, An algorithm for minimization using exact second derivatives, Atomic Energy
Research Establishment, Report TP515, Harwell, England, 1973.

[17] A. Kamath and N. Karmarkar, A Continuous Method for Computing Bounds in Integer
Quadratic Optimization Problems, Journal of Global Optimization 2, 229-241, 1992.

[18] N. Karmarkar, Riemannian Geometry Underlying Interior-Point Methods for Linear Program-
ming, Coniemporary Mathematics 114, 51-75, 1990.

[19] J. Kowalik and M.R. Osborne, Methods for Unconstrained Optimization Problems. New York:
American Elsevier, 1968.

[20] C L . Lawson and R.J. Hanson, Solving Least Squares Problems. Englewood Cliffs: Prentice-
Hall, 1974.

42

[21] K. Levenberg, A method for the solution of certain nonlinear problems in least squares, Quart.
Appl. Math. 2, 164-168, 1944.

[22] A. Lichnewsky, Une methode de gradiënt conjugué sur des variétés; apphcation a certains
problèmes de valeurs propres non linéaires, Numer. Funct. Anal. and Optimiz., Vol. 1, 515-560,
1979.

[23] A. Lichnewsky, Minimisation des Fonctionnelles Définies sur une Variété par la Methode du
Gradiënt Conjugué, These de Doctorat d'Etat. Paris: Université de Paris-Sud, 1979.

[24] L. Ljung, System Identification: Theory for the User. Englewood ClifFs: Prentice-Hall, 1987.

[25] D.G. Luenberger, The Gradiënt Projection Method along Geodesics, Management Science 18,
620-631, 1972.

[26] D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, SI AM J.
Appl. Math. 11, 431-441, 1963.

[27] J.J. More, The Levenberg-Marquardt algorithm: implementation and theory, in: G.A. Watson
(ed.) Numerical Analysis, Leciure Notes in Mathemalics 630, 105-116. Berlin: Springer Verlag,
1977.

[28] R.L.M. Peeters, Identification on a Manifold of Systems, Serie Research Memoranda 1992-7.
Amsterdam: Free University, Faculty of Economics and Econometrics, 1992.

[29] R.L.M. Peeters, Application of the Riemannian Levenberg-Marquardt Algorithm to Off-line
System Identification, Serie Research Memoranda 1993-12. Amsterdam: Free University, Fac
ulty of Economics and Econometrics, 1993.

[30] R.L.M. Peeters, Ph.D. Thesis. Under preparation.

[31] R.L.M. Peeters and B. Hanzon, The Riemannian Interpretation of Gauss-Newton and Scoring,
with Application to System Identification, Serie Research Memoranda 1992-22. Amsterdam:
Free University, Faculty of Economics and Econometrics, 1992.

[32] T. Söderström and P. Stoica, System Identification. New York: Prentice-Hall, 1989.

[33] G. Strang, Linear Algebra and lts Applications. New York: Academie Press, 1976.

43

