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A b s t r a c t 

In a companion paper, [26], a Riemannian version of the Levenberg-Marquardt algorithm for 
the minimization of a nonlinear sum of squares over a Riemannian differentiable manifold, in 
a coordinate independent way, has been developed. Here, this algorithm applied to simulated 
examples from the field of (off-line) identification of linear multivariable models from measured 
output data. 
First it is indicated that linear multivariable system identification is a topic which may quite 
well involve the minimization of a criterion function over a Riemannian manifold. This is a 
consequence of the fact that (a) the space of candidate models of a fixed order n exhibits a 
differentiable manifold structure which is not Euclidean [5, 15]; (b) this manifold can be en-
dowed with various Riemannian metrics [12, 27]; (c) when using a prediction error criterion in 
identification, the function to be minimized often has the form of a (nonlinear) sum of squares 
[19,31]. 
Next, overlapping parametrizations for the model class are considered, related to different 
choices for the structural indices, based on nice selections. A structure switching algorithm 
due to [23, 24] is discussed. 
Using all these ingredients, off-line simulation experiments are carried out. Two different l2-
induced Riemannian metrics are used and the results are compared to the outcomes of the 
Gauss-Newton method and the non-Riemannian versions of the Levenberg-Marquardt algo­
rithm. It is found that the Riemannian version of the Levenberg-Marquardt algorithm is more 
robust than the other methods, provided an adequate Riemannian metric is chosen. Thus, this 
advanced algorithm seems most profitable in "difficult" situations, where numerical problems 
easily occur. 
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1 Introduction 
This paper is concerned with an application of a Riemannian version of the Levenberg-Marquardt 
algorithm, as developed in the companion paper [26], to the field of off-line system identification. 
There we are dealing with the problem of estimating parameters in order to identify a model from 
available measurement data. Most available estimation procedures are based on the concept of 
trying to minimize an associated criterion function that expresses the misfit of a candidate model. 
Commonly used criterion functions often fall into the class of prediction error criteria (cf., e.g., 
[19] and [31]). The most popular one consists of the sum of squares of the prediction errors that 
emerge when applying the available measurement data to the candidate model with the objective 
of one-step-ahead prediction of future outputs. One can get to this criterion in various ways, e.g. 
via the principle of maximum likelihood. 
In many of these situations, the parameter space actually corresponds to only a part of the set of 
candidate models that one has in mind. Indeed, it is a known fact that various model sets that are 
commonly being used, such as the sets of linear multivariable models of a fixed finite order n, do 
not form Euclidean spaces, but differentiable manifolds instead (cf. [5]). In the multivariable case it 
has been proved that one cannot restrict to just one continuous canonical form for this manifold as 
it can never capture all candidate models (cf. [15]). One therefore has to consider several structures 
instead, and their related (pseudo-)canonical forms, which provide a set of overlapping parame­
ter charts for the differentiable manifold under consideration. Smooth differentiable manifolds can 
always be endowed with a Riemannian metric (cf. [4]), and for this particular application several 
choices are discussed in [12, 27]. This leads us to a situation where a nonlinear sum of squares has 
to be minimized over a Riemannian manifold, which is covered by a set of overlapping coordinate 
charts, thus making the results of [26] applicable. 
In Sect. 2 we state the identification problem of estimating a linear multivariable model of a given 
fixed order n on the basis of a prediction error criterion. We also give a description of the model 
class, involving its manifold structure, overlapping parametrizations, structure selection strategy 
and choice of Riemannian metric. Main references within this context are [23, 24, 12, 14, 28, 27]. 
The actual calculation of the Riemannian metric tensors is discussed in detail in App. A. 
Sect. 3 contains the results of experiments carried out with the Riemannian versions of the Levenberg-
Marquardt algorithm, which are compared to the results for the Gauss-Newton method and for a 
non-Riemannian version of Levenberg-Marquardt. Efficiënt implementation of the Riemannian 
algorithms for these examples, which handle large amounts of data, asks for an alternative orga-
nization of certain calculations, as discussed in [26, App. B]. We restrict ourselves to experiments 
with simulated data, which gives us the possibility for direct comparison with the underlying data 
generating models. Sect. 4 concludes the paper. 
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2 Multivariable off-line system identification with Rieman­
nian metrics, using a prediction error criterion 

This section is concerned with the problem setting of an application of the Riemannian version of 
the Levenberg-Marquardt algorithm (as developed in [26], based on [22]) in the field of off-line 
linear multivariable system identification. More details about this approach can be found in [27]. 
We shall be occupied with the following problem, which is adopted from [29]. 

2.1 Problem statement and parametrization of the model class 

We suppose we are studying some stochastic vector output process y = {y(0}«ez of dimension 
p of, e.g., some physical or economical system. It is our intention to find a mathematical model 
that describes the joint temporal dynamics of the process components yi{t),... ,yp(t) as good as 
possible. This model might then be used for various purposes, such as prediction of future outputs, 
construction of a controller, etc. 
To achieve this, we suppose we have a record of size T of observations of process y at our disposal, 
that is, we have the measurements {y(i)}t=i,2,...,T- Moreover, we make some assumptions about 
process y, in order to limit the complexity of our problem, while keeping its practical applicability 
broad enough. These are the following: 

1. y is a stationary p-dimensional Gaussian vector process of zero mean, with rational spectral 
density; 

2. y is purely non deierministic; 

3. y is a full rank process. 

Then, following [29], it is a central result in stochastic system theory that such a process can 
always be represented by a linear, finiie dimensional recursive scheme of the following type (called 
innovations form): 

f x(t + l) = Ax(t) + Bw(t) 
{ y{t) = Cx(t) + w(t) ( < G Z ) ' ( 2 ^ 

where A, B and C are matrices of suitable dimension and {u>(0)<ez is a p-dimensional white 
Gaussian sequence of zero mean, with covariance matrix Q > 0, say. 
Due to the assumption of y having full rank, we can assume without loss of generality that the 
matrix triple (A, B, C) is minimal, i.e. (A, B) is reachable and (C, Tl) is observable. In that case the 
dimension n of the state process x = {x{t))tiZ equals the order (or McMillan degree) of the system. 
From the assumption that y is purely non deterministic we have that the spectrum <r{A) of A, i.e. 
the set of eigenvalues of A, is contained in the open unit disk in C: 

o-(A) C {s € C| \s\ < 1}. (2.2) 

Any matrix with this property is called asymptolically stable. 
One can eliminate the state process from representation (2.1) to obtain the following input-output 
relation: 

00 

y(t) = y£iHkw(t-k), t € Z . (2.3) 
fc = 0 

Here the matrices Hk are the Markov matrices, given by 

{ Hk = CAk~1B (k=l,2,...). (2'4) 

We define the infinite matrix H, the weighting pattern or impulse response of the system, by 

H :=[H0,HUH2,...}, (2.5) 
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and the infinite column vector wt, containing all "past" values of w(t), by 

«;*:= 

w(t) 
w(t - 1) t £ Z. (2.6) 

Hence we can write the input-output relation as: 

y(t) = Hw\ teZ. (2.7) 

The requirements mentioned so far are still not sufficiënt to have a unique representation of the 
form (2.1) describing the output process y(t). Basically, there are two sources of nonuniqueness. 
The first source is that there are in general several pairs (H, w1) generating the same process y(t) 
via equation (2.7). There is a way to overcome this problem, namely by choosing a special kind of 
innovations representation. For the state space innovations representation (2.1) the corresponding 
innovations can be represented via a recursive scheme: 

f x(t + 1) = (A- BC)x(t) + By(t) 
\w(t) = -Cx{t) + y{t) {teZ>- ( 2 ' 8 ) 

The innovations representation that we choose is required to have the property of being causally 
invertible, meaning that one can write {u>(£)}«ez as 

oo 

fc=0 

where the matrices Gk are defined by: 

{ Gk = -C(A-BC)k-lB (Jb = l , 2 , . . . ) . ( 2 '1 0^ 

The requirement of causal invertibility imposes the additional constraint on A, B and C that matrix 
(A — BC) must be stable, that is, its eigenvalues are required to lie inside the closed unit disk in C. 
Later in this section we shall restrict ourselves to the case where (A — BC) is asymptotically stable 
for reasons of convenience: the associated prediction error filter then becomes asymptotically stable 
and the problem is easier to handle. Notice that this only excludes a "thin" set from the general 
case. 
The second source of nonuniqueness sterns from the freedom left in choosing a basis for the state 
space R n . Indeed, it is easily seen that any basis transformation of the state space does not affect 
input-output relation (2.3). This brings us to calling two minimal matrix triples (A,B,C) and 
(A, B, C) of order n (i/'o-)'equivalent if there exists a nonsingular matrix T € R n x " such that 

(A,É,C) = (TAT-l,TB,CT-1). (2.11) 

The space of all n x n nonsingular matrices is denoted by Ql{n). The equivalence classes generated 
by the equivalence relation above are also called orbits under the action of the general linear group 
Ql{n). What one should do to obtain uniqueness of the innovations representation is to parametrize 
the set of equivalence classes. The problem here is that in the multivariable case it is impossible to 
use only one global Euclidean parametrization. (Cf. [15].) 
One way to deal with this problem is presented in [23, 24]. The approach taken there consists of 
defining a set of overlapping parameirizations of which each element covers a part of the model 
space, such that together they cover all. Of course, along with this approach one has to provide a 
criterion for switching between these parametrizations. We will discuss this work in more detail. 
Suppose we are given a stochastic system of the form (2.1), with (A,B,C) minimal of order n, A 
and (A — BC) asymptotically stable and {w(t)}t^z a. white Gaussian sequence with zero mean and 
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positive definite covariance matrix Q. As before, its Markov matrices are denoted by Ho, Hi, Hi, — 
We define reachabiliiy matrix R and observabilily matrix O corresponding to (A,B,C) by 

R = {B,AB,...,An-1B], 0 = 

C 
CA 

CA n - l 

(2.12) 

Minimality of (A, B, C) requires that rank(i?) = rank(O) = n. For k £ {1,2, . . .} U {oo} we further 
define blockwise Hankel matrices Tik as 

(2.13) W* = 

Hi Hi 
Hi Hz 

•• Hk 

Hk+i 

Hk Hk+i • •• H2k-y 

It is easily seen that the following relation holds: 

Hn = OR. (2.14) 

The blockwise Hankel matrices are all invariant under the action of Ql{n), whereas R and O are 
not. Also, rank('Wfc) = n for all k > n. 
One can construct different parametrizations for (parts of) the model space by choosing different 
bases for the row space of Tioo. In each parametrization there are 2np independent parameters 
involved, which is obvious from the fact that the space of all matrix triples (A, B, C) has dimension 
n2 + 2np and the space Ql{n) has dimension n2. The overlapping parametrizations of [23, 24] make 
use of so called nice selections. A nice selection is defined as a set of n positive integers (a multi-
index) with the property that if j > p is in the set then also j — p is in the set. In the present 
case the extra property that all the integers 1,2,... ,p are in the set is required to hold (because 
the output process y is assumed to be of full rank). A way to visualize a nice selection is offered by 
the so-called Young diagram (see e.g. [12, Sect.2.3.5]). In analogy with this diagram we can draw 
a matrix of squares (a "crate diagram"), in which for each element of the nice selection we put a 
cross in its corresponding square, when numbering the squares from 1 to np, column after column. 
For instance, with n = 7, p = 4 and nice selection {1,2,3,4,6,7,10} one gets the diagram 

x 

x x x 

x x 

x 

Conversely, to each such diagram with the property that it contains exactly n crosses placed in such 
a way that the first column is filled completely and that there are no spaces between crosses in the 
same row, corresponds a nice selection. From this observation it is easy to calculate the number of 
different nice selections as (pil)-
A nice selection is used to denote the numbers of the rows of ftTC which should serve as a basis for 
its row space. Of course, for this purpose these rowsmust be linearly independent. Although, for a 
given matrix Woo, this need not be the case for every possible nice selection, one can always obtain 
a nice selection with such property. For instance, it is a well-known fact that if one selects the first 
n linearly independent rows of Woo> thereby checking for dependencies with earlier rows only, one 
obtains the observability or Kronecker indices, which constitute a nice selection. 
From the choice of basis for the row space of Tioo by means of a nice selection it is possible to 
construct matrices A, B and C which correspond to the blocks (the Markov matrices) of Tioo-
These matrices then have the following structure. 
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* Matrix A consists of (n — p) fixed rows and p parameter rows (thus containing np parameters). 
The fixed rows are unit row vectors, with the unit element subsequently on places p+1,..., n. 
The row numbers of the p parameter rows can be obtained from the diagram. For this, one 
has to number the squares in which there is a cross, column after column, from 1 to n. Then 
the numbers on the end of each row denote the parameter row numbers. For the example 
above this gives the diagram 

1 

2 5 7 

3 6 

4 

so the numbers of the parameter rows are 1, 4, .6 and 7. 
Consequently, matrix A in that case takes the form 

/ 

A = 

\ 

* * * * * * * 
0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
* * * * * * * 
0 0 0 0 0 0 1 
* * * * * * * 
* * * * * * * / 

where the stars denote the parameter locations. 

* Matrix B consists of parameters only. Since B is of size n x p, it also contains np parameters. 

* Matrix C is fixed, and for all nice selections the same. It has the form 

C = ( I O ), 

with I denoting the p x p identity matrix and O the p x (n — p) zero matrix. 

It is easy to switch between two such parametrizations. Starting from a matrix triple (A,B,C) in 
one representation, the transformation matrix T bringing it to matrix triple (TAT~1,TB,CT~Ï) 
in the second representation consists of the rows of the observability matrix O (see (2.12)) with row 
numbers that are in the second nice selection. (Notice that in this case CT~l is always equal to C.) 
For more information on these parametrizations one can consult, e.g., [9] and [27]. 
Now we turn to the switching mechanism. This is an important topic, because although almost every 
system can be represented via all parametrizations (all parametrizations are so to say generic), one 
can encounter severe numerical difficulties if one does not select a parametrization properly. For 
instance, if, in some parametrization, one is dealing with a system that is close to a system that 
cannot be represented in that parametrization, the corresponding rows of the blockwise Hankel 
matrix will be almost singular and yield an ill-conditioned basis. As pointed out in [23, 24], one 
should use a nice selection that leads to matrices A, B and C for which the positive definite solution 
P of the discrete-time Lyapunov equation 

P - APAT = BB'1 (2.15) 

is well-conditioned. 

Remark This is also suggested by the observation that, by construction, all parametrizations we 
use lead to matrix triples (A, B, C) for which (C, A) is observable. Minimality is therefore achieved 
when (A,B) is reachable. This means that R (see (2.12)) must have full rank. This property is 

6 



closely connected to Lyapunov equation (2.15): if one defines the infinite reachability matrix R°° for 
(A, B, C) by R°° := [B,AB,A2B,...] then the solution P of (2.15) can be written as P = R°°(R°°)T. 
Therefore, if R (and consequently R°°) is almost singular, matrix P will be ill-conditioned. 

The following heuristic algorithm is used to select a better parametrization if the current one is 
recognized to behave badly. 

1. Compute the positive definite solution P óf (2.15). 

2. Factorize P as P = LDLT, where L is unit lower triangular and D is diagonal (with positive 
elements on its main diagonal). 

3. Compute W :— OL, with O denoting the observability matrix of the system (see formula 
(2.12)). 

4. Select n rows from W in such a way that: 

• the n row numbers constitute a nice selection; 

• weighted Gram-Schmidt orthogonalization applied to these rows, with diagonal matrix 
D containing the weights, will lead to a factorization LQ where L is unit lower triangular 
and D := QDQT is diagonal (D > 0), for which the conditioning of D is better than the 
conditioning of D. 

5. The corresponding rows of O yield transformation matrix T. 

Here, there are two things that need further explanation. First, we remark that the conditioning 
of P is evaluated by inspection of the (relative) magnitude of the diagonal elements of D, instead 
of via the eigenvalues. The LD-factorization in step 2 serves for this purpose; an algorithm can be 
found in [3]. Second, step 4 of the algorithm needs further discussion. If one uses transformation 
matrix T to go from one parametrization to another, then, in the notation of step 4, P transforms 
from LDLT to TLDL?!^, which is equal to LQDQTLT = LDLT. Thus, the new conditioning can 
be evaluated via D. Now, step 4 is organized as follows. 

4a. Select rows 1,2, . . . , p from W (these must always be selected, since we want to get a nice 
selection). 

4b. There are p candidates among the remaining rows of W which can be added to the set of 
currently selected rows, without destroying the structure needed for a nice selection. From 
these candidates we select the one which will lead to the largest new element of D, when added 
to the set. 

4c. Perform weighted Gram-Schmidt orthogonalization to the selected rows from W. If the number 
of currently selected rows is still less than n, continue with step 4b. 

One should realize that this algorithm provides no guarantee for finding the best parametrization. 
It contains a heuristic element, which is incorporated in the way the new nice selection is obtained. 
Once a row from W is selected, it cannot be removed from the new basis anymore, although it 
might turn out to match not so well with new rows to be selected, and there might be better 
combinations possible. However, the described method seems to work well in practice. We remark 
that an algorithm for weighted Gram-Schmidt orthogonalization can be found in [3]. 
We shall use the overlapping parametrizations described above to parametrize the matrix triples 
(A, B, C) that we will encounter in the identification algorithm that we are going to apply, together 
with the model structure selection procedure just explained. First however, we will introducé some 
more mathematics, and digress on the construction of a differentiable manifold endowed with a 
Riemannian metric, representing the model space. 
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2.2 The model class as a Riemannian differentiable manifold 

Let m, n and p be positive integers. We define the following spaces: 

nm,p:={(Ho,H1,H7,...)\Hi£Rp*m (i = 0 ,1 ,2 , . . . )} , (2.16) 

OO 

-Ha
mtP:={{Ho,HuH2,.. .)| Ht € R p x m ( i = 0,1,2, . . . ) ; tracé £ # , - f f ? < oo}, (2.17) 

«=o 

Sn := {{s(<)}tez I «(*) Ê R " ( ( e Z)}, (2.18) 

5? ~ {{s(<))iez | «(*) G R n (t G Z); 3<0 € Z : s(i) = 0, V* < *<>}, (2.19) 

£™>P :={F:S^-^SP
0\F is linear and shift-invariant}. (2.20) 

On each of these spaces the operations addition and scalar multiplication are defined as usual, in a 
"pointwise" fashion. The operations on WJ,iP and SQ are defined via Wm,p and 5 " respectively, by 
restriction. Notice that W^ and SQ are closed under these operations. 
The shift-invariance property referred to in the definition of £™'p is defined as follows. Let 6n 

denote the (forward) shift-operator acting on elements of 5 " , defined by 

M{*(0}«ez) = M O l t e z wi thu(0 = «(t + l ) , V i g Z . (2.21) 

Then a mapping F : S™ —* Sp is called (forward) shift-invariant if for all s G S™ we have that 

F{6m{s)) = 6p(F(s)). (2.22) 

(One could as well define a backward shift-operator; since we are considering sequences over Z this 
is the inverse of the forward one. In the present case, forward and backward shift-invariance are 
seen to be equivalent, hence we can simply speak about shift-invariance.) 
On WJJJ, we further define an inner product (•, )£s by 

oo 

{H,H)p := t r a c é ^ H i H ? , (2.23) 
i = 0 

where H — (HQ,HI,H2, .. .) and H = (Ho,Hi,Hi, . • .). This makes Km,p m t o a Hilbert space. Of 
course the inner product induces a norm on Ti^^, denoted by || • ||<2 and satisfying 

oo 

\\H\\P := (H,H)ll2 = (tracé £ tf,-Hjf'\ (2.24) 
i=0 

ïoiH = (H0,H1,H2,...)e-Ha
mtP. 

Next, we associate with every element H of Tim,P an element F( f f) of £™'p via the mapping Tm>p 

defined by 

T • 'M —* fm'p 

'm,p • '*-m,p ' *-o ' 

rm>p(H) = F^H\ 

with F(-H\u) = y for u={u(<)} tgz G S™ and y={y(t)}tez G Sp defined by the formula: 

oo 

y{t) = ] T # « ( * - 0 . V* G Z. (2.25) 
i=0 

It is easily verified that rm,p yields a linear injection from Hm>p into C0
n'p. Therefore we identify 

each element H oïHmtP with its corresponding element F^H^ of £™'p. (The image of 'Hm,p under 
r m p can be described as the subset of £0

n,p consisting of all causal mappings, that is, mappings F 
such that if u(t) = 0 for all t < t0 then also (Fu)(t) = 0 for all t < tQ.) 
We now define the mapping r£ from 'Hm,P

 m ^ o " ' P ^ t n e restriction of rm,p to the domain 'H.m,P-
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lts image is denoted by ££,_,,, and we identify the spaces WJ,^ and ££,,?• I'n t m s w a y w e n a v e a 

norm on ££,„, induced by the norm || • ||<s. We write 

WF^l^^Ur^rHF^Wo. (2.26) 

Now we turn to an alternative way of describing subsets of WJ,p (or equivalently £{J,iP). For this, 
we consider disctete-time, linear, time-invariant, asymptotically stable, deterministic systems E of 
finite McMillan degree, of the form 

M S m ™ <<êZ>' <"7> 
where {*(<)}«=z 6 SJ, {«(*)}tez € 50

m, {y(«)}tez € Sg, ,4 e R " x n , B € R n x m , C e R p x n , D G 
R p x m , with the additional requirements that A is asymptotically stable and that the representation 
is minimal, i.e. (A,B) isreachable and (C, A) is observable. (Notice our requirement {z(<)}«ez £ So • 
This implies that for each input {u(f)} tez G S™ there exists to £ Z such that the system is at rest 
for t < to- This is why we can write {t/(t)}«ez G Sp.) 
We denote a system E of the form and with the properties above as E = (A, B, C, D). The set of 
all such systems, with fixed parameters m, n and p, is denoted by L™£ • 

L2'an,P — { ( ^ , B , C , £ » ) | A G R n x n , B G R n x m , C G R p x n , D G R p x m , (2.28) 

(A,B,C) is minimal, A is asymptotically stable}. 

We regard systems basically as input-output mappings. For a system E of the form above the 
associated input-output mapping is given by formula (compare (2.3)): 

oo 

y(t) = ^ Hi(L)u(t - i), Vt G Z, (2.29) 
»=o 

where the matrices # i (E) (i = 0,1,2, . . . ) are the Markov matrices (compare (2.4)), defined by 

" o ( E ) = D ' . f2 30) 
Hi('Z) = CA,-1B (f = 1,2,...). ^•M) 

As before, we have that two systems E = (A,B,C,D) and E = (A,B,C,D) from L™|Jp are 
called (i/o-)equivalent if they correspond to the same input-output mapping. Again, E and E are 
equivalent if and only if there exists T £ Ql(n) such that (A,B,C,D) - (TAT~l,TB,CT~l,D). 
The set of equivalence classes on Z/^Hp, the orbits under the action of Ql(n), induced by the 
equivalence relation is defined as the quotiënt space 

MZ;lp:=L™:
a
n}P/gi(n). (2.31) 

Now we can define an injective mapping pm,n,P from M™t'° to £ ^ p by 

Pm,n,p(Ë) = F ( H ) , (2.32) 

with H = (.ffo(Ë), Hi(È), JÏ2(Ê),. . .) , the sequence of Markov matrices corresponding to any repre-
sentative element of the equivalence class Ê from M " ; ° p . 
We define the space M™'£ as the space of all input-output mappings generated by systems of the 
form under consideration, with fixed input and output dimensions m and p and finite McMillan 
degree n. 

oo 

AC;p" := U JlC£p , (2.33) 
n=0 

where M™'Q denotes the zero system (corresponding to a sequence of zero Markov matrices). 
Identifying the sets M™-" (n = 0,1,2, . . . ) and their union M™'p with their respective images in 
££, , we can think of these sets of systems as being imbedded in Hilbert space fim.p- Thus the 
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norm on %m)P
 a ' s o induces a norm on the space M™£ (but only a metric and not a norm on the 

spaces M™£ (n = 1,2,...), since these are not closed under the linear operations). 
Using this imbedding in Hilbert space one can prove that the spaces M™;£|P are differentiable 
manifolds, see for instance [11, 12, 13] and the references given there. The norm || • ||/s defined on 
M™'° provides us with a Riemannian metric on these manifolds. This is so, because the derivative 
of a smooth curve of systems on M™£p at a point E = (A,B,C,D) can be regarded as an element 
of M™£. Consequently, the norm || • | |^ induces a norm on the tangent space to M%£iP at E. This 
can be seen as follows (cf. [12, Sect.5.2]). 
Recall that the addition of two systems is already defined via addition of corresponding sequences 
of Markov matrices. A system (A, B, C, D), not necessarily in minimal form, that has a sequence 
of Markov matrices being the sum of the sequences of Markov matrices of systems (A, B, C, D) and 
(A, B,C, D), of McMillan degree n and fi respectively, is given by the relations 

^ = ( Q i ) " Ö = ( I ) ^ = ( C C),D = D + D. (2.34) 

Any minimal representation of this system will therefore be of McMillan degree < n + fi. Notice 
that matrix A is asymptotically stable if A and A are so. 
Next, let E(t) = (A(t),B(t),C(t),D(t)) denote a differentiable curve on M™'°p, parametrized by 
t £ R and satisfying E(0) = E = (A, B, C, D). Let the tangent vector at E in the direction of the 
curve be denoted by [A, B,C, D]. The derivative of the curve at E is denoted by E and given by 
the expression 

* = limS<'>-Et°>. (2.35) 
t-o t 

Here, one considers the right hand side as a limit of systems in M™'£ (all of McMillan degree < 2n). 
As reported in [12] one can derive the formula 

t = (i A ) -(S)-( 6 C > ' ^ <«6» 
We denote the norm on the tangent space at E, induced by the norm || • ||<2 on M™£, by || • ||flE. 
This norm satisfies the formula 

ft[A,B,C,D]\\,s = \\±\\t> (2-37) 

In principle it is now possible to calculate for a given system E = (A,B,C,D) the corresponding 
Riemannian metric tensor, using formula (2.36). We denote the matrix representing this tensor at E 
by u s . In App. A we discuss in more detail the actual calculation of i?£ when using the overlapping 
parametrizations of [23, 24]. Related information may be found in [27]. The Riemannian metric 
described above is seen to be induced by the ^2-norm for m x p matrices, regarded as elements of 
the vector space R m x p . This then explains the subscript l2 for the norms used throughout this 
section. 
As a matter of fact, one can think of many other Riemannian metrics on the system manifold. An 
important alternative for the procedure described above results from assuming the standpoint that 
the objects that should be close are not really the true system and the identified model, but instead 
their corresponding representations of the innovations, which we call the prediction error filters. (Of 
course, this standpoint is closely related to a future use of the final identified model for one-step-
ahead output prediction purposes.) In this case one can use matrices Gk (see (2.10)) instead of the 
usual Markov matrices Hk- The computational consequences of this alternative approach are also 
discussed in App. A. 
Further alternatives derive from the use of alternative inner products on WJ,p instead of (2.23). For 
instance, one can use different weighting factors, thereby stressing the importance of a good fit with 
respect to certain impulse response matrices. Thus, one can arrive at, for example, what is called the 
Hilberi-Schmidt-Hankel (HSH-)norm, or the exponential (e-)norm. (These are also briefly discussed 
in [12] and [27].) Of course, one can again assume the two different standpoints, leading to a wide 
variety of choices. In this paper we will restrict to the £2-norm, for both standpoints. 
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2.3 OfF-line identification using a prediction error criterion 
We now turn to the topic of ofF-line identification algorithms. As discussed before we are considering 
systems of the form (2.1), which we can rewrite as representations for the innovations (2.8): 

ƒ x(t + 1) = (A - BC)x(t) + By{t) 
\ w(t) = -Cx(t) + y(t) lkz^ 

The optimal linear predictor for y(t) based on all past observations ... ,y(t — 2),y(t — 1) is given by 
y(t\t — 1) = Cx(t). Consequently, w(t) can be interpreted as the prediction error for y(t) at time 
t. Notice that the above equations do not involve the error covariance matrix fl, but only A, B and C. 
We use the parametrizations discussed previously to represent these matrices. Within one parametriza-
tion we collect all 2np parameters in one parameter vector, denoted by 0 (or at time t by 9t). Instead 
of writing (A,B,C) we will write (A(9),B(9),C(6)) when the dependence on the parameter vector 
is involved. Notice that we actually use parametrizations where C does not depend on 9, but is 
constant. 
As remarked in [12, Sect.6.2.2], it follows from the properties of the steady state Kalman filter that 
among the set of all admissable parameter vectors 9, the "true" parameter vector 9 (corresponding 
to the state space representation of the underlying process {y(O)tez) constitutes a unique global 
minimum for the criterion function V(9), defined by 

V(6) := \E\\w{9, t)\\2 = \Ew{9,tfw(9, t), (2.38) 

where the expectation is taken with respect to the true probability law. (See also [1], [10], [14, 28].) 
Therefore, an off-line identification algorithm can be obtained, in analogy with gradiënt methods 
for unconstrained minimization, by adjusting in each iteration k the current parameter estimate 9k 
in the direction of the negative gradiënt of V{9) at 0*. The gradiënt ^-(9) is given by the following 
relation: 

%(9) = Ed-^f-wm, (2.39) 

again with the expectation taken with respect to the true probability law. 
One can obtain relations for the quantities £s' ' by partial differentiation of the equations repre-
senting the innovations. This yields 

f d-^^-(^-^C)x{9A) + (A-BCf-^ +
 d-^ly{t), 

(2.40) 

^ Ü = - C ^ M , ( t € Z ) , ( f = l , 2 , . . . , 2 n P ) , 

where 9 — (91,02,... ,92np)T. The matrices 8 ^ • and djj,' are all very sparse: at most one element 
of each matrix will be nonzero. By taking together the equations representing the innovations and 
all equations (2.40) one can define an augmented state space system with state vector £(9, t) at time 
t (see [12, Sect.6.2.2]). £(9,t) consists of the state x(9,t) and its partial derivatives with respect to 
the components of 9 

«..o = w.,o'.*8£ 5g£r. (-> 
We call this augmented system the extended prediction error filter. lts output consists of the pre­
diction error w(6,t) and the quantity w^e' . Because it is impossible to calculate ^f(9) (the 
probability law is unknown) one has to approximaie this gradiënt, using the extended filter output 
above. It is important to realize that in order to have an algorithm that really produces prediction 
errors w(t), one must reprocess a//available data (until time T), after each change in the parameter 
estimate. 
One has to provide initial values for the algorithm. The extended state vector £(£) will in general 
be set to zero (the effect of an initial condition will extinguish for asymptotically stable filters, 
like we are using). However, one cannot put 9Q equal to zero, since it must be made sure that 
the corresponding representation is still minimal. Non-minimality will result in singularity of the 
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Riemannian metric tensor, something that has to be avoided. Therefore one really has to come up 
with an appropriate initial estimate. 
The necessary approximations are then organized as follows. We initialize the extended prediction 
error filter as indicated above, so that the extended filter output involves prediction errors (de-
noted by e(t) to distinguish them from the innovations w(t) that they are approximating) together 
with their partial derivatives with respect to the parameters 9* (denoted by -gff-; these are exact). 
Instead of V{9) we try to minimize VT(9), defined as the following approximation of V(9): 

W ) = |l>(*,0H2- (2-42) 
t = i 

This is a prediction error criterion (see e.g. [19], [31] for a more general account of such criteria). 
The gradiënt of Vr(9) is given by 

These are calculable expressions and it is possible to minimize VT(9) by means of numerical al-
gorithms. The main observation to make is that VT{6) is in fact a (nonlinear) sum of squares, 
which follows easily if we stack all prediction errors e(t,9) in one big column vector of dimension 
pT. Thus, we are dealing with a nonlinear least squares problem, to which we can apply the meth-
ods of Gauss-Newton, (Riemannian) Levenberg-Marquardt, (Riemannian) steepest descent, e tc , 
as explained in the companion paper [26]. Indeed, as we have shown, the space over which VT is 
to be minimized is a Riemannian manifold for which a covering of overlapping parameter charts is 
available, together with a switching mechanism, and on which various Riemannian metrics can be 
chosen. This concludes the discussion of our theoretical framework for the experiments presented 
in the next section. 
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3 Computer Experiments and Results 
We shall presently discuss the results of a number of computer experiments that have been carried 
out with respect to the identification problem introduced in Sect. 2. The set-up of these experiments 
is as foliows. 
Using computer simulation we have generated samples of 2000 datapoints for three different systems, 
all linear, asymptotically stable and minimum phase, of order n = 4 and with p = 2 (the number of 
(stochastic) inputs and outputs; there are no exogenous inputs). From these three samples we have 
constructed three extra samples of size 1000, by selecting the first 1000 datapoints in each case. 
This to make it possible to acquire some information about the influence of the sample size on the 
identification results. 
The choice of n and p is based upon a trade-off between required computing time and complexity of 
the structure of the problem. (The larger the value of n is, the more datapoints are needed to obtain 
reasonable estimates for the true underlying system parameters and the more parameters are to be 
estimated, so that more computing time is required. On the other hand, then also more overlapping 
charts are needed to cover the system manifold and the problem becomes more interesting and 
involved.) For n = 4 and p = 2 there are three possible structures, as described in App. A and 
indicated below. The total number of parameters to be estimated is 2np = 16. 
The characteristics of the data generating systems are the following. For all three data generating 
systems the structure (given by the observability indices) corresponds to a diagram of the form (see 
Sect. 2 for an interpretation): 

x x 

x x 

Thus, the system matrices A, B and C are parametrized by 

A = 
( ° 0 1 0 \ ( 09 013 \ 

0 
01 

0 
02 

0 
03 

1 
04 

B = 010 014 

011 015 

\ * 5 06 07 08 j \ 012 016 / 

^ - ( i ; s s) <••» 
In these three situations we constructed the driving white noise to be Gaussian, 2-dimensional, zero 
mean with unit covariance, that is 

' 1 0 
0 1 

(3.2) 

Within this set-up, the three data generating systems are then characterized by, respectively, the 
"true" parameter vectors 

0{.1) = (0.3, -0.1,0.4,0.0, - 0 . 3 , -0.2,0.0,0.3, -0.1,0.0,0.2,0.3, -0 .2 , -0.3,0.2,0.4)T 

ö{2) = (0.1,-0.3,0.1,0.1, - 0 . 3 , -0 .7 ,0 .1 , -0.1,0.1,0.2, -0 .2 , - 0 . 1 , -0.1,0.1,0.1,0.1)T 

0i3) = (0.3,0.1, -0 .2 , - 0 . 3 , -0.4,0.2, - 0 . 1 , -0.2,0.2, - 0 . 1 , -0.2,0.15, -0 .2 , -0 .1 , -0 .2 , -0 .1 ) T 

The three possible structures by which linear systems of order 4 with 2 inputs and outputs can be 
described are numbered, via their corresponding diagrams, according to 

Structure 1 Structure-2 Structure 3 

x x x x x x 
x x x x x x 

Thus, the data generating systems described above all correspond to what is called structure 2. 
We have applied a number of identification algorithms, all starting from the same 4 different initial 
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points. They are given by 

9{
0
1) - (0.2, -0.4,0.0,0.2, -0 .4 , -0.8,0.2,0.0,0.0,0.3, - 0 . 1 , -0 .2 , -0.2,0.2,0.2,0.0)T 

e{p = (o.o, o.i, o.i, -o . i , -o.2, o.i, o.o, -0.1,0.1, -0.2,0.1, -0.1,0.0, -0.1,0.1, -o.2)T 

6^ = (0.4, -0.2,0.3, -0.1, -0.2, -0.1, -0.1, -0.1,0.2, -0.2,0.1,0.1, -0.3, -0.2,0.3,0.1)T 

0&4) = (0.5,0.0,0.1,-0.1, -0.2,0.1, -0.3, -0.1,0.1,0.2, -0.3, -0.1,0.0, -0.2,0.0, -0.2)T 

where 0Q , 0Q and 9^ ' are in structure 2, and 6Q ' is in structure 1. 
The minimization methods under consideration all contain the "on-line" structure selecting strategy 
of [23, 24], described in Sect. 2. 
There are 4 identification algorithms we have studied: 

RLM1 The Riernannian Levenberg-Marquardt method, with Riemannian metric derived 
from the £2-norm on Hilbert space and imbedding as described in Sect. 2 (this is called the 
i/o-imbedding; see also App. A). 

RLM2 The Riemannian Levenberg-Marquardt method, with Riemannian metric derived 
from the £2 -norm on Hilbert space but an alternative imbedding taking the prediction error 
filters as our point of departure (this is called the o/i-imbedding; see Sect. 2 and App. A). 

LM The standard Levenberg-Marquardt method, i.e. with the Euclidean metric on each 
parameter chart separately. 

GN The damped Gauss-Newton method, where step-sizes are halved until a decrease in the 
function value is obtained. 

In Tables 1-6 the results of the identification experiments are collected, showing the number of 
iterations needed to reach a local minimum in each situation. 
In these tables, a single star indicates that the method crashed after the given number of iterations. 
In all cases this was due to the fact that the estimated model contained an unstable matrix A, 
despite our definition of the admissable model area. In such situations, the numerical procedure for 
calculating the solution to a Lyapunov equation, as required by the structure selection algorithm, 
generates numerical overflows, as can be seen from the formulas presented in App. A.3. One should 
notice that these problems occurred for all methods except RLM1. This is a consequence of the 
fact that the Riemannian metric induced by the ^2-norm on Hilbert space when using the i /o-
embedding "explodes" if A becomes unstable (i.e., some eigenvalues tend to infinity). Therefore, 
the Riemannian metric used in RLM1 automaiically enforces asymptotic stability of A. However, 
the Riemannian metric for RLM2 enforces only asymptotic stability of A — BC, whereas LM and 
GN do not enforce any stability at all. Of course, one could try to prevent those situations via 
imposing further restrictions on the steplength, e.g. by using the same "halving" strategy as already 
implemented for the GN method. But then most likely convergence to points on the boundary of 
the admissable area would occur, simply because this boundary is not a natural consequence of the 
intrinsic problem structure. Solutions obtained this way would not be acceptable in practice either, 
but would require extra analysis in order to be recognized as such. 

method 
starting point 

method gW W 0(4) 

RLM1 76 28 16 31** 
RLM2 7* 24 17 14* 

LM r 26 17 21 
GN 3* 6 27 6* 

Table 1. Numbers of iterations for 1000 datapoints generated via system based on 0* '. 
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method 
starting point 

method C J °o "o ö(4) 

RLM1 46 20 14 3 6 " 
RLM2 8* 20 13 > 100 

LM 1* 21 15 19 
GN 5 1 " 21 15 2 9 " 

Table 2. Numbers of iterations for 2000 datapoints generated via system based on 

method 
starting point 

method ö ( i ) ^ "o ö(4) 

RLM1 9 22 25 15 
RLM2 9 24* 23 19 

LM 9 18 14 15 
GN 13 3* 21 22 

Table 3. Numbers of iterations for 1000 datapoints generated via system based on 01 '. 

method 

starting point 

method Ö(D ^ # ' : 
RLM1 15 28 28 23 
RLM2 17 31 26 27 

LM 17 23 19 25 
GN 26 48 33 34 

Table 4. Numbers of iterations for 2000 datapoints generated via system based on ö; '. 

method 
starting point 

method 0d) 
"o 0(2) W 0(4) 

RLM1 33 45 41 32 
RLM2 59 45 41 48 

LM 1* 44 40 42 
GN 1* > 100 > 100 61 

Table 5. Numbers of iterations for 1000 datapoints generated via system based on 

method 
starting point 

method C- 0(2) 0(3) 
"o. 

^ 
RLM1 15 19 11 14 
RLM2 19 21 11 14 

LM 38 25 12 14 
GN 20 14 14 15 

Table 6. Numbers of iterations for 2000 datapoints generated via system based on 9, . 
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Secondly, a doublé star indicates convergence to a local minimum that is not a global minimum. 
In our experiments, such local minima were always associated with different model structures than 
those of the data generating systems. 
For a good comparison between the results for the different methods we mention that RLMl, RLM2 
and LM used More's stopping criteria (cf. [26, 22]) whereas GN used Marquardt's (cf. [26, 21]). See 
[26, Sect. 2, App. C] for a description and testing of their performance. We remark that in the present 
application Marquardt's stopping criterion tended to be somewhat more on the conservative side 
than More's. But one is faced with the situation that More's criteria cannot be used in conjunction 
with the GN method. 
About the different starting points we remark that 60 is closest to 0; and 6(

0 is closest to 0; '. 
ÖQ and 6^' are both relatively close to öy'. This is all clearly reflected by the results of the 
experiments, as convergence was always quickest from these starting points. 
Based on the results of the experiments we conclude the following. 

1. The LM method (both Standard and Riemannian), is in general more robust than the GN 
method. This is illustrated by the fact that the GN method crashed more often than any 
other method and also by the fact that it turned out to be slower in a number of more difncult 
situations, see e.g. Table 5. Of course, this fact is already well-documented in literature. 

2. For well-chosen Riemannian metrics, the Riemannian version of the LM method will be more 
robust than its non-Riemannian version. As we have seen, method RLMl is the only method 
(among the four under investigation) that automatically enforces asymptotic stability of ma­
trix A. Therefore, certain numerical problems were automatically avoided. In relation to this 
observation we would like to mention that a second requirement imposed on the set of admiss-
able parameter vectors involves the asymptotic stability of A — BC. It is due to the fact that 
instability of A — BC leads to an unstable prediction error filter, so that the expected criterion 
values are infinitely large, that this restriction did not lead to serious numerical problems. 
It is more or less enforced automatically by the choice of minimization criterion. Therefore, 
automatic enforcement of asymptotic stability of A seems to be the more urgent prerequisite 
for an adequate choice of Riemannian metric. We remark that there exist numerous alterna-
tive Riemannian metrics with this property, for example obtained via alternative weighting 
of the Markov matrices in the definition of an inner product on the enveloping Hilbert space 
(cf. Sect. 2). It is interesting to note that the Riemannian metric that can be defined via the 
Fisher informalion matrix enforces asymptotic stability of both A and A — BC. This is also 
a good candidate for further investigation. See [25, 14, 28, 27]. 

3. The lack of built-in "hysteresis" in the structure selection algorithm (as proposed by [5]) 
caused no problems in our experiments. Such a facility seems only necessary if the optimum 
corresponds to a model that lies close to the boundary of an area in the admisaable space 
related to a fixed optimal structure. But even then the LM algorithms can terminate appro-
priately since, as pointed out in [26, Sect. 3], the trust-region size involved in More's stopping 
criteria is independent of the choice of coordinates. In our set-up it is immaterial to which 
structure the final estimated model corresponds. 
In our experiments, the "correct" structure was usually found within 20 iterations. In a small 
number of cases convergence within an alternative structure took place. 

4. There is an effect of the sample size on the number of iterations required to reach an optimum. 
In general one would expect the problem to become more smooth if a larger number of data 
is available and this is what happens for 6. and 61 '. The effects for 6,(2) are opposite, but 
less significant. A more important observation, however, is that despite the availability of a 
large number of data there can still be alternative local minima and numerical problems for 
bad starting points. See Table 2. 
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4 Summary and Conclusions 
In this paper we have studied an application of the results of the companion paper [26] to the field 
of system identification. These earlier results involve the development of a Riemannian version 
of the Levenberg-Marquardt algorithm for the minimization of a nonlinear sum of squares over a 
Riemannian manifold, together with modifications to make it possible to handle problems with large 
amounts of data. 
In Sect. 2 a theoretical framework for the off-line system identification problem is presented, based 
on [29, 12, 27], where we restrict ourselves to the use of linear, finite dimensional models of a fixed, 
prespecified order. We adopt the Standard prediction error criterion as our criterion of fit. One may 
arrive at such a criterion in several ways, e.g. via the principle of maximum likelihood. We are then 
led to a (large) data fitting problem that falls within the class of nonlinear least squares. It is also 
exposed how this problem involves Riemannian manifolds: the set of candidate models can be shown 
to exhibit such a structure and it is pointed out that there are various ways for defining Riemannian 
metrics on it. The system manifold thus obtained can be covered with overlapping parameter charts, 
for which a selection strategy, due to [23, 24], is available. This motivates the applicability of the 
Riemannian Levenberg-Marquardt algorithm. For two different choices of Riemannian metrics the 
computational aspects, which are rather involved, are treated in App. A. 
Then, in Sect. 3, six experiments are considered, carried out with simulated samples of 1000 and 
2000 datapoints. The outcomes are analyzed and discussed. As the main result of this paper it can 
then be stated that the Riemannian Levenberg-Marquardt algorithm can be succesfully applied to 
the off-line system identification problem described in Sect. 2. Provided the Riemannian metric 
is chosen adequately, the Riemannian Levenberg-Marquardt method is superior to the commonly 
applied Gauss-Newton method, especially in difficult situations. 
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Appendix A : Calculation of Riemannian metric tensors 
In this appendix we discuss the calculation of the Riemannian metric tensors for two of the situ-
ations encountered in Sect. 2 of this paper. It is therefore assumed that (A, B, C) has a structure 
corresponding to one of the (overlapping) parametrizations of [23, 24]. This implies that A con-
tains parameters in p of its rows, indicated by integer vector pr following the convention that pr[i] 
denotes the (row) index of the z'-th row containing parameters in A (for i = 1,.... ,p). Matrix B 
consists of parameters only and C is constant and independent of all parameters: C = (7, O). The 
parameters are indexed by subscripts from 1 to 2np, by first going through all parameter rows of A, 
then through all columns of B. They are denoted by 0\,..., 02np-
For example, if n = 4, p = 2 we have the following three possibilities: 

pr T = (3,4) 

( o 0 1 0 \ ( 09 013 \ 

- 0 i 

0 
0i 

0 
03 

1 

04 
, B = 010 

011 

014 

015 
, c = ô 

0 
1 

0 
0 

0 
0 u 06 07 08 j V 012 016 ) 

prT = (2,4) 

( ° 0 1 0 \ / 09 013 \ 

A = n1 
Bi *3 04 , S = 010 014 , c = ^ 1 0 0 0 

o 0 0 1 011 015 
1 ^ 

^o 1 0 0 
V 05 06 0i 08 ) \ 012 016 ) 

pr T = (1,4) 

(01 Öi 03 04 \ / 09 013 \ 

A = 0 
0 

0 
0 

1 
0 

0 
1 

, B = 010 

0 1 ! 

014 

015 
, c = vo 

0 
1 

0 
0 

0 
0 

^ 05 06 07 08 ) V 012 016 ) 

(A.1) 

(A.2) 

(A.3) 

The positions of the parameter rows are related to so called "nice selections," with respect to the 
construction of a basis for the row space of the infinite blockwise Hankel matrix associated with 
the system corresponding to (A,B,C) (containing its Markov matrices). This limits the number of 
possibilities for pr. See also [9, 27]. 
We shall discuss two situations, namely: (a) the Riemannian metric tensor induced by the f2-norm 
on the enveloping Hilbert space for sequences of Markov matrices related to the system (A,B,C) 
(this is called the i/o-imbedding); (b) the Riemannian metric tensor induced by the ^2-norm on the 
enveloping Hilbert space for sequences of Markov matrices related to the corresponding prediction 
error filter (A — BC,B,—C) (this we call the o/i-imbedding). In both cases the parameters are 
contained as described above by A and B, so that in particular in situation (b) the new matrix 
triple is not brought to one of the overlapping canonical forms. 

A.1 Case 1: Using the i/o-imbedding 
The Markov matrices associated with an arbitrary triple (A,B,C) are given by 

Hk = CAk-lB, for Jb > 1 (A.4) 

Following [11, 12, 13], we have that we can associate with any directional derivative triple [ J 4 , 5 , C ] 

at (A,B,C) the (larger) matrix triple (A,B,C), where 

A = 
A O 
A A 

B = 
B 
B 

C=(C C ) (A.5) 
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Here the dot denotes differentiation in a certain direction (for instance associated with a curve in 
the space of systems) at (A,B,C). (Compare with Sect. 2.) 
The space of sequences {Hjt}^L1 of p x p matrices Hk for which the quantity 

tracé i J T t f f c / ^ l (A.6) 

is finite (i.e., the infinite sum converges), can be made into a Hilbert space by: (1) introducing the 
usual linear operations; (2) defining the inner product (•, -)̂ a between two sequences {Hk}%Li and 
{Hk}?=1 via 

({Hk}tLlt{Hk)f=1)l3 = tracé { £ ^ ^ 1 (A.7) 

This inner product is related to the £2-norm on vector spaces, whence the subscript £2. Indeed, we 
easily see that 

{ oo 1 oo p p 

£>*/#} = ££I>*(i,J)2 (A.8) 
If matrix A is required to be asymptotically slable, meaning that all its eigenvalues lie inside the 
open unit disk, we see that the sequence of Markov matrices associated with (A, B, C) is an element 
of the Hilbert space described above and as a matter of fact, the space of all sequences of Markov 
matrices resulting from such triples can be shown to constitute a differentiable manifold imbedded 
in the Hilbert space just described. 
Now that the directional derivative [A.B.C] at {A, B,C) can be associated with the system given 
by matrix triple (A,B,C) and therefore with a sequence of p X p Markov matrices as well, we see 
that we can relate the tangent space to the differentiable manifold of systems at (A, B,C) with a 
subspace of the Hilbert space of matrix sequences of size p x p. (Notice that if A is asymptotically 
stable, then also A has this property.) Therefore, we have an ^2-induced inner product on the 
tangent space at (A, B, C), via this imbedding in Hilbert space. This inner product thus constitutes 
a Riemannian metric on the manifold of systems (i.e., of canonical matrix triples (A,B,C)). 
The discussion above is general in the sense that it applies to all parametrizations of (A,B,C). 
When restricting to the parametrizations introduced before, we find that C = 0 so that the formula 
of [12] for the inner product of two derivative systems at (A, B, C) reduces considerably. Noticing 
that we can rewrite the expression for the inner product as 

<{fffc}f=i-{£*}?=!>*' = tracé j f x ^ l (A.9) 

(because tia.ce{HkHk
r) = tracé{H^Hk}), we obtain the following formula 

([A,È,C],[A',B',C'])0 = tracé {ÈTL{CTC)È'+ 

+ÈTL{ATL(CTC)A')B + BTL(ATL(CTC)A)B' + BTL(ATL(CTC)A')B+ (A.10) 

+BTL{ATL(ATL(CfrC)A')A)B + BTL(ATL(ATL(CfrC)A)A')B} 

Here, the expression L(A') denotes the solution for L to the (discrete-time) Lyapunov equation 

L-ATLA = K (A.ll) 

It is this large formula that we use in our calculation of the Riemannian metric tensor, since we can 
exploit efficiently the structure of A, B and C. How exactly this is achieved, will be discussed after 
the next subsection. 
If the Riemannian metric tensor, represented by a matrix of size 2np x 2np, is split up into 4 blocks 
of size np x np each, then block (1,1) corresponds to the last three terms of the expression above, 
block (1,2) to the second term, block (2,1) to the third and block (2,2) to the first. 
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A.2 Case 2: Using the o / i - imbedding 

The prediction error filter associated with system (A, B, C) corresponds to matrix triple (A, B, C) = 
(A — BC,B,—C). Obviously we have the following relation for the derivatives 

A = A-BC, Ê = B, Ö = -C = 0 (A.12) 

In the present situation we take (A, B, C) as the basis for our calculations and we are concerned with 
its tangent space. Thus, we consider the sequence of Markov matrices for (A,B,C), on imposing 
the extra condition that A be asymptotically stable. We again have that a derivative system at 
a prediction error filter can be associated with an augmented linear system, so that we can relate 
the tangent space to the system manifold at (A, B,C) to another linear subspace of the Hilbert 
space discussed before. We can then apply Hanzon's formula for the inner product of two derivative 
systems, using tildes everywhere. However, we are interested in the parametrization via A and B. 
We get the expression 

([A,Ê,Ö],[A', É',è'})t2 = t r a c é { s T L ( C T C ) S ' + 

+ëTi(ATL(örc)A')ê + BTi(ATl(cTc)A')è' + êTl(ATl(cTc)A')B+ (A.13) 

+BTl(ATl{ATl{CfrC)A')A)ë + BTl{ATl{ATt{GrC)A)A')B^ 

which can be rewritten in terms of A, B, A' and B' as: 

([i ,È,C\,[A',È',C']) t2 i 0 / i = t r a c é { È T L ( C T C ) È ' + ÈTl(ATl(CfrC){A' - È'C))B+ 

+BTl((A - ÈC)Tl(CTC)A')È' + BTl((A - ÈC)Tl(CTC)(A' - È'C))B+ 

+BTL((A - Èc)Ti(ATl(cfrC)(A' - È'C))A)B+ (A.H) 

+BTl(ATl((A - Èc)Tl(CTC)A)(A' - È'C))B} . 

Of course, L(A') now represents the solution for L to the alternative (discrete-time) Lyapunov 
equation 

l - ATIA = K (A.15) 

Using this formula, we can calculate the corresponding Riemannian metric tensor. For this, it is 
desirable to group the terms in the expression. We write 

([A,B,Cl[A',B',C'})l2t0/i = 

tracé ^BTL{ATl(CfrC)A')B+ 

+BTi(ATi{ATi(CTc)A)A')B+ 
+BTL(ATl{ATt{cTc)A')A)B+ 

-BTL(ATL(cTc)è'C)B+ 
-BTi(ATl(ATl{cfrC)A)B'c)B+ 
-BTi(ATi(ATl((?rC)B,C)A)B+ 

+BTl{ATl{cTc)A)è'+ 
-BTL(CTBTl(CTC)A')B+ 

-BTl(ATl(Cfr BTL(CTC)A)A')B+ (A.16) 
-STL(CT5TL(iTL(CTC)A')i)B+ 

+ÈTL{ATl(CTC)A')B+ 
+BTl(CfrÈTl(CTC)B'C)B+ 

+BTl(ATl(CT ÈTl(CTC)A)È'C)B+ 
+BTL(CT BTl(ATL(CTC)È'C)A)B+ 
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-BTL(CTÈTl(CfrC)A)È'+ 

-BTl(ATL{CTC)B'C)B+ 

+BTl(CTC)B'}. 

If the Riemannian metric tensor, represented by a matrix of size Inp x 2np, is again split up in 4 
blocks of size np x np each, we get that the (l,l)-block corresponds to the first three terms, the 
(l,2)-block to terms 4 to 7, block (2,1) to terms 8 to 11 and block (2,2) to terms 12 to 17. 

A.3 Efficiënt calculation of the Riemannian metr ic tensors 

The terms in the expressions for the Riemannian metric tensors in both situations discussed before 
can be calculated efficiently by exploiting the structure of matrices A, B and C. In our formulas 
we have already accounted for the fact that C and C do not depend on any parameters at all, so 
that C = C — 0. For the rest, it is clear that A and B exhibit a special, very sparse structure if we 
consider partial derivation with respect to one parameter 0; at a time only. Also, we must notice that 
calculation of any term involves (sometimes repeatedly) the solution of a (discrete-time) Lyapunov 
equation. Therefore, we shall first discuss how to solve a discrete-time Lyapunov equation in some 
more detail. 
We address the following equation 

L - ATLA = K (A.17) 

where it is assumed that A is an asymptotically stable matrix. As a consequence of this the solution 
to such an equation is then unique (which is a well-known result), and can formally be expressed 
as the infinite sum 

oo 

L(K) = ^ ( ^ T ) f c - 1 A ^ f c - 1 (A.18) 

(It is precisely the requirement that A be asymptotically stable which makes this sum converge.) In 
order to calculate L(A') numerically, we can use the following well-known recursive scheme. 

initialization: L(0) = K, M(0) = A (A.19) 

recursion: L(t + 1) = L(t) + M(t)TL{t)M{t), M{t + 1) = M{tf (A.20) 

Notice that this comes down to 

2' 

L(t) = Y^(AT)k-1KAk-\ M(0 = A(2,) (A.21) 
fc=i 

Therefore, very rapid summation takes place so that relatively few iterations are sufficiënt for a 
good approximation to L(/v), given by L{t). 
Next, we mention a number of properties of the Lyapunov equation and its solutions. For all 
K, M E R n x " and A G R we have 

L(K + M) = L(K) + L{M) (A.22) 

L(XK) = XL(K) (A.23) 

L(KT) = L{K)T (A.24) 

These follow easily from the structure of the equation and the uniqueness of its solution. They will 
be very useful in representing the solutions to the repeated Lyapunov equations, occurring in the 
terms for the elements of the Riemannian metric tensors. 
We first introducé some more notation. By £(''•>) we denote the (i, j)—th "basis" matrix of size 
n x n, that is, the matrix consisting of zeros everywhere, except for the element on location (i, j) 
which equals 1. The element at location (i, j) of matrix K is denoted by K^jy The solution to the 
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Lyapunov equation with K = E ^ is denoted by L(£' ( ' ' j )) = L,(l,'\ 
Obviously, we can now in general write L(K) as 

Moreover, we have that 
( l( 'J ' ))T = L(">, since (E^f = E™ (A.26) 

We shall pay attention to three special cases, involving the solution to repeated Lyapunov equations. 

(i) Consider matrix E^'^KA. 
This matrix consists of n — 1 zero rows, and only row i is possibly nonzero. This row is equal 
to row j of KA, that is 

(E«>»KA)lml) = l * n , , , * m # * > (A.27) 

Therefore we get 

L(E^KA) = f; ( £«•<> f J2 * 0\*) A M ) ) ) (A.28) 

(ii) Consider matrix E^^KE^'h\ 
This matrix consists of zeros everywhere, except for possibly the element on place (i,h) which 
is equal to K(j>g). Thus, E^KE^'V = KUit)EV*\ Hence 

LiE^KE^'V) = Ku<g)L^'k) (A.29) 

(iii) Consider matrix ATL{E^'^KA)E^'h\ 
Put M = L(E^^KA), then the matrix above can be written as (E^h^MTA)T. 
Using (i) on this expression yields 

L{ATL(E^^KA)E^^) = l(E^MTA)T = ]T l£<'•*> Hr A(M)M(fc,a) J ) (A.30) 

But we can also apply (i) to M. This gives 

M&.,) = E [Lf^g) (J2 %,^(v)j j (A.31) 

Combining both expressions gives us the final result 

L(A'L(E<WKA)ÉM) = E £«•*> E AM)E £(M) E % . ) V ) 
i = l \ \fc = l r= l \ \ j = l 

(A.32) 

These results are of importance when calculating the terms in the expressions for the Riemannian 
metric tensors. For this, notice that when we apply partial differentiation with respect to 6^i^n+j 
(where i E { 1 , . . . ,p} and j E { 1 , . . . , n}) we get 

A = A^'j) = E{pr^j\ È = Q (A.33) 

Similarly, if we apply partial differentiation with respect to önp+( I_1)„+j (where t 6 { 1 , . . . ,p} and 
j E {!,...,n}), we get 

BC = È{i^C = E^'l\ A = 0 (AM) 
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Moreover, we have that matrix C7 C has the structure 

cTc={o o) (A-35) 

where the identity block is of size p x p. Therefore 

p 

L(CTC) = 5 3 i ( M ) (A-36) 
i=l 

We finally notice that all terms appearing in the expressions for the elements of the Riemannian 
metric tensors can be solved with one of the three special forms discussed above. For the Riemannian 
metric in the second case we must of course use matrices A, B and C, which comes down to adding 
tildes in the appropriate places. We also have to make use of the fact that tTa.ce{KT} = trace{/<}, 
so that the terms where the matrices appear in the opposite order can be rewritten. 
Thus, it has become clear how the elements of the Riemannian metric tensors can be calculated, in 
both cases under consideration, although the actual process of doing so remains quite laborious and 
time consuming. Possibly symbolic computation of explicit expressions for the elements can lead 
to a speed up in these cases. Notice that the approach described above might be useful in deriving 
such expressions. 
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