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Abstract

This paper is focused on interdependencies between criteria in multicriteria decision
~analyses, Such interdependencies are usually ignored in sensitivity analyses. After a
discussion on the nature of interdependencies, methods are presented to deal with
interdependencies in the context of Monte Carlo experiments. These methods are applied
in the context of soil pollution trearment alternatives. It is shown that ignoring
interdependencies may have a distorting eftect on the results of sensitivity analysis on
rankings of alternatives.

Key words: sensitivity analysis, interdependent critena, multicriteria decision making, soil
poilution treatment.



1. Introduction

The complexity of many environmental decision problems calls for a multidimensional
analytical framework in order to capture a wide range of relevant aspects. Two major
scores of uncertainty can be mentioned in this respect. Firstly, the various aspects to be
taken into account are often difficult to compure; it is hard to amive ar quantitative
figures to trade them off against each other. This raises the issue of uncertainty on the
trade-offs in multicriteria decision methods. Secondly, for some relevant criteria there
may be a considerable degree of uncertainty regarding the precise values attained. This
may relate both to environmental impacts and to other relevant aspects, such as cost of
pollution abatement, duraiion of trearment, etc.

A possible way of dealing with uncertainty s to use Monte Carlo simulation technigues.
This involves the formulation of a statistical distribution of one or more parameters and
the use of a corresponding random generator. There are several ways to formulate such a
statistical distribution. One way is 10 use intervals and to assume a uniformy distribution
on these intervals, Another way is to formulate a certain statistical distribution (for
example a normal one) with a certain value for the mean and the variance. The broader
the intervals and the larger the vanances. the less certain the outcome of multicriteria
decision analysis will be.

The way this uncertainty can be aalyzed varies among particular multicriteria methods.
In the case one-dimensional utility functions are used, the uncertainty can be analyzed
immediately by inspecting ranges and variances of the wility scores of the respective
alternatives. A strong overlap of the intervals of utility scores for two alternatives means
that there is lirtle certainty about their ranking. Stochastic dominance is one of the
possible tools for analyzing the robusiness of rankings in this case (cf. Rietveld and
Ouwersloot, 1992).

When multicriteria methods are used which are not based on a one-dimensional utility
function, such a procedure is no longer applicable. In this case one may use a rank-
probability matrix P as a vehicle to represent the results of the sensitivity analysis. Such
a rank probability matrix is a square matrix with J rows and elements p, where p,;
denotes the probability that alternative j achieves rank n. The sum of the elements in
each row and column in P is by definition equal to 1. There is complete certainty about
the ranking of aliernatives if a permutation of alternatives exists such that the diagonal
elements of the matrix are equal to 1. The other extreme of complete uncerwinty occurs
when all elements of the matrix are equal 0 1/}

In the standard way to address uncertainty statistical interdependencies among criteria are
ignored. However, as we will indicate in this paper. such interdependencies ofien play an
important role. They may have a considerable impuct or *he outcome of the sensitivity
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analysts. This means that ignoring these interdependencies may give a distorted view of
the relative attractiveness of alternatives.

This paper is organized as follows. In section 2 we discuss the issue of interdependencies
in multicriteria decision analysis. In section 3 methods will be presented 10 generate
random numbers in the case of interdependencies. Section 4 contains a method o
decompose uncertainty of utility scores. In section 3 the methods developed will be
applied to an evaluation problem in the coniext of soil pollution. Concluding remarks are
given in section 6.

2. Interdependencies of criteria

Consider an evaivation matrix X with elements x,. where x. denotes the score for
cnterion 1 {i=[,....I) of alternative j (j=1....J}. An uanalysis of the correlation coetficients
among the criteria often reveals that some of the criteria are swongly correlated. For
example, in an eight criterion case on impacts of industrial sites (¢f. Rietveld, [980) it
appears that there are five pairs of criteria with an absolute value of the correlation
coefficient higher than .70. For one pair of criteria the correlatton coefficient is as high
as 977

When applying multicriteria evaluation methods the occurrence of high correlations is
often used (implicitly or explicitly) to reduce the cost of tmplementution of the method.
For example, when studying the negative impacts of road construction on the faunn one
might in principie have w consider a very large number of species. However. effects on
several types of birds may be very similar, so that when one has studied the impact on
one type, one can easily extrapolate what will be the effects on other birds. The loss of
relevant information due to ignoring oll individual species may be very smali in this case.
(Of course, this use of one criterion for a particular species 1o represent the impact for a
larger set of species has to be taken into account at the phase of formulating the relative
importance of the pentaining criterion. )

An investigation of the correlation coefficients among criteria may also be helpful to
understand the basic conflicts involved. A strong negative correlation between two
criteria means that an improvement in one direction almost cemainly wifl lead to a
worsening in the other one. On the other hand, when criteria have a high positive
correlation, one may infer that there is a small degree of conflict among thein. Aiming at
the selection of an alternative with a good performance according to one criterion will in
this case usually also lead to a good performance according 1o the other criterion.
Correlation analysis may also be helpful for analyzing probabilities of coalition formation
in the case of multi-actor problems. When difterent actors attach o high priority to
criteria which have strong negative correlations. the probability of the forming of a
coalition is fow.
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When the criterion values concerned are uncertaln, such interdependencies have to be
taken into account when sensitivity analyses are carried out. Consider for example a
regional government that has o chose between different infrasiructure improvement
projects. Among the criteria to be taken into account are regional employment growth
and growth in regional production. The direction of the response of the private sector
with respect to the infrastructure improvement is most probably positive: infrastructure
improvement will induce existing firms to expand and new firms to locate in the region.
One may expect that the two criteria are positively correlated, accordingly. The size of
the response is uncertain, however. The positive correlation between the two criteria
implies that when the employment impact will be higher than expected, also the impact
on production will be higher. When in a sensitivity analysis such an imterdependence is
ignored, one may arrive at a distorted view of the range of pessible outcomes of a utility
score. In the case of two criterin which are positively correlated ignoring inter-
dependencies leads to an underestimate of the variance in the utility score.

The way the efements of the evaluation matrix have been measured has an impact on the
treatment of interdependencies in sensitivity analysis. We distnguish three differemt
cases: direct measurement of criterion scores, subjective estimates of expens, and
estimates based on scientific models.

First, the measurement of the criteria considered in the evaluation matrix may take place
in an immediate way without the use of models. For example, when one searches a
dwelling there are simple ways of measuring the performance of alternatives in terms of
size of the dwelling, last year's consumption of gas und electricity, its distance to the
shopping centre, etc. In this case uncertainty (for example in the form of measurement
errors) usually plays a rather smiall role, and this also holds true tor interdependencies.

Uncertainties become more important when criteria are involved that cannot be measured
as easily. This may occur for example when one wants to take inte account the future
values of the relevant criteria. In such a case one may distinguish subjective strategies
where use is made of expert judgements and strategies where use is made of scientific
models.

In the case use is made of subjective estimates, experts may be asked to tormulate the
distribution {for example by means of the mean value and the variance) of criterion
scores. In addition, they may indicate to which extent they think criterion scores are
correlated. One of the ways 10 arrive at such formulations of distributions is w base them
on experiences in the past about similar cases.

In the case of completely specified models, criterion scores can be generated more or less
avtomatically. One should be aware, however, that here again several subjective elements
will play a role. for example in the choice of the type and specification of the model.
Also in the case of models one has 1o face the problem of uncenainty. since models are
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not necessarily directly applicable to the decision probiem at hand. Model parameters
have to be estimated or to be guessed. In both cases one ends up with formulating
statistical distributions of parameters. By using Monte Carlo techniques one can then
generate the relevant information on the shape of the distributions of all elements of the

evaluation matrix X, as well as on the interdependencies among these elements of the
matrix.

From this description it becomes clear that in both latter cases information is needed on
the statistical distribution of 2 number of parameters. The difference is that tn the case of
subjective estimates, the statistical information directly relates to the criterion scores,
whereas when models are used, the statistical information refates to the parameters of the
underlying model. An advantage of using models is that they may help to ensure
consistency in the estimation of the impacts. In terms of interdependencies there is also a
difference between the approaches. If one wants to take into account interdependencies
between criterion scores in the case of subjective direct estimates of the criterion scores,
one has to formulate these interdependencies explicitly. In the case of model based
estimates  such interdependencies follow automatically given the interrelationships
specified in the model. We note in passing that it is not impossibie that in the model
aﬁprouch one may also have to take into account interdependencies between model
parameters, but this is not necessary to arrive at non zero correlations between criterion
scores.

It remains a question how experts can express their knowledge about interdependencies
in the case of subjective estimates. Especially when the number of criteria is large this
may become a problem, since the number of interdependencies increases in a quadratic
way with the number of criteria. In -addition, it is by definition more complex to indicate
a quantitative measure for the degree of interrelation between two criteria, than that it is
to indicate a mean and a range of uncertainty for one criterion. A much easier approach
would be to use the correlation coefficients between the mean criterion values in the
evaluation matrix X as a proxy for the intensity of interrelation between the measurement
errors. These correlation coefficients can be shown to the experts carrying out the
sensitivity analysis; if they feel that some correlation coefficients do not give an
appropriate indication of the interdependencies between the errors, they may adjust them
according to their own insight.
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3. Methods for generating interdependent random normal criterion scores

When interdependencies between criterion scores wre ignored, it is not difficult to
generate random values, Given the mean and the variance of a normal distribution, one
c¢an immediately make use of u standard random normal generator. In the case of
interdependencies the situation is more complex. Let x. be 4 random number drawn from
a normal distribution with meun p,; and variance o’znj so that p is the expected value of
criterion n for alternative j.

The comrelation coefficient between criterion n and m is equal o p,, so that the
covariance berween criteria n and m for alternative j is:

cft‘.:nj = pnm an ij

Then, in order to generate random values tor the criterion scores one may proceed as
follows,

First, one may use conditional distributions as follows:

x,,  is generated from the normal distribution with mean y, and variance o,

Xy Is generated from a normal distribution conditional on the previously generated
CTHErion Xy

, is generated from u normal distribution conditional on the previously generated
. . Al
criteria X, and X,

This approach requires the explicit formulation ot all conditional distributions. Note that
this involves the inversion of the variance-covariance matrix in cach step i order to
compute the conditional variances (cf. Mood. Graybill and Boes, 1974}.

The second approach, is due to Schever and Stoller (1962) and makes use of the fact that
the covariance mawix X of the normaily distributed variables can be (Choleski-)
decomposed as £= CC" where C is a lower wiangular mairix, since the covariunce matrix
is symmetric and positive definite. It 13 not difficult to compure the matrix C. Once C is
given, the interdependent values of X can be obtained as weighted sumimuations of
mdependently distributed random variates with the elements of C as the weiglts.



4. Decomposition of uncertainty

Sensitivity analysis usually addresses the robusiness of rankings of alternatives. In the
present section we discuss a particular approwch in which a decomposuion of the
uncertainty of the outcomes of alternatives is given. Qur point of departure 15 a linear
utility function

i
2=y we ()

F]

with weights w, for the criteria 1=1,....1, and criterion scores x,, for alternatives j=1...J.

In sensitivity analysis, the values of x_ wre no longer assumed to be known with
certainty. This leads 10 uncertainty on the utility scores Z. and thus the question arises
how uncertainty in the utility scores can be decomposed: what is the conwribuiion of
virious criteria to the uncertainty in the wtility score. There is an easy solution to this
question when we use variances (and covariances) to formulate uncertainties.

Let Var and Cov denote the variance and covariance operators respectively. Then

Var(Z, ) = E E v, Corx,.x,) (2)
so that
Y3 ww Covix,x,)
— =] . (3)
Var[Zj )

Then, the relative contribution of criterion i to the uncertainty in Z can be written as:

i
§ ww, Cov (x,.x,) @)
. =

¥ Var(Z)

Note that in this equation interdependencies between the criterion scores pluy a role via
the covariances. If errors in the criterion scores would be independent, ie.
Cov(x,.x;)=0, the ubove equation reduces to:



Y

2y,
4o wh ar(.r&.) )
Y Var (Z)

Since Cov{x,x) = Var(x)

From (5) we infer that the coatribution of a criterion to uncertainty in Z is large when
the product of weight squared and variance is relatively large. Equation (4) indicates that
with interdependencies a more complex picture emwrges: negative correlations among
criteria will have a mitigating effect on the contribution of a pwrticular ¢riterion, positive
correlations an amplifying etfect.

A limitation of this decomposition method is that it can only be used in the case of an
additive function. Note, that the method does not depend on assumptions about the form
of statistical distributions. It can be used for both normal and other distributions. Further,
an attractive property of the method is that it yields results in an analytical way: there is
no need to carry out Monte Cuarlo simulations. This method is illustrated in the next
section,

5. Case study: soil poffution treatment

During the [ast decade, concern about soil pollution has grown rapidly in many
industrialized countries. In the Netherlands it has been estimated that six thousand con-
taminated areas require urgent remedial action. The selection of the most appropriate
sanitation straegy is not easy, due o0 the large number of contanunants invoived, the
fimited budget available and several other complicating factors, In order 10 formulate the
main points of a sanitation policy. Dutch legislation provides a framework for the
evaluation of contaminated soils and for establishing priorities for clean-up operations
(Soil clean-up guideline. 1983). A decision support system has been developed to select
the most appropriate alternatives (Herwijnen et al.. 1992, and Beinat and Janssen, 1992).
The present application will focus on sensitivity tests and the role ol interdependencies
using linear utility functions. The application concerns a polluted site in Nieuwerkerk aan
de Ussel, a village in The Netherlands. Eleven aliernatives were developed for o clean-up
operation. The number of criteria to be taken into account was nineteen. Tabke t shows
the relevant criteria with the respective weights, The weights have been dewrmined on
the basis of expert judgements of officials trom the Ministry of Environment by means
of the expected value method described in Rietveld and Quwersloot (1992). Relatively
high weights are attached to the residual concentrations of pollutants in the cleaned soil
and the residuals of treatment materials on the cleaned soil. Also. emissions w air and
groundwater due to the treatment receive high weights. For criteria of type "+" higher
vatues are preferred ubove lower values. For criteria of type "-" the reverse holds true.
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Table 1. Criteria in soil sanitation decision problem.
unit of welght type
measurement of criterion
Time
st sanitation time days 0.066 -
Amounts of soil produced
s cleaned soil tons 0.005 +
$8 silt and sediments 1ons 0.009 -
ug uncleaned soii tons 0.018 -
Residual concentrations of pollutants in cleaned soil
ree cadmium mg/kg 0. 148 -
ez zinc mg/ky 0.148 -
Treatment residuals in cleaned soil
tre cadmium mg/kg (.098 -
s zinc mg/kg 0.098 -
Quality cleaned soil
pom percentage of organic matter % 0.076 +
poc percentage of clay Ge 0.009 +
psos preserved structure of soil qualitative
: index U-10 L.039 +
pl preserved life qualitative
mndex 0-10 0.021 +
Emissions to air
el emission matter mg/kg U.b11 -
Emissions to ground water
egw emission matter mg/kg 0.U86 -
Company reliability
cre experience of company years 0.016 +
cfp number of finished projects  number 0.003 +
Absence of nuisance
ns stench gualitative
index 0-10 0.029 +
nnav noise and vibrations qualitative
index 0-10 0.003 +
nsa nuisance to surrounding
activities quaditative
index 0-10 0.013 +
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Table 2. Evaluation Matrix

BIOREST. LOUCHTV, STOOMST. THERM.l1 THERM.Z2 EXTR.1 EXTR.Z FLOTATIE LANDF.} LANDF.2 BIOREAKT
alt 1 alt 2 alt 3 alt 4 alt 5 alt & alt 7 ait 8 aje 9 alt 10 alt 11

st -713.00 -543.00 -355.50 -127.00 -136.50 -153.00 -174.5¢ -177.00 -1627.00 -1091.00 -596.50
<5 14598.50 14763,00 14316.00 11209.50 11138,00 82940.00 10576.00 11527.00 14744.00 14625.00 13906.00
5s -308.00 ~117.00 -785.00 ~200.50 +~177.00 -9482.00 -6320.50 -3575.5C ~89.50 -254.00 -1325.50
ug -111.38 -44.55 -126.22 -393.52 -373.48 ~430.65 ~460.35 -408.37 -460.35 -~415.80 -452.92
ree -22.00 -24.60 -23.00 -22.20 -19.75 -1.50 -1.7% -1.290 -24.60 -24.10 =19.75
rcz -1774.15 ~1867.55 -1895.05 ~1975,35 -1975.35 -248.00 -248.00 -138.85 -19%75.35 -1965.40 =1835.90
tre -20.50 -23.50 -17.50 -24.50 -25.50 -1.50 -2.00 ~-1.50 -17.350 -17.060  -18.50
trz -1325.00 ~1%73.00 -1430.00 -840.00 -840.00 -206.50 -219.00 -125.0C -1763.00 -1755,50 -1825.00
pom 23.28 23.82 21.60 1.08 ¢.48 3.00 9.60 9.00 23.88 23.28 19.20
poc 24.38 24.87 24,12 23.75 23.88 2.50 11.28 18.13 24.69 24.50 23.75
psos 8.25 8.50 6.75 2.50 2.50 3.00 4.50 3.50 7.50 8.00 5.50
pl 7.50 8.40 6.00 0.50 0.50 .50 0.50 .53 £.00 8.00 7.00
ea -14.00 -262.50 -500,00 -3250.00 -3250,00 -3250.00 ~3250.00 -3250.00 -323C,00 -3250.00 -3250.00
egw -0.50 -0.04 -0.63 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0,04 -0.04
cre 3.00 4.00 4.00 8.00 g8.00 8.00 1.50 g.50 6.00 4,50 3.50
crnfp 2.50 15.00 4.00 175.00 350,00 85.00 3.00 35.00 35.00 10.00 5.00
ns 9.25 8.50 7.50 5.50 5.50 5.50 5.50 5.59 5.50 5.50 5.50
nnav 9.25 9.50 7.50 5,50 5.50 5..50 5.50 5.50 5.50 5.50 5.50Q
nsa 9.25 9.63 8.50 4,00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Table 2 shows the evaluation matrix for 11 sanitation alternatives including biological,
thermal and chemical techniques. Using an additive utility function as indicated in
Janssen (1992) yields the result that alternative 9 is the most attractive alternative,
followed by altemmative 10. Alternatives 6, 7 and 8 are least attractive (see Table 3).

Table 3. Results of weighted nummation

alternative utility score
alt 9 84
alt 10 81
alt 11 73
alt 3 T3
alt 2 72
alt 1 72
alt 4 63
alt 5 62
alt 7 28
alt 8 27
alt 6 26

The correlation coefficients between each pair of criteria are shown in Table 4. A
correlation value close to 1 or -1 implies a strong relationship between the criteria. A
considerable number of high comelations (absolute value higher than 0.9) is found.
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As discussed in Section 2, Monte Carlo techniques can be used to generate random
scores according to the distribution for each method (independence und interdependence).
Variances of the scores are based on expert judgements of the sume experts mentioned
above about intervals within which the criterion scores will most probably be found (cf,
Janssen and Herwijnen, 1993). For correlations between the scores we use the correlation
matrix in Table 4. The tollowing tables represent the results of the Monte Curlo analysis
after 1000 trials. Table 5 presents the probabilities that alternatives achieve certain ranks
of these 1000 trials under the assumption of independence and Table 6 represents these
probabilities under the assumption of nterdependence.

Table 5. Rank Probability Table (Independence Assumed),

alt9 altl0 altll alt3 alt2 aitl alcd ales5 alt? alcé altsd
rapk 1 0.73 0.2¢ O 0 0 0 0 0 v] g 0
rank 2 0.26 0.67 0.05 0.01 © 0.01 © 0 0 8] i}
rank 3 0.01 0.06 0.44 0.25 0.11 0.14 0O Q U 0 0
rank 4 0 0.01 0.1 0.34 0,25 0.22 0.01 0 u it a]
rank 5 0 0 0.14 0.24 0.33 0,28 0.0L 0 U 4] 0
rank 6 0 4] 0.1% 0.16 0.29 ¢.32 0,03 0 a 0 1]
rank 7 0 0 0.01 ©0.01 0.02 0.0z 0.55 0.40 o 9 0
rank 2 0 Q Q ¢ Q 0 0.40 0.60 © 0 0
rank & 0 0 (¢ 0 0 0 0 0 D.5% 0.zy 0,18
rank 10 © 0 0 0 0 0 0 1] .30 0.38 0.32
rank 11 0 Q Q 4] U 0] 9] (] 0.1lc 0.4 0.50
Table 6. Rank Probability Tuble (Interdependence Assumed).

alt® altld altll alt3 altz altl altd alch alt7? altgd alte
rank 1 0,29 0¢.20 0.13 ©0.10 0.10 0.10 0.04 0.0Z ¢ 0 0
rank 2 0.1% 0.18 0.13 0.12 0.11 0.14 0.067 0,07 « 0] Q
rank 3 ¢.l¢ 0.18 ©0.12 0.1i5 0.13 ©0.12 ©.07 0.02 ¢ 4] 0
rank 4 0¢.,12 0.,1% 0.12 o0.13 0.13 0.14 0.10 0.10 ¢ 4] ¢
rank 5 0.09 ©0.09% 0.14 0.14 0.12 ¢.13 0.13 L1200 0001 001 0,01
rank & ©¢.07 0,09 0.12 0.13 0.14 0.13 0.15 0.iZ wo.02 0.¢1 0.01
rank 7 0,04 0.0¢ 0.12 0.11 0.12 0.12 0.1l 0.17 0.04 ¢.93 0.04
rank 8 0,04 0.03 0.07 0.09 0.09 {$.08 0.17 0.17 $.10 Q.11 0.08
rank 9 0.01 0.02 Q.03 0.02 0.05 0.04 0.08 0.08 o.24 0@¢.z23 0.20
rank 10 0 g.¢gr 0.01 0.01 0.01 0.0 0.03 0.04 (.28 0.2% (.31
rank 11 0 0 0 0 0 ] 0.01 0,0 0,30 0.32 ©.35

In the case of independence (Table 5) one observes an approximately block diagonal
structure in Table 5 based on the following groups of alieratives {9,10), {11,3,2,1},
{4,5} and (7,8,6]. Within these groups there is sometimes a considerable degree of
uncertainty on the ranking of altetnatives, but the ranking of alternatives between the
groups is very certain. This clear result disappears when interdependencies wre taken into
account. Only a small part of the cells in Table 6 consists of zero’s. The disuribution of
the possible rank an alternative may attain is for most alternatives very broad.
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A Chi-Square test can be used to test whether a significant ditference exists between the
two methods. In Mood, Graybill and Boes (1974) a procedure is presenied o calculate
sums that converge to the chi-square distribution. These sums can then be derived from
probability tables 5 and 6.

Table 7. Chi square sums.

altl alt2 alc3 altd alth alté alt? altg aley ailtl0 altll
2%0.58 307.66 274.70 426.96 494.6% 86.07 167.95 88.49 356,24 370,63 271.38

The value of chi square with 10 degrees of freedom at the 0.995 level is 25.2. As a
result, it is found that for all alternatives the two probability tables are different. Taking
into account interdependencies indeed has a significant impact on rankings of ulternatives
in this case study. In the present case the degree of uncertainty about the ranking is
much larger when interdependencies are taken into account. Or formulated in the reverse
way: ignoring interdependencies may lead to a strong underesnimation of wnceriainties in
the ranking of alternatives.

The formulas in section 4 are now used to demonstrate u decomposition of uacertainty in
utility scores using variances of each criterion.

Table 8 represents the decomposition of the variance per criterion for cach soeif clean up
method.

Table 8. Total average share of variance per criterion,

average share average share

independence interdependence
assumed assumed
st 0.02 0.01
cs 6.00 0.00
53 0.00 0.00
ug 0.02 0.00
rce 0.02 0.01
rez 0.02 0.01
trc 0.1¢ 0.10
trz 0.07 0.07
pom 0.01 04.01
poc 0.00 0.00
psos 0.01 0.01
pl 0.00 0.01
ea 0.56 0.62
egw 0.13 0.15
cre 0.00 0.00
crnfp 06.00 0.00
ns 0.03 0.01
nnav 0.00 0.060
nsa 0.01 0.00

total
variance 1.00 1.00
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The average shares indicate the contribution of each criterion to the overall uncertainty
(across all alternatives). For instance emissions to air (ea) has the greatest contribution.
The percentages of the two methods are similurs the chi squuare test does show a
significant difference between the two methods,

If one wants to improve one’s confidence about the ranking produced by the multi-
criterion decision method, the first thing to be considered is to vollect additional
information on the air emisston criterion. Other important sousces of uncertainty are the
residual cadmium (ire) and groundwater emissions (egw).

6. Concliuding remarks

Interdependencies between criterion scores are usually ignored in sensitivity analyses in
multicriteria evaluation. Our case study in the fiehl of soil pollution treaument shows that
interdependencies may be quite high and wide spreud. They appewr 1o have u significant
impact on the probabilities that certain ranks are achieved by the alternatives. Ignoring
these interdependencies may have a distorting effect on the results of sensitivity analysis
in multicriteria evaluation,
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