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Abstract 

In this paper we show how the periodogram of a semimartingale can be used 
to characterize the optional quadratic variation process. 
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1 introduction and notation 
As is well known in the statistical analysis of time series in discrete or continuous 
time, the periodogram can be used for estimation problems in the frequency domain. 
It follows from the results of the present paper that the periodogram can also be 
used to estimate the variance of the innovations of a time series in continuous time. 
Usually in statistical problems this variance is assumed to be known, since it can be 
estimated with probability one, given the observations on any nonempty interval in 
a number of cases. (See for instance Dzhaparidze & Yaglom [5], theorem 2.1). 
A fundamental result in another approach is now known as Levy's theorem, which 
states that the variance of a Brownian Motion can be obtained as the limit of the 
sum of squares of the increments by taking finer and finer partitions. This result 
has been generalized by Baxter [1], who showed a similar result for more arbitrary 
Gaussian processes (that need not to be semimartingales) and to the case where the 
process under consideration is a semimartingale by Doleans-Dade [3], who obtained 
a characterization of the quadratic variation. See also theorem VIII.20 of Dellacherie 
Sz Meyer [4] or theorem 4 on page 55 of Liptser & Shiryaev [10]. Related work on so 
called convergence of order p has been conducted by Lepingle [9]. 
In the present paper we take a different viewpoint towards the quadratic variation 
process (more in the spirit of theorem 2.1 of [5]) and it is our purpose to show that the 
periodogram of a semimartingale can be used as a statistic to estimate its quadratic 
variation process. We thus obtain an alternative characterization of this process as 
compared to, for instance, Doleans-Dade's. 
The rest of this secton is devoted to the introduction of some notation. 

Let (fl, T, F , P) be complete filtered probability space and X real valued semi mar-
tingale defined on it. X0 is assumed to be zero. Let (A,£,Q) be an additional 
probability space. Consider the product ü x A and endow it with the product a-
algebra T ® C and the product measure P <g) Q. Identify T with T ® {0, A} as a 
cr-algebra on fl ® A. 
Defme for each finite stopping time T and each real number A the periodogram of X 
evaluated at T by 

IT(X;X) = \ [ eiXtdXt\
2 

J[0,T) 

An application of Ito's formula gives 

IT(X; X) = 2Re f f elX(t~s)dXsdXt + [X]T (1.1) 
J[0,T] J[0,t) 

Let £ : A —> IR be a real random variable with an absolutely continuous distribution 
(w.r.t. Lebesgue measure), that has a density G, which is assumed to be symmetrie 
around zero and consider for any positive real number L the quantity 

E[IT{X-Li)\T] = EiIT{X-Li):= f IT(X;Lx)G(x)dx 
•/IR 
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It follows from Protter [11], pages 159, 160, that interchanging the integration order 
in (1.1) is allowed to obtain 

EiIT(X-Li)=2i f g(L(t-s))dXsdXt + {X]T (1.2) 
J[0,T] J[0,t) 

where g is the (real) characteristic function of £. 
Our purpose is to study the behaviour of E^IT(X; L£) for L —* oo. To that end we 
investigate this quantity for a number of distinguished cases in the next sections. 

REMARK: As is well known, g is a continuous function and for all s < f, it holds that 
g(L(t — s)) —> 0 for L —> oo, in view of the Riemann-Lebesgue lemma (cf. FELLER 
II [7]), and (of course) \g{x)\ < 1 for all real x. 

2 semimartingales of bounded variation 

Throughout this section we assume that X is a process of bounded variation over 
each finite interval. Denote by \\X\\t the variation of the process X over the interval 
[0, t] (t may be replaced by a finite stopping time T). In this case we obtain from 
(1.2) 

\EiIT{X;L{)-[X]T\<2[ f \g(L(t - s))\d\\X\\sd\\X\\t (2.1) 
J[0,T] J[0,t) 

Since limL-xx, g(Lx) = S(x) (with S(x) = 1, if x — 0 and S(x) — 0 if x ^ 0), an 
application of Lebesgue's dominated convergence theorem yields that the right hand 
side of (2.1) converges (almost surely) to 

2 l „ / 6(t - a)d\\X\\.d\\X\\t 
J[0,T] J[0,t) 

But this is equal to zero, since 8(t — s) = 0 for all s < t, whence the following result: 

PROPOSITION 2.1 Let X be a semimartingale of bounded variation, T a finite 
stopping time and £ a real random variable, independent of T, which has a density 
on the real line. Then almost surely for L —* oo 

EtlT(X;Lt)-+[X]T. 

REMARK: Notice the similarity of the above statement with formula 1.5 on page 620 
of FELLER II [7], if we take the case where £ has a uniform distribution on [— 1, +1], 
and where X is a piecewise constant process. 
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3 arbitrary semimartingales 
In this section we assume that X is an arbitrary semimartingale. Starting point for 
our analysis is again equation (1.2). Consider now the process YL defined by 

Y-L= i , / 9W-s))dXsdXt (3.1) 
•/[o,.] J[o,t) 

The first thing we will do in the next subsection is to give an upper bound for the 
absolute value of the inner integral in (3.1). 

3.1 a technical result 
We state in this section a technical lemma and a corollary. Thereto we have to 
introducé some notation. First we need the moduli of right continuity of X: 

W'x[ti,t2) = sup{|*„ - Xv\ :u,ve [h,t2)}, 

W'x T(£) = i n f { m a x W^i,-, U+i) :0 = to<...<tn = T,ti+1 - ti > e}. 

See Billingsley [2], page 110. (r may be a stopping time). 
Furthermore we have X" = sup{|X,j : s < t}. Next for any function (or process) 
Z, we denote by V(Z; I) the total variation of Z over the interval I. (Notice that 
V(X; I) = co for continuous local martingales X and for any interval / , except when 
Jjd(X) is zero). 

L E M M A 3.1 Let X be a cadlag process, g a real characteristic function of an ab-
solutely continuous distribution. Then for all e > 0 and t > 0, the following estimate 
is valid almost surely 

\[ g(L(t-s))dXs\ 
J[o,t) 

< W'x[t - e,t)(l + V{g- [0, Ie])) + X't[\g{Le)\ + V(g; [Le, Lt])] (3.2) 

as well as the coarser estimate 

| / g(L(t-s))dX.\<2Wx[t-e,t)(V(g-,[0,oo)) + 2X;V(g;[Leioo)) (3.3) 
J[o,t) 

PROOF: To avoid trivialities, we can assume that both V(g; [0, Le]) and V(g; [Le, Lt}) 
are finite. Consider first f^t_et)g(L(t - s))dXs. (If e > t, then we interpret the 
integral by extending the definition of X to the negative real line and setting Xt = 0 
for t < 0). Integration by parts together with the f act that g is continuous yields 
that this integral is equal to 

Xt. - g{Le)Xt.e - f (Xs - Xt.e)dg{L(t - s)) - Xt_e f dg(L(t - s)) 
J{t-e,t) J(t-e,t) 
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= Xt- - Xt-t - ƒ (A'. - Xt.£)dg(L(t - s)) 

J(t-e,t) 

Hence 

\f g(L{t - s))dXs\ 
J(t-e,t) 

< | A V - A W | + sup \XS-Xt.e\[ d\\g\\(L(t - s)) 
t-e<s<t J(t-E,t) 

< W ^ [ * - c , 0 ( l + V(5;[0,Ie])). 

Consider now the integral over [0,t — e]. Using again integration by parts, we obtain 

| / g(L(t - s))dXs\ < \g(Le)Xt.t\ + X;_t f d\\g\\(L(t - s)) 
J[0,t-e] J[0,t-e] 

<X;_MLe)\ + V[g;[Le,Lt])). 

Putting the above two estimates together, we obtain the first statement of the lemma. 
The second one is a simple consequence, since V(g;[0,oo)) > l,V(g; [0,00)) > 
V(g; [Q,Le]) and V(g; [Ie, co)) > \g(Ls)\. D 

COROLLARY 3.2 Let X be a cadlag process and let the function g be of bounded 
variation over [0, oo), and T a finite stopping time. Then 

SUP I / g(L{t — s))dXs\—* 0, a.s. 
t<T J[o,t) 

for L —> oo. In particular the process f,0^g(L(. — s))dXs is locally bounded on [0,T]. 

PROOF: First we prove the following statement. 

SVLV{W'X [t -e,t):te [ 0 , T ] } < 2W'Xtr{e)- (3-4) 

Fix rj > 0 and choose a partition 0 = tG < ... < tn = r, such that 

max W'x[ti,ti+1)<WXiT + ri. 
0<z<n—1 

Piek the i such that i2 < t < U+i. 
Then by taking suprema over three different possibilities we get 

Wx[t-e,t) = 

max{ sup \XU — Xv\, sup \XU — Xv\, sup |A"U — Xv\}, 
u,v£ [t-e,ti) u,ve{ti,t) u€[t-e,U),v€[U,t) 
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which is by the triangle inequality at most 

max{ sup \XU — Xv\, sup \XU — Xv\, 
u,ve[t-e,ti) u,ve[tj,t) 

sup \XU-Xtl\+ sup \XV-Xt,\}. 
u€[t-£,t,) ve[u,t) 

By taking suprema over larger intervals, this is less than or equal to 

max{ sup \XU — Xv\, sup \XU — Xv\, 
u,ve[ti-i,ti) jx,ve[ii,ti+i) 

sup \XU - Xv\) + sup \XU - Xv\} 
u,ve[t,-x,ti) u,ve[ti,ti+1) 

By taking now maxima over i, this is bounded above by 

2 max W'x[U,ti+1). 

This by the choice of the partition less than or equal to 

Since 77 is arbitrary, inequality (3.4) has been proved. 
Now we have proved this statement, the remaining part of the proof follows easily 
from lemma 3.1 by taking e = L~=, since both ^(L2")] and V(g; [L2,oo)) —>• 0, for 
L —» 00, as well as WX,T{L~Ï) —> 0 a.s., in view of equation (14.8) in Billingsley [2]. 
The fact that the process j , 0 ^ g(L(. — s))dXs is locally bounded, is now an immediate 
consequence. • 

3.2 convergence of the periodogram 

In this subsection we prove the analog of proposition 2.1 for the case of an arbitrary 
semimartingale X. The main result of this section is the following: 

T H E O R E M 3.3 Let X be a semimartingale and let the function g be of bounded 
variation over [0,oo). Let T be a finite stopping time. Then 

E(IT(X;L0^[X]T 

in probability, for L —> 00. 

P R O O F : There exist a decomposition of X as X = Z + M, where M is a local 
martingale satisfying sup |AM t | < 1 and Z is a process of bounded variation. This 
follows from the decomposition theorem for local martingales. In particular M is 
locally square integrable (cf. Dellacherie &; Meyer [4], VI.85). Use this decomposition 
to write Yj from equation (3.1) as the sum of two terms. These two are 

YHX,Z) = / / g{L{t-s))dXsdZt (3.5) 
J[0,T] J[0,t) 

Yf{X,M) = [ [ g(L(t - s))dXsdMt (3.6) 
J[0,T] J[0,t) 
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Since the process Z is of bounded variation, it follows that \Y^(X, Z)\ is bounded 
above by s u p t < T | J,0^g(L(t — s))dXs\V(Z; [0,T]). The first factor tends to zero a.s. 
in view of corollary 3.2. 
We proceed with the second term Y^(X,M). Notice that for fixed L this a locally 
square integrable martingale with predictable variation at T given by 

(YL(X,M))T=[ (f g(L(t-s))dXs)
2d(M)t. 

J[Q,T) J[0,t) 

This is bounded above by 

s u p | / g(L(t-s))dXs\(M)T. 

Hence a simple application of Lenglart's inequality (cf. Jacod Sz Shiryaev [8], page 
35) together with an application of corollary 3.2 yields that Yj^(X,M) tends to zero 
in probability as L —> oo. This completes the proof. • 

Some examples of distributions for which the conditions on g in theorem 3.3 are sat-
isfied are the triangular distribution, the doublé exponential distribution, the Cauchy 
distribution, the normal distribution (See table 1 of FELLER II [7] on page 503), or 
the distribution which has the Epanechnikov kernel as its density (This kernel enjoys 
some optimality properties in problems of kernel density estimation. See e.g. page 
21 of [6]). The characteristic function of the uniform distribution on [-1,-fl] is not of 
bounded variation over [0,oo). 

REMARK: It is instructive to see that for deterministic times T in the situation 
where moreover X is a square integrable martingale with deterministic predictable 
variation, the proof of the above theorem is much simpler and that we don't need 
that g is of bounded variation (as well as in propostion 2.1). Indeed consider again 
YL with its quadratic variation given by 

< y L > r = / , ( / 9(L(t-s))dXsfd(X)t. 
J[0,T] J[0,t) 

Taking expectations yields 

E(YL)T= f f g(L(t-s))2d(X),d(X)t. 
J[0,T] J[0,t) 

Using again the dominated convergence theorem, we see that E(YL)T tends to zero 
for L —• oo. So Yf —* 0 in probability, in view of Chebychev's inequality. 
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4 some consequences 
As a simple consequence of theorem 3.3 we obtain a representation result for the 
optional quadratic covaration of two semimartingales. 
Let X and Y be arbitrary real valued semimartingales, T a finite stopping time and 
g be of bounded variation. Define the cross periodogram of X and Y for each real 
number A by 

IT(X,Y;\)= ƒ eiXtdXt f e~iXtdYt. 
J[0,T] J[0,T] 

Let £ be a real random variable as before. Then we have 

COROLLARY 4.1 Under the conditions of theorem 3.3 we have 

EtIT(X,Y;LO^[X,Y}T 

in probability. 

PROOF: It is easy to verify that the following form of the polarization formula holds: 

IT(X, Y; X) + IT(Y,X; X) = l-[IT(X + Y-X)- IT(X - Y; X)}. 

Then an application of theorem 3.3 together with the known polarization formula for 
the square bracket process and the observation that E^IT(X, Y\ L£) is real yields the 
result. ü 

REMARK: One can define the periodogram for a multivariate semimartingale X with 
values in IRn as 

IT(X;X)= f éXidXt{i eiXtdXt)' 
J[0,T] J[0,T] 

Then the parallel statement of theorem 3.3 holds in view of corollary 4.1 with [X] 
the n x ra-matrix valued optional quadratic variation process. 

We end this section with a consequence of theorem 3.3 in terms of Dirac delta ap-
proximations. Return to real valued semimartingales X and use partial integration 
to rewrite the periodogram as 

IT(X; X) = \eiXT -iX f elXtXtdt\2 

= X$ + XT f iX^-V - e~iX{T-%Xtdt + X2\ f eiXtXtdt\2 

J[0,T] J[0,T] 

Let £ be as in the introduction, assume that E£2 < oo. Then g is twice continuously 
differentiable, so we obtain from the above equation 

x* -2x* Lx,msiLiT -t)]dt+LLx,x-ik9(L{t -3))dtds iiA) 

The idea is that both the two kernels in equation (4.1) behave as a Dirac distribution 
(although not quite). More precisely we have 
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PROPOSITION 4.2 Let X be a real semimartingale, T a finite stopping time and 
g a twice continuously differentiable real characteristic function, which is assumed to 
be of bounded variation over [0,oo). 
The following statements hold almost surely, respectively in probability 

(Ü)LLX'X-&JW - '»** "* *- + Wr-
PROOF: (i) follows by partial integration and an application of corollary 3.3. 
(ii) is then a consequence of (i) and theorem 3.3. • 

REMARK: The second statement of this propostion is at first glance perhaps some-
what surprising, since one would expect for continuous X the term X\ only. The 
extra term [X]T is due to the fact, that X is in general not of bounded variation. 

Acknowledgement. We thank two anonymous referees for pointing out that the 
original proof of theorem 3.3 was incomplete. 

References 

[1] G.Baxter, Strong Limit Theorem for Gaussian Processes. Proc. Amer. Math. 
Soc. 7, pp. 522 - 527. 

[2] P. Billingsley, Convergence of Probability Measures, Wiley. 

[3] C. Doleans-Dade, Variation quadratique des martingales continues a droite. Ann. 
Math. Stat. 40, pp. 284 - 289. 

[4] C. Dellacherie & P.A. Meyer, Probabilités et Potentiel, Hermann. 

[5] K.O. Dzhaparidze &; A.M. Yaglom, Spectrum Parameter Estimation in Time 
Series Analysis, in: Developments in Statistics, (P.R. Krishnaiah ed.), Academie 
Press, pp. 1 - 96. 

[6] A.J. van Es, Aspects of Nonparametric Density Estimation, CWI Tract 77. 

[7] W. Feller, An Introduction to Probability Theory and lts Applications, Volume 
II, Wiley. 

[8] J. Jacod & A.N. Shiryaev, Limit Theorems for Stochastic Processes, Springer. 

[9] D. Lepingle, La variation d'ordre p des semimartingales, Zeit. Wahrscheinlich-
keitstheorie 36, pp. 285 - 316. 

[10] R.S. Liptser &; A.N. Shiryaev, Theory of Martingales, Kluwer. 

[11] P. Protter, Stochastic Integration and Differential Equations, Springer. 

9 



1992-1 R.J. Boucherie 
N.M. van Dijk 

1992-2 R. van Zijp 
H. Visser 

1992-3 H.L.M. Kox 

1992-4 M. Boogaard 
R.J. Vefdwijk 

1992-5 J.M. de Graaff 
R.J. Veldwijk 
M. Boogaard 

1992-6 R.J. Veldwijk 
M. Boogaard 
E.R.K. Spoor 

1992-7 R.L.M. Peeters 

1992-8 M. Miyazawa 
H.C. Tijms 

1992-9 H. Houba 

1992-10 J.C. van Ours 
G. Ridder 

1992-11 L. Broersma 
P.H. Franses 

1992-12 A.A.M. Boons 
F.A. Roozen 

1992-13 S.J. Fischer 

1992-14 J.A. Vijlbrief 

1992-15 C.P.M. Wilderom 
J.B. Miner 
A. Pastor 

1992-16 J.C. van Ours 
G. Ridder 

1992-17 K. Dzhaparidze 
P. Spreij 

1992-18 J.A. Vijlbrief 

Local Balance in Queueing Networks with Positive and Negative 
Customers 

Mathematical Formalization and the Analysis of Cantillon Effects 

Towards International Instruments for Sustainable Development 

Automatic Relational Database Restructuring 

Why Views Do Not Provide Logical Data Independence 

Assessing the Software Crisis: Why Information Systems are Beyond 
Control 

Identification on a Manifold of Systems 

Comparison of Two Approximations for the Loss 
Probability in Finite-Buffer Queues 

Non-Cooperative Bargaining in Infinitely Repeated Games with 
Binding Contracts 

Job Competition by Educational Level 

A model for quarterly unemployment in Canada 

Symptoms of Dysfunctional Cost Information Systems 

A Control Perspective on Information Technology 

Equity and Efficiency in Unemployment Insurance 

Organizational Typology: Superficial Foursome of Organization 
Science? 

Vacancy Durations: Search or Selection? 

Spectral Characterization of the Optional Quadratic 
Variation Process 

Unemployment Insurance in the Netherlands, Sweden, The United 
Kingdom and Germany 

10 


