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Abstract

In this paper we show how the periodogram of a semimartingale can be used
to characterize the optional gquadratic variation process.
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1 introduction and notation

As is well known in the statistical analysis of time series in discrete or continuous
time, the periodogram can be used for estimation problems in the frequency domain.
It follows from the results of the present paper that the periodogram can also be
used to estimate the variance of the innovations of a time series in continuous time.
Usually in statistical problems this variance is assumed to be known, since it can be
estimated with probability one, given the observations on any nonempty interval in
a number of cases. {See for instance Dzhaparidze & Yaglom [5], theorem 2.1).

A fundamental result in another approach is now known as Levy’s theorem, which
states that the variance of a Brownian Motion can be obtained as the limit of the
sum of squares of the increments by taking finer and finer partitions. This result
has been generalized by Baxter [1], who showed a similar result for more arbitrary
Gaussian processes {that need not to be semimartingales) and to the case where the
process under consideration is a semimartingale by Doleans-Dade [3}, who obtained
a characterization of the quadratic variation. See also theorem VIIIL.20 of Dellacherie
& Meyer [4] or theorem 4 on page 55 of Liptser & Shiryaev [10]. Related work on so
called convergence of order p has been conducted by Lepingle [9)].

In the present paper we take a different viewpoint towards the quadratic variation
process (more in the spirit of theorem 2.1 of [5]) and it is our purpose to show that the
periodogram of a semimartingale can be used as a statistic to estimate its quadratic
variation process. We thus obtain an alternative characterization of this process as
compared to, for instance, Doleans-Dade’s.

The rest of this secton is devoted to the introduction of some notation.

Let (Q, F,F, P) be complete filtered probability space and X real valued semi mar-
tingale defined on it. X, is assumed to be zero. Let (A,L,Q) be an additional
probability space. Consider the product £ x A and endow it with the product o-
algebra F ® £ and the product measure P ® Q. Identify F with F @ {#,A} as a
o-algebra on 1 @ A.

Define for each finite stopping time T and each real number A the periodogram of X
evaluated at T by

I(X;0) = | ] eMAX,[?
[o.7]
An application of Ito’s formula gives

Ir(X;)) = 2Re ] M= X, dX, + [ X]r (1.1)
013 Jo

Let £ : A — IR be a real random variable with an absolutely continuous distribution
(w.r.t. Lebesgue measure), that has a density G, which is assumed to be symmetric
around zero and consider for any pesitive real number L the quantity

E(Ix(X; LE)|F] = EeIr(X; LE) = fm I+{(X; Lz)G(z)dz



It follows from Protter [11], pages 159, 160, that interchanging the integration order
in (1.1) is allowed to obtain

Belr(X;Le) =2 [ [ o(L(t~9))dX,dX, + [Xr (12)

where ¢ is the (real) characteristic function of .
Our purpose is to study the behaviour of E¢fr(X; L&) for L — oo. To that end we
investigate this quantity for a number of distinguished cases in the next sections.

REMARK: Asis well known, g is a continuous function and for all s < ¢, it holds that
g(L(t — 8)) = 0 for L — oo, in view of the Riemann-Lebesgue lemma (cf. FELLER
IT [7]), and (of course) |g(z)] < 1 for all real .

2 semimartingales of bounded variation

Throughout this section we assume that X is a process of bounded variation over
each finite interval. Denote by [[X[[; the variation of the process X over the interval

[0,%] (¢ may be replaced by a finite stopping time 7'). In this case we obtain from
(1.2)

Belr(X; L) = (Xlrl <2 [ [ lo(L(t = o)X, dlIXTl (21)

Since limp,q, g(Lz) = 6(x) (with §(z) = 1, if z = 0 and §(z) = 0 if z # 0), an
application of Lebesgue’s dominated convergence theorem yields that the right hand
side of (2.1) converges (almost surely) to

] t— " S’d '
2/{0.:1 oy &~ )Xl Xl
But this is equal to zero, since 6(¢ — s) = 0 for all s < ¢, whence the following result:

PROPOSITION 2.1 Let X be a semimartingale of bounded variation, T a finite
stopping time and £ a real random variable, independent of F, which has e densily
on the real line. Then almost surely for L — oo

EeIr(X; LE) — [X]r.

REMARK: Notice the similarity of the above statement with formula 1.5 on page 620
of FELLER II {7}, if we take the case where £ has a uniform distribution on {-1,+1],
and where X is a piecewise constant process.



3 arbitrary semimartingales

In this section we assume that X is an arbitrary semimartingale. Starting point for
our analysis is again equation (1.2). Consider now the process Y defined by

N o
Yt = j{o'_] flo‘t)g(L(t §))dX. dX, (3.1)

The first thing we will do in the next subsection is to give an upper bound for the
absolute value of the inner integral in (3.1).

3.1 a technical result

We state in this section a technical lemma and a corollary. Thereto we have to
introduce some notation. First we need the moduli of right continuity of X:

Wxlti, t2) = sup{|X. — X,| : u,v € [t1,22)},

Wy .(e) = inf{géﬂ%ﬁ; Wiltitin) : 0=t < ... < tn = 7,841 — L > €}

See Billingsley [2], page 110. (7 may be a stopping time).

Furthermore we have X7 = sup{{X,| : s < ¢{}. Next for any function (or process)
Z, we denote by V(Z;1) the total variation of Z over the interval 7. (Notice that
V(X;I) = oo for continuous local martingales X and for any interval I, except when

f;d{X} is zero).

LEMMA 3.1 Let X be a cadlag process, g a real cheracteristic function of an ab-
solutely continuous distribution. Then for all ¢ > 0 and t > 0, the following estimate
is valid almost surely

| 9B = $Dax.]

< Wilt — e, )(1 + V(g; [0, Le])) + X[ [|g(Le)| + V(g3 [Le, L1])] (3.2)
as well as the coarser estimale

|, 9 = e)X,] < 2Wilt =, 2)(V (03[0, 00)) + 2X;Vigi [Le,o0)  (33)

PROOF: To avoid trivialifies, we can assume that both V(g; [0, Le]) and V' (g;{Le, Lt])
are finite. Consider first f,_, ,, g(L( — s)}dX,. (If € > ¢, then we interpret the
integral by extending the definition of X to the negative real line and setting X; = 0
for t < 0). Integration by parts together with the fact that g is continuous yields
that this integral is equal to

(Xo = Xee)dg(L(t = 5) = Xewe [ dg(L(t = 5))

{t=£,1)

Xo- — g(Le)Xioe = /{

t—e.t)



=X — Xpoe — [ (X, — X, )dg(L(t — s))

{t—e,t}

Hence

| g(L(t = s))dX,|
(t=£,t)

< [Xew — Xece| + sup 1X, — Xice| /(} dllgli(L(t - s))

t—es<t
< Wxlt —&,1)(1 + V(g; [0, Le}))-

Consider now the integral over [0, ¢ — &]. Using again integration by parts, we obtain
|, 9L = NaXl < lo(LapXedl + Xo, [ dlgll(Le = o)

S X (lg(Le)l + V(g; [Le, Li])).

Putting the above two estimates together, we obtain the first statement of the lemma.
The second one is a simple consequence, since V(g;[0,00)) 2 1,V(g;[0,00)) >
V(g: [0, Le]) and V(g;[Le, 00)) 2 |g(Le)). a

COROLLARY 3.2 Let X be e cadlag process and let the function g be of bounded
veriation over [0, c0), and T a finite stopping time. Then

fgg t/[o.:) g(L{t — 8))dX,| — 0, a.s.

for L — co. In particular the process fio y g(L(. ~ 5))dX; is locally bounded on [0,T].

PROOF: First we prove the following statement.
sup{Wylt —¢e,t): 1 € [0,7]} < 2W5 (¢). (3.4)
Fix 5 > 0 and choose a partition 0 = {5 < ... < 1, = 7, such that

' . 3 < .I" .
o, Wilhtin) S Wi, 41

Then by taking suprema over three different possibilities we get

Wit —e,t) =

Pick the ¢ such that ¢; <t < ;4.

max{ - sup |X, —X.|, sup |X.— X, sup | X = Xol},

uuE[t—els) u,E{tit) u€[t—eti),veltit)



which is by the triangle inequality at most

max{ sup |X,—-X,|, sup |X.-—X,|,
uvE[t—e,ti} u,wE[ty,d)

sup | Xy = Xy} + sup [X, — X}

ugft—e, ;) vl 1)
By taking suprema over larger intervals, this is less than or equal to

max{ sup |X,—-X,|, sup |X,—X,|,

uwE[Ei_y i) u,VE([Li tign)

sup Xy — X} + sup [X. - X.i}

ﬂvuehi-l,tl’} u,vE[t,',!.'+1)
By taking now maxima over 1, this is bounded above by

2o<rf}<€'zx—1 Wilti, ti)-

This by the choice of the partition less than or equal to
2(Wx .(€) + n).

Since 7 is arbitrary, inequality (3.4) has been proved.

Now we have proved this sta.t,ement the remaining }fa,rt of the proof follows easily
from lemma 3.1 by taking ¢ = L~%, since both [g(L?)| and V(g;{L%,00)) — 0, for
L — oo, as well as Wy (L%} > 0 a.s., in view of equation (14.8) in Billingsley [2).
The fact that the process fg , g(L(. ~ 5))dX, is locally bounded, is now an immediate
consequence, O

3.2 convergence of the periodogram

In this subsection we prove the analog of proposition 2.1 for the case of an arbitrary
semimartingale X. The main result of this section is the following:

THEOREM 3.3 Let X be a semimartingale and let the function g be of bounded
variation over [0,00). Let T be @ finite stopping time. Then

Eelr(X; LE) — (X]r
in probability, for L — oo.

PROOF: There exist a decomposition of X as X = Z + M, where M is a local
martingale satisfying sup |AM,| £ 1 and Z is a process of bounded variation. This
follows from the decomposition theorem for local martingales. In particular M is
locally square integrable (cf. Dellacherie & Meyer [4], V1.85). Use this decomposition
to write Y# from equation (3.1) as the sum of two terms. These two are

L — —_
YE(X,Z) = /[m ]M L(t — $))dX,dZ, (3.5)

L — — r
YHX, M) = /[.m | UL = $))dX.dM, (3.6)

b



Since the process Z is of bounded variation, it follows that |[Y£(X, Z)| is bounded
above by sup,7 | flo.) 9(L(t — $))dX,|V(Z; [0, T]). The first factor tends to zero a.s.
in view of corollary 3.2.

We proceed with the second term Y (X, M). Notice that for fixed L this a locally
square integrable martingale with predictable variation at 7" given by

LiXx, M)y = L(t — s))dX, 2 d{M),.
(VH MY = [ (] gl = )X, Vi),
This is bounded above by

sup | g{(L(t — s))dX [(M)T.

:<T  J[0%)
Hence a simple application of Lenglart’s inequality (cf. Jacod & Shiryaev [8], page
35) together with an application of corollary 3.2 yields that Y#(X, M) tends to zero
in probability as L — oc. This completes the proof. !

Some examples of distributions for which the conditions on ¢ in theorem 3.3 are sat-
isfied are the triangular distribution, the double exponential distribution, the Cauchy
distribution, the normal distribution (See table 1 of FELLER II [7] on page 503), or
the distribution which has the Epanechnikov kernel as its density (This kernel enjoys
some optimality properties in problems of kernel density estimation. See e.g. page
21 of [6]). The characteristic function of the uniform distribution on [-1,+1] is not of
bounded variation over [0, co).

REMARK: It is instructive to see that for deterministic times 7" in the situation
where moreover X is a square integrable martingale with deterministic predictable
variation, the proof of the above theorem is much simpler and that we don’t need
that ¢ is of bounded variation (as well as in propostion 2.1). Indeed consider again
YL with its quadratic variation given by

(yhy, = /M]( 9 L(t — s))dX,)?d({X);.

Taking expectations yields

j[”,]][o” L{t = $))2d{ X)d(X ).

Using again the dominated convergence theorem, we see that E(YL)r tends to zero
for L — oco. So Y# — 0 in probability, in view of Chebychev’s inequality.



4 some consequences

As a simple consequence of theorem 3.3 we obtain a representation result for the
optional quadratic covaration of two semimartingales.

Let X and Y be arbitrary real valued semimartingales, T a finite stopping time and
¢ be of bounded variation. Define the cross periodogram of X and Y for each real
number A by

(X, Y \) =/

ef.\id‘xt / e—s‘)\tdy;'
[0.7] {0.7]

Let £ be a real random variable as before. Then we have
COROLLARY 4.1 Under the conditions of theorem 3.3 we have
Felp(X,Y; L) = {X,Y]r
in probability.
PROOQF: 1t is easy to verify that the following form of the polarization formula holds:

X, Y30 + (Y, X3 0) = %[IT(X FY30) = In(X = Y3 0.

Then an application of theorem 3.3 together with the known polarization formula for
the square bracket process and the observation that EcI7(X,Y; L) is real yields the
result. O

REMARK: One can define the periodogram for a multivariate semimartingale X with
values in IR" as

. — it + iht LAY
Ir(X;0) = fme X, /[me dX,)".

Then the parallel statement of theorem 3.3 holds in view of corollary 4.1 with [X]
the n x n-matrix valued optional quadratic variation process.

We end this section with a consequence of thecrem 3.3 in terms of Dirac delta ap-
proximations. Return to real valued semimartingales X and use partial integration
to rewrite the periodogram as

Ip(X;0) = [T — ix / M X dt?
f0.7]

=X%+XT/ iM(eNT=D) _ e")‘[T“’)).Xtdt-i-/\?I_/ M X, dt|?
{0.7] [0.T}

Let £ be as in the introduction, assume that E£? < co. Then g is twice continuously
differentiable, so we obtain from the above equation

EeIr(X; LE) =
2

I}
] X, atg (L(T — 1))dt + ] - j{m Xopsg(L{t — ))dtds (4.1)

The idea is that both the two kernels in equation (4.1) behave as a Dirac distribution
(although not quite). More precisely we have

8



PROPOSITION 4.2 Let X be a real semimartingale, T a finite stopping time and
g a twice continuously differentiable real characteristic function, which is assumed to
be of bounded variation over [0, 00).

The following statements hold almost surely, respectively in probability

. 8 ,
() fozq Xeg9 (AT = 1))t = X

(if) j / XX, 2 (Lt — 5))dtds — X2_ + [X]r.
{0.7) J[o,T) Jtds =

PROOF: (i) follows by partial integration and an application of corollary 3.3.
(11} is then a consequence of (i) and theorem 3.3. O

REMARK: The second statement of this propostion is at first glance perhaps some-
what surprising, since one would expect for continuous X the term X% only. The
extra term [X]r is due to the fact, that X is in general not of bounded variation.

Acknowledgement. We thank two anonymous referees for pointing out that the
original proof of theorem 3.3 was incomplete.

References

[1] G.Baxter, Strong Limit Theorem for Gaussian Processes. Proc. Amer. Math.
Soc. 7, pp. 522 - 527.

[2] P. Billingsley, Convergence of Probability Measures, Wiley.

[3] C. Doleans-Dade, Variation quadratique des martingales continues a droite. Ann.
Math. Stat. 40, pp. 284 - 289.

{4] C. Dellacherie & P.A. Meyer, Probabilités et Potentiel, Hermann.

(5] K.O. Dzhaparidze & A.M. Yaglom, Spectrum Parameter Estimation in Time
Series Analysis, in: Developments in Statistics, (P.R. Krishnaiah ed.)}, Academic
Press, pp. 1 - 96.

[6) A.J. van Es, Aspects of Nonparametric Density Estimation, CWI Tract 77.

[7] W. Feller, An Introduction to Probability Theory and Its Applications, Volume
11, Wiley.

[8) J. Jacod & A.N. Shiryaev, Limit Theorems for Stochastic Processes, Springer.

[9] D. Lepingle, La variation d’ordre p des semimartingales, Zeit. Wahrscheinlich-
keitstheorie 36, pp. 285 - 316.

[10] R.S. Liptser & A.N. Shiryaev, Theory of Martingales, Kluwer.
[11] P. Protter, Stochastic Integration and Differential Equations, Springer.



1992-1

1992-2

1992-3

1992-4

1992-5

1992-6

1992-7

1992-8

1992.9

1992-10

1992-11

1992-12

1992-13

1992-14

1992-15

1992-16

1992-17

1992-18

R.J. Boucherie .

N.M. van Dijk

K. van Zijp
H. Visser

H.L.M. Kox

M. Boogaard
R.}. Veldwijk

J.M. de Graaff
R.J. Veldwijk
M. Boogaard
R.J. Veldwijk
M. Boogaard
E.R.K. Speor
R.L.M. Peeters

M. Miyazawa
H.C. Tiyms

H. Houba

J.C. van Qurs

G, Ridder

L. Broersma
P.H. Franses

A.A M. Boons
F.A. Roozen

S.J. Fischer

J.A. Vijlbrief

C.P.M. Wilderom

J.B. Miner
A. Pastor

J.C. van Ours
G. Ridder

K. Dzhaparidze
P. Spreij

LA. Vijlbrief

Local Balance in Queueing Networks with Positive and Negative
Customers

Mathematical Formalization and the Analysis of Cantillon Effects

Towards International Instruments for Sustainable Development

Automatic Relatienal Database Restructuring

Why Views Do Net Provide Logical Data Independence

Assessing the Software Crnsis: Why Information Systems are Beyond
Control
ldentification on a Manifold of Systems

Comparison ol Two Approximations for the Loss
Probability in Finite-Buffer Queues

Non-Cooperative  Bargaining in Infinitely Repeated Games with
Binding Contracts

Job Competition by Educational Level

A model for quarterly unemployment in Canada

Symptoms of Dysfunctional Cost Information Systems

A Control Perspective on Information Technology

Equity and Efficiency in Unemployment Insurance
Organizational Typology: Superficial Foursome of Organization
Science?

Vacancy Durations: Search or Selection?

Spectral Characterization of the Optional Quadratic

Variation Process

Unempioyment  insurance in the Netherlands, Sweden, The United
Kingdom and Germany



