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A b s t r a c t 

When considering the space of linear multivariable systems of fixed finite order n under i / o -
equivalence, it is a known fact (cf. Hazewinkel [21]) that we are dealing with a differentiable 
manifold. This manifold can be covered with a finite number of overlapping parameter charts 
and there exist methods to select an appropriate chart on-line (cf. Van Overbeek and Ljung 
[34,35]). Moreover, it is possible to endow this manifold with various Riemannian metrics, 
expressing the notion of distance between systems in a coordinate free way (cf. Hanzon [18,19]). 
If one adopts a prediction error criterion to measure the quality of a model describing a given set 
of data, then, in the case of batch (off-line) Identification, the problem of system identification 
boils down to the deterministic problem of minimizing a nonlinear least squares criterion over 
a Riemannian manifold. 

There exist several methods to minimize a nonlinear least squares criterion over Euclidean space, 
of which the methods of Gauss-Newton and of Levenberg-Marquardt are the most important 
as they exploit the structure of the problem. In the manifold case, however, there has not 
been paid much attention to this problem yet, leaving us with only general approaches towards 
function minimization. 
In this paper we discuss a Riemannian interpretation of the Gauss-Newton algorithm and we 
describe a Riemannian version of the Levenberg-Marquardt algorithm. We next formulate the 
identification problem mentioned above and indicate how to obtain Riemannian metrics and 
overlapping parametrizations. In the last section we describe a simulation experiment and we 
present and discuss the results. It is observed that there exist Riemannian gradiënt methods 
which can exhibit superlinear convergence properties. In particular this holds true if one uses 
the Fisher information matrix to define a Riemannian metric. 

1 Nonlinear Least Squares 

1.1 Nonlinear Least Squares on Euclidean n-space 

We are interested in minimizing (locally) the following criterion function 4>: R" —• R defined by 

1 1 m 

where ƒ : R " —* R m denotes the residual mapping with corresponding coordinate functions ( the 
so-called residuals) f' : R " —• R , (i = 1 , . . . , m ) , and || • || denotes the Euclidean norm (on R m ) . 
We assume ƒ to be a t least iwice continuously differentiable, in order to be able to apply Newton's 
method for minimization and to compare with it. 

The associated Jacobian mapping is denoted by J : R n — R m x " and defined in each point x 6 R " 
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J(x)=-

' *£(«) ••• §£(*)/ 
We adopt the convention that coordinates (and coordinate functions) are indexed by a superscript, 
whereas quantities changing every iteration are indexed by a subscript k, denoting the iteration 
number. 
A second assumption we make is that $ possesses only isolated (local) minima, and a third that 
there exists at least one local minimum at x,, say. 

The above problem is referred to as the (nonlinear) least squares problem. An important subclass 
consists of those situations where the residual mapping is linear in x. These are the linear least 
squares problems. Though our interest is in the nonlinear case, we shall be paying attention to 
the linear case as well because of the fact that most methods available for (iteratively) solving the 
nonlinear least squares problem proceed by solving a sequence of linear least squares problems. 
The linear least squares problem can be solved analytically (and numerically efficiënt), whereas the 
nonlinear least squares problem in general cannot. 

There exists a large number of minimization methods that are designed to handle the problem 
of minimizing an arbitrary function over R n . Well known methods are gradiënt methods (steepest 
descent), Newton and quasi-Newton methods, conjugate gradiënt methods, trust-region methods and 
direct search methods (that make use of function values only and not of derivatives). See e.g. Dennis 
and Schnabel [7], Bard [4]. A disadvantage for applying such general algorithms in this particular 
case of nonlinear least squares is that none of them exploits the siructure of the problem, i.e. the 
fact that we are dealing with a sum of squares. 
There exist, however, also methods that do exploit this structure. They are designed especially 
for the nonlinear least squares problem, as it happens that this problem occurs quite often in 
practice. The most well-known such method is the method of Gauss-Newton, of which there exist 
several variants (concerning the choice of an appropriate step-size), whereas an alternative (or rather 
extension) is provided by the method of Levenberg-Marquardi. Both exploit the available structure 
and local information in each iteration in a relatively efficiënt way. They make use of first order 
information only as opposed to Newton's method which requires knowledge of the Hessian (that is, 
second order information) at each iterate. We shall restrict the discussion to the methods of Gauss-
Newton and of Levenberg-Marquardt and point out some relationships with Newton's method. An 
excellent treatment of the subject of least squares can be found in Chapter 10 of Dennis and Schnabel 
[7]-

The gradiënt of $ at point x is denoted by g(x) and satisfies 

g(x) = J(xff(x) 

where superscript T denotes transposition. According to our definition, g(x) is a column vector of 
dimension n. 
The Hessian of $ at point x is denoted by H{x) and given by 

m 8- f' 

H(x) = J(x)TJ(x) + £ ƒ»'(*)-"(*) 
»=i ax~ 

Here Tpr(x) denotes the Hessian of the ith coordinate function, that is 

dx ^3"(*) = 

/ »'/• (x) . . . *r ix) \ 

. p y (x) . . . 8*r ix) . 

When approximating $(ar) by its second order Taylor series expansion one obtains a quadratic ap-
proximating function which can be minimized exactly, analytically. The (standard) Newton method 
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exploits this fact and proceeds by taking the next estimate xk+i of the local optimum £», starting 
from a current estimate xk, as the point that minimizes this approximating quadratic function: 

**+i = xk - H(xk)~
1g(xk) 

There are a few aspects about this method that need further attention. 
(1) The negative gradiënt direction is always a decreasing direction, that is, if we take a positive 
step in this direction of sufficiently small size, we can always obtain a decrease of function value. 
This is not necessarily true for the Newton direction —H(xt^gixk). A sufficiënt condition would 
be positive definiteness of H(xk), which is not guaranteed. On the other hand, at a local (isolated) 
minimum one will always have that H{x*) is at least positive semi-definite, so that good local 
convergence properties can be expected. 
(2) The method is not well-defined for singular H{xk). In such a case an alternative strategy 
becomes necessary, that is, one must specify what to do in such cases. 
(3) Even if the Newton direction is decreasing, the step taken above may be too large. An extra step-
size controlling parameter is then needed. The common procedure is to perform a line minimization 
in the proposed direction to arrive at a better estimate for x». Accordingly, the recursion takes the 
form 

zjfc+i = xk - (XkHixk^gixk) 

with ak > 0 denoting the step-size controlling parameter. Such a method is referred to as a damped 
Newton method. 
(4) The method is expensive in the sense that it requires second order Information. 

The method of Gauss-Newton yields an improvement of Newton's method with respect to points 
(1) and (4). Here we define the Gauss-Newton matrix G(x) as 

G(x) = J(x)TJ(x) 

The associated iterative scheme becomes 

xjt+i = x t - G(ït) -1(/(xfc) 

Notice that: (1) The search direction is now always a decreasing direction since G(x) is, by con
struction, positive semi-definite. (2) The method is cheaper, since only first order information is 
required. 
However, local convergence properties near an optimum x. for which H{x,) is positive definite 
may be worse than for Newton's method, depending on the accuracy by which G(x„) approximates 
H(xm). There are two situations where this is for sure not the case, namely (a) the linear case, (b) 
the case where the optimum criterion value is (close to) zero. It is easily seen that in those situations 
the term neglected by G(x„), as an approximation of i/(x„), is (almost) zero. But objections (2) 
and (3) against the (standard) Newton method still apply to this (standard) Gauss-Newton method 
also. 
There are several alternative ways of arriving at the Gauss-Newton method, which provide more in-
sight in its properties. Above we took the standpoint of regarding G(x) as a (positive semi-definite) 
approximation to the Hessian H(x). A related, but slightly different point of view is obtained by 
considering an alternative local approximation of <ï>(x), instead of via a second order Taylor series 
expansion. We can apply a quasi-linearization strategy, by which we linearize the residuals f' with 
respect to x. This leads to the approximating linear least squares criterion (at xk): 

*k(x)=l\\f(xt) + J(xk)(x-xk)tf 

Then xk+i as defined above by the Gauss-Newton scheme is easily seen to minimize $>k(x). 
This point of view provides us with a meaningful way to proceed in cases where G(xk) is singular, or 
equivalently, where J(xk) does not have full column rank n. In such a situation we can try to solve 
the approximating linear least squares problem anyway. Though then there will not be a unique 
solution for the original problem anymore, we can again obtain a unique answer if we impose the 
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additional requirement of finding the minimizing step of minimal length. Then a solution against 
objection (2) with respect to Newton's method has been obtained. However, objection (3) remains 
valid and the presence of a step-size controlling parameter might still prove to be essential. 
There exists yet another point of view towards the nonlinear least squares problem which also 
suggests in a natural way the applicability of the Gauss-Newton method. Here, however, also the 
need for a step-size controlling parameter becomes evident and does not appear as an "artifical" 
device to prevent against undesirable situations. We discuss it in the next subsection, as it involves 
the use of Riemannian manifolds. 

The Levenberg-Marquardi method can be viewed as an extension of the Gauss-Newton method in the 
following sense. In the classical approach towards Standard Gauss-Newton (i.e. without a step-size 
controlling parameter) it can happen in certain situations that the series of criterion values obtained 
is non-decreasing. This corresponds to the fact that the steps that are taken are too large, since the 
search directions are guaranteed decreasing. Therefore, one can try to balance the criterion function 
with the second objective of keeping the step-size small. We therefore obtain a local criterion of the 
form 

**(*) = |(ll/(«0 + J(**)(* - **)II2 + A*||D*(x - xt)||
2) 

where At is the (non-negative) Levenberg-Marquardi parameier that acts as a balancing parameter 
between the two criteria, and Dk denotes a non-singular weighting (or scaling) matrix, so that 
| |Dtp|| represents the relevant norm (or length) of a step p. 
Again, this leaves us with a linear least squares problem, but this time with the nice property of 
having a vnique solution always, provided £>t is indeed non-singular. This is seen by rewriting 
$ t (x ) as 

*«*Hi(r)+(^>-Hr 
The solution to this problem is now given by 

*t+i - x k - (J(xk)
TJ(xk) + XkDlDk)-lJ(xk)Tf(xk) 

Of course, we have created additional problems, namely how to choose At and Dk. There are again 
several approaches possible to this, but the most elegant and at the same time very powerful one 
is provided by More [33]. He foliowed a irusi-region approach towards the nonlinear least squares 
problem and came up with a very robust implementation of the Levenberg-Marquardt algorithm. 
The basic ideas are the following. 
Together with an estimate xt for x» we specify a trust-region of the form 

{ p € R " | p > * p | | < A t } 

that is, we specify a non-singular n x n matrix Dk and a positive scalar At . This trust-region 
indicates the area where the proposed step as generated via quasi-linearization, so by Gauss-Newton, 
is required to lie in order to be acceptable. (For this region we "trust" the quasi-linearization 
approach.) Accordingly, if an unrestricted Gauss-Newton step would lead us outside the trust-
region, we perform constrained minimization, namely, we minimize the approximating linear least 
squares criterion over the (quadratic) trust-region. This then leads to a problem that can be solved 
iteratively, again via a sequence of linear least squares problems, in a highly efficiënt way, provided 
we treat the trust-region size At flexibly. (Notice that also in case the Gauss-Newton step is 
acceptable we can view the optimization problem as constrained; only then the solution is much 
easier to obtain.) Together with the calculation of a new step comes the calculation of a new trust-
region size. More has developed a procedure for adapting this size via inspection of the actually 
achieved improvement in the criterion value as compared to the predicted improvement (via the 
linearization). The choice of Dk however remains relatively heuristic. More proposes various scaling 
strategies, all corresponding to diagonal matrices, but none of them is based in a mathematically 
solid way. Notice that if one chooses Dk = / , irrespective of the estimate xt and irrespective of 
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the iteration number, then we are in the situation of non-scaling, which was Standard before More. 
In Figure 1 we present a flow-diagram of the Levenberg-Marquardt algorithm as implemented by 
More. 
We remark that an alternative interpretation of the Levenberg-Marquardt method is obtained by 
viewing each generated search direction as an interpolation between the method of Gauss-Newton 
and the method of steepest descent (in case D* = ƒ). According to Marquardt [32] it is observed 
for a variety of problems that the angle, 7, between the steepest descent direction and the Gauss-
Newton direction usually falls in the range 80° < 7 < 90°. This provides another rationale for using 
the Levenberg-Marquardt method. 

1.2 Nonlinear Least Squares on a Riemannian n-Manifold 

We now address a slight extension of the nonlinear least squares problem discussed in the previous 
subsection, where the domain of the criterion function is no longer required to be R", but assumes 
the more general structure of a Riemannian n-manifold. Thus we are dealing with the problem of 
minimizing a function $ : M —* R, where M is an n-dimensional Riemannian manifold, defined by 

1 1 m 

*(*) = p/(*)ii2 = 5Brt*)]3 

where ƒ : M —* R m still denotes the residual mapping with corresponding coordinate functions 
ƒ* : M - t R , ( i = l , . . . , m), and || • || denotes the Euclidean norm (on R m ) . As before we assume 
ƒ to be at least twice continuously differentiable. 
One can consider Euclidean n-space (i.e. R n with the Euclidean metric) to be a Riemannian n -
manifold, so that the previous case is contained in the present one. 
Again, there are several general techniques available for the minimization of a function over a 
(Riemannian) manifold. Techniques exploiting the Riemannian metric have been proposed only rel-
atively recent (see e.g. Luenberger [31], Lichnewsky [27,28], Gabay [11]), where the basic motivation 
for this kind of research sterns from the field of constrained optimization, in which the constraints 
are supposed to constitute a (Riemannian) differentiable manifold. 
In practice, the approach commonly foliowed seems to be to use overlapping coordinate charts that 
cover the manifold, which are treated each in a "Euclidean" way by applying Standard optimization 
techniques. (Often one resorts to selecting just one chart, already before the actual minimization 
is carried out.) Such an approach has the advantage of being applicable also if there is no a priori 
Riemannian metric available. On the other hand one can argue that the approach is rather unele-
gant because of the following. (1) It is a basic result from differential geometry that each (smooth) 
differentiable manifold can be endowed with a Riemannian metric. Therefore, if there is no Rieman
nian metric available yet, one can in principle define one. (2) The Euclidean metrics defined on the 
coordinate charts usually are not matching to one another in the areas where the charts overlap. 
The local metric involved is therefore highly dependent on the choice of coordinates. The same 
applies to the expected convergence properties of optimization algorithms. Notice that application 
of the same optimization method, starting from the same point on the manifold but with another 
coordinate chart will generally lead to different iteration paths on the manifold. An illustration of 
this observation is provided by Figure 2, for the example of minimization of a quadratic criterion 
by the method of steepest descent. In case the coordinates are chosen appropriately the optimum 
can be reached in one step. Otherwise an iteration path will be foliowed, showing that the iteration 
paths on the manifold are dependent on the choice of coordinates. 

In Lichnewsky [27] one can find certain generalizations of Newton's method and conjugate gradiënt 
methods to the manifold case. The idea of Riemannian steepest descent is apparently also well-
known, although practical application of this method seems to be rather limited due to the bad 
convergence reputation of steepest descent in the Euclidean case. However, it is unclear whether 
there have been designed algorithms that act on a manifold in a coordinate independent way for the 
case of nonlinear least squares especially. It turns out that the method of Gauss-Newton can be in-
terpreted as (largely) coordinate free and that the method of Levenberg-Marquardt can be modified 
to a "Riemannian" version as well. This will be the subject of the rest of this section. 
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step I 
initialisation. #iterations:= 0. 

final acceptance 

of calculated step 

step II 

calculation of a Gauss-Newton 
step, i.e. for A = 0. 
#iterations:= #iterations+l. 

step VII 

no 

test 
whether the 

Gauss-Newton step lies 

jnside the trust-„ 
.region. 

step VI 

updating of the 
trust-region size. 

determination of the 
Levenberg-Marquardt step. 

L 
step IV 

calculation of performance p. 

no 

step III 
1 

subalgorithm A : 
for determining an 
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J 

step VIII 

display of final 

results. STOP. 

Figure 1. Flowdiagram of the Levenberg-Marquardt algorithm, according to More's trust-region 
implementation. 
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Figure 2. Scaling dependence for the iteration paths of the method of steepest descent —(a) circular 
contour plots, (b) elliptic contour plots. 

We now give an interesting interpretation of the Gauss-Newton method, described in the previous 
subsection, which shows that we can look upon its behaviour as largely coordinate independent, (i.e. 
virtually regardless of the actual coordinate charts being used). To make this more precise we have 
to look at the residual mapping more closely and interpret the original minimization problem as the 
problem of finding the point in the image of ƒ that is closest to 0 € R m (at least locally). Regarding 
an appropriate open neighbourhood of a locaHsolated minimum i . at which the Jacobian has full 
column rank n, we generally will find that the image of this neighbourhood forms a differentiable 
manifold of dimension n, embedded in I t m . This differentiable manifold naturally admits a Rieman
nian metric, by taking the infimum path length metric induced by the Euclidean metric on the image 
space I t m . Of course, since the residual mapping is locally one-to-one, this Riemannian metric can 
be transferred to the domain space: we obtain a Riemannian metric on the open neighbourhood of 
x . , regarded as a differentiable manifold by identification of the domain and image. This concept 
is illustrated by Figure 3. It shows that local coordinates for M can be used as local coordinates 
for f(M) also. Though the choice of coordinates may be varying, the image f(M) of M in R m is 
fixed. 
On a Riemannian manifold the appropriate generalization of the concept of gradiënt is the Rieman
nian gradiënt, obtained as the maximizing normalized tangent direction with respect to the criterion 
function, where the normalization is in terms of the Riemannian metric. (Cf. Abraham and Marsden 
[1].) It turns out that the Riemannian steepest descent direction (the negative Riemannian gradi
ënt) in the present case coincides exactly with the Gauss-Newton direction. And as we are dealing 
essentially with a gradiënt method in this point of view, the use of a step-size controlling parameter 
is natural. The choice of this parameter could then be based, as usual, on a "line" minimization 
procedure in the obtained direction, which in the manifold case should be replaced by a geodesie 
search. For a more detailed account of these statements we refer to Hanzon and Peeters [20]. We 
remark the following important features of this point of view. 
(1) The Gauss-Newton method is noi obtained via approximation of the original criterion function 
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Figure 3. Relation between M, f(M) and loca! coordinate neighbourhood (U,<j>). 



$(z) of any kind, but as an exact (Riemannian) gradiënt method. In practice the only approximation 
that will be made is on the level of the calculation of a step, for which a geodesie search should be 
performed, so that accordingly we should follow a (generally nonlinear) curve in the original domain 
space. This will usually be replaced by a linear approximation, yielding the damped Gauss-Newton 
method as we know it. 
(2) The Riemannian metric induced by the Euclidean metric in the image space is a conceptually 
appealing one, since it relates to our intuition that two points Xi and 12 should be considered as 
"far apart" (in the present problem setting) if their corresponding residual vectors f(x\) and /(a^) 
differ "a lot". Thus, this (locally) Riemannian metric is quite naturally related to the nonlinear 
least squares problem. 
(3) Notice that the induced Riemannian metric is defined completely independent of a possibly avail-
able Riemannian metric on the domain. This not only relates to the independence of the method 
of the coordinate charts, but also broadens its range of applicability to the case of differentiable 
manifolds without an a priori Riemannian metric. 

The next point we want to make clear is that the above point of view with respect to the method of 
Gauss-Newton helps us to construct a Riemannian version of the Levenberg-Marquardt method. In
deed, observing that the Gauss-Newton method is (largely) coordinate independent, combined with 
the earlier interpretation of the Levenberg-Marquardt method as an interpolation between Gauss-
Newton and steepest descent, suggests the idea of replacing the coordinate dependent gradiënt by 
its coordinate free counterpart: the Riemannian gradiënt. The Riemannian Levenberg-Marquardt 
algorithm can accordingly be viewed as an interpolation between the Gauss-Newton and the Rie
mannian steepest descent method. 
However, also More's approach now can be given a more solid basis. On a Riemannian manifold 
all search directions are associated with tangent vectors. The trust-region idea then can be applied 
to the tangent space to the manifold at Xk instead of directly to the space of coordinates. In this 
approach a trust-region consists of a collection of tangent vectors that can be accepted as search 
steps, when using normal coordinates. Thus, the length of a tangent vector is measured in terms 
of the Riemannian metric on the manifold. This Riemannian metric expresses the local intuition 
about distance and provides a natural choice of "scaling". More precisely stated, it is possible to 
define a trust-region on the tangent space to the manifold at each point. This can be translated to 
a domain on the manifold by introducing normal coordinates. Each tangent vector (with admiss-
able Riemannian length) then corresponds to a step on the manifold by following a geodesie in the 
appropriate direction with suitable length. 
Therefore, we obtain a natural choice for the matrix Dk in More's algorithm: it should be chosen 
such that 

DlDk = R(xk) 

where R(x) denotes the matrix associated with the Riemannian metric tensor at point x of the 
manifold, in terms of the local coordinates being used. Notice that although there is freedom left 
in the precise choice of Dk, the trust-region is well-defined (c.q. uniquely), since the trust-region 
consists of all tangent vectors satisfying 

\\Dkp\\ < Ak 

which is equivalent to 

pTDlDkP < Al 
The freedom left in Dk can be exploited to achieve good numerical behaviour. Since R{x) is always 
positive definite by definition (it represents a Riemannian metric) we can for instance choose Dk as 
a Choleski factor of R(xk), but also LD-factorization or singular value decomposition might be of 
use. 
The Standard Levenberg-Marquardt approach (without scaling) can now be interpreted as corre
sponding to the situation where we accept the Euclidean metric everywhere. Depending on the 
problem at hand, we should try to choose a Riemannian metric on M such as to express our in
tuition about the distance between points in the domain. For a more detailed description of this 
Riemannian version of the Levenberg-Marquardt method we refer to Peeters [36]. 
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2 Off-Line Identification on a Manifold of Systems 

2.1 Manifolds of Systems 

In this subsection we state a number of facts about the manifold structure of certain classes of linear 
systems. We restrict ourselves to the case of linear, stochastic, Urne-invariant, asymptotically stable, 
minimum phase, multivariable, discrete-time systems of fixed, finite order n, driven by Gaussian 
white noise. These correspond, in state-space representation, to recursive systems of equations of 
the form (the so-called innovations form) 

x(t + 1) = Ax(t) + Be(t) 
y(t) = Cx(t) + e(t) 

( t € Z ) 

with A G R n x n , B € R n X p , C e R p X n , x(t) e R n , where the eigenvalues of A and A - BC are 
required to lie inside the open unit disk {s G C | \s\ < 1}, where matrix triple (A,B,C) is required 
to be minimal (i.e. the system representation is both observable and reachable) and where e(t) is 
required to be stationary Gaussian white noise: Ee{t) = 0, Ee(t)e(s)T = 6 t,E£, with E£ > 0. We 
assume both the (stochastic) inputs and outputs to be p-dimensional. 
The motivation for these assumptions is based on the Wold DecomposHion and Representation 
Theorem, seé e.g. Hannan and Deistier [15] from which the following is taken: 

Theo rem Every stationary process y(t) can be represented in a unique way as 

y(t) = u(t) + v(t) 

where u(t) and v(t) are obtainable as linear transformations of y(t), where Hu(t) C Hy{i), Hv(t) C 
Hy(t), where Eu(t)v(s)T — 0 and where u(t) is linearly regular and v(t) is linearly singular. Fur-
thermore, every linear regular process u(t) can be represented as 

oo oo 

«<<) = £ K(j)e(t -j), Y, \\K(j)\f < oo 
j=a j=o 

where Hu(t) — He(t) and where e(t) is white noise. Thus e(t) are linear innovations of y(t). 

In this theorem "stationary" refers to wide sense staiionarity. Further, Hy(t) refers to the Hilbert 
space in L2(£l, T, P) (the Hilbert space of square-integrable complex random variables over the 
underlying probability space (Q,T,P)) spanned by the components {t/;(< — j) \i = 1, . . .,p;j > 0}. 
The Hilbert spaces Hu(t), Hv(t) and Ht{i) are defined analogously. A stationary process «(f) is 
called linearly regular if Eu(t) = 0 and if for the best linear predictor u(t + r | t) of u(t + r) (for 
T > 0) based on u(s), s < t, the relation 

lim u(t + r\t) = 0 
T—«OO 

holds, or equivalently if 

S=f]Hu(t) = {0} 
tez 

A stationary process v(t) is called linearly singular if 

v(t + r\t) = v(t + T) a.s. 

holds, or equivalently if 

S = f) Hv(t) = Hv 
«ez 

where Hv is the time domain of v(t), that is, the Hilbert space spanned by {v,-(t)|i= l,...,p;t £ Z}. 
A proof of this theorem can be found in Hannan [14] or Rozanov [39]. 
It is worth-while to notice that we can choose in particular ((t) as u(t) — u(t\t — 1). 
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We then restrict ourselves to linearly regular processes y(t), on the argument (cf. Hannan and 
Deistier [15]) that if only a part of one realization of y(t) is available, then the linearly singular 
part could be considered deterministic and could be removed, so that u(t) in the theorem above 
is identical to y(t) and v(t) = 0. Then via the Wold representation one can construct an infinite 
dimensional state-space system of the form given above, yielding an alternative representation of 
the process y(t). The spectral density of a linear regular process y(t) always exists, and is given by 

fy(u)=±k(ei»)Xek*(ei») 

where 

oo 

j = 0 

denotes the transfer function of the system and E f = Ee(t)e(t)T is the covariance matrix of e(t). It 
is no restriction of generality to assume, as we do, that 

*(0) = I 

It however J'S a restriction of generality to assume that Ec > 0, since in the general case only positive 
semi-definiteness is ensured. Such an assumption is equivalent to the assumption that y(t) is a full 
rank process, meaning that the spectral density fy has full rank p almost everywhere (a.e.). We 
nevertheless shall make such an assumption for convenience, noticing that such situations are quite 
unlikely to occur in practice (in accordance with Hannan and Deistier). 
In case fy is rational, we also will have a rational transfer function k(z), i.e. of finite McMillan 
degree, say n. This McMillan degree will then correspond to the minimal dimension of the state 
x(t) that is required to represent the system and this is called the system order. 
In such a case we then can always find an asymptotically stable matrix A and matrices B and C 
such that A — BC is stable. Therefore, only the assumption about asymptotic stability of A — BC 
is again a restriction of generality. Again this excludes only a "thin" set, and the advantages of 
the assumptions will be apparent from the sequel (in particular, our predictor error filters will be 
asymptotically stable). 

Returning to our set of minima/ state-space systems of order n we can associate with each system 
in this set its transfer function k{z) or rather its series of Markov matrices (or impulse response 
matrices, or weighting matrices) K(j) (j = 1,2,...) (recall that we assume that K(0) = 7, which is 
in correspondence with the output equation in the system representation). In terms of the matrices 
A, B and C we find that K(j) — CA^~XB for j = 1,2, Using these, we can form the associated 
block Hankel matrix Ti as 

n = 
( K{1) K{2) 

K{2) K{Z) 

\ '• 

This matrix has finite rank n, and is the basis for many constructions in systems theory, such as for 
instance the construction of the overlapping state-space parametrizations that we shall use. 
First of all, we notice that there might exist several triples (A,B,C) leading to the same transfer 
function k(z). One can define an equivalence relation on our set of state-space systems by calling 
two systems i/o-equivalent if they correspond to the same transfer function. It is a known result 
that the equivalence class of a system (A,B,C) from our set above can be written as 

{{A,B,C)\A = TAT-\B = TB,C = CT~l\T non-singular,n x n) 

Actually, we are interested in the equivalence classes rather than all their representatives. One way 
to select a representative from each equivalence class is by means of so-called canonical forms. 
To obtain a canonical state-space realization for a given causal, rational transfer function k{z) one 
can proceed by first choosing a structure index with respect to a mee selection for a basis for the row 
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space of Ti. Depending on the structure index at hand, one can obtain various different minimal 
state-space representations in the model set under consideration. However, it is a known fact that in 
the multivariable case (p > 1) it is impossible to cover the whole model set with just one continuous 
canonical form. See Hazewinkel [21]. Therefore, one is forced to use several of them anyway. It turns 
out that the state-space approach towards realization leads in a quite natural way to overlapping 
parametrizations, as opposed to for instance the ARMAX systems approach. Detailed accounts of 
the construction procedure for overlapping state-space parametrizations can be found e.g. in Van 
Overbeek and Ljung [34,35], Picci [38], Glover and Willems [13] and Hannan and Deistier [15]. 

One can regard the set of equivalence classes of systems under consideration as a 2np-dimensional 
differentiable manifold embedded in Hilbert space. For this, one could start by first constructing 
the Hilbert space of sequences {K(j)\j = 1,2,...} satisfying 

"{S K(jfK(j) \ < oo 

where tr{-} denotes the trace-operator. One then observes that (1) the sequences of Markov matrices 
corresponding to our model set are elements of the Hilbert space above; (2) one has an inner product 
on the Hilbert space above via 

(*,*> = trjf^(j)T/?(j) 

where k, k correspond to transfer functions in the model set and K(j), K(j) are their respective 
Laurent series coefficients in an obvious way. See e.g. Hazewinkel [21], Hazewinkel and Kalman 
[22], Hanzon [17,18,19]. The inner product defined above is the £2-inner product, and alternative 
definitions, leading to alternative inner products (for instance via different weighting coefficients) 
are possible. 
One now can make the manifold into a Riemannian manifold because an inner product on the 
embedding Hilbert space induces in a natural way a Riemannian metric on the system manifold, since 
it defines an inner product on the tangent spaces to the manifold in a continuous and natural way. By 
choosing an appropriate norm on the embedding Hilbert space one can express his intuition and views 
about when two systems exhibit closely related behaviour and when not. Such considerations might 
be translated into different weighting coefficients with respect to the impulse response matrices, 
yielding different norms. A helpful instrument in this approach is that the difference of two systems 
(considered as i/o-mappings) can itself again be considered a linear finite dimensional system. 
See Hanzon [18,19]. However, also alternative approaches are possible, for example via different 
embeddings. Moreover, it turns out to be possible as well to use the asymptoüc, average Fisher 
information per observation (in a prediction error setting) for the definition of a Riemannian metric. 
See also Peeters [37]. 

Summarizing, we have indicated the following. 
(1) The model set under consideration is quite general; only minor restrictions are made in case 
stationary processes (without trends and harmonie components) are considered. The only serious 
drawback is in the choice of a fixed, prespecified order n. The assumption that the inputs are 
Gaussian is not essential so far, but will turn out to be convenient later. 
(2) In identification, the need for a structure selection procedure is overcome by the use of overlapping 
parametrizations, as a switching strategy makes it possible to determine an appropriate structure 
on-line (cf. Van Overbeek and Ljung [34,35]). 
(3) The model set under consideration corresponds to a differentiable manifold of dimension 2np. 
It can be embedded into Hilbert space in various ways, thus inheriting several Riemannian metrics. 
Alternative Riemannian metrics can be constructed also, e.g. by means of the Fisher information 
matrix (in a prediction error setting). 
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2.2 Off—Line Prediction Error Identification 
In this subsection we describe an approach for the identification of a linear system from the model set 
introduced before on the basis of a sample record of T datapoints { j / ( l ) , . . . , y(T)}. These datapoints 
are assumed to belong to a realization of a linearly regular stationary process with rational spectral 
density of order n. The innovations e(t) are assumed to be Gaussian distributed with covariance 
S e > 0. In principle S£ will be unknown, but this will hardly complicate the problem as we will 
see. To a model from the model set, given by the triple (A,B,C), corresponds a representation of 
the innovations, that can be written as 

f x(t + 1) = (A- BC)x(t) + By{t) 
\e(t) = -Cx(t) + y(t) {tEL) 

This can be interpreted as the inverse system, describing the o/i-mapping. From this representation 
we can derive immediately a corresponding linear predictor, identical to the steady-state Kalman 
filter based on (A,B,C) 

( x(t + 1) = (A - BC)x(t) + By(t) 
\y(t) = -Cx(t) (t-l,*,...,!) 

This leads to a corresponding linear system, which we call the prediction error fitter, from which 
the prediction errors are obtained 

f x(t + 1) = (A - BC)x(t) + By{t) 
\ e(t) = -Cx(t) + y(t) [t-l,4,...,l) 

with initial state x(l) = 0. 
From the optimality properties of the Kalman filter it follows that if (A(6+),B(6*),C(0*)) denotes 
the true underlying system belonging to process y(t), then (for T tending to infinity) the sequence 
of prediction errors e(t) generated by the associated prediction error filter minimizes the following 
prediction error criterion 

over all 6 such that (A(0), B{6), C{6)) belongs to the model set, where 6 denotes a parameter vector 
of dimension 2np if we are using our overlapping parametrizations and e(t,6) the prediction error 
for time t resul ting from the prediction error filter based on 6. 
Therefore, if one is interested in (one-step-ahead) prediction with respect to the data y(t), (t = 
1,2,... ,T) , a reasonable strategy to arrive at an adequate description of the data seems to be to 
find a matrix triple (A, B, C) in our model set, for which the corresponding prediction error filter 
yields prediction errors with a minimal total sum of squared lengths. In terms of a parametrization 
with 6 the problem is to find 6 such that 

VH0) = |X>M)H 2 
2 < = 1 

is minimized for 6 = 6. 

Some general remarks are in order. 
(1) As pointed out for instance in Ljung [29] prediction error criteria and linear models (as used 
above) make sense also without a statistical framework. One needs to be aware that what is the 
"best" model in a given situation depends on many aspects, such as the intended use of a model, ease 
of computation, required accuracies, etc. The use of a linear model can then be justified depending 
on the situation at hand an the use of a prediction error criterion on the intended applications. 
(2) The prediction error criterion used above is just one from a large class of possibilities. See e.g. 
Ljung [29] or Söderström and Stoica [41] for a more general account. Also, there are alternative 
ways to arrive at the same prediction error criterion, e.g. via the principle of maximum likelihood. 
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(3) It should be noticed that indeed the covariance matrix Ef did not play a role in the foregoing 
problem formulation. If S£ is known, however, its inverse can be used as a weighting matrix in the 
prediction error criterion, leading to probably better results. 
(4) The above identification problem (i.e. the problem of finding an appropriate model in a chosen 
model class, based on available measurement data) belongs to the class of off-line or batch iden
tification, since we assume all datapoints to be available from the beginning. We are not in the 
situation where a stream of new measurements is coming in, on basis of which a current estimated 
model has to be improved all the time. 
(5) Notice that the criterion VT(0) belongs to the class of nonlinear least squares criteria, which 
follows easily if one stacks all T prediction error vectors into one big vector of dimension pT. 
(6) According to the foregoing remark the method of Gauss-Newton is applicable as a method for 
finding a solution to the identification problem. Here we must notice that although we are not in 
one of the two cases mentioned in the previous section for which the Gauss-Newton matrix and the 
Hessian coincide, we still expect the Gauss-Newton method to exhibit excellent local convergence 
behaviour for large values of T, since the term in the Hessian neglected by Gauss-Newton has zero 
expectation. (Cf. Hanzon [16].) 

We can now summarize the identification problem under consideration. 

We start from a record of T datapoints y(t), which are assumed to stem from a (linearly 
regular, full rank) stochastic process. We want to model this process by a linear model 
of prespecified order n (as described above). The model should be good in the sense that 
the prediction error filter based on it produces small prediction errors (on the average). 
For this we adopt the prediction error criterion Vr(0) specified above. We notice that this 
is a nonlinear least squares criterion. We next notice that our model set can be regarded 
as a differentiable manifold. It can be covered with overlapping parametrizations, as 
described in Van Overbeek and Ljung [34,35]. On the manifold we can define various 
Riemannian metrics, expressing our ideas about distances between systems. The use of 
overlapping parametrizations together with a parametrization selection strategy prevents 
the necessity of preliminary structural identification. We are thus in the situation where 
we have to minimize a nonlinear least squares criterion over a Riemannian manifold, for 
which overlapping parametrizations are available. This can be done via the techniques 
described in Section 1. Of particular interest are the methods of Gauss-Newton and 
Levenberg-Marquardt, but also Riemannian steepest descent (in order to obtain more 
insight in the properties of the various Riemannian metrics and their relation to the 
prediction error identification problem). 

We conclude this section by showing how the partial derivatives of the prediction errors with respect 
to the parameters can be obtained. The procedure is relatively straightforward: we can extend the 
prediction error filter by partial differentiation of all equations with respect to the parameters. We 
then get 

£{t + 1) = (A - BC)x(t) + By(t) 
§r{t+l)=d-^^1m + {A-BC)§:+^y{t) (t = l,...,T) 
e(t) =-Cx(t) + y{t) (f = l , . . . , 2 n p ) 

J£(t) = -f££(0-Cfr(<) 
with initial states i ( l ) = 0 and ^ - (1) = 0, (i = 1 , . . . , 2np). 
Thus, we see that the first order derivatives required by the Gauss-Newton and Levenberg-Marquardt 
methods can be obtained exactly. There is no approximation with respect to the criterion Vr(0) 
involved, since by definition we start all filters with zero initial conditions. 
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3 Computer Experiments and Results 
In order to illustrate the concepts and methods described in the previous sections, we shall discuss 
the results of some computer experiments. We have investigated in detail the off-line identification of 
a model for a sample of output data that was generated by computer simulation. The characteristics 
of the data generating process are 

A = 

/ O 0 1 0 \ 
0 0 0 1 

0.3 - 0 . 1 0.4 0.0 
\ - 0 .3 -0 .2 0.0 0.3 / 

B = 

/ - 0 . 1 -0.2 \ 
0.0 -0.3 
0.2 0.2 

\ 0.3 0.4 / 

_ / 1 0 0 0 \ ƒ 1.0 0.0 \ 

~ v o i o o ) £ ~ \ o.o ï.o ) 
Thus, the "true" parameter vector is given by 

*• = (0.3, -0.1,0.4,0.0, - 0 . 3 , -0.2,0.0,0.3, -0.1,0.0,0.2,0.3, -0 .2 , -0.3,0.2,0.4)T 

Obviously, the order of the data generating process is n = 4, and there are 2 inputs and outputs: 
p = 2 . 
We have used this set-up to generate a sample of size T = 2000. The stochastic input was simulated 
as 2-dimensional, zero mean, Gaussian white noise with unit covariance (as specified above). 
Another interesting aspect of the chosen data generating process is that within the class of parametriza-
tions under consideration there is only one parameter chart by which it can be represented. 
In total, for n = 4 and p = 2, there are 3 parameter charts. These correspond to the following 
structures with respect to (A, B, C): 

Structure 1 

A = 

Structure 2 

A = 

Structure 3 

0 0 1 0 \ 
( * *\ * * * * 

0 0 0 1 
B = * * 

* * 
* * * * J \ * * 1 

_ ( 1 0 0 0\ 
~ \ 0 1 0 0 ) 

( 0 0 1 0 \ 
0 0 0 1 
* * * * B = 

(* *\ 
* * 
* * 1 * * * * i \* * / 

c = 
1 0 0 0 
0 1 0 0 

f * * * * N 
(* *\ 0 0 1 0 

0 0 0 1 
B- * * 

* * 
^ * * * * i \* * / 

C • 
1 0 0 0 
0 1 0 0 

Here the stars denote parameter locations. Thus, for the data generating system we are only dealing 
with structure 2. 
We have considered identification starting from 3 different starting points. These are given by 

*o(l) = (0-5,0.0,0.1,-0.1, -0 .2 ,0 .1 , -0 .3 , -0.1,0.1,0.2, - 0 . 3 , -0.1,0.0, -0.2,0.0, - 0 . 2 ) T 

*0(2) = (0.0,0.1,0.1, - 0 . 1 , -0.2,0.1,0.0, -0.1,0.1, -0 .2 ,0 .1 , -0.1,0.0, -0 .1 ,0 .1 , -0 .2 ) T 

x0(3) = (0.4, -0.2,0.3, -0 .1 , -0 .2 , - 0 . 1 , - 0 . 1 , -0.1,0.2, -0.2,0.1,0.1, - 0 . 3 , -0.2,0.3,0.1)T 
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method *o(l) *o(2) *o<3) 
1 36* 20 14 
2 >100 20 13 
3 37* 19 15 
4 19 21 15 
5 29* 21 15 
6 > 100 > 100 > 100 
7 crash >100 > 100 
8 31* 23 15 

where io( l ) and zo(3) are in structure 2 (the same as the data generating system), and zo(2) is in 
structure 1. 
The minimization methods under consideration all contain the on-line structure selecting strategy 
of Van Overbeek and Ljung. There are 8 methods we have studied: 

1. Riemannian Levenberg-Marquardt method, with Riemannian metric derived from the ^2-norm 
on Hilbert space and embedding as described in Section 2 (this is called the i/o-embedding). 

2. Riemannian Levenberg-Marquardt method, with Riemannian metric derived from the £2-
norm on Hilbert space but an alternative embedding taking the prediction error filters as our 
point of departure (this is called the o/i-embedding). 

3. Riemannian Levenberg-Marquardt method, with Riemannian metric derived from the theo-
retical average asymptotical Fisher information per observation. 

4. Standard Levenberg-Marquardt method, i.e. with the Euclidean metric on each parameter 
chart separately. 

5. (Damped) Gauss-Newton method, where step-sizes are halved until a decrease in function 
value is obtained. 

6. Riemannian gradiënt method, with Riemannian gradiënt as under 1. Here an initial step-
size is obtained via optimization after quasi-linearization. When necessary, halving (as for 
Gauss-Newton) is applied. 

7. Riemannian gradiënt method, with Riemannian metric as under 2, and choice of step-size as 
under 6. 

8. Riemannian gradiënt method, with Riemannian metric as under 3, and choice of step-size as 
under 6. 

The table above contains the numbers of iterations needed to reach a local minimum in each situ-
ation. The situations indicated by a star converged to a local minimum in structure 1 that is not 
a global minimum. The crash for method 7 (after 5 iterations) was due to the fact that instability 
occurred: the structure selection procedure requires stability of A, which was not automatically 
imposed because the Riemannian metric involved requires only stability of A — BC. (For the other 
Riemannian metrics stability of A was ensured implicitly.) 
In the figures at the end of this section we show plots of some parameter estimates as well as 
the achieved criterion values. Also the structure indices are shown corresponding to the iterations 
(where method 1 is the lowest and method 8 the highest row in each plot). In plots 13 to 15 we show 
the exact criterion values V(6), i.e. for T —• oo, based on the estimated models, for data generated 
by the true underlying process. 
Some remarkable features of the results that should be noticed are: 

1. The third Riemannian metric (corresponding to the theoretical Fisher information) performs 
extraordinarily well in combination with a Riemannian gradiënt strategy. Compared to the 
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other two metrics under investigation its local convergence properties are significantly better. 
This can be explained by the fact that for T —* co the Fisher information converges to the 
Gauss-Newton matrix (or conversely), whereas moreover the Hessian becomes equal to the 
Gauss-Newton matrix also. Thus, we expect local convergence that is superlinear (and in 
practice of almost second order). This is indeed confirmed by the experiments. 

2. Starting point xo(Z) is nearest to the "true" point i» . This is clearly reflected by the fact that 
convergence in case 3 is quickest. On the other hand case 1 is furthest away. Here we see in 
many situations convergence to a strictly local minimum. 

3. Convergence in the B-parameters usually occurs quickest, which is to be expected in some sense 
because they are weighted more than the other ones. We see that though the parameters can 
still be quite different and far from the true system, the resulting predictor can already be 
quite good. 

4. Notice the interesting behaviour of the structure selection and the effect it has on the conver
gence of parameter éstimates. In particular we can see for method 2, starting point 1, that 
convergence is slow in structure 1. When eventually a switch to structure 2 occurs (after 83 
iterations) speed of convergence is improved considerably. Notice that according to the results 
for starting points 2 and 3, there is no trouble with respect to speed of convergence near the 
optimum. Apparently the non-linearity aspects involved play an important role. 

We conclude this paper by indicating further research (as to appear in Peeters [37]). This is directed 
towards the development and implementation of recursive methods for identification on Riemannian 
manifolds of systems. Also an extension to the situation where exogenous (deterministic, measured) 
inputs can be applied is studied. 
Future research in this area should involve (a) investigation of which Riemannian metrics are espe-
cially suited both with respect to the behaviour of the identification algorithms and with respect to 
our notion of distance between systems; (b) the development of an on-line order selection procedure, 
because one of the main weak points of the current approach is the assumption that an order n is 
given; (c) broadening of the field of applications for which the ideas expressed in this paper could 
be useful. 
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