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ENDOGENOUS TECHNOLOGICAL CHANGE, INNOVATION 
DIFFUSION AND TRANSITIONAL DYNAMICS 

IN A NONLINEAR GROWTH MODEL 

Peter Nijkamp and Jacques Poot 

ABSTRACT 

This paper addresses capital accumulation and capital productivity change in 
an economy with endogenous technological change and floors and ceilings 
in activity. The properties of the resulting two-variable noniinear differential 
equation system are studied in some detail. The welfare implications are also 
considered. When discrete lags are introduced, wide-ranging behaviour 
emerges, which includes convergence to a steady-state, catastrophes, 
hysteresis, limit cycles and chaos. Simulations illustrate the results. It is 
found that external shocks, such as the diffusion of innovations from 
elsewhere, do not just change the level of the steady-state equilibrium but 
also the dynamical properties of the paths of output and productivity. 
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I . Introduction 

In recent years, there has been a renewed interest in the theory of economie growth.1 

Much of this literature is concemed with modelling the extemalities associated with 
innovation and human capital formation. In such models, one can study the effects of 
formal education, learning by doing, innovation, or trade on the long-run equilibrium 
growth path of the economy.2 While the presence of a positive feedback between income 
and technological change opens up the possibility of ever-increasing growth rates (as in 
e.g. Romer, 1986), there is also (among the developed countries at least) some evidence 
of convergence to a balanced growth path and "catching-up" (Baumol, 1986). Where 
convergence occurs, the capital-output ratio is constant over time and similar across 
countries, while the share of investment in GDP declines the higher the level of income 
(Romer, 1989, pp. 53-70). However, when less developed countries are also 
considered, the results are less conclusive. For example, post-war data compiled by 
Summers and Heston (1991) suggest that there is generally little correlation between the 
share of investment in GDP and the rate of growth in income per capita. Apparently, 
many economies experience varying capital-output ratios and are not on a balanced 
growth path. Therefore, it may be interesting to investigate more carefully under which 
conditions balanced development may emerge. 

In this paper we consider the issue of variations in capital productivity (the 
reciprocal of the capital-output ratio) as a consequence of the existence of so-called 
structural floors and ceilings - as capacity constraints for activity - in the economy. More 
specifically, we are concemed with the impact of a Research and Development (R&D) 
sector on capital productivity in a situation where such a sector is only effective when 
economie activity is within certain lower and upper bounds. If the level of economie 
development in a region or country is low, channelling resources to the R&D sector may 
be counterproductive because of the lack of a "critical mass"-provoking synergy. In this 
case, overall productivity may decline rather than increase and the economy may benefit 
more from simply adopting - with some time delay - innovations generated by other 
economies. When the level of activity is much higher, the conditions may be favourable 
for the nurturing of an R&D sector, but the output of this sector will eventually face 
diminishing returns due to bottleneck phenomena such as inadequate infrastructure, 
congestion, high wage claims by workers, or the presence of a work force which is 
insufficienüy trained to make the best of new technologies (a situation arising, among 
others, in Silicon Valley). The paper explores the impact on the path of output in the 

1 See, for example, Stem (1991) for an overview and assessment. 
2 Clear examples are the models developed by Lucas (1988), Romer (1990) and Grossman and Helpman 
(1991). 
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economy when conventional capital accumulation is combined with such endogenous 
productivity changes resulting from innovation diffusion and R&D activity. 

The next section focusses on the impact of R&D investment and the acquisition of 
technology from elsewhere on capital productivity. Section EI discusses the implications 
of the above mentioned bottlenecks which may thwart the efficiency of new technology. 
The implications for welfare are investigated in section IV. The additional consideration 
of an exogenously set floor for output to achieve productivity enhancement is taken up in 
section V. 

The reformulation of these models in a framework with discrete lags in 
behavioural responses introduces many of the issues which are central to the burgeoning 
literature on nonlinear dynamics, specifically the conditions (i.e. the mathematical 
properties of the model) under which catastrophes and chaos emerge.3 Simulations with 
our model of endogenous productivity highlight some of these issues in section VI. The 
final section puts the theoretical results of the paper in a broader perspective. 

II. Capital productivity and technological change 

As in most models of economie growth, one of the primary sources of the expansion of 
output is the accumulation of productive and reproducible capital. It is assumed that the 
stock of fixed capital is subject to physical depreciation at a constant rate. Hence gross 
fixed capital formation is described by 

K = I - 8 K (1) 

where K denotes dK/dt, K is the capital stock, I is gross investment and 6 the rate of 

depreciation. While the government budget and the balance of payments would affect 

macroeconomic savings, we shall for simplicity take for granted equilibrium between 

capital increase and savings. Hence we adopt the long-run investment function: 

I = o iY (2) 

where CTI is the average propensity to save and Y is national income. The value of o\ is 

of course not arbitrary. If capital accumulation takes place in an economy with purely 

competitive markets and rational economie agents, the competitive equilibrium will be 

optimal in that agents choose ai such that the present value of welfare is maximised (e.g. 

Romer, 1989). Moreover, it has been shown that under the conventional assumptions of 

3 The papers in Benhabib (1992) provide a broad overview, but see in the context of macroeconomic 
fluctuations also for example Hommes and Nusse (1989) and Nusse and Hommes (1990). 
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the Standard neoclassical growth model the optimal growth path converges from any 
initial capital endowment to a steady-state one on which the propensity to save is 
constant. The steady-state level of a\ is determined by the production technology, the 
long-run rate of technical change, population growth and preferences (Cass, 1965 and 
Lucas, 1988). How ai is adjusted off the steady-state growth path depends on the 
transitional dynamics of productivity. This issue will be addressed in section IV. 

The link between production (or income) Y and capital K is, by definition, capital 
productivity e. Hence 

e s Y / K (3) 

Our main interest is in the driving forces of changes in capital productivity over time. In 
addition to conventional business cycle phenomena, the growth in labour supply and the 
substitution between capital and labour, capital productivity is affected by technological 
change. We shall focus solely on the latter aspect and consider other influences as 
exogenous to our model. We assume that the production efficiency can be enhanced to 
some extent by means of the adoption of innovations generated by R&D. Hence, if D 

represents R&D investments, we expect that e will be a function of D. Assuming a linear 

relationship, 

e = vD + p. (4) 

where v measures the impact on productivity of a unit of expenditure in R&D and |i is the 

residual. 

Besides the exogenous factors noted above, \i will also be influenced by the 

adoption of externally generated innovations. Some of these are of a public good nature 

and provide an increase in the stock of knowledge and productivity without any outlay in 

the economy under consideration, but the implementation of others requires training and 

other claims on resources. It is therefore plausible that H=|i(E) with d\UdE > 0 for 0 < E 

< E* and 3|i./9E=0 for E > E*, where E is the expenditure on imported technology. 

Hence H(E*) is the maximum rate of productivity growth that can be obtained by 

importing technology and E* is the minimum amount of expenditure required to achieve 

this. 

Resources devoted to the national or regional R&D sector result from savings in a 

way analogous to (2): 

D = a 2 Y (5) 
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As was the case for a i , 02 and E may both be chosen as to maximise welfare. 
Consumption in the economy is given b y C = Y - I - D - E = (1 - o\- 02) Y - E. 
However, it was noted by Lucas (1988) that if knowledge, once created or obtained from 
elsewhere, can be made available to all at zero cost, the R&D sector generates an 
extemality and the competitive equilibrium and optimal growth paths diverge. Whether or 
not policies are implemented that yield optimal savings behaviour, the rate of growth of 

output can be easily computed by observing that (3) implies that Y/Y= K / K + e / e . 

Substituting (1) - (5), it can be seen that 

Y /Y = ( a i £ - 8 ) + v a 2 K + ^ (6) 
e 

When C2 = M-(E) = 0, there is no endogenous technological change. Real income grows 
in this case at the rate ai £ - 8, i.e. Harrod's well known "warranted" rate of growth 
(Harrod, 1948, p. 82), adjusted for physical depreciation. However, the positive 
feedback from income through R&D on capital productivity implies that in the general 
case the growth rate of income is itself growing. This growth can be decomposed into 
three parts, conditional on the propensity to save: first, higher capital productivity 
generating a higher rate of capital growth; second, the greater capital stock leading to 
accelerating technical change; and, third, the effect on productivity of the installation of 
technology generated abroad or in other regions. As the economy generates more and 
more product and process innovations itself and £ grows, equation (6) shows that the role 
of the adoption of externally generated innovations declines. 

III. Constraints to productivity growth 

Equation (6) provides a simple description of a growth process with endogenous 
technological change and increasing returns. Regions or countries which are identical in 
all respects except for the initial capital endowment exhibit in this model diverging 
growth. There are economies of scale in that the largest and best endowed region has 
permanently the highest growth rate. Growth models for regions or countries with 
endogenous technical change and divergence have received increasing attention in recent 
years. The model of long-run growth in competitive equilibrium with endogenous 
technological change formulated by Romer (1986) triggered much further work, 
reviewed in e.g. Romer (1989), van de Klundert and Smulders (1991) and Nijkamp and 
Poot (1991a). Romer (1989) gives some empirical evidence that since the eighteenth 
century the rate of growth in income per capita has shown an upward trend. 
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However, such ever-increasing growth rates must be considered within a shorter 
window of time with some caution. Empirical evidence for industrialised nations 
provides some rather convincing evidence of a "catching up" of the Standard of living to 
the level of the initially wealthiest nation (e.g. Baumol, 1986). Because industrialised 
economies with relatively low initial incomes tend to grow faster than the wealthier ones, 
there appears to be a convergence process with growth rates decelerating to a fairly low 
long-run fundamental rate of growth as incomes increase. The remainder of this paper is 
concemed with endogenising the role of R&D in this convergence process. 

The convergence hypothesis suggests that unlike the linear relationship (4), the 
effect of R&D expenditure on productivity growth would depend on the state of the 
economy. There are a number of ways through which the impact of endogenous 
technological change on the growth in real income can be checked eventually and a 
constant long-run growth rate can emerge. If e is considered endogenous by introducing 
a neoclassical production function (with constant returns to scale and declining marginal 
products of the inputs) and a technical change function (which transforms R&D into 
labour augmenting technical change), a stable long-run growth rate again emerges. This 
has been shown by Nijkamp and Poot (1991a) in a simple extension of the Standard 
neoclassical growth model formulated by Solow (1956), but qualitatively similar results 
follow in Lucas' (1988) model of human capital accumulation and in a model of product 
innovations, patents and R&D formulated by Romer (1990). 

An alternative negative feedback from technological change to productivity can 
result when the marginal efficiency of R&D expenditure declines when output grows 
(Dosi, 1988). Under a given "technological regime" ultimately a saturation level of output 
may exist at which further R&D expenditure has no longer an impact on productivity. 
Such a saturation level may arise from capacity limits (technological, economie and 
social) and reflects a "limits to growth" phenomenon stemming from congestion or lack 
of natural resources and other reproducible capital. Evidence on the decreasing 
productivity of R&D in case of more mature economie conditions can be found, among 
others, in Ayres (1987) and Metcalfe (1981). More generally, the productivity slowdown 
in recent decades of countries with historically high incomes has been well documented 
(see Williamson (1991) for a review). 

A third explanation for decreasing productivity of R&D expenditure has been 
recently proposed by Baumol and Wolff (1992). These authors note that the cost-disease 
model (in which sectors with low productivity growth, such as services, account for 
growing shares of aggregate expenditure) is also applicable to the R&D sector. Thus, an 
expansion of the R&D sector raises its relative price, which in turn reduces demand for 
R&D. Ultimately this has a negative impact on productivity growth in manufacturing. 

We capture such negative feedback effects by the following relationship 
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: * n - - ^ c ) (?) 

where Y c represents a capacity constraint on economie activity. As there are likely to be 
feedback processes which will relax such capacity constraints in the long-run, Y c may 
grow over time. For simplicity it is assumed that YC grows at the exogenous rate g. A 
complete description of the dynamics of productivity and accumulation is then obtained 
by the following two equations of motion for K and e respectively: 

K = a i e K - 8 K (8) 

ê = X o i ( l - ~ ~ ) e K + n(E) (9) 

combined with Y c = g Yc. The differential equation system (8) and (9) is mathematically 
a non-linear predator-prey system. Such systems have been studied extensively for 
biological populations (see e.g. Pimm, 1982). Here we can interpret K as a predator 
(which increases with E) and e as a prey (which decreases with K). To study the 
dynamical properties of this process, it is convenient to define the variable | = K / Y c 

which, like e, is independent of the monetary unit of measurement The differential 
equation system (8) and (9) can then be rewritten as 

i = (<y ie -6 -g )^ (10) 

E = X a 2 ( l - e^)£^YC + u(E) (11) 

Solving (10) and (11), the equilibrium values of % and e are 

1 = >w 1 + 4|KE) 
\c2YC 

OI 

g + 5 
(12) 

and 
g + 5 

e = -* (13) 
<*1 

These equilibrium values can only exist in two circumstances, either when p.(E) = 0, or 

when Y c = constant (i.e. g = 0). In the genera! case, % is not constant but becomes 
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smaller over time, due to the growth in Yc . However, asymptotically this case is 
equivalent to the case that |x(E) = 0. The economie interpretation is that when Y^ is very 
large, the economy which approaches this capacity constraint obtains most of its 
productivity growth through the internal R&D sector (which is then also very large) and 
the role of imported technical change is consequently reduced. The equilibrium capital 

stock K = l YC. 

Hence, in the long-run K grows at the same rate as Yc. As noted earlier, the 

growth rate of Y c is considered exogenous and refers to the fundamental growth rate of 

the mature economy, which is a function of natural increase, human capital accumulation 

and other engines of growth. Naturally, R&D may have some impact on Y c but this 

process is expected to be much slower than its effect on actual output Y. Thus, the model 

describes how R&D expenditure can aid the process of "catching up" or "falling back" 

to a balanced growth path. For example, it can be seen from (12) that an intensified 

adoption of externally generated innovations (an increase in E) increases the level of % 

(and, hence, Y= e % YC) up to a certain point (until E > E*), but it does not affect the 

long-run equilibrium growth rate, which is determined by the growth in Yc. 

Moreover, the long-run steady-state is locally stable. This can be demonstrated in 
the usual way by considering the Jacobian matrix which results from taking the partial 

derivatives of (10) and (11) evaluated at (£, e). This matrix is given by 

( o „5 ^ 
J = M - - M - - (14) 

- •=-- X<52 e 2 ^YC - -H-- xa2 e ^ Y C 

V C ê ) 

The determinant of J is positive, while the tracé is negative. Hence ( \ , e ) is a stable 

fixed point (see e.g. George 1988, p.97).4 

It is instructive to illustrate the stability of long-run growth in this model by 
means of simulation of (10) and (11) for given parameter values. It is desirable to piek 
parameter values which would be empirically plausible. As a matter of convenience, we 
use observations on long-run growth in the New Zealand economy, but the choice of this 
economy is not crucial to studying the R&D effects considered in this paper.5 Over the 

4 Topologically, the phase portrait of the system can be a stable spiral, star node or proper node, 
dependent on the values of the parameters. 
5 Data sources are the data base of the Research Project on Economie Planning at Victoria University and 
Sissons et al. (1990). The simulations were carried out with the STELLA program on a Macintosh 
SE/30 computer (Richmond et al. 1987). 
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period 1952-91, gross fixed capital formaüon was on average 24 percent of GDP (CTI = 

0.24). Capital and output grew both at the rate of about 2.6 percent per annum (g = 

0.026). The rate of depreciation was 3.5 percent per annum (5 = 0.035). The long-run 

capital-output ratio was about 4 and had no discemable trend. Hence long-run capital 

productivity E was about 0.25, as can be checked by substituting the parameters in 
(12), which gives a value of 0.254. R&D expenditure accounted for 1 percent of GDP 
(<72 = 0.01). Constraints on output expansion were the strongest in the early 1970s, 
particularly 1973/74 when the Capacity Utilisation Index from a business opinion 
survey reached a record level.6 Using this information we take Y c = 26,000 at the 
time.7 No empirical information about the parameters X and \i exist, but we shall take X, 
= 0.001 and \i = 0 to generate magnitudes of change in e, which would appear 
empirically feasible and guarantee convergence to the steady-state. 

The model shows how the economy, when perturbed, returns to a steady-state 
through investment behaviour and the innovative activities of entrepreneurs. Figure 1 
shows the phase portrait for two simulations, one in which (£(0), e(0)) = (3.5,0.2) and 
the other in which (£(0), E(0)) = (4.5, 0.3). In the former case, the economy operates 
well below its capacity and R&D expenditure is highly effective in raising capital 
productivity. However, soon a point is reached at which bottleneck effects reduce 
productivity although a momentum has built up through which capital accumulates faster 
than at the long-run growth rate g. Hence from that point on £ increases while e 

decreases until convergence at (%, e ) = (3.937, 0.254). As usual, points for which % = 

0 and e = 0 show where the direction of change in the phase portrait is vertical or 

horizontal respectively and these points are given by the horizontal line E = (8 + g) / ai = 

0.254 and the hyperbola E \ = 1. The stable equilibrium is at the intersection of these two 

points. In the second simulation, economie activity is initially too high and productivity 

declines until a trough is reached. From then on R&D expenditure raises productivity 

again, but the abundance of capital leads to a low level of investment and a declining 

value of £. As in the first simulation, the economy converges again rapidly to (2;, £ ) = 

(3.937, 0.254). 

6 The data source was the CUBO index from the New Zealand Institute of Economie Research Quarterly 
Survey of Business Opinion. 
7 The CUBO index was 104 in 1973/74 and GDP was $27,756 million in 1981/82 prices. 
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Figure 1 

Capital productivity in a model with endogenous technological change and capacity constraints. 

IV. Optimal growth 

It was mentioned earlier that ai, a2 and E are not fixed parameters, but will be chosen by 

optimising economie agents such that the present value of welfare is maximised. It is 

informative to describe the resulting optimal control problem. As is commonly assumed, 

welfare is measured by the function U(C) = (Cl~x -1) / (1 - x) where marginal welfare 

(or utility) has a constant elasticity -x with respect to C, with x being the coëfficiënt of 

relative risk aversion (and 1/x the intertemporal elasticity of substitution). We noted 

earlier that C E Y -1 - D - E. Since K = $ Yc, and using (2) and (5), C = (1 - a i - a 2 ) 

e | Y c - E. Discounting future welfare at the discount rate p, the optimal control 

problem is to maximise 

oo 

W= f ( [(1 - a i - a 2 ) E £ Y c - E] *-* - 1 ) (1 - x) -1 e- P * dt (15) 
0 

subject to equations (10) and (11). Here e and £ are state variables, while ai , a2 and E 

are controls. The Hamiltonian for this problem is the function (see e.g. George (1988, 

pp.120-122)): 
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H (t, e, £, ai , G2, E, pi, p2) = 

([(1 - ai - a2) e^ YC - E ] ! -^ - 1 ) (1 -x) -1 e-P» 

+ Pi[ ( a i e - 5 - g ) ^] + p 2 [ X a 2 ( l - e S ) e S YC + n(E)] (16) 

with pi and p2 the co-state variables. 

In principle, the solution to this problem can be studied by setting dEJd% = - pi, 

9H/3e = - p2, dWdo\ = 0, 3H/3a2=0 and 9H/3E = 0 and checking the transversality 
conditions. However, the resulting differential equations for this particular system are 
too cumbersome to provide any clear insights. Fortunately, an intuitive approach is 
available. We can use the fact that each of the three controls has the same function: a 
reduction in present consumption to create more wealth, and thus consumption, in the 
future. Therefore we need only to compare how a unit of expenditure on each of the three 
forms of investment I, D and E contributes to the growth in output. Substituting (7) in 
(6) provides a clear indication of what the initial change in Y will be when starting from a 
given level of income Y(0)= e(0) K(0): 

Y = ( a i E(0) - 8) Y(0) + X (1 - ^ ) a2 K(0) Y(0) + n(E) K(0). (17) 

Differentiating (17) with respect to expenditures aiY(0), a2Y(0) and E yields 

3Y/a(aiY(0)) = E(0) (18) 

d Y / 3 (a2Y(0)) = X (1 - ^ ) K(0) (19) 

and 

a Y / 9 E = ^'(E)K(O) (20) 

respectively. Since one unit of expenditure on any of these three reduces consumption 
initially by the same amount and since they do not enter multiplicatively in the utility 
function, it will be optima! at any point in time to set two of the three controls equal to 
zero. The only control variable not equal to zero will be the one which yields the greatest 
effect on future income. Which of the three controls takes this role depends on the values 
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of the parameters. However, inspection of (18) to (20) suggests a plausible process of 

development: 

1. In an initial stage of development, the capital stock and capital productivity are 
expected to be relatively low. Moreover, there may be an abundance of unutilized 
resources, suggesting that Y(0) is much less than Y^. In this case, we expect that 
the greatest effect on output expansion is obtained by devoting resources to 
importing new technology. Mathematically, e(0) < X K(0) < ji'(E) K(0). Of the 

three effects, 3 Y / 3 E is then the largest. Hence the optimal decision is to set ai = 

<J2 = 0 and 0 < E <> E* (recall that |T(E) > 0 for 0 < E < E* and ji'(E) = 0 for E > 

E*). The optimal value of E will depend on the discount rate p in the usual way. 

Note that at this stage there is an absence of physical capital accumulation: me new 

technology is applied by means of the existing and depreciating capital stock. The 

technological change must therefore be disembodied and in practice this is only 

possible to a limited extent (see e.g. the critique by Scott (1989) on the 

neoclassical production function approach). 

2. In the second stage of development, 3 Y / 9 (<?2Y(0)) is the largest contributing 

factor to growth. In this case, the economy switches from importing technology to 

generating new technology by devoting resources to its own R&D sector. This 

strategy remains efficiënt as long as Y<YC. When Y>YC, 3 Y / 3 (CT2Y(0)) < 0 

and it is then optimal to set <si - 0. 

3. In the third stage, the economy has moved onto the balanced growth path where 
Y=YC and therefore grows at the constant rate g. In this case O2=E=0 and we saw 
earlier that this equilibrium growth path is stable. The optimal value of oi can be 
easily determined by noting that the economy grows in this case in the same way 
as on the balanced growth path of the neoclassical growth model without 
endogenous technological change (since e is constant when O2=E=0). Hence g is 
here the "natura!" growth rate (including exogenously determined long-run 
technological change) and the optimal control problem (15) reduces to the 
Standard problem of optimal capital accumulation solved by Cass (1965). Using 
our notation, it can be straightforwardly established that the optimal propensity to 
save on the balanced growth path is in this case 

~ <* ( g + 8 ) 
CTl= ^ 

p + 5 + x g 
(21) 
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(see also Nijkamp and Poot, 1991a, p.4), where a represents the share of capital in 

aggregate income. 

V. Multiple equilibria 

In addition to a limited effectiveness of R&D expenditure when the economy is 
constrained by bottleneck phenomena, such investment may also be unproductive when 
the economy has not reached a certain floor of activity (cf. Myrdal, 1957). Unless there is 
social infrastructure and human capital available, the innovations generaled by the R&D 
sector may have little impact on productivity. During a transitional phase of 
implementation of new production techniques or the setting up of new product lines, 
aggregate productivity can even decline. Floor and ceilings in economie activity have of 
course a long tradition in the literature.8 The implications of floors and ceilings for capital 
accumulation and productivity can be assessed by replacing equation (7) by 

v = X ( Y - Y F ) ( Y c -Y)Y (22) 

where YF and Y c are the exogenously given floor and ceiling levels of output 

respectively. Substituting this in the model of section n, the dynamics of the resulting 

growth model are fully described by the following two non-linear differential equations: 

K = oi e K - 8 K (23) 

é = Xor2(eK-YF)(YC -eK)£K+ii(E) (24) 

For simplicity, we do not consider changes in these levels themselves. Hence any 

equilibrium, if it exists, has a constant capital stock and a constant level of capital 

productivity. The equilibrium level of capital productivity can be computed directly from 

(23): K = 0, when e = 8 / a i , hence e = 8 / ai . The equilibrium capital stock itself 

depends on the adoption of externally generated innovations, |i(E), through setting E = 0 

in equation (24). For a given n(E), there are one, two or three different equilibria K, 

since (24) is a cubic equation in K. The characterisation of these equilibria is depicted in 

Figure 2.9 

8 See e.g. Hicks (1950); and McKenzie and Zamagni (1991) on related issues. 
9 See also Isard and Liosattos (1979) for a similar model. However, theirs is a single variable model 
rather than the two-variable model described by (23) and (24). 
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Figure 2 
Innovation diffusion, multiple equilibria and discontimiities. 

When n(E) = 0, there are three equilibria: Ki = 0, K2 = c\ YF/ 8 and K3 = a i YQ 8. 

Proceeding along similar lines as in section LI, it can be established that Ki and K3 are 

stable equilibria, while K2 is unstable. For 0 < |i(E) < JJ.(E') there continue to be three 
equilibria, of which the middle one is unstable. However, when E=E', the two "low 
level" equilibria become one. This occurs when the function K=K(p.) has a local 

maximum. In Figure 2 this is the point at which K = a i Y/ 8. Y' can be expressed in 

terms of YF and Y c by 

Y ' = | (YF + YC) - | V ( YF - YC )2 + Y F YC (25) 

as can be established straightforwardly with calculus. There is no simple expression for 

the "high level" equilibrium K = ai Y7 8. When ^(E) > n(E'), one stable "high level" 
equilibrium remains. It can be seen from (24) and (25) that while Y' is not affected by the 
proportion of resources devoted to the R&D sector (a2), M-(E') is. Recall that we defined 
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in section II |i.(E*) as the maximum rate of productivity growth that can be obtained by 
importing technology and E* is the minimum amount of expenditure required to achieve 
this. 

The model makes interesting predictions regarding the process of'development. 
We saw in the previous section that at low levels of capital productivity, the acquisition 
and adoption of "blueprints" for production from external sources was the most effective 
way of generating growth in income and welfare. Here we see that an economy endowed 
with little capital remains captured in a "trap" of low development as long as E<E'. An 
increase in E beyond E' causes the economy to accumulate capital rapidly and benefit 
from productivity growth to the extent that it converges to a high level of income. This 
type of jump, referred to mathematically as a catastrophe, has now been studied 
extensively in economics.10 

It was argued in the previous section that at high income levels in large scale 
economies, an optimal growth strategy may at some stage involve a switch from 
importing technology to an expansion of the own R&D sector. The reallocation of 
resources (a decrease in E and increase in D) will lead to a reduction in \i, eventually 
below M-(E')- However, at this stage the economy does not return to a low-level 

equilibrium, but instead moves towards K= a i Yc/ 8. This is of ten referred to as a 
hysteresis phenomenon. Eventually, the economy reaches a steady state on which Y=YC, 
capital productivity is constant and the capital stock grows at the same rate as Yc. As in 
the previous section, it is then optimal to set C2=E=0. In this mature economy which has 
converged to a balanced growth path, the optimal propensity to save is therefore the same 
as in the model of the previous section (and given by equation (21)). It must of course be 
stressed that through changes in the parameters or shocks in Y^, the economy may move 
again to a lower level of capital productivity at which an outward orientation with positive 
E and a revitalisation of the R&D sector becomes beneficial. Nonetheless, a thriving 
R&D sector requires in our model the removal of bottleneck phenomena. 

VI. Gestation lags in capital accumulation 

Until now we have assumed smooth adjustments to the capital stock and productivity, 
which were encapsulated in first order differential equations. It may be considered more 
appropriate to allow for discrete lags and, hence, adopt a difference equation approach. In 
this section we shall see that the latter approach gives the models additionally interesting 
dynamical properties. A traditional argument in favour of discrete lags is that the 
production and implementation of physical capital requires time. Although it may be 

10 See e.g. George (1988) for an introduction. 
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argued that such lumpiness of new investment should be smoothened out by 
aggregation, observations on the economy (which take place over discrete time intervals 
in any case) often exhibit "thick market effects", i.e. economie activity appears more 
efficiënt when concentrated over space or over time. Spatial and temporal agglomeration 
effects provide a rationale for this (see Hall, 199.1). Moreover, the evolutionary nature of 
creation of new technologies and products and the nature of the adoption process 
(following the well established s-shape curve) would also tend to lead to jumps in 
productivity in time and space rather than a smooth change.11 

Replacing the model of section Hl with the corresponding difference equations, 
we obtain for given Y^ 

K t + i - K t = ( o i e t - 8 ) K t (26) 

e t + l-et = X a 2 ( l - - ^ ) et Kt + ̂ (E) (27) 

The equilibrium values of (26) and (27) are 

aiYC 
K = 

and 

2 - + 1 2 * y 
1 + 4n(E) 

A-CT2YC J 
(28) 

e = — (29) 

As before, the equilibrium exists when Y^ is constant or asymptotically when Y^ grows 

at rate g (in which case 5 is replaced in (28) and (29) by g + 5 and |i(E) is set to 0). 

A model similar to (26) and (27) was studied by Nijkamp et al. (1991), who 

considered productivity change in a multi-regional context with |i(E) modelled explicitly 

as the productivity change resulting from the diffusion of R&D output from other 

regions. In the multiregional context, it is difficult to derive theoretical results, but 

simulation showed that that model could exhibit widely varying behaviour, ranging from 

convergence to a steady-state equilibrium to persistent cycles and seemingly chaotic 

fluctuations. 

See also Nijkamp and Reggiani (1992). 



16 

In the present context, some theoretical properties of (26) and (27) can be stated 
explicitly. While the equilibrium is the same as before, the dynamical properties are now 
more interesting than in the case of section UI. Equaüon (27) can be rewritten as 

et+i = (1 + X a2 KO e tf 1 - „ \ g 2 K ' r
 e * l + ^ <3°) 

^ (1 + A.a2Kt)Y<- J 

If we introducé the variable xt = — £t, substitution into equation (30) 
(1 + X CJ2 K t)Yc 

gives: 

= ( l + ^ 2 K t ) 2 K t + 1 2 _ , ( E U a 2 K t + 1 2 
( l + X a 2 K t + i ) K t 2 ( l + ^ o 2 K t + i ) Y C 

While the behaviour of the difference equation system (26) and (27) can obviousiy be 
studied by means of simulation, equation (31) provides some clues about the likely 
behaviour. First we note, from the definition of xt and assuming that Yt does not exceed 
Y c too much, that 0 < xt < 1. Moreover, the process of capital accumulation described by 
(6) is such that for any realistic values of the parameters, the growth in the capital stock is 
only a small percentage each period. If the capital stock Kt is seen as a large but only 
gradually changing number *F, the time path of xt can be approximately described by the 
nonünear difference equation 

x t + i= a x t ( l - xt) + P (32) 

For p.(E)=0 we obtain the logistic equation (or referred to as Verhulst dynamics) with 

properties described in the influential article by May (1976). Nontrivial dynamics requires 

1 < cc < 4, otherwise x becomes at some stage zero or negative. When 1 < cc < 3, x 

converges to the stable equilibrium 1 - l/a, while for 3 < a < 3.5700 stable cycles 

emerge. Beyond this, chaotic fluctuations emerge which resemble random noise, 

although there are also stable cycles in this range (see e.g. Lorenz (1989) for a review). 
In equation (32), cc = 1 + X o2 *F and, hence, cc increases over time due to the 

accumulation of capital described by (26). Eventually, for fixed X and o2, a would 
exceed the value 4 and the model breaks down. However, we expect that the parameter X, 
would be sensitive in empirical situations to the scale of the economy. This is what we 
referred to in the simulation of section Hl as using a value for X, which generates 
empirically feasible fluctuations in E. As long as 0 < X a2 *¥ < 2, the model will 
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converge. It is evident, however, that an economy which is on a balanced growth path in 
this model may after some time exhibit a phase of wild fluctuations when X 02 *F 
exceeds 2.57. 

To illustrate these points, we simulate the model (26) and (27). The parameter 
values are those used in section IEL As bef ore, Yc= 26000. However, YC i s now 
assumed constant to ensure that X 02 Kt does not exceed 3. Hence g=0. All other 
parameters and starting values are as in the fïrst simulation, i.e. (4(0), e(0)) = (3.5,0.2). 
Figure 3 shows how the model converges also in difference equation form to constant 

capital productivity i = 5 / ai = 0.035 / 0.24 = 0.1458. Since K0 = %Q Y c = 3.5 x 26000 

= 91000 and K = Y c / e = 178286, the May model "tuning parameter" increases from 1 

+ X a2 Ko = 1 + 0.001 x 0.01 x 91000 = 1.91 to 1 + X o2 K = 2.78. Exogenous shocks 

can therefore not generate cyclical or chaotic behaviour. 
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Figure 3 
Capital productivity in a nonlinear growth model in difference equation form with convergence to a 

steady-state (l=capital productivity; 2= the approximate May model tuning parameter); 
logistic productivity response 

Lf the parameter X is increased slightly to 0.00163,1 + X C2 K = 3.906 and chaotic 

fluctuations emerge when Y exceeds Y^. This is illustrated in Figure 4. Since K changes 

over time, bifurcations occur each period. 
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Figure 4 
Capital productivity in a nonlinear growtb model in difference equation fonn with chaotic fluctuations 

(l=capital productivity; 2= the approximate May model timing parameter); 
logistic productivity response 

However, Figure 4 shows that the process of capital accumulation leads to relatively 

minor variations in the tuning parameter. This suggests mat returns to a stable.or cyclical 

regime (which do exist within the chaotic range) would be shortüved. The bifurcations in 

the logistic model have been extensively studied. A plot of the attractors in this equation 

(the long-run set of values of x for a given parameter) when a increases from 2.8 to 3.9 

is given in Figure 5. 

1 r 

i-

x \. 

3 35 0( 

Figure 5 
Numerical Plot of the Bifurcation in the Logistic Equation. Source: Holden (1986, p.46). 

In summary, the model that was developed in section IJJ can be interpreted in difference 

equation form as a logistic or May equation, but with a discrete jump of the tuning 

parameter (due to the change in the size of the capital stock) in each period. 
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A dynamic system which has the potential to generate chaotic fluctuations has the 
property of strong sensitivity to measurement of the initial conditions and the values of 
the parameters.12 In the present context, this implies for example that the adoption of 
extemally acquired innovations can have a destabilising effect on economie fluctuations. 
Up to now we have considered p.(E)=0 hi the simulations. If, however, in the case of the 
simulation displayed in Figure 3, p.(E) is increased to 0.08, chaotic fluctuations again 
emerge. See Figure 6. The behaviour of capital productivity in Figure 6 is qualitatively 
similar as in Figure 4, but chaos now results from the value of p.(E) rather than X. 
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Figure 6 
Capital productivity in a nonlinear growth model in difference equation fonn. Parameters are as for Figure 

3, but now p.(E)=0.08 instead of 0. (l=capital productivity; 2= the approximate May model timing 
parameter); logistic productivity response 

Even richer dynamical behaviour emerges when we allow for both floors and ceilings in 

the economy, i.e. return to the model of section V. In difference equation form (23) and 

(24) become 

and 

K t + i - K t = ( a i e t - 5 ) K t 

e t + i -e t = Xa 2 (e tK t - Y^) ( Y C £ t K t ) et Kt + u(E) 

(33) 

(34) 

We can rewrite (34) in the form 

12 See e.g. Nijkamp and Poot (1991b) for an overview of issues in empirical work with nonlinear 
dynamical models. 
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et+i = X 02 Kt3 et [ (et - Yï7 Kt) (Y?/ Kt - e t) ] +H(E) (35) 

where YF and YC' are the two solutions to the quadratic equation ( x - Y F ) ( Y c - x ) = 

. Hence equation (35) is of the form 
X 02 Kt 

et+i = a e t ( e t - b ) ( c - e t ) + n (36) 

with time-varying parameters a, b and c. The properties of cubic interative maps of this 
form, even with constant parameters, have not been studied as extensively as the May 
model. However, a very special case of (36) was analysed recently by Puu (1991). 

P 
l+p 

Introducing the parameter p, and letting a = 1 + P, b = *\ / -*—, c = - A i 

and \i = 0, equation (36) can be reduced to 

et+i = Pe t - ( l + P)e t
3 (37) 

Puu showed that this model has the interesting property of cyclical or chaotic movement 
between the two non-trivial equilibria for certain values of (3. For P > 1 there are three 

equilibria (- *\ ƒ ——, 0, + *\ ƒ —— ), of which the two nonzero ones are stable when 
V p+i \ p+i 

P < 2. Chaos emerges when P is about 2.35, but is first confined to fluctuations around 
each of the two equilibria. Spillover (i.e. a shift from fluctuations around the low level 
equilibrium to fluctuations around the high level equilibrium or vice versa) emerges when 
P exceeds 2.6. Moreover, there are stable cycles in the chaotic region. For P > 3, the 
model breaks down. The behaviour of the equation over the whole range of parameter 
values is shown in Figure 7. 

To study the properties of our own model, (33) and (34), we can again use 
simulation. As in Puu's specification, the dynamical properties will be particularly 
sensitive to the coëfficiënt of the highest power of the variable. From (35) we see that the 
coëfficiënt of et

3 is -X 02 Kt
3 and to generate interesting behaviour, this needs to be 

sufficiently small. Hence we can use exactly the same parameter values as in the initial 
simulation in this paper in section UI, but scale down X sufficiently. A suitable value is X 

= 0.5 x 10-11. The only new variable is YF, which we set equal to 10,000. 
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Figure 7 
Numerical Plot of the Bifurcation in the Cubic Iterative Map. Source: Puu (1991, p.129). 

Figure 8 shows how chaotic fluctuations emerge in the case of a cubic productivity 
response. This figure may be directly compared to the case of a quadraüc productivity 
response in Figure 4. Although the fluctuations start earlier in the economy of Figure 8, 
productivity change is slower. Moreover, the difference between the two situations 
becomes clear when the initial conditions are varied. Figure 9 shows that if Ko = 48575, 
the model still displays productivity growth up to the point where output exceeds YC with 
chaotic fluctuations subsequently. However, a small decrease in the initial capital stock to 
KQ= 48562 moves the economy below its minimum sustainable level and creates negative 
net investment until eventually output becomes zero (see Figure 10). 
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Figure 8 
Capital productivity in a nonlinear growth model in difference equation form with chaotic fluctuations 

(l=capital productivity; 2- X (52 Kt
3); cubic productivity response; initial conditions as in Figure 4 
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Figure 9 
Capital productivity in a nonlinear growth model in difference equation fonn with chaotic fluctuations 

(l=capital productivity; 2= X, CT2 K^); cubic productivity response; KQ = 48575. 
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Figure 10 
Capital productivity in a nonlinear growth model in difference equation fonn with chaotic fluctuations 

(l=capital productivity; 2= X <J2 Kt3); cubic productivity response; KQ = 48562. 
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As in the case of the quadratic productivity response it is again fruitful to consider the 

infiuence of exogenous productivity shocks on the dynamic properties of the model. 

What happens, for example, if more resources are allocated to the acquisition of new 

technological blueprints from abroad? We have then the same situation as in Figure 2, but 

with the possibility of bounded irregular movement around either of the two equilibria. 

Simulations carried out by Puu (1991) show that it is in this case possible that a small 

increase in (i(E) may generate a jump from a stable high level equilibrium to chaotic 

fluctuations in the region of the low level equilibrium. Figure 11 illustrates this for the 

equation 

x t+i = P x t - ( l + p)x t 3 + ti (38) 

where [3=2.00 and (i moves across the interval [-0.5,0.5]. The system (33) and (34) 

would display qualitatively similar behaviour. 

Figure 11 
The effect of exogenous shocks in the Cubic Iterative Map. Source: Puu (1991, p.143). 

The models discussed in this section suggested that in many situations the long-run 

behaviour of capital productivity exhibits irregular, but trendless, oscillations. Recalling 

that the parameter values in the simulations were based on New Zealand macroeconomic 

data, the question arises whether such simulations are at least consistent with observed 

fluctuations in capital productivity. While formal econometrie work is beyond the scope 

of the present paper, capital productivity indeed appeared to exhibit trendless fluctuations 

during the last forty years. This can be seen from Figure 12. The vertical axis has a 

similar scale as in the figures displaying the simulations. While there is obviously strong 

autocorrelation, an oscillatory pattern emerges at roughly five-year intervals. It is readily 

admitted that a large part of the variation in capital productivity in Figure 5 may be due to 

business cycle fluctuations and that the causes of these may be much broader than the 
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nonlinear feedback of the endogenous R&D sector on aggregate productivity. In a recent 
econometrie study of key features of the New Zealand business cycle, Kim et al. (1992) 
noted that it is difficult to establish separate roles for demand and supply factors and to 
capture the influence of technological change based supply shocks. Further work on the 
role and potential endogeneity of technological change is obviously warranted. 
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Figure 12 
Aggregate capital productivity in New Zealand. Data source: Research Project on Economie Planning, 

Victoria University of Wellington. 

VII. Reflections 

Regime switches from stable to unstable behaviour in an economy such as those 
discussed in this paper are increasingly receiving attention. Although earlier attempts date 
back to the fifties (notably Goodwin's non-linear accelerator-multiplier model; see 
Goodwin, 1982), economists have had great difficulties in incorporating discontinuities 
and instabilities in their modelling efforts. Modern approaches to self-organising systems 
have convincingly demonstrated that - after initial shocks - a new equilibrium will not 
automatically arise but, instead, can only emerge after a qualitative shift in the system (so-
called structure dynamics). The transition path in such situations is of course of eminent 
importance, for both analytical and predictive reasons (see also Baumol and Benhabib, 
1989; Benhabib and Day, 1981; Rosser, 1991; Zhang, 1991). 
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The present analytical apparatus still has important shortcomings. Model 
specifications are often semantically insufficiënt, econometrie estimation procedures for 
non-linear dynamic models are often inadequate, and the statistical tests on validity of 
model results need much improvement (see also Broek et al. 1987; Ornstein and Weiss, 
1991; and Sayers, 1991). Other important items on the broader research agenda of non-
linear dynamic equilibrium analysis are: the impact of time lags on stability, the effect of 
an unstable niche in a globally stable dynamic system, the links to self-organising models 
and the use of experimental designs for analysing unstable behaviour. In our model of 
productivity change, a complete description of accumulation and technological change in 
an open economy setting would be a first requirement 
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