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ABSTRACT

The main features of complex impact systems are imprecision
(different levels of measurement of the available information) and
uncertainty (stochastic and/or fuzzy). This paper deals with the
problem of the presence of such qualitative information. In
particular, first the use of concepts of fuzzy set theory in order to
represent qualitative information will be defended in the light of
their mathematical and psychological properties. Then a new
semantic distance and a generalization of the Minkowski p-metric,
which is particularly useful for mixed information (crisp, fuzzy and
stochastic), are presented. In the appendices, the proof of the
fulfilment of the triangle inequality property (a necessary condition
for a distance metric) and a numerical algorithm for the semantic
distance are given.

Keywords: qualitative information, fuzzy sets, distance
functions, physical planning
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1. Introduction

In the modeling of a real world problem, the first phase is to
structure this problem. This phase depends above all on the
available information; in fact, the model must fit reality and not
vice versa! Therefore, a flexible model able to take into account the
possible different types of information is of a fundamental
importance. As known from measurement theory [15], in
structuring a problem, given a set A and some information about
this set, there is a need to express this information by assigning to
each element ac A a real number m{a). This real number is called
the measure of a and the application m:A--->R is called a scale of
measurement. The main scales of measurement are

nominal scale
ordinal scale
interval scale
ratio scale,

For simplicity, we will refer to gqualitative information as
information measured on a nominal or ordinal scale, and to
quantitative information as information measured on an interval or
ratio scale.

It has been argued that the presence of qualitative
information in evalvation problems concerning socio-economic and
physical planning is a rule, rather than an exception. Thus, there is
a clear need for methods taking into account qualitative
information.

Another problem related to the available information is the
one of the uncertainty contained in this information. Ideally the
information should be precise, certain, exhaustive and unequivocal.
But in reality, it is often necessary to use information which has not
those characteristics and therefore to face the uncertainty of a
stochastic and/or fuzzy nature present in the data. In fact, if the
available information is insufficient or delayed, it is impossible to
establish exactly the future state of the problem faced, so that then
a stochastic uncertainty is created. Another type of uncertainty
derives from the ambiguity of this information, since in the
majority of the particularly complex problems involving men, much
of the information is expressed in linguistic terms, so that it is
essential to come to grips with the fuzziness that is either intrinsic
or informational typical of all natural languages. Therefore, the
combination of the different levels of measurement with the
different types of uncertainty have to be taken into consideration.
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2. Representation of Qualitative Information by means of
Fuzzy Sets

Human judgments, especially in linguistic form, appear to be
plausible and natural representations of cognitive observations.
Numerical verbalization seems to give rather precise statements
which may appear imprecise to many observers, while linguistic
verbalizations seem to preserve more information for these
observers. We can explain this phenomenon by the notion of
cognitive distance. A linguistic representation of an observation
may require a less complicated transformation than a numerical
representation, and therefore less distortion may be introduced in
the former than in the latter [14]. We could say that the linguistic
representation is cognitively closer to the mental description than
the numerical representation,

In traditional mathematics, variables are assumed to be
precise, but when we are dealing with our daily language,
imprecision usually prevails. Intrinsically, daily languages cannot
be precisely characterized on either the syntactic or semantic level.
Therefore, a word in our daily languages can technically be
regarded as a fuzzy subset.

Qualitative information can be represented by means of fuzzy
sets in two different ways:

-using linguistic variables,
-using graphical procedures.

Both approaches will concisely be discussed.
2.1. Linguistic Variables

A linguistic variable is a fuzzy variable whose values are
fuzzy subsets in a universe of discourse. The base variable of the
linguistic variable is a precise variable which takes an individual
value in its domain, i.e. the universe of discourse U. The domain of
the linguistic variable is the collection of all possible linguistic
values, fuzzy subsets defined in the same universe of discourse
through the base variable. However, it has been noted [18] that in
some cases, the fuzzy set which is assigned to the fuzzy restriction
may not have a numerically-valued base variable. Therefore, in the
qualitative information available for an evaluation or decision
model, two different types of linguistic variables may be present:

(1) the meaning can be translated in a measure on an interval or
ratio scale {quantitative base variable), e.g. age, distance, etc.;
(2) there is no meaning on an interval or ratio scale, and therefore



the base variable is also qualitative in nature, e.g. appearance,
comfort, beauty, etc.

Type 1. If linguistic variables whose meaning can be translated in
a measure on an interval or ratio scale are present in a decision
model, generally it is because of a lack of information or of the right
instrument of measurement. Therefore, we have a qualitative
evaluation of a variable that in theory could be measured on an
interval or ratio scale. So it is reasonable to suppose that it is
possible to transform the qualitative information into a quantitative
one with a certain degree of precision. The parameters, necessary in
this case, may be easily established, because this is a case of the so-
called "informational fuzziness" depending mostly on the subjective
culture of the person in charge of the evaluation. For example, the
proposition "that man is tall" may have different meanings for
different people, but everybody can easily mdlcatc the “tolerance
interval” of his own evaluation.

Type 2. In the case of linguistic variables with no meaning on an
interval or ratio scale, the qualitative information does not depend
on lack of information, but on the nature of the information that is
essentially fuzzy (intrinsic fuzziness). Therefore, whereas in the
other cases the stochastic representation and the fuzzy one may be
competitive, in this case the fuzzy representation is the only one
possible. For example, if linguistic propositions (like "pretty girl",
"beauntiful flower” or "quality of life") clearly have no quantitative
base variable, how can we represent them? It seems that there is a
set of hidden and fuzzy standards in one's mind in a justification for
this type of concepts, but they are more than a human being can
rationally handle simultaneously [20].

A first approach to this problem may be to try to decompose
the concepr that one wants to represent into a series of quantitative
measurable variables {20]. This approach presents two main
problems, viz. the explicitation of the quantitative variables, and
the aggregation procedure to be used.

A second approach is to define an artificial quantitative base
variable, assuming that the real space is one-dimensional. The
interval of the real space is chosen from [-1, 1], [0, 1], or [0, 10], etc.,
as desired and can be subdivided into a series of fuzzy sets
representing linguistic values (e.g. very negative, moderately
positive, very positive, etc.). Then, a link or mapping between
quantitative (numerical) and qualitative (linguistic) values is
established. This "direct estimation” approach has been criticized
because of its lack of theoretical foundation. Recently, some
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psychologists [12, 13, 17] have developed a graded pair comparison
procedure, which allows simultaneous testing of the necessary
axioms, scaling of the respomses in order to obtain memberships
and tests of goodness of fit of the scale values. Subsequently,
empirical experiments have demonstrated a high level of similarity
between membership values determined through graded pair
comparison and direct magnitude estimation! Thus it seems that a
theoretical justification for the quantification of the vague meanings
of inexact linguistic terms by means of direct estimation can be
established.

A third interesting approach can be the notion of type 2 fuzzy
set. A type 2 fuzzy set is a fuzzy set whose membership values are
fuzzy sets on {0, 1]). This corresponds to the case that the decision-
maker is not able (or not willing) to characterize the grade of
membership by an exact number, but gives an evaluation such as
"the grade of membership is high, medium", etc. It is always
possible to define a fuzzy set of type n= 2, 3,....... - 1f 11s membership
function is a mapping from U to a set of fuzzy subsets of type n-1;
therefore, it is possible that in order to reduce the fuzziness, many
transformations are requested, thus diminishing drastically the
computational efficiency of the aigorithm.

Another possible approach has been developed above all in
the field of psychological research [8)], called the "yes-no paradigm".
In this approach, an element x of the universe of discourse U, is
presented to the subject and he has to decide whether the element
is a member of A, A being a fuzzy subset of U. The fraction of
positive responses across replications (within or across subjects) is
considered a measure of HA(x). It has been noted that the main
problem of this approach is that it confounds fuzziness with
response variability and that it can be interpreted as an indication
that words have wvarious, but nevertheless precise meanings (o
different people and/or different times.

2.2. Interactive Graphical Procedures Approach

Hesketh and others [9] have noted that "by adapting
traditional psychological measurement to deal with fuzzy concepts,
new possibilities are open to both fields of enquiry”. These authors
have proposed a computerized graphic rating scale using linear
membership functions and combining some rules of fuzzy set
theory with others that are typical of Bayesian statistical theory in
order to obtain as a compound index of the membership function
the expected value of the re-scaled distributions. A traditional
psychological procedure initially developed for the measurement of
attitudes is the so-called "semantic differential”. This approach
requires an individual to describe a concept in terms of where it
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falls between bi-polar objective descriptions. Thurstone [16], facing
the problem of the meaning of attitudes, proposed a graphical
representation of individual differences. Furthermore, he suggested
that the range of opinions which a particular person is willing to
endorse could also be represented graphically. "Using graphic
representation, Thurstone demonstrated that an individual's
opinion could be characterized in terms of three different measures,
the range of opinions the individual is willing to endorse, their
mean position on the scale, and the one opinion selected which best
represented an attitude [9 p.429]".

Hesketh and others [9] in the fuzzy graphic rating scale, consider as
a representation of a rater's perception, a point indicated by means
of a mouse in a bi-polar scale and then the extension of the rating
to the left or right (these extensions represent uncertainty inherent
in this estimate). The main assumptions of this procedure are:

(1) the membership function takes the value 1 -at the first point
indicated by means of the mouse;

(2) the membership functions are linear;

(3) the wunion of two or more fuzzy ratings has a convex
membership function;

(4) each fuzzy variable can be represented by means of its expected
value, to be computed by rescaling its membership function.

In ‘the light of these observations, different heuristic graphical
procedures can be proposed in order to Tepresent qualitative
information as fuzzy sets.

How to compare fuzzy sets in decision models, is so far an
unresolved problem. In the following section, a new semantic
distance and a generalization of the Minkowski p-metric which is
particularly useful for mixed information (crisp, fuzzy and
stochastic) are presented.

3. A New Semantic Distance

In general, a semantic distance Sq between two fuzzy sets, A
and B, mirrors a possibility degree of equality between two fuzzy
sets or a similarity degree between them. The larger the distance
the smaller the possibility degree of equality. The most common
distance is the so-called Hamming distance.

For the discrete case it is:

11
Sa(A,B)= 2 | patxi) - pacxi) | (1)

i=1



and for the continuous case:

b
Sd (A, B) = f | patx) - pex) | dx )

a

For the continuous case, another possible approach is the
computation of some features of the membership distributions of
the fuzzy sets, after which the similarity can be evalvated by
means of traditional distances such as the Euclidean distance, the
Bhattacharya distance, the Mahalanobis distance and so on {4, 6]. Of
course, in this case two problems have to be faced, viz. the correct
selection of features and the correct selection of the distance
function.

Now we will illustrate a new distance metric that is useful in
case of continnous membership functions allowing also a definite -
integration. In order to compute such a distance, it is necessary that
the area bounded by the membership function must be equal to 1.
Generally, it 1is possible to change membership functions

proportionally by multiplying them by a constant ce R+, with c<1 for
normal fuzzy sets and c¢<1/mp for subnormal fuzzy sets
(ma=maxye xHa(x)) [7].

If Pa1{x) and Pa2(x) are two membership functions, we can write

f(x) = ¢cila1(x) and (3)
g(y) = calaz(x) (4)

where f(x) and g(y) are two functions obtained by rescaling the
ordinates of Ma1(x) and Pa2(x) through c; and ¢y, such that

J1 dx = [ gy) dy =1 5)
X y

The distance between all points of the membership functions is
computed as follows:

if f(x):X=[xL, xy] and g(y): Y= [xp, xu] (6)

(where of course sets X and Y can be non-bounded from one or
either sides), then



Sa (i), g= [ § Ixy 1100 g(y) dy dx (7
Xy

It is easy to show that this distance satisfies the properties of non-
negativity and symmetry; the proof of the triangle inequality will
be given in the Appendix.

As a special case, we consider first the case where the
intersection of two membership functions is empty.

If x>y Vxe Xand Vye Y, it follows that a continuous function in

two variables is defined over a rectangle. Therefore, the double
integral can be calculated as iterated single integrals:

J J 1x-y 0 gly) dy dx= (8)

Xy

=.f f (x-y) f(x) g(y) dy dx= | (9)
Xy

= Jix fx) g(y) - y fx) g(y)1 dy dx= (10)
Xy :

=[x f(x) dx - [ f(x) B(y) dx = (11)
X X

=E(x) - E(y)= (12)

=| B(x)-E(y)| (13)

where E(x) and E(y) are the expected values of the two membership
functions; the latter result is true, since x>y.

Therefore, when the intersection is empty, their distance is
equal to the distance between their expected values. When the
intersection between two fuzzy sets is not empty (see Figure 1),
their distance, is larger than the difference between the expected
values since | x-y |is always larger than (x-y).

In the Appendix, a Monte Carlo type numerical procedure for
the computation of such a distance is shown.
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Figure 1. Intersection between two fuzzy sets

In order to illustrate the results of this distance function, the
following numerical application can be useful. Let us take into
consideration the following two fuzzy sets:

MAG=(1+((x-25)/5)2)) xe [25, 100] (18)
and
(0 if xe [0, 50]
a(x)= : (15)
Ik(l"'((?i'SO)IS)‘E)'1 if xe (50, 100}

In general, the expected value of a fuzzy set is equal to:

b
J‘XLI,A (x )dX
a

E(Ha(x))= (16)
b

f Ua(x)dx

a




where a and b are the lower and upper limits of the range of the
variable x.

"Computing the expected values of the two fuzzy sets taken into
consideration here, the following results are obtained:

E(}14 (x))=255.785/7.521=34.009 (17)
E (i 5(x))=3325/42.644=77.971 (18)

Therefore by means of their expected values the distance between
the two fuzzy sets is

E(1p(x)) - E(La(x))=43.962 (19)

Taking into consideration the semantic distance proposed here
(computed by means of the numerical algorithm shown in the
appendix with 1000 iterations), the following result is obtained:

Sa (Ra(x), He(x))= 49.642 (20)

As one can see, since the intersection between the two fuzzy sets is
not empty; the result obtained by our distance function is different
from the simple difference between their expected values.

From a theoretical point of view, the following conclusions can
be drawn:

1) the absolute value metric is a particular case of this type of
distance;

2) the expected value is obtained as a representation of fuzzy sets
only when their intersection is empty;

3) when the intersection between two fuzzy sets is not empty, their
distance is greater than the difference between their expected
values. It has to be noted that this is the case for fuzzy ordinal
information; thus by means of our distance function, the two
different cases can be distinguished;

4) in case of fuzzy information represented by L-R fuzzy numbers,
when their intersection is empty, their distance is equal to the crisp
numbers they represent only when they are symmetric; otherwise,
their expected values are obtained;

5) by means of this semantic distance, the problem of the use of
only one side of the membership functions, common to most of the
traditional fuzzy multicriteria methods, is overcome.
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4. A Generalization of the Minkowski p-metric

It is interesting to note that also the stochastic information
represented by means of density functions can be taken into
account by means of this distance function. Of course in this case
the condition

f(x) dx =1 1)
J
X

is always true.

Generally, for crisp cardinal evaluations, the Minkowski p-
metric is considered: given any two points X,y € RN, their distance
is given by {111]:

N
| Ix-y | =12 | xn-ynlp] 1 | (22)

n=1

pe{l, 2,.... Ju{co}
It is then_ clear that we have:

for p=1 an absolute value metric (completely compensatory);
for p=2 -a Euclidean metric (partially compensaiory);
for p—» o the Tchebycheff metric (completely non compensatory).

For the problem of mixed information, we propose the
following generalization of the Minkowski metric: given R crisp
cardinal outcomes and I ordinal, stochastic and fuzzy outcomes, the
distance between two elements x and y is:

R I
[ x-y [ E= 0D I xeyedpe 20 C S f Txey T61(x) gity) dy dxppl 10 (23)

r=1] i=l xy

In our opinion, this distance has the great advantage of
dealing simultaneously with different kinds of information, so it can
be a very appropriate tool in order to increase the equivalence of
the procedures used for the different types of available
information.
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5. Conclusions

The presence of qualitative information in impact and
evaluation problems, for instance, in socio-economic and physical
planning is a rule rather than an exception. In particular, the
combination of the different levels of measurement with the
different types of uncertainty have to be taken into consideration.
Thus there is a clear need for methods taking into account
qualitative information. In this paper, the use of some concepts of
fuzzy set theory in order to represent qualitative information has
been justified in the light of their mathematical and psychological
properties; a new semantic distance for the comparison of fuzzy
sets and a generalization of the Minkowski p-metric, particuolarly
useful for mixed information (crisp, fuzzy and stochastic), have
been presented. This distance has the great advantage of dealing
simultaneously with different kinds of information, so that it can be
a very appropriate tool in order to reduce the problem of the
equivalence of the treatment of different types of information in
qualitative decision models.
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APPENDIX 1

Proof of the Property of Triangle Inequality

Let us assume 3 functions:

f(x): X->R* g(y) : Y ->Rtand h(z) : Z --> Rt.

For the sake of generality, we assume that X n Y nZ = @.
We first prove that V xe X, V ye Y and V ze Z, the relationship
|x-yl| + ly-z] 2 [x-z] is always true.

The total number of possible cases is 3!

Xz2yz2z --> (x-y) + (y-z) - (x-z)=0

X2z2y --> (xfy) + (-y+z) - (x-z2)= 2(z-y)=0

yzx2z > (-x+y) + (v-z) - (x-z)= 2(y-x)20

V222X > (xty) + (y-2) - (-x+z)= 2(y-2)20

Z2X2y > (x-y) + (-y+z) - (-x+2)= 2(x-y)=0

Z2y2X -> (-x+y) + (-y+z) - (-x+z)=0

therefore |[x-y| + |y-z| ~|xz} 20 YxeX,VyeY and V zeZ.

Since f(x)20, g(y)z0 and h(z)=0 1t follows:

fff[|x-y] + ly-z| ~ |x-z!1 f(x) g(y) h(z) dz dy dx 20

This integral can be decomposed as follows:
J S Ixy) €x) g(y) hiz) dz dy dx +
S I 1yl f) g(y) b(z) dz dy dx -

.r .J.,J‘ | x-z 1 f(x) g(y) h(z) dz dy dx

since these triple integrals can be computed by means of iterated
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integrals and since, because of equation (5)

Jxy dx = [ gy) dy =[n(z) dz =1,

it follows that the above sum of integrals is equal to:

I [ lxyl £x) gy) dy dx +
[ [y-zl gy hz) dz dy -
I [ 1x-21 £ h(z) dz dx

Therefore, we find the result:
dIf(x), g(y)} + dlg(y), h(z)] - d[f(x), h(z)] 20
or: |

d[f(x), g(y)1 + dig(y), h(z)] 2 d[f(x), h(z)] QE.D.
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APPENDIX 2
A Numerical Aigorithm for the Computation

of the Semantic Distance

In this Appendix, in order to compute the semantic distance
proposed here, a Monte Carlo type of numerical algorithm will be
proposed.
Assumptions:
1) f(x): X=[xL, xy] —>M

g(y) : Y= [xp, xyl —M

where M is the membership space.

2) all xe X and all ye Y can be obtained by means of a random
generator that supplies numbers ref0, 1) and then

X = TXL + (l—r)xg and

y = rxpr + (1-r)xy-

3) The probability to obtain a point P inside e.g. f(x), whose value
on the x-axis is xp, depends on the shape of the function; therefore,

an auxiliary variable Z whose values ze[0, maxf(x)] are again
obtained by a random generator is taken into consideration.

Procedure:

STEP 1 -draw a random number rp;

STEP 2 -xp = rgxp, + (1-1p)xy;

STEP 3 -draw a random number zg;

STEP 4 -if: zg<f(xp) then go to next step,
zo>f(xg) then return to step 1;

STEP 5 -draw a random number ry;

STEP 6 -y; = rixp + (1-r)xy;
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STEP 7 -draw a random number z;;
STEP 8 -if: z1<g(y1) then compute | X0-Y1 F
z1> g(y1) then return to step 5;

This procedure must be repeated many times. If n values of
Ixp-y1| with i= 1, 2. , n are obtained, then

n
Z | Xi-Yi .|
i=1

I 1xy 1660 g(y) dy dx =

Xy n

Therefore, the distance between two fuzzy sets is approximately
equal to the arithmetic mean of all the points bounded by their
respective membership functions obtained by drawing random

numbers.
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