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ABSTRACT 

The main features of complex impact systems are imprecision 
(different levels of measurement of the available information) and 
uncertainty (stochastic and/or fuzzy). This paper deals with the 
problem of the presence of such qualitative information. In 
particular, first the use of concepts of fuzzy set theory in order to 
represent qualitative information will be defended in the light of 
their mathematical and psychological properties. Then a new 
semantic distance and a generalization of the Minkowski p-metric, 
which is particularly useful for mixed information (crisp, fuzzy and 
stochastic), are presented. In the appendices, the proof of the 
fulfilment of the triangle inequality property (a necessary condition 
for a distance metric) and a numerical algorithm for the semantic 
distance are given. 

Keywords : qua l i t a t ive in format ion , fuzzy sets, d is tance 
functions, physical planning 
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1. Introduction 

In the modeling of a real world problem, the first phase is to 
structure this problem. This phase depends above all on the 
available information; in fact, the model must fit reality and not 
vice versa! Therefore, a flexible model able to take into account the 
possible different types of information is of a fundamental 
importance. As known from measurement theory [15], in 
structuring a problem, given a set A and some information about 
this set, there is a need to express this information by assigning to 
each element as A a real number m(a). This real number is called 
the measure of a and the application m:A—>R is called a scale of 
measurement. The main scales of measurement are 

- nominal scale 
- ordinal scale 
- interval scale 
- ratio scale. 

For simplicity, we will refer to qualitative information as 
information measured on a nominal or ordinal scale, and to 
quantitative information as information measured on an interval or 
ratio scale. 

It has been argued that the presence of qualitative 
information in evaluation problems concerning socio-economic and 
physical planning is a rule, rather than an exception. Thus, there is 
a clear need for methods taking into account qualitative 
information. 

Another problem related to the available information is the 
one of the uncertainty contained in this information. Ideally the 
information should be precise, certain, exhaustive and unequivocal. 
But in reality, it is often necessary to use information which has not 
those characteristics and therefore to face the uncertainty of a 
stochastic and/or fuzzy nature present in the data. In fact, if the 
available information is insufficiënt or delayed, it is impossible to 
establish exactly the future state of the problem faced, so that then 
a stochastic uncertainty is created. Another type of uncertainty 
derives from the ambiguity of this information, since in the 
majority of the particularly complex problems involving men, much 
of the information is expressed in linguistic terms, so that it is 
essential to come to grips with the fuzziness that is either intrinsic 
or informational typical of all natural languages. Therefore, the 
combination of the different levels of measurement with the 
different types of uncertainty have to be taken into consideration. 
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2. Representation of Qualitative Information by means of 
Fuzzy Sets 

Human judgments, especially in linguistic form, appear to be 
plausible and natural representations of cognitive observations. 
Numerical verbalization seems to give rather precise statements 
which may appear imprecise to many observers, while linguistic 
verbalizations seem to preserve more information for these 
observers. We can explain this phenomenon by the notion of 
cognitive distance. A linguistic representation of an observation 
may require a less complicated transformation than a numerical 
representation, and therefore less distortion may be introduced in 
the former than in the latter [14]. We could say that the linguistic 
representation is cognitively closer to the mental description than 
the numerical representation. 

In traditional mathematics, variables are assumed to be 
precise, but when we are dealing with our daily language, 
imprecision usually prevails. Intrinsically, daily languages cannot 
be precisely characterized on either the syntactic or semantic level. 
Therefore, a word in our daily languages can technically be 
regarded as a fuzzy subset. 

Qualitative information can be represented by means of fuzzy 
sets in two different ways: 

-using linguistic variables, 
-using graphical procedures. 

Both approaches will concisely be discussed. 

2 .1 . Linguistic Variables 

A linguistic variable is a fuzzy variable whose values are 
fuzzy subsets in a universe of discourse. The base variable of the 
linguistic variable is a precise variable which takes an individual 
value in its domain, i.e. the universe of discourse U. The domain of 
the linguistic variable is the collection of all possible linguistic 
values, fuzzy subsets defined in the same universe of discourse 
through the base variable. However, it has been noted [18] that in 
some cases, the fuzzy set which is assigned to the fuzzy restriction 
may not have a numerically-valued base variable. Therefore, in the 
qualitative information available for an evaluation or decision 
model, two different types of linguistic variables may be present: 

(1) the meaning can be translated in a measure on an interval or 
ratio scale (quantitative base variable), e.g. age, distance, e tc ; 
(2) there is no meaning on an interval or ratio scale, and therefore 
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the base variable is also qualitative in nature, e.g. appearance, 
comfort, beauty, etc. 

Type 1. If linguistic variables whose meaning can be translated in 
a measure on an interval or ratio scale are present in a decision 
model, generally it is because of a lack of information or of the right 
instrument of measurement. Therefore, we have a qualitative 
evaluation of a variable that in theory could be measured on an 
interval or ratio scale. So it is reasonable to suppose that it is 
possible to transform the qualitative information into a quantitative 
one with a certain degree of precision. The parameters, necessary in 
this case, may be easily established, because this is a case of the so-
called "informational fuzziness" depending mostly on the subjective 
culture of the person in charge of the evaluation. For example, the 
proposition "that man is tall" may have different meanings for 
different people, but everybody can easily indicate the "tolerance 
interval" of his own evaluation. 

Type 2. In the case of linguistic variables with no meaning on an 
interval or ratio scale, the qualitative information does not depend 
on lack of information, but on the nature of the information that is 
essentially fuzzy (intrinsic fuzziness). Therefore, whereas in the 
other cases the stochastic representation and the fuzzy one may be 
competitive, in this case the fuzzy representation is the only one 
possible. For example, if linguistic propositions (like "pretty girl", 
"beautiful flower" or "quality of life") clearly have no quantitative 
base variable, how can we represent them? It seems that there is a 
set of hidden and fuzzy standards in one's mind in a justification for 
this type of concepts, but they are more than a human being can 
rationally handle simultaneously [20]. 

A first approach to this problem may be to try to decompose 
the concept that one wants to represent into a series of quantitative 
measurable variables [20]. This approach presents two main 
problems, viz. the explicitation of the quantitative variables, and 
the aggregation procedure to be used. 

A second approach is to define an artificial quantitative base 
variable, assuming that the real space is one-dimensional. The 
interval of the real space is chosen from [-1, 1], [0, 1], or [0, 10], etc , 
as desired and can be subdivided into a series of fuzzy sets 
representing linguistic values (e.g. very negative, moderately 
positive, very positive, e t c ) . Then, a link or mapping between 
quantitative (numerical) and qualitative (linguistic) values is 
established. This "direct estimation" approach has been criticized 
because of its lack of theoretical foundation. Recently, some 
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psychologists [12, 13, 17] have developed a graded pair comparison 
procedure, which allows simultaneous testing of the necessary 
axioms, scaling of the responses in order to obtain memberships 
and tests of goodness of fit of the scale values. Subsequently, 
empirical experiments have demonstrated a high level of similarity 
between membership values determined through graded pair 
comparison and direct magnitude estimation! Thus it seems that a 
theoretical justification for the quantification of the vague meanings 
of inexact linguistic terms by means of direct estimation can be 
established. 

A third interesting approach can be the notion of type 2 fuzzy 
set. A type 2 fuzzy set is a fuzzy set whose membership values are 
fuzzy sets on [0, 1]. This corresponds to the case that the decision-
maker is not able (or not willing) to characterize the grade of 
membership by an exact number, but gives an evaluation such as 
"the grade of membership is high, medium", etc. It is always 
possible to define a fuzzy set of type n= 2, 3, if its membership 
function is a mapping from U to a set of fuzzy subsets of type n-1; 
therefore, it is possible that in order to reduce the fuzziness, many 
transformations are requested, thus diminishing drastically the 
computational efficiency of the algorithm. 

Another possible approach has been developed above all in 
the field of psychological research [8], called the "yes-no paradigm". 
In this approach, an element x of the universe of discourse U, is 
presented to the subject and he has to decide whether the element 
is a member of A, A being a fuzzy subset of U. The fraction of 
positive responses across replications (within or across subjects) is 
considered a measure of ^ A ( X ) - It has been noted that the main 
problem of this approach is that it confounds fuzziness with 
response variability and that it can be interpreted as an indication 
that words have various, but nevertheless precise meanings to 
different people and/or different times. 

2.2. Interactive Graphical Procedures Approach 

Hesketh and others [9] have noted that "by adapting 
traditional psychological measurement to deal with fuzzy concepts, 
new possibilities are open to both fields of enquiry". These authors 
have proposed a computerized graphic rating scale using linear 
membership functions and combining some rules of fuzzy set 
theory with others that are typical of Bayesian statistical theory in 
order to obtain as a compound index of the membership function 
the expected value of the re-scaled distributions. A traditional 
psychological procedure initially developed for the measurement of 
attitudes is the so-called "semantic differential". This approach 
requires an individual to describe a concept in terms of where it 
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falls between bi-polar objective descriptions. Thurstone [16], facing 
the problem of the meaning of attitudes, proposed a graphical 
representation of individual differences. Furthermore, he suggested 
that the range of opinions which a particular person is willing to 
endorse could also be represented graphically. "Using graphic 
representation, Thurstone demonstrated that an individual's 
opinion could be characterized in terms of three different measures, 
the range of opinions the individual is willing to endorse, their 
mean position on the scale, and the one opinion selected which best 
represented an attitude [9 p.429]". 
Hesketh and others [9] in the fuzzy graphic rating scale, consider as 
a representation of a rater's perception, a point indicated by means 
of a mouse in a bi-polar scale and then the extension of the rating 
to the left or right (these extensions represent uncertainty inherent 
in this estimate). The main assumptions of this procedure are: 

(1) the membership function takes the value 1 at the first point 
indicated by means of the mouse; 
(2) the membership functions are linear; 
(3) the union of two or more fuzzy ratings has a convex 
membership function; 
(4) each fuzzy. variable can be represented by means of its expected 
value, to be computed by rescaling its membership function. 

In the light of these observations, different heuristic graphical 
procedures can be proposed in order to represent qualitative 
information as fuzzy sets. 

How to compare fuzzy sets in decision models, is so far an 
unresolved problem. In the following section, a new semantic 
distance and a generalization of the Minkowski p-metric which is 
particularly useful for mixed information (crisp, fuzzy and 
stochastic) are presented. 

3. A New Semantic Distance 

In general, a semantic distance Sd between two fuzzy sets, A 
and B, mirrors a possibility degree of equality between two fuzzy 
sets or a similarity degree between them. The larger the distance 
the smaller the possibility degree of equality. The most common 
distance is the so-called Hamming distance. 
For the discrete case it is: 

n 
Sd (A, B) = E | HA(XO - |lB(xi) I (1) 

i=l 
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and for the continuous case: 

b 

Sd (A, B) = J | jiA(x) - JlB(x) I dx (2) 
a 

For the continuous case, another possible approach is the 
computation of some features of the membership distributions of 
the fuzzy sets, after which the similarity can be evaluated by 
means of traditional distances such as the Euclidean distance, the 
Bhattacharya distance, the Mahalanobis distance and so on [4, 6]. Of 
course, in this case two problems have to be faced, viz. the correct 
selection of features and the correct selection of the distance 
function. 

Now we will illustrate a new distance metric that is useful in 
case of continuous membership functions allowirig also a definite 
integration. In order to compute such a distance, it is necessary that 
the area bounded by the membership function must be equal to 1. 
Generally, it is possible to change membership functions 
proportionally by multiplying them by a constant ceR + ,with c<l for 
normal fuzzy sets and c<l/fflA for subnormal fuzzy sets 

(m A =max X 6 xMx)) [7]. 
If JIAI(X) and JJ-A2(x) are two membership functions, we can write 

f(x) = ci | lA i(x) and (3) 

g(y) = C2 | IA2(X) (4) 

where f(x) and g(y) are two functions obtained by rescaling the 
ordinates of |i.Ai(x) and |XA2(X) through ei and C2, such that 

J f (x) dx = / g ( y ) d y = l (5) 
x y 

The distance between all points of the membership functions is 
computed as follows: 

if f(x) : X= [xL, xu] and g(y) : Y= [xLS xu-] (6) 

(where of course sets X and Y can be non-bounded from one or 
either sides), then 
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Sd (f(x), g(y))= ƒ ƒ I x-y I f(x) g(y) dy dx (7) 
xy 

It is easy to show that this distance satisfies the properties of non-
negativity and symmetry; the proof of the triangle inequality will 
be given in the Appendix. 

As a special case, we consider first the case where the 
intersection of two membership functions is empty. 

If x>y V x e X and V y e Y, it foUows that a continuous function in 
two variables is defined over a rectangle. Therefore, the doublé 
integral can be calculated as iterated single integrals: 

ƒ ƒ I x-y I f(x) g(y) dy dx= (8) 
x y 

= ƒ ƒ (x-y) f(x) g(y) dy dx= (9) 
xy 

= ƒ ƒ [x f(x) g(y) - y f(x) g(y)] dy dx= (10) 
xy 

= J x f ( x ) d x - Jf(x)E(y)dx = (11) 

=E(x) - E(y)= (12) 

= |E(x)-E(y)l (13) 

where E(x) and E(y) are the expected values of the two membership 
functions; the latter result is true, since x>y. 

Therefore, when the intersection is empty, their distance is 
equal to the distance between their expected values. When the 
intersection between two fuzzy sets is not empty (see Figure 1), 
their distance, is larger than the difference between the expected 
values since I x-y I is always larger than (x-y). 

In the Appendix, a Monte Carlo type numerical procedure for 
the computation of such a distance is shown. 



Figure 1. Intersection between two fuzzy sets 

In order to illustrate the results of this distance function, the 
following numerical application can be useful. Let us take into 
consideration the following two fuzzy sets: 

HA(x)=(l+((x-25)/5)2)-l xe [25, 100] (14) 

and 

(0 if xe [0, 50] 

M-B(*)= (15) 

^(l+((x-50)/5)-2) 2 v l i fxe(50, 100] 

In general, the expected value of a fuzzy set is equal to: 

ƒ xjlA(x)dx 

E([lA(x))=. 

/Mx)d> 

(16) 
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where a and b are the lower and upper limits of the range of the 
variable x. 

Computing the expected values of the two fuzzy sets taken into 
consideration here, the following results are obtained: 

E(JlA(x))=255.785/7.521=34.009 (17) 

E(jlB(x))=3325/42.644=77.971 (18) 

Therefore by means of their expected values the distance between 
the two fuzzy sets is 

E(|iB(x)) - E(|lA(x))=43.962 (19) 

Taking into consideration the semantic distance proposed here 
(computed by means of the numerical algorithm shown in the 
appendix with 1000 iterations), the following result is obtained: 

S d ( | i A (x) , |XB(x))= 49.642 (20) 

As one can see, since the intersection between the two fuzzy sets is 
not empty; the result obtained by our distance function is different 
from the simple difference between their expected values. 

From a theoretical point of view, the following conclusions can 
be drawn: 

1) the absolute value metric is a particular case of this type of 
distance; 
2) the expected value is obtained as a representation of fuzzy sets 
only when their intersection is empty; 
3) when the intersection between two fuzzy sets is not empty, their 
distance is greater than the difference between their expected 
values. It has to be noted that this is the case for fuzzy ordinal 
information; thus by means of our distance function, the two 
different cases can be distinguished; 
4) in case of fuzzy information represented by L-R fuzzy numbers, 
when their intersection is empty, their distance is equal to the crisp 
numbers they represent only when they are symmetrie; otherwise, 
their expected values are obtained; 
5) by means of this semantic distance, the problem of the use of 
only one side of the membership functions, common to most of the 
traditional fuzzy multicriteria methods, is overcome. 
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4. A Generalization of the Minkowski p-metric 

It is interesting to note that also the stochastic Information 
represented by means of density functions can be taken into 
account by means of this distance function. Of course in this case 
the condition 

J f ( x ) d x = l (21) 
x 
is always true. 

Generally, for crisp cardinal evaluations, the Minkowski p-
metric is considered: given any two points x,y e RN , their distance 
is given by [11]: 

N 

I U - y | |= [ X lxn-yn |p] l/P (22) 

n=i 

pe{ l , 2, }u{oo} 

It is then clear that we have: 

for p=l an absolute value metric (completely compensatory); 
for p=2 a Euclidean metric (partially compensatory); 
for p—»oo the Tchebycheff metric (completely non compensatory). 

For the problem of mixed information, we propose the 
following generalization of the Minkowski metric: given R crisp 
cardinal outcomes and I ordinal, stochastic and fuzzy outcomes, the 
distance between two elements x and y is: 

R I 

I I x-y I I = { E I xr-yrl P+ Z < ƒ ƒ I x-y I fi(x) gi(y) dy dx)P] I/P (23) 
r=l i=l x y 

In our opinion, this distance has the great advantage of 
dealing simultaneously with different kinds of information, so it can 
be a very appropriate tooi in order to increase the equivalence of 
the procedures used for the different types of available 
information. 
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5. Conclusions 

The presence of qualitative information in impact and 
evaluation problems, for instance, in socio-economic and physical 
planning is a rule rather than an exception. In particular, the 
combination of the different levels of measurement with the 
different types of uncertainty have to be taken into consideration. 
Thus there is a clear need for methods taking into account 
qualitative information. In this paper, the use of some concepts of 
fuzzy set theory in order to represent qualitative information has 
been justified in the light of their mathematical and psychological 
properties; a new semantic distance for the comparison of fuzzy 
sets and a generalization of the Minkowski p-metric, particularly 
useful for mixed information (crisp, fuzzy and stochastic), have 
been presented. This distance has the great advantage of dealing 
simultaneously with different kinds of information, so that it can be 
a very appropriate tooi in order to reduce the problem of the 
equivalence of the treatment of different types of information in 
qualitative decision models. 
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APPENDIX 1 

Proof of the Property of Triangle Inequality 

Let us assume 3 functions: 
f(x) : X - > R+> g(y) : Y --> R+ and h(z) : Z --> R+-
For the sake of generality, we assume that X n Y n Z * 0 . 

We first prove that V xe X, V ye Y and V ze Z, the relationship 

I x-y I + ly-z.1 > |x -z | is always true. 

The total number of possible cases is 3! 

x > y > z —> (x-y) + (y-z) - (x-z)=0 

x > z > y ~> (x-y) + (-y+z) - (x-z)= 2(z-y)>0 

y > x > z --> (-x+y) + (y-z) - (x-z)= 2(y-x)>0 

y > z > x - > (-x+y) + (y-z) - (-x+z)= 2(y-z)>0 

z > x > y --> (x-y) + (-y+z) - <-x+z)= 2(x-y)>0 

z > y > x ~> (-x+y) + (-y+z) - (-x+z)=0 

therefore I x-y | + | y-z | - | x-z | > 0 V xe X, V ye Y and V ze Z. 

Since f(x)>0, g(y)>0 and h(z)>0 it follows: 

ƒ ƒ ƒ 11 x-y I + |y -z | - | x - z | ] f (x )g (y )h (z )dzdydx >0 

This integral can be decomposed as follows: 

ƒ ƒ ƒ | x-y | f(x) g(y) h(z) dz dy dx + 

ƒ ƒ ƒ I y-z | f(x) g(y) h(z) dz dy dx -

ƒ ƒ ƒ I x-z | ] f(x) g(y) h(z) dz dy dx 

since these triple integrals can be computed by means of iterated 



13 

integrals and since, because of equation (.5) 

Jf(x) dx = Jg(y) dy = Jh(z) dz =1, 

it follows that the above sum of integrals is equal to: 

ƒ ƒ | x-y | f(x) g(y) dy dx + 

y-z'| g(y) h(z) dz dy -

ƒ ƒ |x-z |]f(x)h(z)dzdx 

Therefore, we find the result: 

d[f(x), g(y)] + d[g(y), h(z)] - d[f(x), h(z)] > 0 

or: 

d[f(x), g(y)] + d[g(y), h(z)] > d[f(x), h(z)] Q.E.D. 
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APPENDIX 2 

A Numerical Algorithm for the Computation 
of the Semantic Distance 

In this Appendix, in order to compute the semantic distance 
proposed here, a Monte Carlo type of numerical algorithm will be 
proposed. 

Assump-tions: 

1) f(x): X= [xL, xu] —> M 

g(y) : Y= [xL-, xu-] —> M 

where M is the membership space. 

2) all xe X and all ye Y can be obtained by means of a random 
generator that supplies numbers re[0, 1] and then 

x = TXL + (l-r)xu and 

y = rxL- + (l-r)xu-

3) The probability to obtain a point P inside e.g. f(x), whose value 
on the x-axis is xo, depends on the shape of the function; therefore, 
an auxiliary variable Z whose values ze [0, maxf (x ) ] are again 
obtained by a random generator is taken into consideration. 

Procedure: 

STEP 1 -draw a random number ro; 

STEP 2 -xo = r0xL + (l-r0)xu ; 

STEP 3 -draw a random number zo; 

STEP 4 -if: zo^f(xo) then go to next step, 

zo>f(xo) then return to step 1; 

STEP 5 -draw a random number ri; 

STEP 6 -yi = rixL ' + (l-ri)xu-; 
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STEP 7 -draw a random number z\; 

STEP 8 -if: zi<g(yi) then compute | xo-yi I ; 

zi> g(yi) then return to step 5; 

This procedure must be repeated many times. If n values of 
|xo-yil with i= 1, 2,... , n are obtained, then 

n 

i=l 

ƒ ƒ I x-y | f(x) g(y) dy dx = 
x y n 

Therefore, the distance between two fuzzy sets is approximately 
equal to the arithmetic mean of all the points bounded by their 
respective membership functions obtained by drawing random 
numbers. 
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