
Faculteit der Economische Wetenschappen en Econometrie 

Serie Research Memoranda 

Computational Probability: Old Ideas 

Ne ver Die 

Henk C. Tijms 

Research Memorandum 1991-58. 
August 1991 

vrije Universiteit amsterdam 





COMPUTATIONAL PROBABILITY: OLD IDEAS NEVER DIE 

Henk Tijms 

Dept. of Econometrics 
Vrije University 
1081 HV Amsterdam, The Netheriands 

^TBS? 

This paper puts on the stage old ideas that are still very useful in compu
tational probability problems arising in telecommunication and teletraffic 
applications. Basic computational problems to be discussed are the calcula-
tion of equilibrium and transient solutions for Markovian systems and the 
calculation of overfow probabilities in finite-buffer systems. 
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1. Introduction 

Basic problems in computational probability are: 

1. Solving the equilibrium equations of an infinite Markov chain. 
2. Approximating overflow probabilities in finite-buffer queues. 
3. Calculating transient solutions for Markovian systems. 

Computational probability is more than getting numerical answers. The 
essence of computational probability is to have probabilistic ideas which 
make the computations transparent and natural. This paper puts on the stage 
old probabilistic ideas that are not very known to the teletraffic communi-
ty but are often very useful for computational purposes. 

2. Equilibrium distributions for an infinite 
Markov chain 

A frequently arising problem is the computation of the (unique) equilibrium 
distribution {n } of an infinite Markov chain with state space I={0,1,...}: 

rtj - C o Vu • j=0'1--

where the p ' s denote the one-step transition probabilities of the Markov 

chain. The generally used approach is to choose a sufficiently large in
teger M so that (hopefully) £ n s e with e a very small number and next 

to solve the truncated system of linear equations: 

n = L » P . j=0,l,.. . ,M-l, 
j ^1=0 r i j J 

zf1 « = i -
^ j = o j 

The drawbacks of this approach are: 

a. M may be very large. 
b. Convergence problems may arise for the iterative methods that have to be 

used when M is large. 

Also, it is somewhat disconcerting that we need a brute-force approximation 
to solve numerically the infinite-state model. Usually we introducé in-
finite-state models to obtain mathematical simplification, and now in its 
numerical analysis using a brute-force truncation we are proceeding in the 
reverse direction. 

However, in most practical situations the infinite Markov chain sat is-
fies regularity conditions that enables us to apply an old idea going at 
least back to Everett [2]: 

Use that the state probabilities ir drop geo-

metrically f ast to zero as j increases. 

That is, for some constant 0<T<1, 
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* T for j large enough. (1) 
n 

J-i 

Conditions under which this asymptotic expansion holds are discussed in 
Tijms and Van de Coevering [5]. Roughly, it is required that Iï(z)=y^_ ir z 

can be represented as A(z)/B(z) with B(z) analytic outside the unit circle. 
Then 1/x is the smallest zero of B(z) outside the unit circle. The asympto
tic result (1) implies that, for a sufficiently large integer N, 

n « 7r T for all j^N. 
j N 

Substituting this into the equilibrium equations of the infinite Markov 
chain leads to the following finite system of linear equations: 

ir = 'T; i r p + 7 r p , j=0,l N-1 
j ^ 1 = 0 V i j N *Nj J 

^J=0 . 

7T 

•j + TZ = h 

where p = 7; x p . This reduction of the infinite system of equilib-
Nj i J i = N ij 

rium equations to a finite system of linear equations is not based on brute 
force, but makes essential use of properties of the infinite-state model. 
From a practical point of view the question is of course: Is the size of 
this finite system smaller that that of the finite system obtained by 
brute-force truncation? The answer is in the affirmative. It is an empiri-
cal finding that for practical purposes the asymptotic expansion (1) can be 
used already for remarkably small values of j . How large N should be chosen 
has to be determined experimentally and depends of course on the specific 
application and the required accuracy in the s tate probabilities. It is our 
experience that an appropriate value for N is typically in the order of 1-
200. Consequently, the resulting system of linear equations can routinely 
be solved by Gaussian elimination methods for which reliable and fast codes 
are widely available. 

It is hoped that the approach using the geometrie tail behavior of the 
s tate probabilities will be used more in practice. It is a simple numerical 
approach that can be easily used by the nonspecialist using Standard soft
ware. We successfully applied the approach to many basic queueing models 
including the M/D/c queue and the D/G/l queue. 

3 . Overflow probabilities in f inite-buffer queues 

A practical problem of considerable interest is the calculation of (very 
small) overflow probabilities in finite-buffer queues. Let us first con-
sider this problem for a queueing system in which customers arrive singly. 
A common heuristic for obtaining the overflow probability in the finite-
buffer queue with a maximum number of K customers allowed is: 

n « T nla\ 
overflow ^j=K j 

(00) 

where n is the equilibrium probability that in the corresponding ïn-
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finite-buffer queue a customer finds upon arrival j other customers 
present. Here it is assumed that the offered traffic intensity is less than 
1. That is, the overflow probability is approximated by the steady-state 
probability that in the infinite-buffer queue a customer finds upon arrival 
K or more other customers present. This approximation may perform rather 
unsatisfactorily. A much improved approximation was derived in Tijms [6] by 
using the following approximation idea: 

Assume that the first K-l state probabilities (of the interior states) 
in the finite-buffer queue are proportional to the first K-l state 
probabilities in the corresponding infinite-buffer queue. 

This approximation idea results from an old question of J.W. Cohen (private 
communication) whether there are other queueing systems than the M/G/l/K 
queue and the M/M/c/K queue for which the proportionality result for the 
state probabilities holds. The improved heuristic for the overflow proba
bility in the finite-buffer queue is given by: 

a-P) ^_K n 
n ~ j K J 

(00) 

overflow , Y-JOO (oo) 
1 - p Y~ 11 

where p is the offered traffic intensity. Numerical investigations in Tijms 
[6] indicate that the new heuristic performs very well for practical pur-
poses. The heuristic provides an estimate that is typically of the same 
order of magnitude as the exact value of the overflow probability. This is 
what is needed for a heuristic used for dimensioning the buffer size. 

Also, an extension of the heuristic to finite-buffer queues with batch 
arrivals was suggested in Tijms [6]. Denoting by {f$ } the batch-size dis-

tribution, the extended heuristic is: 

II 
(I-P) C K «J 

(») 

overflow , x-fa (oo) 
1 " P h^ QJ 

with 

(00) j (00) 

(oo) 

where n now denotes the steady-state probability that in the correspond

ing infinite-buffer queue an arriving batch sees j other customers. 

4. Transient solutions for Markovian systems 

How to compute transient solutions for Markovian systems is a very impor
tant question that arises in numerous problems in teletraffic, telecommuni-
cation and reliability. Supposing a continuous-time Markov chain {X(t),t£0} 
with discrete state space I, basic problems are: 

a. Compute the transient probabilities 

p (t) = P{X(t)=j|X(0)=i}. 
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b. Compute first-passage time probabilites 

f (t) = P {system reaches the set A of 
IA 

states bef ore time t|X(0)=i>. 

c. Compute cumulative expected rewards 

E [^ r(X(u))du|X(0)=i] 

when a reward at ra te r(j) is incurred whenever 
the process is in state j . 

In f act, the problems b and c can be reduced to problem a (e.g. for problem 
b make the state of the set A absorbing). 

The usual approach to answer above questions is to set up a system of 
linear differential equations and to solve them using Runge-Kutta methods. 
However, there is a better approach called Jensen's method. This method is 
also known under the names randomization method and uniformization method. 
The name Jensen's method was recently proposed in Grassmann [3]. This 
method that was already introduced in 1953 by Jensen [4] has recently 
become very popular in operations research and computer science and has 
seen many interesting applications. Remarkably, the use of Jensen's method 
is not widespread in the field of teletraffic theory, though it is a power-
ful and beautiful method. What is the idea behind the method? Suppose for 
the moment that the leaving rates v of the states of the continuous-time 

Markov chain are identical, say v =v for all i. Then, using that the number 

of transitions in a time interval of length t is Poisson distributed with 
mean vt, the transient probabilities are easy to compute from: 

P..<t> = £ L e 
n -Vt (Vt) (n) 

P, 
ij ^ n ^ n! Mj 

where p is the probability that in n state transitions the process goes 

from state i to state j . The n-step transition probabilities can be recur-
sively computed. However, in general the leaving rates v are not identi
cal. To overcome this difficulty, the old idea of Jensen [4] is: 

Make the leaving rates identical by introducing fictitious transitions 
leaving the state of the system unchanged. 

That is, take a uniform leaving ra te 

v = max v 
i i 

and modify the one-step transition probabilities p (with the convention 

p =0) accordingly 

v 
t i 

P iJ 

V p i j ' J*1 

v 
i - ^ . J-I. 
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The method of Jensen has as advantages: 

- insightful and easy to program 
- numerically stable (roundoff errors can be easily controlled) 
- infinite or very large state spaces can often be handled by a dynamic 

implementation of the method. 

The latter point needs some explanation. Notice first that the infinite 
series for p (t) can be truncated on beforehand for a given value of t by 

choosing M so that 

ôo -vt (vt)n (n) r̂o -vt (v t ) n 

L e —;— P - L e —i— - e 
n̂=M n! *1J Si=M n! 

for some precision e. Next this bound M may be used in dynamically adjust-
ing the set of states that can be reached in n(<M) transitions from the 
given initial s tate i. 

It is our experience that Jensen's method tends to outperform Runge-
Kutta methods, see also Grassmann [3]. The method is not only superior from 
a computational point of view, but its probabilistic transparency also 
allows to attack problems that are otherwise be difficult to handle. For 
example, the paper of De Sousa e Silva and Gail [1] uses Jensen's method to 
give a very nice algorithm to compute the probability distribution of the 
sojourn time in a given set of states of a continuous-time Markov chain. 
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