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This paper investigates some of the criteria functions which may be used 
in deriving estimates of the parameters of autoregressive moving-average 
models. The object is to show how we can guarantee that the estimates 
will fulfil the conditions of stationarity and invertibility. 

1. In t roduc t ion 

In this paper, we seek to elucidate some of the criteria functions which are 
employed in estimating autoregressive moving-average (ARMA) models. At the 
same time, we look for ways of ensuring that the estimates of the parameters 
of an ARMA process will fulfil the conditions of stationarity and invertibility 
which we shall assume to be characteristic of the process generating the data. 

The problematic nature of the least-squares estimators of moving-average 
models, which are liable to violate the conditions of invertibility when the sam­
ple is small, was demonstrated in a widely read but unpublished paper by Kang 
[11]. The problem was analysed in the context of a first-order moving-average 
(MA) model by Osborn [16] who derived expressions for the expected values of 
various criterion functions. A similar analysis was conducted by Davidson [7] 
who used the method of Monte-Carlo experiments. 

There is also a widespread awareness of the analogous problems with least­
squares estimators of autoregressive (AR) models, which are liable to violate the 
conditions of stationarity; and it is known that one way to avoid the problem is 
to use the Yule-Walker method of estimation—see, for example, Pagano [17]. 

It can be show that the exact maximum-likelihood (ML) estimates of 
ARMA models are bound to fulfil the conditions of stationarity regardiess of 
the size of the sample from which they are derived; and in some quarters it 
has been argued that they should be used in preference to any other estimators 
when the sample is small. However, the ML estimates are laborious to com-
pute; and they are inappropriate to real-time signal-processing applications 
where the data arrivés rapidly and in abundance. 

The question of the invertibility of the exact ML estimates of an MA 
model is more complicated. The value of the likelihood function is uniquely 
determined by the value of the dispersion matrix which contains the estimates 
of the autocovariances. If a condition is imposed that none of the roots of the 
MA operator fall inside the unit circle, then the autocovariances correspond to 
a unique MA process. 
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However, the condition of invertibility is more stringent than the condition 
of uniqueness since it requires, in addition, that none of the roots should lie on 
the perimeter of the unit circle. It has been shown by Cryer and Ledolter [5], in 
the case of a first-order MA process, that there is indeed a finite probability that 
the ML estimator will deliver a root which lies on the perimeter. Nevertheless, 
Anderson and Takemura [1] have shown that this probability tends to zero 
as the sample size increases. The conclusion is that, at least asymptotically, 
the exact ML estimates are bound to fulfil the conditions of invertibility and 
stationarity when the data come from a stationary and invertible process. 

In the limit, as the sample size becomes indefinitely large, the estimates 
derived from a wide variety of criteria—including the least-squares criteria— 
will tend to the values generated by the exact ML estimator. At the same time, 
the criterion function of the ML estimator tends to a form which is drastically 
simplified. 

The thought which inspires this paper is as follows. Imagine that we 
are able to discern, within the simplified asymptotic form of the ML criterion 
function, the characteristics which guaxantee stationarity and invertibility. If 
we can mimic these characteristics within the criterion function of a ftnite-
sample estimator, then we should be able to find estimates of a simpler sort 
than the exact ML estimates which also fulfil the conditions of invertibility and 
stationarity. 

The paper also pursues a second theme. ARMA models which are defined 
in terms of infinite realisations of the stochastic sequences obey a simple al­
gebra of rational functions and infinite series. We loose this simplicity when 
we are constrained to work with sequences of finite length and with polyno-
mials of finite degree for which there exist matrix representations. In order to 
attribute the appropriate asymptotic characteristics to our finite-sample crite­
rion function, we need to establish the appropriate correspondence between the 
infinite-order polynomial algebra and the finite-order matrix algebra. Through-
out the paper, we shall be examining the matrix analogues of the polynomial 
algebra. 

2. The Polynomial Algebra of the A R M A Model 

Let us begin by representing the ARMA model by the equation 

a(z)y(z) = ix{z)e{z), (1) 

where 
a(z) = 1 + a.\z -\ \- apz

p, 

H{z) = 1 + \i\z -\ h fiqz
9, 

(2) 
y{z) = {y-pz

 p + byo+yiz-\ h y n - i z n 1 + - - - } and 

e(z) = {e-qz~9 + ... + e0 + eiz + --- + en-iz
n~l + • • •}. 
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The sample period runs from t = 0tot — n — 1. We may allow the unknown 
elements yt,et;t > n — 1, which lie beyond the sample period, to be replaced 
by zeros. 

The polynomials a(z) and (i(z) are subject to the condition that they have 
no factors in common. The condition of invertibility is the requirement that 
the roots of /z(z) = 0 must lie outside the unit circle, whilst the condition of 
stationarity is the requirement that those of a(z) — 0 must lie outside the unit 
circle. 

The autocovariance generating function, which is defined by 

7K } a{z)a{z-i) (3) 

= {7o + 7i(* + *"*) + 72(^2 + *~2) + • • • } , 

is a self-reciprocal polynomial with the property that 7(2) = 7 ( z - 1 ) . On setting 
z = e ,w, this becomes the spectral density function of the ARMA process. 

Some useful products are available: 

(i) y(z) = fi(z)a~1(z)e(z) : forecast function, 

(ii) e(z) = a(z)fi~1(z)y(z) : prediction error, 

(iii) de(z)/d(j.j = —z^a{z)yT2{z)y{z) : derivatives, 

de(z)/daij = z>n~1 (z)y(z) : derivatives, 

(iv) 7(2) = aln(z)fi(z~1) : the Cramér-Wold factorisation of the 
autocovariance generating function, (assuming that a(z) = 1), 

(v) 7(0) = a'^a~1(z)a~1(z~1) : the Yule-Walker factorisation of the 
autocovariance generating function, (assuming that (i(z) = 1). 

An algorithm for obtaining the Cramér-Wold factorisation has been de-
scribed by Wilson [23] and bis implementation of it is to be found amongst 
the programs described by Box and Jenkins [2, Program 2]. The algorithm has 
also been implemented by Laurie [13], [14]. The Yule-Walker factorisation is, 
of course, readily available. 

Commenta ry . In estimating the ARMA model from a data series 
{t/o, . . . ,J/n-i}, it is common to set the presample elements {y-p,...,y-i} and 
{ e _ g , . . . , £-1} to zeros. In general, when a(z) and fx(z) are specified arbitrarily, 
the equality of (1) can be maintained only by allowing the residual polynomial 
e(z) to be replaced by an infinite series. There are exceptions. 

First, if fi(z) — 1, then the equality can be maintained by allowing the 
residual polynomial to take the form of e(z) — EQ + t\z H f- en-i+pz

n~1+p, 
which is a polynomial of degree n — 1 + p. 
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Secondly, if the polynomial argument z3 is nilpotent of degree n in the 
index j , such that zJ = 0 for all j > n, then all polynomial products are of 
degree n — 1 at most, and the equality may be maintained without the degree 
of e(z) exceeding n — 1. Making z3 nilpotent of degree n will enable us to 
construct a correspondence between the algebra of the polynomials of degree 
n — 1 and the algebra of the class oïnxn lower-triangular Toeplitz matrices. 

Thirdly, if the polynomial argument z3 is an n-periodic function of the 
index j , such that z3+n = z3 for all j , then, again, all polynomial products 
are of degree n — 1 at most. Making z3 an n-periodic function, enables us to 
construct a correspondence between the algebra of the polynomials of degree 
n — l and the algebra of the class o f n x n circulant Toeplitz matrices. 

A polynomial of degree n — 1 is completely specified by the values which it 
assumes at n equally spaced points on the circumference of the unit circle in the 
complex plane which are e,w';j = 0 , . . . , n—1, where UJ = lisj/n. In particular, 
a product 7(2) = a(z)/?(z) of two periodic polynomials is completely specified 
by 7(e,u,>') = a(exu> )/?(e,Wj );j = 0 , . . . , n — 1. Therefore, when the polynomi­
als have an n-periodic argument, the time-consuming business of polynomial 
multiplication can be circumvented by performing an equivalent but a much 
simpler set of operations at the frequency points UJ. 

3 . A Least-Squares Cri ter ion Funct ion 

Using the polynomial algebra, we can define a criterion function for ARMA 
estimation which takes the form of 

1 I ( \ ( -isOc(z)a(z-1) dz 

2iri J 

Here 

c(z) = 

c{z) dz 
7(z) z ' 

y(z)y(z-1) 

n (5) 
= co + ci(z + z~l) + • • • + cn-x{zn-1 + z1'71) 

is the empirical autocovariance generating function. When z = exp{—i2vj/n}, 
this becomes the periodogram which is defined on the points j — 0 , . . . , n / 2 
when n is even and on the points j = 0 , . . . , (n — l ) /2 if n is odd. 

The value of S is nothing more than the coëfficiënt associated with z° in 
the Laurent expansion of e(z)e(z~1). This is demonstrated in the appendix. It 
follows that, if the coefficients of a(z) and ft(z) were to assume their true values 
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(7) 

and if the presample elements {y~p,... , ! /- i} were incorporated in y(z), then 
S would be equal to the sum of squares of the disturbances { e _ g , . . . , en-\ }• 

In the case of the pure AR model, the criterion function assumes the form 
of 

p v 

= n£X>*tt;ci*-;i (6) 
jzzO fc=0 

n n 

Here A|t_s| is a coëfficiënt of the self-reciprocai polynomial 

X(z) = a(z)a(z-1) 

= {A0 + Ai(z + 2"1) + • • • + XP(zp + z-p)} 

which corresponds to the autocovariance generating function of a synthetic pth-
order MA process y(z) = a(z)e(z) based on a sequence {et} of unit-variance 
white-noise disturbances. 

In the appendix we prove the following theorem: 

T h e o r e m 1. Let Q = Y%=o S t = o ak<Xjc\j-k\ = &'Ca where C = [c|j_jt|] is a 
symmetrie positive-definite Toeplitz matrix and a = {1, a i , . . . , ap] is a vector. 
If a is chosen so as to minimise the value of Q, then all the roots of the equation 
a(z) = 1 + a i2 H h ocpz

p = 0 will lie outside the unit circle. 

In f act, the values which minimise the AR criterion function are simply 
the Yule-Walker estimates; and thus the theorem serves to prove, in a direct 
way, that the estimates correspond to a stationary model. 

Now let us consider the case of the pure MA model. Let the series expan-
sion of the inverse of y,{z) be written as /x -1(z) = {V>o + ^\z H }• Then the 
criterion function in the case of the pure MA model can be expressed as 

y{z)y{z~x) dz - — f 
2m J 

M*M*_1)z 

j = 0 Jfc=0 
n n 

t=o *=o 
Here 6|t-s| is a coëfficiënt of the self-reciprocal polynomial 

6(z) = * 

(8) 

K*)/*(*_1) (9) 
{*o + 61(z + z~1) + 62(z

2 + z~2) + • • •} 

5 



D.S.G. POLLOCK: ARMA ESTIMATION 

which corresponds to the autocovariance generating function of a synthetic qth-
order AR process fi(z)y(z) = e(z) based on a sequence {et} of unit-variance 
white-noise disturbances. 

In the appendix, we prove the following theorem which concerns the in­
vertibility of the estimated MA model: 

Theorem 2. Let Q = £ ^ 1 0 ÜCfcLo ̂ *^ic |fc-i| where V'JbV'j are coefficients in 
the expansion of the inverse polynomial yT1{z) — {V>o + i>\z + • • • } . If the 
coefficients of p,(z) = 1 +\i\zH \-f*qz

q are chosen so as to minimise the value 
of Q, then all the roots of the equation fi(z) = 0 will lie outside the unit circle. 

Indeed this theorem is almost self-evident. For Q will have a finite value if 
and only if £) |V>,-| < oo; and for this to arise, it is necessary and sufficiënt that 
the roots /z(z) = 0 lie outside the unit circle. 

The MA criterion function in the form of 

T n-l (10) 

= Co + 2 ] P °r8r 
1=1 

has been considered by Godolphin [9]. He has devised a specialised method for 
minimising the function which makes use of some approxirnations to the deriva-
tives dST/dfj.j which are based on truncated power-series expansions. However, 
his iterative procedure has only a linear rate of convergence; and it is not clear 
that the desirable properties of the criterion function survive the process of 
approximation. 

The ARMA criterion function under (4) combines the features of the spe­
cialised AR and MA criteria functions of (6) and (8). Thus theorems 1 and 2 
together serve to show that the values of { a i , . . . ,ap} and {/xj,..., fiq} which 
minimise the function correspond to a model which satisfies conditions both of 
stationarity and invertibility. 

Commen ta ry . Whilst the criterion function presented above has the form of 
the asymptotic limit of the ML criterion function, it caters for the case where 
the polynomials y(z) and e(z) are finite. 

The mere fact that the criterion function has the asymptotic ML form 
implies that the minimising values of { « i , . . . , a p } and {/xi,..., fiq} will corre­
spond to autoregressive and moving-average operators which fulfil the condi­
tions of stationarity and invertibility respectively. The finite-sample criterion 
function differs from the asymptotic form only by the fact that, beyond the 
point t = n — 1, the elements yt and et assume values of zero instead of taking 
values which have been generated by a stochastic process. This feature cannot 
affect the essential properties of the minimising polynomials a(z) and y.(z). 
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Although the criterion function leads to estimates which have the sought-
after properties, it is not clear, at first, how it should be given a computable 
mathematical expression. The following sections of the paper are devoted to 
the task of finding such expressions. 

4. Matrix Representations 

Now let us look for appropriate matrix representations of the ARMA model 
and of the criterion function. Fbr a start, we can see that the n realisations of 
the process from t = 0tot = n — 1 are comprised in the following system: 

yi 
y-i 
Vo 

yi-n' • 1 • 

y2-n <*i 
; ; — 

yo - . 0 . 

" £o e _ i 
Êl £o 

1 '. 

-Sn-1 £n-2 yn- i yn-2 •• 

This may be represented, in summary notation, by 

Yoc = Sn. 

£ l - n " • 1 " 

Ê2-TI ^ i 

'; • 

£o - . 0 . 
(11) 

(12) 

Lower-Triangular Toeplitz Matrices 

We can set the presample elements above the principal diagonals in Y 
and £ to zeros. Then Y and S are replaced by lower-triangular (LT) Toeplitz 
matrices Y — Y(y) and E = £(e) which are completely characterised by their 
leading vectors which are given by Beo = e = [eo, • . . , e n - i ] ' and Yeo = y = 
[yo,... ,y n - - i ] \ where eo is the leading vector of the identity matrix of order 
n. On the same principle, we can define lower-triangular Toeplitz matrices 
A = A(a) and M = M(p) which are characterised by their respective leading 
vectors a = [ l , a i , . . . , a p , 0 , . . . , € ] ' and fi — [ l , ^ i , . . . , / i g , 0 , . . . , 0 ] ' . 

Lower-triangular Toeplitz matrices can be represented as polynomial func-
tions of a matrix L = [ e i , . . . , e„_i, 0] which has units on the first subdi-
agonal and zeros elsewhere and which is formed from the identity matrix 
I = [e0, e i , . . . , e„_i] by deleting the leading vector and appending a zero vector 
to the end of the array. Thus the matrix A = A(a) can be written as 

A = a(L) 

a= J + a i L + + avIf. 
(13) 

We may note that IJ is nilpotent of degree n in the index j such that V = 0 
for j > n. 

In some respects, the algebra of the matrices resembles the ordinary algebra 
of polynomials with a real or complex argument: 
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(i) The matrices commute such that AY = YA —• 
Ay = (AY)e0 = (YA)eQ = Ya, 

(ii) If A, Y are LT ToepUtz, then so is AY = YA, 

(iii) If A is LT Toeplitz, then so is A~x. In particular, 
A~1eo = [wo,«i , . . . , wn_i] ' has the leading coefficients of 
the expansion of a - 1 ( z ) as its elements. 

In terms of the ARMA model, we fmd that 

(i) Y = A~XMS —• y = A~1ME : forecast function, 

(ii) € = M~1AY —* e = M~xAy : prediction error, 

(iii) de/dfij = — AM~2Ytj, de/daj = M~xYej : derivatives, 

(iv) G = M'M : this is not a Toeplitz matrix and the Cramér-Wold 
factorisation does not apply. 

Now consider the matrix representation of the criterion function. As an 
approximation of the function 5" of (4), we have 

Sz = e,
0(Y'A'M'~1M-1AY)e0 = y'A'M'^M^Ay. (14) 

This is just the coëfficiënt associated with I = L° in the expansion of 

e{L')e{L) = y{L')oiL')ir\V)p-\L)a{LUL) 

y(L')a(L')a(L)y(L) (15) 
V(L'ML) 

where L' = [0, eo , . . . , e„_2]. We can afford to write this function in rational 
form on account of the commutativity in multiplication of the LT Toeplitz 
matrices. 

The vectors a and \i which minimise the function Sz contain what Box 
and Jenkins [2] described as the conditional least-squares estimators. These 
estimators are not guaranteed to satisfy the conditions of stationarity and in-
vertibility. 

Consider the specialisation of the criterion function to the case of a pure 
AR model. Scaling by n - 1 gives 

-Sz = -y'A'Ay 
n " (16) 

= -a'Y'Ya. 
n 

The first way of gauging the difference between this function and the model 
least-squares criterion function of (6) is to compaxe the matrix A'A with the 
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coo Coi C o , n - l 

-Y'Y = 
ClO ên Cl ,n -1 

n • . ; 

-Cn-1,0 Cn-1,1 • 

ToepHtz matrix A = [A|t_,|] which, as we have already indicated, corresponds 
to the dispersion matrix of a synthetic pth-order MA process. 

The second way is to compare the matrix 

(17) 

with the matrix C = [c|j_*|] which contains the usual estimates of the autoco-
variances of the process. The matrix Y'Y/n does not have the ToepHtz form 
which is required if the condition of stationarity is to be fulfüled in all cases. 

Imagine that p zeros elements are added to the tail of the vector y = 
{j/o,... , y„_ i} ' and that an LT ToepHtz matrix Y of order n + p is formed 
from the 'padded' vector on the same principle as Y = Y(y) is formed from 
y. Then we should find that the principal minor of order p + 1 of the matrix 
YY/n would coincide with that of the matrix C. Now let a be formed from 
the vector a by the addition of p zeros. Then a'YYa/n = a'Ca, and it follows 
that the criterion function has become equivalent to the function which delivers 
the stationary Yule-Walker estimates. 

Now consider speciaHsing the criterion function to the case of the pure MA 
model. Then 

S> = y'M'-lM-ly 
= V'F'FV, ( } 

where xp — M~1eo contains the first n coefEcients of the expansion of fx~1(z). 
This function may be compared with the function S of (8) which can be written 
as S = y'Ay, where A = [f>t-s] is the dispersion of a synthetic AR process. 

In pursuit of estimates which fulfil the condition of invertibility, we can 
improve the approximation of M'~1M~1 to A = A(^) by adding extra rows to 
the matrix M - 1 so as to include additional coefficients of the series expansion 
of fx~1(z). In practice, this object may be achieved by padding the tail of the 
vector y with zeros. 

Commenta ry . An advantage of the LT ToepHtz representation of the ARMA 
criterion function is the ease of computing the analytic derivatives de/dfij and 
de/dctj. This greatly facilitates the use of the Gauss-Newton (GN) iterative 
procedure in finding the estimates. 

However, it is sometimes observed that, whereas the value of the crite­
rion function is rapidly reduced in the initial stages of the computation, the 
estimates are slow to converge to their final values. The fault usually Hes 
in the fact that matrix Y'Y has been replaced, within the function Sz = 
eó(A'M' _ 1 F' l r M - 1 A)eo, by the ToepHtz matrix C = [c|j_fe|] containing the 
usual estimates of the autocovariances. 

9 



D.S.G. POLLOCK: ARMA ESTIMATION 

The motive for this substitution is the fact that C contains only n distinct 
elements which compare with the (n2 + n) /2 distinct elements of Y'Y/n. The 
consequence is that the derivatives are no longer appropriate to the function 
which is to be minimised; and this problem will have its greatest effect on the 
performance of the GN procedure in the neighbourhood of the minimum. Once 
more, a cure for the problem is to pad the data vector with zeros. 

Circulant Matr ices 

The following is as example of a circulant matrix: 

Y = 

yo yz y? yi 
y\ yo yz y% 
V2 yi yo y% 
yz ya yi yo 

(19) 

Circulant matrices can be represented as polynomial functions of a 
matrix J = [e i , . . . ,en_i,eo] which is formed from the identity matrix I = 
[eo, e i . , . . . , e„_i] by moving the leading vector to the back of the array. Thus 
the circulant matrix A = A(a) can be written as 

A = a(J) 

We may note that J J + n = J J for all j . 

The algebra of circulant matrices closely resembles that of polynomials: 

(i) The matrices commute in multiplication, AY = YA, 

(ii) If A, Y are circulant, then so is AY = YA, 

(iii) If A is circulant, then so are A' and A - 1 , 
(iv) If M is circulant, then M'M = MM' and (M'M)~X are circulant 

Toeplitz matrices, 

(v) Although M'M is a Toeplitz matrix, the equation G = M'M does 
not correspond to the Cramér-Wold factorisation. 

Let Y = y(J), A = a( J) and M = fi(J) be circulant matrices constructed 
from the same vectors y, a, /x as were the corresponding lower-triangular 
Toeplitz matrices. Then we can construct the following criterion function: 

5C = e'0(Y'A,M'-1M-1AY)e0 = y'A'M'^M^Ay. (21) 

This is just the coëfficiënt associated with I = J° in the expansion of 

,, rw 7-M - y(J)«»(J,W1MJ") 

~nWY 
10 
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where J * = [e n _i ,e 0 , . . . , e n _2] , and where c(J) = y(J)y(J 1 ) / n and j(J) = 
a ( J ) a ( J - 1 ) / / i ( J ) A i ( J - 1 ) . 

The role of the matrix J in the above expression is essentially that of an 
indeterminate algebraic symbol, and it may be replaced by any other quantity 
which is an n-periodic function of the index j . In particular, we may replace 
J J by e""' = exp{t27rj/n}. Then we have the result that 

sc = y> y(e '^ )q (e '^ ) q ( e - ^ )y(e~ '^) 

^ M eiui)' i=o 'v ' 

(23) 

This follows from the fact that 

n - l 

V e
w* =\ 

j ^ U if;=0, 
(24) 

which indicates that the coëfficiënt associated with e,w° = 1 can be isolated by 
summing over j . 

The sum in (23) is manifestly an approximation to the function 

^T-^du (25) 

which is a form of the function of (4). The approximation of Sc to S can be 
made arbitrarily close by increasing the number of frequency points u>j at which 
the function is evaluated or, equivalently, by increasing the order of the matrix 
J. If the data series is of a fixed length n, then this is achieved by padding the 
vector y with zeros. 

Consider specialising the criterion function to the case of a pure AR model. 
Then n _ 1 S c = n^y'A'Ay = n^a'Y'Ya has the form of the function of (16) 
apart from the fact that the matrices A = a(J) and Y — y(J) are circulant 
matrices instead of LT Toeplitz matrices. The matrix c(J) = Y'Y/n is given 
by 

c( J) = c„_i J 1 _ n + • • • + ei J-1 + coI + cx J + • • • + cn-x J " " 1 

= Col + (Cj + Cn^)J + (C2 + Cn-2)J
2 + •" + (C„_l + Cj ) J"" 1 , 

where the elements CQ, . . . , c n _ i come from (5). The equality follows from the 
fact that J'-n = Jj. 

11 
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Given that c(J) = Y'Y/n is a positive-definite Toeplitz matrix, it follows 
from Theorem 1 that the values which minimise the AR criterion function 
will correspond to a model which satisfies the condition of stationarity. The 
estimates will differ slightly from the Yule-Walker estimates because of the 
differences between c( J) = Y'Y/n and C = [cĵ  *|]-

Consider the effect of adding p zeros to the tail of the vector y to create a 
vector y and a corresponding matrix Y — y(J) where J is now of order n + p 
and Jn+P = I. Then, if c(J) = Y'Y/n, we have 

c( J) = co I + • • • + cp P + (c p + 1 + c - x ) Jp+1 + ••• 
} +(cn_1 + cp+1)J"-1 + .-- + c1J"-1+P. 

It can the seen that the principal minor of order p + 1 of the matrix C = c(J) 
is identical to that of the matrix C = [c\k-j\], and it follows that the criterion 
function has become equivalent to the function which delivers the Yule-Walker 
estimates. 

Finally, let us comment on the specialisation of the criterion function to 
the case of the pure MA model. The criterion function has the form of the 
function under (18) albeit with circulant matrices Y — y(J) and M = / / ( / ) in 
place of LT Toeplitz matrices. The conditions of Theorem 2, which guarantee 
that the MA estimates will satisfy the condition of invertibility, are no longer 
fulfilled. Nevertheless, if there is any danger that the condition of invertibility 
may be violated, the simple of expediënt of padding the tail of the vector y 
with a sufficiënt number of zeros will avert the problem. 

Commenta ry . The representation of the least-squares criterion function which 
is in terms of circulant matrices is of some practical interest since, in the 
guise of equation (23), it is the criterion function which is entailed in the 
frequency-domain estimation of ARMA models. This method of estimation 
was expounded by Hannan [10] and has been investigated in some detail by 
Pukkila [18], [19]. Cameron and Turner [4] have show how to implement the 
method within the context of a flexible regression package. 

The distinguishing feature of a frequency-domain ARMA estimation is the 
use of the fast Fourier transform (FFT) in performing the convolutions which 
are entailed in the multiplication of the polynomials or in the multiplication of 
the analogous matrices. There is little, if anything, to be gained from using the 
FFT when the data sample contains fewer than several hundred points. 

Nowadays ARMA models are being used increasingly in signal-processing 
applications where there may be an abundance of data and where speed of com-
putation is important. In such cases, a well coded frequency-domain method 
may be may be f ar superior to a corresponding time-domain method. 
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5. T h e Sampling Proper t i e s of t he Es t imators 

Commenta ry . There has been some concern over the small-sample properties 
of the frequency-domain estimator of a pure AR process. In particular, it 
appears that, in small samples, the modulii of the roots of the AR operator 
tend to be underestimated; and the severity of this bias increases as the roots 
approach the unit circle. The peaks of the estimated AR spectral density 
function which correspond to these roots assume less prominence that they 
should, and they may even disappear altogether. In these respects, the exact 
ML estimator fares rather better. 

As we have shown, the frequency-domain AR estimator can be made equiv­
alent to the Yule-Walker estimator by the device of padding the data vector 
with zeros. Therefore what is known about the properties of the Yule-Walker 
estimator is also pertinent to the frequency-domain estimator. Thus one may 
study profitably the evidence gathered by Tj0stheim and Paulsen [21] and by 
Lysne and Tj0stheim [15]. 

Pukkila [18], [19], has characterised the properties of the unpadded fre­
quency-domain estimator, and he has suggested some modifications which are 
aimed at reducing the small-sample biases. 

There is less evidence on the small-sample properties of the frequency-
domain estimator of a pure MA model. However, the experience of the author 
suggests that there is a tendency to underestimate the modulii of the roots of 
the MA operator in small samples; and this is exacerbated when one resorts to 
the device of padding. 

There are alternative ways of reaching an intuitive explanation of the small-
sample bias of the Yule-Walker estimates which lead to various suggestions 
for improving their properties. These explanations make reference either to 
the sequence of empirical autocovariances or to the sequence of periodogram 
ordinates which represents the Fourier transform of the autocovariances. 

To begin, consider the empirical autocovariance of lag r which, on the 
assumption of that E(yt) = 0, is given by 

j n - l 

The expected value is 

E(cT) = 7r (l - t l ) , (29) 

where 7 r is the true value. If n is small, then the sequence of the estimated 
autocovariances is liable to decline more rapidly than it should as the lag value 
r increases. 

To understand the consequences of the over-rapid decline of the empirical 
autocovariances, we may consider the fact there is a one-to-one correspondence 
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between the sequence co , . . . , cp and the Yule-Walker estimates of the param­
eters o1 = V(et),ai,. ..,ap. In particular, the estimates satisfy the difference 
equation 

cp + aicp-i + h apCo = 0. (30) 

If {co, . . . , cp} is declining too rapidly, then the solution of the difference equa­
tion is liable to be overdamped, which means that the roots of the polynomial 
equation a{z) — 0 will be too far from the unit circle. 

One way of addressing the problem of bias is to replace the divisor n in 
the formula for cr by a divisor of n — r so as to obtain unbiased estimates of 
the autocovariances. However, the resulting matrix of autocovariances is no 
longer guaranteed to be positive definite; and this can lead to the violation of 
the condition of stationarity. 

Another recourse it to adopt a two-stage estimation procedure. The initial 
Yule-Walker estimates can be used in forecasting sequences of postsample and 
presample values which are added to the sample. The forecast values in both 
directions will converge or 'taper' to zero as the distance from the sample 
increases. At the points where the values are judged to be sufficiently close to 
zero, the sequences may be terminated. The Yule-Walker estimates which are 
obtained from the supplemented data have less bias than the initial estimates. 

Recently, Pukkila [20] has proposed a modified Yule-Walker estimator 
which is calculated from autocorrelations which are obtained indirectly via 
the partial autocorrelation function. His sampling experiments suggest that 
the properties of the estimator are as good as, if not better than, those of 
the Burg estimator (see, for example, Burg [3], Ulrych and Bishop [22] and 
Giordano and Hsu [8]) which, in recent years, has provided a benchmark for 
small-sample performance. 

The alternative way of explaining the bias in the Yule-Walker estimates is 
to consider the expectation of the periodogram which is the Fourier transform 
of sequence of the expectated values of the empirical autocovariances : 

E{<eiu)} = ~ J\(eiX)K(e^-^)dX. (31) 

The expected periodogram is also the convolution of the spectral density func­
tion 7(e ,w) with the Fejér kernel K(e'w). The former represents the Fourier 
transform of the sequence of true autocovariances whilst the latter represents 
the Fourier transform of the triangular sequence of the weights 

dr={ '-V tfH<n, ,( 

l 0 if |r | > n, 

which appear in the expression for E(cT) under (29). 
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The convolution represents a smoothing operation, performed upon spec­
tral density function, which has the Fejér kernel as its weighting function. The 
effect of the operation is to diffuse the spectral power which spreads from the 
peaks of the spectrum, where it is concentrated, into the valleys. This is de-
scribed as spectral leakage.The dispersion of the Fejér kernel diminishes as n 
increases, and, in the limit, it becomes a Dirac delta function. When the Dirac 
function replaces the Fejér kernel, the convolution delivers the spectral density 
function -y(etu) unimpaired. 

An explanation of the presence of the Fejér kernel can be obtained from 
the notion that the sample values yt\ t := 0 , . . . , n — 1 are obtained by applying 
the weights 

f 1 if 0 < t < n, 
wt = \ ~ (33) 

10 otherwise, 

of a rectangular data window to the elements of an infinite sequence. The 
triangular weighting function dT = n~l Y^t

wtwT-t — 1 ~~ \T\/n °f (32), which 
affects the sequence of autocovariances, and whose transform is the Fejér kernel, 
is formed from the convolution of two rectangular widows. By modifying the 
data window, we may alter the kernel function so as to reduce the leakage. In 
general, the leakage may be reduced by applying a taper to the ends of the 
rectangular window. 

Investigations into the use of data-tapering in autoregressive estimation 
were pioneered by Pukkila [18] who modified the rectangular window by re-
moving its corners to create a trapezoidal form. More recently, Dahlhaus [6] 
has investigated the effects upon the leakage of a tapered window obtained by 
splitting a cosine bell and inserting a sequence of units between the two halves. 
The sampling experiments of both Pukkila and Dahlhaus reveal dramatic im-
provements in the bias of the autoregressive estimates and in the resolution of 
the spectral density function which is inferred from these estimates. 

Ideally the degree of tapering—which, in the case of Dahlhaus, is the ratio 
of the width of the cosine bell to the width of the data window—should be 
attuned to the values of the roots of a(z). A high degree of tapering is called 
for when the modulus of the dominant root is close to unity, which is usually 
the case when there is a prominent peak in the spectral density function. 

The emphasis which has been placed, in the literature, upon the sampling 
properties of AR estimators should not detract from the importance of the 
MA component in time-series models. Its presence can greatly enhance the 
fiexibility of the model in approximating transfer functions. An example is 
provided by the case of an AR process which has been corrupted by a white-
noise error. 

A white-noise corruption, which might arise simply from rounding error in 
the observations, increases the variance of the data, leaving its autocovariances 
unaffected. The inflated variance increases the damping of the autocovari-
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ances at the start of the sequence. This can lead to a severe underestimation 
of the modulii of the autoregressive roots. Formally, an AR(p) model with 
added white noise gives rise to an ARMA(p,p) process. Nevertheless, the noise 
corruption can often be accommodated by adding just a few moving-average 
parameters to the model. 

Appendix 

The Cauchy Integral Theorem. The Cauchy Integral Theorem—see, for 
example, Kreyszig [12]—indicates that 

J _ ƒ «dz = f l , if t 
2mJZ z \0, if< 

= 0; 
(Al) 

A famihar specialisation of this result comes from taking the perimeter of the 
unit circle as the contour of integration. Then , by setting z = e,u and changing 
the variable of integration from z to u € (—7r,7r], we get 

sf/^-èf"-^-!* ir * = 0; 
2n .ƒ_„ " "~ TT 7n v~" / _~ 10, if t ï 0. 

Consider, for example, the self-reciprocal function 

7(2) = 7o + l\{z + z~x) H h yq(z
9 + z~q). 

It can easily be seen that 

dz 
z 7o 

= hj^z)[ 

(A2) 

{AS) 

{AA) 

Theorem 1. Let S = Y?j=o ]C*=o a* a j c | i - fc | = o!Ca where C = [c\j-k\] 
is a symmetrie positive-definite Toeplitz matrix and a = { l ,o ; i , . . . , a p } ' is a 
vector. If a is chosen so as to minimise the value of 5, then all the roots of the 
equation a(z) = 1 + ot\z -\ f- apz

p = 0 will lie outside the unit circle. 

Proof. If we factorise a{z) as a{z) = q{z)<j>{z) where q(z) = 1 + q\z + q2z
2 is 

quadratic, then, for a given value of <f>(z), we can write the function as 

5( ï ) = [ l 9i 92] 
7o 7i 
7i 7o 
72 7i 

72" " 1 ' 

7i 9i 
7o. .92. 

{AS) 

where 7* = J^i Ylj ^t'^jc|«-i+Jfc|- At the point of the minimum, we find that 

7i72 - 7o7i 
9i = 

92 = 

7 0
2 - 7 2 

7i ~ 7o72 

7o2-7x2 
and (A6) 

5' = 7o + 9i7i +9272-
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In terms of these values, we can can express 70, 7i, 72 as 

S(l + g2) 
7o = — , 

gtf-rti + n» wWe 
a 

<f = (1 - ï 2 ) ( l + 32 + gi)(l + $2 - 9i)-

Now the matrix of (A5) is positive definite by virtue of its construction. In 
particular, the principal minor of order 2 must be positive definite which is 
equivalent to the conditions that 70 > 0 and 7o — 7i > 0. Given that S > 0, 
these imply that 

(1 + 92 )2 > q\ and 

> 0 or , equivalently, 1 — q\ > 0. 
1 -32 

The latter conditions are necessary and sufficiënt to ensure that the roots of 
q(z) = 0 lie outside the unit circle. They are equivalent to the conditions listed 
under (3.2.18) by Box and Jenkins [2, p. 58]. 

We can repeat this analysis for every other quadratic factor of the poly-
nomial a(z) in order to show that all of the complex roots must lie outside the 
unit circle when 5 is minimised. It is also easy to show that the real roots must 
lie outside the unit circle. 

T h e o r e m 2. Let S = ]C<^o SfcLo ^k^i^k-ft where tf>i,if>j are coefficients in 
the expansion of the inverse polynomial / i - 1 (z) = {1 + ip\z + • • • } . If the 
coefficients of fi(z) — \-\-\i\zH V\iqZq are chosen so as to minimise the value 
of 5 , then all the roots of the equation fi(z) = 0 will lie outside the unit circle. 

Proof. By setting ^ 1 = 0 for t > 1, we can obtain the inequality minS(/x) < c0 

which shows that there is a finite-valued minimum. But S(n) is bounded if and 
only if 5^ \ipi\ < 00. Therefore fi~1(z) = ip(z) converges for \z\ < 1; and so the 
roots of fi(z) = 0 must lie outside the unit circle. Therefore the estimates fulfil 
the condition of invertibility. 
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