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Comments on determining the number of zeros
of a complex polynomial in a half-plane *

R.L.M. Peeters !

Abstract

We comment on recently proposed algorithms for determining the number of
zeros of a complex polynomial in a half-plane, such as Agashe’s method (1985)
and Benidir and Picinbono’s ERT (1991). Following an exposition of Talbot
(1960) we construct an easier device, which we call “Talbot’s Table” (TT), to
replace the old Routh’s Table (RT). Moreover, it is shown that the old RT is
capable of answering stability questions even when it breaks down.

1 Introduction

In the last decade a number of articles appeared on the topic of determining the num-
ber of zeros of a (complex or real) polynomial in a half-plane. The motivation for this
kind of research is two-fold : on the one hand there is the interest from a theoretical
point of view, on the other hand we have a direct application of importance, namely
the stability of a polynomial or matrix -~ a core topic in systems theory. For this
application it is of interest also whether one is able {0 deduce the number of zeros of
a polynomial that are on the imaginary axis (and their multiplicities), thus providing
the engineer with a tool to distinguish between what is called (marginal) stability
and asymptotic stability.

One century ago it was Routh [13], {14] who presented a method for calculating the
number of zeros of a real polynomial in a half-plane. This method however contained
some deficiencies in the sense that it was not generally applicable to any real poly-
nomial but only to a restricted class. Two kinds of degeneracy could occur, of which
one was solved quite easily (introducing a derivative operation), whereas the other
however, turned out to be of a more fundamental nature. Many different strategies
for removing this second singularity, among which the rather popular e-methed, have
been proposed (see e.g. [4], [8], [14] and references given in [2], [3]}, but all of them
lacked the desired propety of general applicability. The same can be said about alter-
native treatments of the subject as initiated by Hurwitz [11] and Frobenius [5], [6]-
Then, in 1985, Agashe [1] presented an algorithm that can deal with the most general
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case. Admittedly, his schemes are not as easy to apply as was Routh’s Table (RT),
but the matter seemed to have been settled. Surprisingly, work on the e-method
continued. Recently, in 1990 and 1991, Benidir and Picinbono [2], [3] came up with
another method, which they called the Extended Routh’s Table (ERT).

A striking aspect of the stream of literature of the last fifteen years however, is the
fact that all the articles mentioned so far do not refer to yet another basic treatment of
the subject, presented in 1960 by Talbot [15]. He gave a generally applicable algorithm
that yields all desired information. The relation between the location of zeros of a
polynomial and continued fraction expansions has been recognized already for a long
time ([12], [16]). The latter subject being of importance in realization theory, we can
find references where the results of Talbot are apparently well-known, see for instance
Gragg and Lindquist [9] and Fuhrmann and Krishnaprasad [7]). Talbot’s treatment,
like the ones in [2] and [3], does not rely on Sturm’s theorem but only on Euclid’s
division algorithm for polynomials. His proofs are of a very elegant and remarkably
short nature. It is interesting to note that whereas the validity of the ERT was proven
using properties of the Cauchy-index for rational functions, the validity of the TT is
based on complex analysis only (with a key role played by Cauchy’s principle of the
argument), a version of Sturm’s theorem being proven en passant. Furthermore, it
is rather straightforward to show that Agashe’s algorithm is essentialy identical to
Talbot’s, thus contradicting the use of the word “new” in the title of Agashe’s paper.
In this note we shall construct a table, referred to as Talbot’s Table (TT), from Tal-
bot’s algorithm and indicate a method of obtaining the number of right half-plane
zeros from it. In the real, “normal” case the TT is seen to be identical to the ERT
(both reducing to the old RT). In the complex “normal” case the TT and ERT are
equivalent, whereas in the singular case the TT is shorter and easier to construct than
the ERT. Following an exposition of Hanzon [10}, we show how to obtain stability in-
formation about a matrix from the TT associated with its characteristic polynomial.
As a final consequence we are able to show that this information can be obtained
from the old RT also, even in case it breaks down.

2 Talbot’s algorit hm

Let F(s) be a complex polynomial of degree 6F = n. We are interested in calculating
the number of right half-plane zeros (including multiplicities) of F', denoted by r(F).
It will be convenient to apply a rotation to the variable space, thus obtaining f(s)
from F(s), defined by :

f(8) = " F(~is). (2.1)
It is clear that the number u(f) of upper half plane zeros of f satisfies u(f) = r(F).
We define the real polynomials fo(s) and fi(s) as the real and imaginary part of f(s)
respectively, so that

f(s) = fols) +ifa(s), (2.2)

We assume that 6fp > 6f;. (If this does not hold, we can consider polynomial ¢ f(s)
instead of f(s), which has the same zeros.)
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Now, apply the H.C.F. algorithm to f; and f, to obtain their highest common factor
fu=HCF(fo, 1} :

fo(s) = qi(s) fi(s) = f2(s) with 6f, <éfi <6fp
firls) = G~ fenls) B <5 (23)

faal8) = Guer (&) fucr(8) = Fuls) 6 < 6fumn
Fut(5) = 0u(8)u(5)

where all polynomials f,,..., f, and ¢,..., ¢, are defined by the above scheme in a
unique way, due to the requirements on the degrees of the fi. Actually, the H.C.F.
algorithm is a version of Euclid’s algorithm for polynomials.

Let gi(s) = ¢xsP* + - - -, so that py = 6 fr_1 — 6 fx and sign(c;) = sign(f2_,/ ), where
in general fi denotes the leading coefficient of fj.

We then have, according to Talbot [15], (see also [7]) :

1 & ) 1 — (1)
) =ulfo) + 532 (e - signten - =), (2.4)
=1

Thus, u(f) — u(f,) can be obtained by mere inspection of the signs of the leading
coeflicients of the f;, k = 0,..., , and the degrees § f;. For a proof conform Talbot
we refer to Appendix A.

The second part of Talbot’s algorithm consists of an application of the following well-
known lemma (see e.g. {12], [15] or [1] for a proof; to make this article self-contained
there is also one added in Appendix A).

Lemma For any real polynomial g(s) we have that
u(g) = u(g +1ig"), (2.5)

where the prime denotes differentiation with respect to s.

Thus, applying this lemma to f,, we can put f,41 := f, and restart the H.C.F.
algorithm. This procedure is repeated over and over again until we arrive after a
finite number of steps, say v, at f, with §f, = 0. We then have that u(f) is given
by :

alf) = 15 (pp - sign(ey) . LoD
D = 33 (-signten- =G
= %(n_gsign(ck).l:_(é:llf’i). (2.6)

This shows how u(f) (and thus also »(F)) can be obtained directly from the sequence
of polynomials fo,..., f..

In fact the formula allows for an interpretation as follows. If we consider consecutive
polynomials fi_1, fr, fr+1 that are related by the corresponding line in the H.C.F.
scheme, we have by putting Ay = fi_y +4fx and hxy1 = fi +¢frqq that
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u(he) = ulhiss) + (o — sign(er) - T2, 27)

which is essentially Talbot’s formula (8). The difference between u(hy) and w(hyyy)
can be interpreted as just 1p; rounded to the nearest integer. For odd pj there are
two possibilities and it is the sign of ¢; that determines which integer must be chosen.
Since the difference in degrees between h; and hiy; is pr one can think of it as that
there are py zeros “disappearing”, which are distributed as equal as possible over the
upper and lower half-plane. For odd p; the sign of ¢; determines which half plane
“receives” the remaining one. Here one should observe (as Talbot does) that all real
zeros of f(s) are zeros of f.(s).

One can obtain the number of real zeros of f and the number of lower half-plane
zeros of f also from Talbot’s algorithm. For this one must notice that f, is a real
polynomial and therefore its number of upper half-plane zeros is equal to its number of
lower half-plane zeros. This number u(f,)} is obtained directly from Talbot’s algorithm
via formula (2.4) since in the end u(f) is known. Then from u(f,) and §f, we can
obtain the number of real zeros of f, which is equal to the number of real zeros of f.
See also Hanzon [10] for a similar observation in case of Agashe’s algorithm.

3 Construction of Talbot’s Table

We propose the following construction of what we call Talbot’s Table {TT), using the
sequence of polynomials fo,..., f,.

To polynomial f; we associate row k + 1 of the table. This row is filled with the
coefficients of fi, starting with its leading coefficient f{ in the first column. We add
two extra columns, which are filled in for k¥ > 0. In the first of these we put py, i.e.
the decrease in length when going from fr_, to fi, so from row k to k£ + 1. In the
second we put sign(ci) = sign(fP_,/f2) for those k where p; is odd only. The values
in these last two columns are added up. For the first extra column the result is of
course n, and we assign the result of the second column to variable m. We then have

that r(F) = u(f) = 3(n —m).

Example (Example 3 from Benidir and Picinbono [3].)

We have F(s) = s® + s*+ 5+ 1 + ¢s?, whence n = 5. In Benidir and Picinbono’s
approach this leads to the construction of a table of 6 polynomials and even more
intermediate ones. Using Talbot’s algorithm we first calculate fo(s) = s® — s* 4 5 and
fi(s) = s* + 1. Next we get :

fo(s) = fils)a(s) — fa(s)

with ¢;(s) = s — 1 and fo(s) = -1,
fi(s) = fa(s)ga(s)

with gfs) = ~s* — 1.

This gives the following TT :



| k || polynorma.]s fk ” || sign{ck) |
0 0-'_[|_—'
1 0 0 0 1 : || 1
1 -1 4 || ]

| totals [n=5] m=1 |

Hence we find that »(F) = 3(5 — 1) = 2. Notice that this table involves only three
Tows.

MHOI

The additional work of filling in two extra columns to obtain the desired information
is also present in Benidir and Picinbono’s algorithm where one has to find the correct
quantity h (formulas (2.6) and (2.11) in [3]}).

The relation between Benidir and Picinbono’s A(s) and B(s) and Talbot’s fo(s) and
f1(s) is given by A(s) = (=1)"fo(—s) and B(s) = —(—1)"fi(—s). It follows that if all
px are 1, then Benidir and Picinbono’s algorithm yields exactly the same polynomials
when applied to F(s) as Talbot’s algorithm applied to F(s) (the polynomial in s
with coefficients that are complex conjugates of the coeflicients of F'(s}). Notice that
r(F) = r(F).

Moreover, when all p; are equal to 1 we have Routh’s {“normal”) case, and the sign
changes in the first column of the TT determine the number r(F). This is seen from
the fact that sign(ce) = sign(f2_,)sign(f?), whence py — sign(cx) == is equal to
1 — sign(fo_,)sign(f?), which is zero if fJ_, and f? have the same sign and two if
their signs are different.

4 Application to stability

If we consider a complex matrix A, its stability properties depend not only on the
location of the zeros of its characteristic polynomial, but also on the Jordan struc-
ture associated with its eigenvalues on the imaginary axis. As pointed out by Hanzon
[10}, it is possible to derive from intermediate results of the Agashe algorithm applied
to the characteristic polynomial F(s) of A conclusions about the stability of A. It
is rather straightforward to show that Agashe’s algorithm is essentially identical to
Talbot’s, their differences being on the level of notation only. Therefore as an imme-
diate corollary we can draw conclusions about the stability of A if we apply Talbot’s
algorithm to F(s). We have, if we write f, = HCF(fo, f1) and f\ = HCF(f,, f))
(or fr=1iféf, =0):

1. A has no eigenvalues in the open right half plane if and only if u{f) = 0.

2. A is asymptotically stable (all its eigenvalues are in the open left half plane, or
equivalently lim;_,, €4 = 0) if and only if u(f) = 0 and §f, = 0.

3. A has no eigenvalues in the open right half plane and its eigenvalues on the
imaginary axis have multiplicity one if and only if u(f) =0 and 6, = 0.

4. A is stable (none of its eigenvalues are in the open right half plane and to its
eigenvalues on the imaginary axis correspond only diagonal Jordan blocks, or
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equivalently e is bounded for ¢ — 00) if and only if u(f) = 0 and K(4) = 0,
where K(s) = i-*+3/xk(is) with k(s) = f(s)/ fr(s)-

5. A is unstable if and only if u(f) # 0, or u(f) = 0 and K(A) # 0. This is an
immediate consequence of the foregoing.

The key argument in the proof of these statements lies in the observation that f, is
the HOF of f; and f; and thus contains all real zeros of f(s) and all pairs of zeros that
lie symmetric with respect to the real axis. Morever one must notice that the zeros
of f, are the same as those of f, but with multiplicities decreased by one. Hence,
if u(f) = 0 we have that f, has real zeros only, and the same is true for f). Notice
that if u(f) # 0, we will find some contribution in the first A steps. Therefore, when
addressing stability questions only it is sufficient to run Talbot’s algorithm until f
has been obtained.

Investigation of the structure of Benidir and Picinbono’s algorithm shows that in
their case we can draw similar conclusions (they only present the first three) because
if u{f) = 0 we necessarily have that p, = 1 throughout so that the ERT is essentially
the TT applied to F(s) instead of F(s).

A final remark can be made about the original RT. When Routh’s algorithm breaks
down (i.e. some py is larger than one) and if we are addressing stability questions
only, then there must be zeros in both half-planes (due to the equal distribution
of “disappearing” zeros discussed before), so u(f} # 0. Thus A is unstable, and all
situations where Routh’s algorithm does not break down can still be treated as shown
above. This shows that the RT is still useful for this application.

Example
Consider the following two matrices A and B :

r 31 0 24 % 6 0 ~1)
6 -1 0 0 0 0 0
—40 0 -31 -¥ g o %2

A=]-12 0 -9 -1 0 -2 0 |,

5 0 4 0 1 0 0
0o 0 0 1 o0 -1 1

\12 0 9 ¢ o0 1 -1/

(81 0 24 - 6 0 )
0o -1 0 0 0 0 0
-40 0 -31 # -8 0o %
B={~12 0 -9 -1 0 -2 0
5 0 4 0 1 0 0
o 0 0 1 0 -1 1

\ 12 0 9 0 0 1 -1}

Straightforward calculation shows that both matrices have the same characteristic
polynomial

F(s) = det(sI — A) = det(s] — B) = 5" + 35® + 65% + 8s* + 9s® + Ts® + 45 + 2.
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This leads to ;

f(8) = i"F(—is) = &7 4 3is® — 65° — 8is* + 95® + Tis? — 45 — 24,
whence '

fo(s) = 5" — 6%+ 95° — 45,

fi(s) = 3s% —8s* + Ts* — 2.

Application of Talbot’s algorithm gives the following TT :

L polynomials f; | e | sign(e) |

teff1]0| -6 |09 |0]|-4]|0

(1|30 -8 {0]7(0]-2 1 1

12 F]oj-=2(0[%]0 1 1
3210} -4 |02 1 1
480} -8 |0 1 1
512 (0} -2 1 1

|6 4]0 1 1
12 | ] _ 1 1

| totals [ n=T || m=7

- Thus we find that u(f) = 3(n —m) = 0. Notice that the number of sign changes in
the first column of the f; polynomials is indeed zero. We have that all p; are equal
to 1, which must be the case if u(f) = 0. Notice also that for a real polynomial
F(s) the decomposition of f(s) into its real and imaginary part corresponds to the
decomposition of F(s) into its even and odd part, as usual.

In the above scheme we have that the algorithm was restarted via fi(s) = fi(s) and
fe(s) = fi(s). Hence we have that :

fu=HCF(fo, i) = f5, fals) =25 —4s* +2

and

H=HCF(f,,f)=1fs, [fo(s)=2s* -2,

Because §f\ # 0 we can conclude that F(s) must have purely imaginary zeros with
multiplicity larger than one. In fact this multiplicity is equal to 2, which follows from
the fact that F(s) is a real polynomial so that its zeros are either real or occur in
complex conjugate pairs. From the fact that u(f) = 0 we already have that f, only
contains real zeros and since § f, = 4 we know that F(s) contains 4 purely imaginary
Zeros.

This means that if we want to establish the stability properties of A and B, we must
calculate f(s)/fr(s). This gives :

k(s) = f(s)/ fils) = —s +§ts4 gs3~gi32+23+z’.

We then rotate the variable space back, so that we get :
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3 4+§33+§32+23+1.

K(9) = F&)/F(e) = = £(is) 1) = 5o + Bst4 D 4. 2

Substitution of A and B in the polynomial K gives :
K(A)=0

so that A is indeed a stable matrix, but
K(B)#0

whence B is unstable.

One can verify that A has a diagonal Jordan form whereas B does not. For verification
purposes we mention the zeros of F(s). These are —1,—1 4+ ¢,—1 — i,4,4, —1,—1, s0
that F(s) can be decomposed as

F(s)=(s4+1){s+1=5(s+1+)(s—i)(s —)(s4+¢)(s+1).

5 Conclusions

Talbot’s algorithm provides a nice tool for determining the number of right half-plane
zeros of a complex polynomial (as well as the numbers of purely imaginary zeros and
left half-plane zeros). In the “normal” case it becomes equivalent to the old RT, as
does the newly proposed ERT. In the “singular” case it is shorter than the ERT.
Agashe’s algorithm is equivalent to Talbot’s. Of course, there is no longer need for
the classical e-method. From the TT applied to the characteristic polynomial of a
matrix one can determine stability and asymptotic stability properties. From the
interpretation of what happens when Routh’s original algorithm breaks down, one
can obtain the same answers with respect to stability questions already from the RT.

Appendix A : Validity of the TT

In this Appendix we present a proof of the correctness of the TT, via formula (2.7)
which describes the effect of one step of the H.C.F. algorithm, and via the Lemma of
Section 2. Both of these proofs follow the original lines of Talbot [15] and are merely
added to make this article self-contained. However, a minor correction with respect
to the first proof had to be made.

Let us denote by Ax the real open interval (—X, X) in the complex s-plane, by Sx
the upper semicircle on Ax and by Uy the open region bounded by Ax and Sx. As
X tends to infinity, Ax becomes the real axis A and Ux the upper half-plane U,
Suppose that fi_;, fi and fi41 are consecutive polynomials in the TT, so that they
are related by :

Fe-1(s) = fils)qe(s) — frsa(s), (A.1)

with 8fk1y < 8fi < 8fk1. Of course, 8q; = 6 fr-1 — 6fi and we denote this quantity
as before by px. From the identity above we can obtain :



foer +ifi = (@ + ) (fa + i fara) = iar fops (A.2)

of which the r.h.s. can be written formally as

(g + ) (fr + i fer)(1 — @) (A.3)
with )

o= J 1
gr+i 1 —ifi/frr

Since ¢k, fr and frq are real polynomials it follows that on Ax we always have that
la(s)] < 1.

Since 8fry1 < 8fi we find on Sy for X — oo that af(s) — 0 (uniformly with X).
Therefore, for sufficiently large X we find that {a(s)| < 1 on the boundary of Ux.
According to Cauchy’s Principle of the Argument we then find that, for large enough
X, the number of poles of (1 — a) is equal to the number of zeros of (1 — a). Thus,

u(fr—1 +1fi) = w(fe + i fip1) + vl +2) (A.5)

Sr—1+ife
(gt Ftifega)”
We next proceed to calculate u(gx + ¢). Again according to the Argument Principle

we have for large enough X that

(A4)

which is clear from writing (1 — a) as

) 1 }
ulge +1) = 5, Darge + ), (A.6)

where A denotes the increment in a positive description of the boundary Sy, Ax of
Ux. (Of course (gx + 1) has no poles.) We find :

(e +1) = o= (i ~ gsign(es)r + ssign((=1)P*ei)7), (A7)
where, as in Section 2, ¢; denotes the leading coefficient of g;. (Here it is convenient
to treat the case where 6gp = 0, which can only occur in the first step of the TT,
so for k = 1, separately.) The first term in the expression between brackets is the
contribution of boundary segment Sx, the other two come from Ay, where it is
noticed that ¢x(s) + ¢ with s € Ax lies entirely in the upper half-plane.

We can write our final result as :

1 — (~1y
—5 (A.8)

which proves formula (2.7) and by summation over k£ = 1,..., 4 we obtain formula
(2.4).

ulfics +ifs) = u(fo + ifin) + 5(px — sign(c)

The second thing we want to prove is the Lemma of Section 2. For this purpose, let
€ be a (possibly complex) zero of the real polynomial ¢ of multiplicity «, say. Thus,
g(s) = (s—£)"h(s) for some complex polynomial k(s) satisfying h({) # 0. Obviously,
£ is a (k — 1)-fold zero of ¢’ and therefore also a (k — 1)-fold zero of g + ieg’, for



any nongzero value of e. Suppose that e is real, positive and close to zero. Then, in
addition g + 7eg’ will have a zero £ + % where = O(e). In fact we have that

0 = g(€+n)+ied'(€+n)

7*R(€ + ) + ek R(E + n) + "R (€ + 7))

7> (ies + R(E + ) + tenk(€ + )}

7" {(Gex + n)[A(E) + 7k’ (€) + O(n*)] + ien[h'(€) + O()]}

= Y (iex + nh(€) + ie(k + 1)nk'(€) + O(%)} (A.9)

whence

7 = —tek + O(€?). (A.10)

ft

I

This shows that the zeros of ¢ + ieg’ are either the same as the corresponding zeros
of g or else have lower imaginary parts. Thus

u(g) = ulg +ied). (A.11)

From the H.C.F. algorithm applied to ¢ + ieg’ we have as an immediate corollary
(also from Talbot) that

u(g +ieg’) = ulg +1ig'), (A12)

since the corresponding TT’s are related by that the rows of one of them can be
expressed as (alternatingly) e and 1 times the rows of the other; moreover we can
already use formula (2.4).

This completes the proof of the lemma and as a corollary we obtain the validity of
the TT.

Appendix B: Computer codes

Below we list MATLAB codes for calculating the number of right half-plane zeros
of a complex polynomial. The main routine is provided by function TALBOT(F)
which generates the number of right half-plane zeros, the number of real zeros and
the corresponding TT with respect to polynomial F. The other listings give routines
that are invoked by function TALBQT. Added also is a separate routine, called
UHP_ROOTS for calculating the number of upper half-plane zeros of a complex
polynomial.

function [m,{,TT)] = talbot(F)

%

% Function TALBOT.

%

% Via this function we calculate the number of right half-plane roots
% of the (complex) polynomial equation F(s) =0.

% The coefficients of F must be stored in variable F' according to

% MATLADB’s standard convention, i.e. the first component F(1) of F
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% denotes the coefficient of the highest power of s and the last

% component F(n + 1) denotes the constant term. (Here F(s) is assumed to
% be of degree n, so represented by an (n + 1)-vector.)

% We follow Talbot’s algorithm (1960), which is equivalent to Agashe’s

% (1985).

% The first argument m of the output denotes the number of RHP-roots, the
% second denotes the number £ of imaginary roots. Of course the number of
% left half-plane roots can be calculated as n —m — £,

% In output variable TT we store the resulting TT (Talbot’s Table).

% We make use of subroutines (functions) DEG, DERIV and EUCL_STEP.
% This routine is a modified version of routine UHP_ROOTS.

%

% Programmed by Ralf Peeters, Free University, Amsterdam, April 1991.

%

eps=1le-10; % for controlling machine round-off.
F=F(:).’;
inz=find(abs(F)); % find the first nonzero coefficient.
F=F(inz(1):max(size(F)));
f=F; % f is calculated as (1" n)*F(-ixs),
n=max(size(F))-1; % for this we distinguish four cases.
for j=l:n+1, '
jmod4=j-4*round(j/4-0.5);
if jmod4==2,
f(i)=1+F(j);
end;
if jmod4==3,
f(G)=-FG);
end;
if jmod4==0,
1(§)=-1+F(j);
end;
end;
fn=f(1); % consider the leading coeflicient of f.
if abs(real{fn))<eps, % when necessary, reverse the real
f=fxi; % and imaginary part of f.
end; _
p=real(f); % the real and imaginary part of f
g=imag(f); % are displayed on screen.
n=deg(p);
TT=zeros(1,n+3); % first row of the TT.
TT(1,1:n+1)=p;
k=0;
while norm(q)>eps, % first round of Talbot’s algorithm.
[b,q,r,v]=eucl_step(p,q);
e=1;
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if b==2%round(b/2),
e=-1; '
end
k=k+v(1+e)/2;
nn=deg(q);
TT=[TT; q, zeros(1m-nn),b,vx(1+e)/2];
P=4
q=r;
end
nl=n-deg(p);
ml=(nl-k)/2;
while deg(p)>0,
q=deriv(p};
while norm(q)>eps,
[b,q,r,v]=eucl step(p,q);

e=];
if b==2+round(b/2),
e=-1;
end
k=k+vx(1+e)/2;
nn=deg(q);
TT=[TT; q, zeros(1:n-nn),b,vx(1+e)/2];
pP=q;
qQ=T;
end
end
m=(n-k)/2;

l=n-n1-2+{m-ml);

% _
% End of function TALBOT.

% updating of the T'T.

% nl denotes the drop in degree.

% m]1 denotes the number of RHP-roots
% found in the first round.

% restart of the algorithm.

% next round.

% updating of the TT.

% m = number of RHP-roots.
% ¢ = number of imaginary roots.

function [b,q,r,v] = eucl_step(p,q)
%

% Function EUCL_STEP.

%

% In this function we perform one step of the Euclidean division

% algorithm for polynomials.

% Input are two vectors p and ¢ corresponding to polynomials following
% MATLAB’s convention. (See e.g. UHP.ROOTS for an explanation.)
% Output are the quantities b, ¢, 7 and v, denoting (respectively):

% b: degree of the quotient (= degree of p - degree of ¢),

% gq: denoting the original polynomial ¢, which will take p’s place,
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% r: denoting the remainder polynomial, which will take ¢’s place,
% v: denoting the sign of the quotient polynomial

%
% Programmed by Ralf Peeters, Delft University of Technology, January 1989,
% revised at Free University, Amsterdam, April 1991.
%
eps=norm(p }*le-8; % for controlling machine round-off.
r=-p;
inz=find(abs(q)); % find the leading coeflicient of g.
q=q(inz(1):max(size(q)));
c=deg(p);
d=deg(q);
b=c-d;
v=sign(q(1))*sign(p(1));
for i=1:b+1, % perform division ”with remainder”
a=r(i)/q(1l); % to p and q. Remainder is stored in r.
for j=1:d+1,
r(i+j-1)=r(i+j-1)-a*q(j);
if abs(r(i+j-1))<eps, % use eps to remove leading ”zeros”
r(i+j-1)=0; % by setting them to zero exactly.
end
end
end
%

% End of function EUCL_STEP.

function [d] = deg(f)

%

% Function DEG.

%

% To calculate the degree of a polynomial with nonzero leading
% coefficient. For use in UHP_ROOTS and TALBOT.

%

% Programmed by Ralf Peeters, Delft University of Technology, January 1989.
%
d=max(size(f))-1;

%
% End of function DEG.
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function [g) = deriv(f)
%

% Function DERIV.
%

% For calculation of the derivative of the polynomial argument f.
% To be used in UHP_ROOTS and TALBOT.

%
% Programmed by Ralf Peeters, Delft University of Technology, January 1989.

%

n=max(size(f}));

for i=1:n-1,
g()=t()*(n-1);
end;

%

% End of function DERIV.

function [m,€] = uhp roots(f)

%

% Function UHP ROOTS.

% _

% Via this function we calculate the number of upper half-plane roots

% of the {complex) polynomial equation f(s) = 0.

% The coeflicients of f must be stored in variable f according to

% MATLAB’s standard convention, i.e. the first component f(1) of f

% denotes the coefficient of the highest power of s and the last

% component f(n + 1) denotes the constant term. (Here f(s) is assumed to
% be of degree n, so represented by an (n + 1)-vector.)

% We follow Talbot’s algorithm {1960), which is equivalent to Agashe’s

% (1985).

% The first argument m of the output denotes the number of UHP-roots, the
% second denotes the number £ of real roots. Of course the number of

% lower half-plane roots can be calculated as n — m — £.

% We make use of subroutines (functions) DEG, DERIV and EUCL_STEP.

%

% Programmed by Ralf Peeters, Delft University of Technology, January 1989,
% revised at Free University, Amsterdam, April 1991.

%
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eps=le-10;
f=1(:).;
inz=find(abs(f));
f=f(inz(1):max(size(f)));
In=1f(1};
f=f/In;
p=real(f)
q=imag(f)
n=deg(p);
k=0;
while norm(q)>eps,
[b,q.r,v]=eucl step(p,q);
e=1;
if b==2xround(b/2),
e=-1;
end
k=k+vx{1+e)/2;
P=4q;
q=r,
end
nl=n-deg(p);
ml=(nl-k)/2;
while deg(p)>0,
q=deriv(p);
while norm(q)>eps,
[b,q,r,v]=eucl step(p,q);
e=l1;
if b==2+round(b/2),
e=-1;
end
k=k+v(l+e)/2;
P=4;
Q=T
end
end
m=(n-k)/2;
I=n-n1-2%(m-ml);

%

% End of function UHP_RQOTS.

15

% for controlling machine round-off.
% find the first nonzero coefficient.

% the first coefficient is put to 1.

% th;s real and imaginary part of f

% are displayed on screen.

% first round of Talbot’s algorithm.

% nl denotes the drop in degree.

% m1 denotes the number of UHP-roots
% found in the first round.

% restart of the algorithm.

% next round,

% m denotes the number of UHP-roots.
% £ denotes the number of real roots.
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