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This paper provides straightforward derivations of a wide variety of smooth
ing formulae which are associated with the Kalman filter. The smoothing 
operations are of perennial interest in the fields of Communications engineer
ing and signal processing. Recently they have begun to interest statisticians. 
It is often asserted that it is tedious and difficult to derive the formulae. 
We show that this need not be so. 

1. Introduction 

The object of this paper is to provide a synopsis of the various algorithms 
which can be used for the retrospective enhancement of the state-vector esti-
mates generated by the Kalman filter. 

In its normal mode of operation, the Kalman filter generates an estimate of 
the current state of a system using information from the past and the present. 
Often an estimate can be improved greatly in the light of subsequent obser-
vations. In many real-time signal-processing applications, there is scope for 
a brief delay between the reception of a signal and the provision of the state 
estimate; and this delay can be used for gathering and processing additional ob-
servations. The classical fixed-lag smoothing algorithm is then the appropriate 
device for improving the estimate. 

In recent years, statisticians have begun to use the Kalman filter in contexts 
where there is virtually no real-time constraint; and their attention has been 
concentrated upon the algorithms of fixed-interval smoothing which bring all of 
the information in a fixed sample to bear upon the estimation of a sequence of 
state vectors. The consequence of this renewed interest has been the discovery 
of several new algorithms as well as the rediscovery of older, partly-forgotten, 
algorithms. 

Diverse approaches have been taken in the derivation of the various algo
rithms, and a welter of alternative notation has arisen. We fear that, nowadays, 
only the few veritable cognoscenti feel at ease in this specialised but highly 
profitable area of statistical theory; and we believe that the time is ripe for a 
synopsis of the results which aims to be both brief and accessible. 

In pursuance of this aim, we feel bound to begin with a complete and 
self-contained derivation of the Kalman filter. With the help of the calculus of 
conditional expectations, this can be accqmplished within a page. The same 
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calculus is the ideal method for deriving the majority of the smoothing algo-
rithms. The exceptions are the forward-backward algorithms, presented in the 
final section, for which a Bayesian approach is more appropriate. 

2. Equations of the Kalman Filter 

We shall present the basic equations of the Kalman filter in the briefest 
possible marnier. The state-space model, which underlies the Kalman filter, 
consists of two equations 

yt = Ht£t + Vti Observation Equation (1) 

ft = $ t £ t - i + ut, Transition Equation (2) 

where yt is the observation on the system and £t is the state vector. The 
observation error % and the state disturbance vt are mutually uncorrelated 
random vectors of zero mean with dispersion matrices 

D{rH) = Qt and D(i/f) = * t . (3) 

It is assumed that the matrices Ht,$f> &t and ^t are known for alH = 1 , . . . , n 
and that an initial estimate xo is available for the state vector £0 at time t = 0 
together with a dispersion matrix D(£0) = P0 . The empirical information 
available at time t is the set of observations Xt = { j / i , . . . , yt}. 

The Kalman-filter equations determine the state-vector estimates xt\t~i = 
E(£t\Tt-i) and xt = E(£t\ït) and their associated dispersion matrices Pt\t-i 
and Pt. From xt\t-i, the prediction yt\t-i = Htxt\t-i is formed which has a 
dispersion matrix Ft. A summary of these equations is as follows: 

Xt\t-1 = ^ t ^ l - 1 5 

Pt\t-1 = *tPt-l*'t + *«. 

et = yt - Htxt\t-i, 

Ft = HtPt\t-\Ht + ftt, 

Kt = Pt\t-iHtFf , 

xt = xt\t-i + Ktet, 

Pt = (I - KtHt)Pt]t-i. 

State Prediction (4) 
Prediction Dispersion (5) 
Prediction Error (6) 
Error Dispersion (7) 

Kalman Gain (8) 
State Estimate (9) 
Estimate Dispersion (10) 

We shall also define 

Mt = $tKt-i and (11) 

At = <* , ( ! -# ,_ !#<_! ) . (12) 
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Alternative expressions are available for Pt and Kt: 

Pt = (Ptïtl1+Hfr1Ht)-\ (13) 

Kt=PtH'tüj\ (14) 

By applying the well-known matrix inversion lemma to the expression on the 
RHS of (13), we obtain the original expression for Pt given under (10). To 
verify the identity Pt\t^iH'tF^1 = PtH'tÜJl which equates (8) and (14), we 
write it as P t

_1P t\ t-iH' t = H'fCtJ'1 Ft. The latter is readily confirmed using the 
expression for Pt from (13) and the expression for Ft from (7). 

A variant of the Kalman filter known as the information filter is avail
able which replaces the variables art|t_i and xt of (4) and (9) respectively by 
the variables a t | t_j = P^Lj^t l t - i and at = i^-1a:<, thereby transforming the 
equations into 

a>t\t-i = Pty..1$tPt-iat-i, Xty-i = Pt\t-iat\t-il (15) 

at = a t | t_! + H'fQ^yt, xt = Ptat. (16) 

The first of these comes immediately from (4). The second is established by 
writing the combination of equations (9) and (6) as 

xt = (I-KtHt)xtlt^+Ktyt (17) 

or, equivalently, 

at = p-'il-KtH^Pt^a^+Pr'Ktyt, (18) 

whence the result is obtained with the use of the equations (10) and (14). The 
inverse matrices Ptl£_i and P t

- 1 are obtained with reference to (5) and (13). 

Derivat ion of t h e Ka lman Fi l ter . The equations of the Kalman filter 
may be derived using the ordinary algebra of conditional expectations which 
indicates that, if x,y are jointly distributed variables which bear the linear 
relationship E(y\x) = a + B{x — E(x)}, then 

E(y\x) = E(y) + C(y,x)D-1(x){x - E(x)}, (19) 

D(y\x) = D(y) - C(y,x)D-1(x)C(x,y), (20) 

E{E(y\x)} = E(y), (21) 

D{E(y\x)} = Ciy^D-'ix)^^), (22) 

D(y) = D(y\x) + D{E(y\x)}, (23) 

C{y-E{y\x),x}=Q. (24) 
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Of the equations listed tinder (4)—(10), those under (6) and (8) are merely 
definitions. 

To demonstrate equation (4), we use (21) to show that 

£ a t i J t - i ) = ^ { ^ ( 6 i 6 - i ) i J t - i } 

= E{$ l Ct - i | J t - i } (25) 

= Qtxt-i. 

We use (23) to demonstrate equation (5): 

D ( 6 | J t - i ) = 2>(6|&-i) + D{E(^t-i)\lt-i} 

= ^ t + D { $ t 6 - i | X t - i } (26) 

= * t + * ,p«_i*; . 

To obtain equation (7), we substitute (1) into (6) to give et = Ht(£t — 

£t | t - i ) + Vt- Then, in view of the statistical independence of the terms on the 
RHS, we have 

D(et) = D{Ht(tt - *«„_!)} + D(Vt) 

= HtPt\t.1H't + üt=D(yt\lt-1).
 l ' 

To demonstrate the updating equation (9), we begin by noting that 

C(&, Vt]£-i) = E{(tt - xt]t-M} 

= £ { ( 6 - * t | t - i ) ( # t 6 + * ? * ) ' } (28) 

= Pt\t-iH't. 

It follows from (19) that 

E^t\lt) = EUt\lt-1) + CUtMlt-1)D-1(yt\lt.1){yt-E(yt\lt.1)} 

= xt\t-i + Pt\t-iH'tFf et. 

The dispersion matrix under (10) for the updated estimate is obtained via 
equation (20): 

D{it\Xt) = D ( 6 | ü - i ) - C(6,»«12i-i)I>-1(v«|r (-1)C(y f ,e«|2i-i) 

— Pt\t-i — Pt\t-iHtFf HtPt\t-\. 

Innovat ions and t h e Information Set . The remaining task of this section 
is to establish that the information of X% = {yi,..., yt} is also conveyed by the 
prediction errors or innovations {ei , . . . ,e*} and that the latter are mutually 
uncorrelated random variables. 
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First we demonstrate that each error et is a linear function of y i , . . . , yt-
From equations (9), (6) and (4), or, equally, from equations (17) and (4), we 
obtain the equation £t|t-i = AtZt-i|t-2 + Mtyt-i- Repeated backsubstitution 
gives 

t - i 
x*l«-i = 5Z A*.i+2Mi+iï/i + A«,2Si|o, (31) 

i=i 

where At,j+2 = At • • • Aj+2 is a product of matrices which specialises to At,t = 
Af and to At,t+i = I. It follows that 

et = y* - .HtXtlt-i 
t - i 

= S/t - Ht ^2 A*,i+2-Wj+iyi - -fftAt)2a;i|o. 

Next, we demonstrate that each yt is a linear function of e i , . . . , e* . By back
substitution in the equation xt\t-i = $txt-i\t-2 + Mt^t-i obtained from (4) 
and (9), we get 

t - i 
x*|t-i = J Z $<.i+2M i+i e i + $t,2Zi|o, (33) 

i=i 

wherein $t,j+2 = $t • * • $j+2 is a product of matrices which specialises to $tit = 
$t and to $t,t+i = -f- It follows that 

Vt = et + ift%|t-i 
t - i 

= e< + ift X ) $1,7+2^+! e7- + J2t$t,2Zi|o-
i=i 

Given that there is a one-to-one linear relationship between the observa-
tions and the prediction errors, it follows that we can represent the information 
set in terms of either. Thus we have Zt-i = { e i , . . . , e t - i } ; and, given that 
et = yt — jB(yt|2t-i)> it follows from (24) that et is uncorrelated with the pre-
ceding errors e i , . . . , e t - i . The result indicates that the prediction errors are 
mutually uncorrelated. 

3. The Smoothïng Operations 

The object of smoothing is to improve our estimate xt of the state veetor 
£t using information which has arisen subsequently. For the succeeding obser-
vations {yt+i,yt+25-• •} are bound to convey information about the state of 
the system which can supplement the information Xt = {yi,. • -^yt} which was 
available at time t. 
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There are several ways in which we might effect a process of smoothing. 
In the first place, there is fixed-point smoothing. This is used whenever the 
object is to enhance the estimate of a single state variable £t repeatedly, using 
successive observations. The resulting sequence of estimates is described by 

{xt\n — E((t\Xn);n = t + l,t + 2,...}. Fixed-Point Smoothing (35) 

The second mode of smoothing is fixed-lag smoothing. In this case, en-
hanced estimates of successive state vectors are generated with a fixed lag of, 
say, t periods: 

{xn-t\n = E(£n-t\Zn)in = t + l,t + 2,...}. Fixed-Lag Smoothing (36) 

Finally, there is fixed-interval smoothing. This is a matter of revising each 
of the state estimates for a period running from t = 1 to t = n once the full 
set of observation in Xn = { t / i , . . . , t/„} has become available. The sequence of 
revised estimates is 

{xn-t\n = ^(fn-tl^n); t = 1 ,2 , . . . , n} . Fixed-interval Smoothing (37) 

Here, instead of x t |n , we have taken a;n_t|n as the generic element, which gives 
the sequence in reverse order. This is to refiect the f act that, with most algo-
rithms, the smoothed estimates are generated by running backwards through 
the initial set of estimates. 

There is also a variant of fixed-interval smoothing which we shall describe 
as Intermittent Smoothing. For, it transpires that, if the fixed-interval smooth
ing operation is repeated periodically to take account of new data, then some 
use can be made of the products of the previous smoothing operation. 

For each mode of smoothing, there is an appropriate recursive formula. 
We shall derive these formulae, in the first instance, from a general expression 
for the expectation of the state vector £t conditional upon the information 
contained in the set of innovations { e i , . . . , e n } which we have shown to be 
identical to the information contained in the observations {y i , . . . ,y„}. 

4. Conditional Expectations and Dispersions of the State Vector 

Given that the sequence e i , . . . , e„ of Kalman-filter innovations are mutu-
ally independent vectors with zero expectations, it follows from (19) that 

n 

E(it\ln) = Efo) + J2C&>ei)D~lMei- (38) 

However, the sum is recursive in the sense that 

E{it\lj) = JS(6Pï - i ) + C{iu e i )D- 1 (e i )e i ; (39) 
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and so we have 

n 

E(£1 |Jn) = £(£ t |Zm) + Y, C7(6,e i)D-1(e i)e i . (40) 
j=m+l 

In a similar way, we see from equation (20) that the dispersion matrix satisfies 

n 

£>(&|2„) = D{it\Tm) - Y, Ci^e^D-^e^Ciej,^). (41) 
j=m+l 

The task of evaluating the expressions under (40) and (41) is to find the 
generic covariance C(£t,ek)- For this purpose, we must develop a recursive 
formula which represents ek in terms of £* — E(£t\Tt-i) and in terms of the 
state disturbances and observation errors which occur from time t. 

Consider the expression for the innovation 

ek = yk- Hkxk\k-! 

= Hk(£k - £*)*_!) + i]k. 

Here the term ĵt — xjt|fc-i follows a recursion which is indicated by the equation 

6 - z*|*-i = Afc(6-i - a?Jb—i|fc-2> + (vh ~ MjfcT/jt-i). (43) 

The latter comes from subtracting from equation (2) the equation xt\t-i = 
AtXf_1|t_2 + Mt{Ht-iit-i + Vt-i), obtained by substituting (1) into (17) and 
putting the result, lagged one period, into (4). By running the recursion from 
time k back to time t, we may deduce that 

fc-i 

6 - x*|*-i = A*,t+i.(& - xt|«-i) + Y ^,j+2(vj+i - Mj+irjj), (44) 
j=t 

wherein Ajt^+i = I and Ak)k = Ajt. It follows from (42) and (44) that, when 
k>t, 

CUuek) = J0{&(6 - x ^ A ' ^ H ' , } 

- P , A' H' ( 5 ) 

Using the identity $t+iPt = At+iPt\t-i which comes via (10), we get for k > t 

C(tt,ek) = Pt$'t+1A'kit+2Hk. (46) 

Next we note that 
C(tt+i,ek) = Pt+MtA'ktt+2H'k. (47) 
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It follows, from comparing (46) and (47), that 

C(6,e*) = Ptt'wP&pCiti+uen). (48) 

If we substitute the expression under (45) into the fonnula of (40) where 
m > t — 1, and if we set D~1(ej) = Ff1-, then we get 

= E(Zt\Zm)+ è PtM-i^iB'jFf^j (49) 
i=m+l 

= E ( 6 | I m ) + Pt|t-iA'm + i , t+ i E A i > + 2 ^ ^ - 1 e i . 

An expression for the dispersion matrix is found in a similar way: 

D{it\Xn) = D{it\lm) 

-•Pt | t - iA'm + l j t + 1< 22 ^,j,m+2H'jFf1HjAjim+2>Am+i,t+iPt\t-i 

Notice that the sums in the two final expressions may be accumulated using 
recursions running backwards in time of the form 

(51) 

(52) 

= H'tFt-
1et + A't+1qt+1 

and 
n 

Qt = ^h'jj+iH'jFf1HjAjtt+i 

= HtFf Ht + A t+1Qt+iAt+i. 

These recursions are initiated with qn = H'nF~len and Qn = H^F^Hn. 

5. The Classical Smoothïng Algor i thms 

An account of the classical smoothing algorithms is to be found in the 
book by Anderson and Moore [1] which has become a Standard reference for 
the Kalman filter. 
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Anderson and Moore have adopted a method for deriving the filtering equa-
tions which depends upon an augmented state-transition equation wherein the 
enlarged state vector contains a sequence of the state vectors from the origi-
nal transition equation. This approach is common to several authors including 
Willman [13] who deals with fixed-point smoothing, Premier and Vacroux [11] 
who treat fixed-lag smoothing and Farooq and Mahalanabis [8] who treat fixed-
interval smoothing. We believe that an approach via the calculus of conditional 
expectations is more direct. 

The Fixed-Point Smoother. Of the classical smoothing algorithms, the 
fixed-point smoothing equations are the easiest to derive. The task is as fol-
lows: given xt\n = .E(£t|ei,... ,e„), we must find an expression for xt\n+i = 
E(£t\tii • • • ? en+i) with n > t. That is to say, we must enhance the estimate of 
£t by incorporating the extra information which is afForded by the new innova-
tion e„+i. The formula is simply 

(53) 

Now, (45) gives 

C(6>en) = iDt|t-iA'„,t+i-H'n ,54x 

= LnH'n 

and 

-LA' H' ( 6 6 ) 

Therefore we may write the fixed-point algorithm as 

E(Zt\ïn+i) = EUt\Zn) + Ln+iH'n+1F~+1en+1 
(56) 

where Ln+i = LnA'n+1 and Lt = Pt\t-i-

The accompanying dispersion matrix can be calculated from 

D(6 |J„+l ) = D(tt\In) - I n + l ^ + l i ^ i ^ n + l i U l - (57) 

The fixed-point smoother is initiated with values for J5(£t|Jt), D(£t\ït) 
and Lt = Pt\t-i, which are provided by the Kalman filter. From these ini-
tial quantities, a sequence of enhanced estimates of £t is calculated recursively 
using subsequent observations. The values of e n + i , Fn+i and Kn, needed in 
computing (56) and (57), are also provided by the Kalman filter, which runs 
concurrently with the smoother. 

The Fixed-Interval Smoother. The next version of the smoothing equation 
to be derived is the fixed-interval form. Consider using the identity of (48) to 
rewrite equation (40), with m set to t, as 

n 

E(ttPn) = E{it\lt) + Pt$'t+1Pt-+\\t E Cte+i,e^D-^ej . (58) 
j= t+ i 
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Now 
n 

E(6+i|Jn) = ^ ( 6 + i | ï t ) + J2 CUt^e^D-'ie^ej; (59) 
i=t+i 

so it follows that equation (58) can be rewritten in turn as 

E((t\ln) = Efofc) + PtV^P^Eitt+iPn) - E(tt+1\lt)}. (60) 

This is the formula for the fixed-interval smoother. 
A similar strategy is adopted in the derivation of the dispersion of the 

smoothed estimate. According to (41), we have 

n 

D(£ t|Jn) = JD(e«|J«) - E C(&'e i)2>-1(e i)C(e i, &) (61) 
j=t+i 

and 

n 

D(tt+1\ln) = D(tt+1\lt) - Y, C(&+i,ei)Zr1(ei)C7(ei,É«+i). (62) 
i=t+i 

Using the identity of (48) in (61) and taking the result from (62) enables us to 
write 

ptln = pt- Pt*t+ipr+\\t{pt+i\t - Pt+i\n}pr+nt*t+iPt' («3) 
An Interpretation. Consider £?(£t|Jn), and let us represent the information 
set, at first, by 

I n = | j t , / i t + 1 , e t + 2 , . . . , e n | where ht+i = &+i - E^t+1\lt). (64) 

We may begin by finding 

E({tp„ht+i) = £(6|2«) + Cituht+iWD-^ht+ipJht+i. (65) 

Here we have 

C(6, ht+1\lt) = EÏUtt - * 0 ' * H - I + Mftt) = Pt&t+i and 
1 J (66) 

D(ht+1\It) = Pt+lït. 

It follows that 
EUt\It,ht+1) = Efopt) + Pt*UiP£]t{tw ~ E((t+i\ït)}- (67) 
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Of course, the value of £t+i in the RHS of this equation is not observable. 
However, if we take the expectation of the equation conditional upon all of the 
information in the set I n = { e i , . . . , e n } , then £t+i is replaced by 25(£f+i|Tn) 
and we get the formula under (60). This interpretation was published by Ansley 
and Kohn [2]. It highlights the notion that the information which is used in 
enhancing the estimate of £t is contained entirely within the smoothed estimate 
of ft+i-

The Intermïttent Smoot her. Consider the case where smoothing is inter-
mittent with m sample points accumulating between successive smoothing op-
erations. Then it is possible to use the estimates arising from the previous 
smoothing operation. 

Imagine that the operation is performed when n = jm points are available. 
Then, for t > (j — l)m, the smoothed estimate of the state vector f* is given 
by the ordinary fixed-interval smoothing formula found under (60). For t < 
(j - l )m, the appropriate formula is 

EUt\ln) = E(6 |T ( j _ 1 ) m ) + m^P^Eitt+illn) - E ( 6 + i | J 0 - i ) m ) } . 

(68) 
Here E{£t\Z(j-i)m) 1S being used in place of -E(£t|Zt). The advantage of the 
algorithm is that it does not require the values of unsmoothed estimates to be 
held in memory when smoothed estimates are available. 

A limiting case of the intermittent smoothing algorithm arises when the 
smoothing operation is performed each time a new observation is registered. 
Then the formula becomes 

E{it\ln) = .E(6|X„-i) + Pt*'t+iPt-+\\t{mt+i |Z«) - £(£t+ 1 | J n _ ! ) } . (69) 

The formula is attributable to Chow [4] who provided a somewhat lengthy 
derivation. Chow proposed this algorithm for the purpose of ordinary fixed-
interval smoothing, for which it is clearly inefficiënt. 

The Fixed-Lag Smoother. The task is to move from the smoothed estimate 
of £n_ t made at time n to the estimate of fn+i-t once the new information in 
the prediction error en+i has become available. Equation (39) indicates that 

E(Cn+i-t\In+i) = E((n+1-t\In) + C(C„ + i - t , e n + i )D- 1 ( e n + 1 ) e n + 1 , (70) 

which is the formula for the smoothed estimate, whilst the corresponding for
mula for the dispersion matrix is 

D(Zn+i-t\Zn+i) = D(^„+ i - f | J „ ) -C(^ n + i _ t , e n + i )D~ 1 ( e n + 1 )C(e n + 1 , ^ n + 1 _ t ) . 
(71) 

11 



SMOOTHING FORMULAE 

To evaluate (70), we must first find the value of J5(^n+1_t | I n ) from the 
value of E(£n-t\In)- On setting i = k in the fixed-interval formula under (60), 
and rearranging the result, we get 

E(tk+iPn) = ^ * + i P * ) + Pk+i\kK+iPky{EUk\In) - E(tk\lk)}. (72) 

To obtain the desired result, we simply set k = n — t, which gives 

EUn+l-t\In) = E(tn+l-t\Zn-t) 

+ Pn+l-t\n-tK+l-tPn-t{E((n-t\In) " E((n-t\ln-t)}. ^ 

The formula for the smoothed estimate also comprises 

C(^ n+i_t ,e„+ i ) = •Pn+l- t |n- tAn + 1 ) n + 2_ t i?n + 1 . (74) 

If A„+ i_t is nonsingular, then A n + l i „ + 2 - t = A n + 1 {A„ i n + i - t}A^j i_ t ; and thus 
we may profit from the calculations entailed in finding the previous smoothed 
estimate which will have generated the matrix product in the parentheses. 

In evaluating the formula (71) for the dispersion of the smoothed estimates, 
we may use the following expression for D(£n+i-t\ln) = P n + 1 _ t | n : 

Pn+l-t\n = Pn+l-t\n-t 

— Pn+l-t\n-t$rï+l-tPn-t(Pn-t ~ Pn-t\n)Pn-t$n+l-tPn+l-t\n-t-

This is demonstrated is the same manner as equation (73). 
A process of fixed-lag smoothing, with a lag length of t, is initiated with a 

value for E(£i\Tt+i)- The latter is provided by running the fixed-point smooth
ing aigorithm for t periods. Af ter time t + 1, when the (n + l ) th observation 
becomes available, E(£n+i-t\Zn) is calculated from E((n-t\Zn) via equation 
(73). For this purpose the values of xn+1-t\n-t, xn-u P n + 1 _ ( | n _ t and P n _ t 

must be available. These are generated by the Kalman filter in the process of 
calculating en-t, and they are held in memory for t periods. The next smoothed 
estimate J5(^„+i_t|I„+i) is calculated from equation (70), for which the values 
of e„+i, Fn+i and Kn are required. These are also provided by the Kalman 
filter which runs concurrently. 

6. Var iants of the Classical Algorithms 

The attention which statisticians have paid to the smoothing problem re-
cently has been focussed upon fixed-interval smoothing. This mode of smooth
ing is, perhaps, of less interest to Communications engineers than the other 
modes; which may account for the fact that the statisticians have found scope 
for improving the algorithms. 
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Avoiding an Inversion. There are some modified versions of the classi-
cal fixed-interval smoothing algorithm which avoid the inversion of the matrix 
Pt\t-i • In fact, the basis for these has been provided already in section 4. Thus, 
by replacing the sums in equations (49) and (50) by qm+i and Qm+i, which 
are the products of the recursions under (51) and (52), we get 

E{(t\ln) = E(tt\Im) + P t | t - i A ' m + M + l 9 m + 1 , (76) 

P(6|Xn) = D(6 (77) 

These expressions are valid for m > t — 1. 
Setting m = t — 1 in (76) and (77) gives a useful alternative to the classical 

algorithm for fixed-interval smoothing: 

xt\n = xt\t-i + Pt\t-iqt, (78) 

Pt\n = Pt\t-1 ~ Pt\t-lQtPt\t-l. (79) 

We can see that, in moving from qt+i to qt via equation (51), which is the first 
step towards finding the next smoothed estimate Xt_i|„, there is no inversion 
of Pt\t-i- The equations (78) and (79) have been derived by De Jong [6]. 

The connection with the classical smoothing algorithm is easily established. 
From (78), we get qt+1 = P^m(xt+i\n - Xt+i\t)- By setting m = t in (76) and 
substituting for qt+\ we get 

Xt\n = *t + Pt\t-lK+lPï+l\t(Xt+l\n - *«+l|t) 
—ï (80) 

= Xt + Pt$t+lPt+l\t(Xt+l\n ~ Xt+l\t), 

where the final equality follows from the identity $ t + 1 P t = At+iPt\t-i already 
used in (46). Equation (80) is a repetition of equation (60) which belongs to 
the classical algorithm. 

Equation (63), which also belongs to the classical algorithm, is obtained 
by performing similar manipulations with equations (77) and (79). 

Smoothing via State Disturbances. Given an initial value for the state 
vector, a knowledge of the sequence of the state-transition matrices and of the 
state disturbances in subsequent periods will enable one to infer the values 
of subsequent state vectors. Therefore the estimation of a sequence of state 
vectors may be construed as a matter of estimating the state disturbances. 
The information which is relevant to the estimation of the disturbance ut is 
contained in the prediction errors from time t onwards. Thus 

n 

E(vt\ln) = Y,C^ei)D~l^i)ei- (81) 

13 
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Here, for j > t, the generic covariance is given by 

= %A'j,t+1H'j, 

which follows from the expression for et which results from substituting (44) in 
(42). Putting (82) into (81) and setting D~l{ej) = Ff1 gives 

E(ut\ln) = %±A'j>t+1H'jFf^j 

j=t (?ó) 

= *t<lt, 

where qt is a sum which may be accumulated using the recursion under (51). 
By taking the expectation of the transition equation conditional upon all 

of the information in the fixed sample, we obtain the recursive equation which 
generates the smoothed estimates of the state vectors: 

Xt\n = $tXt-l\n + E(ut\In) 

= *i*«-r|» + *t?t-

The initial value is x0 |n = XQ + Po^[qi. This is obtained by setting t = 0 in 
the equation xt\n = x* + -Ft$i+i<Zt+i which comes from (80). 

Equation (84) has been presented recently in a paper by Koopman [9]. A 
similar approach has been pursued by Mayne [10]. 

With some effort, a connection can be found between equation (84) and 
equation (78) which is its counterpart in the previous algorithm. From (4) 
and (9), we get x t | t - i = *t(«t-i|<-2 + Kt-\et-\). From (5) and (10), we get 
Pt\t-x = $tPt-i\t-2(I ~ Kt^Ht-x)'^ + *«. Putting these into (78) gives 

xt\n = $txt-i\t-2 + Vtqt + §t(Kt-iet-i + Pt_nt_2A'tqt). (85) 

Equation (78) lagged one period also gives an expression for £t_i|i_2 in terms 
°f xt-i\n-

Xt-l\t-2 = xt-l\n - -Pt-l|t-29t-l- (S6) 

Using the identity g t_i = Jïf_1jFt1
1

1et_i + A!tqt and the latter equation, we can 
rewrite (85) as 

Xt\n = $tXt-l\n + %tqt ~ $tPt-l\t-2(H't-iFt~-let-l + Kqt) 

+ « « ( f f ^ e t - i + Pt-i\t-2Ktt) (87) 

= $txt_!|n + vtqt, 
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where the final equality follows from equation (8). This is (84) again. 
An alternative algorithm exists which also uses estimates of the state dis-

turbances. In contrast to the previous algorithm, it runs backwards in time 
rather than forwards. The basic equation is 

*t-i |n = * r ^ t | n - QT^tqt, (88) 

which comes directly from (84). The value of qt is obtained via equation (51). 
However, because we have a backward recursion in (88), an alternative recursion 
for qt is available, which reduces the number of elements which must be held 
in memory. A reformulation of equation (51) gives 

9t = H'tFf tt + A't+1qt+i 

= H'^et + (I- KtHty$'t+1qt+i (89) 

= H'tst + &t+1qt+u 

where st is defined as 

St = Ft-
1et-K't&t+1qt+1. (90) 

Now, consider the smoothed estimates of the observation errors. Because % is 
independent of y\,..., yt-\, these are given by 

WtoVn) = j^Cinue^D-^efo. (91) 
j=t 

The covariances follow once more from equations (42) and (44). For j > i, we 
get 

C(7?1,ei) = - f i t M 1 ' + 1 A ; . t + 2 ^ , (92) 

whereas, for j = t, we have C(r}t,et) = Q,t. Substituting these in (91) gives 

E(r1t\ln) = üt{Ft-
1et-Mi+1 £ A^H'jFf'ej} 

i = t + 1 (93) 
= Slt{Ft-

1et-K't&t+1qt+1} 

= ütst; 

from which 
st = ÜTlE{r,tXLn) = ÜJ^yt - Htxt\n}, (94) 

where the final equality is justified by the observation equation (1). Notice that, 
in order to calculate st from this expression, we need xt\n, which is available only 
because we are using a backward smoothing algorithm. Thus st is calculated 

15 



SMOOTHWG FORMULAE 

from (94) using the previous smoothed estimate. Then it is substituted in (89) 
to obtain qt. Finally, the smoothed estimate of the state vector is obtained 
from equation (88). Whittle [12] has derived this algorithm by maximising a 
log-likelihood function. 

Comparing the Fixed-Interval Smoothers. By its avoidance of a matrix 
inversion, the algorithm of equations (78) and (79), which we may call De 
Jong's [6] algorithm, is more efficiënt than the classical fixed-interval smoother; 
and we can advise that it should be used in preference. Our attention must 
be focussed, therefore, on a comparison of the latter algorithm with the two 
algorithms which are based upon estimates of the state disturbances. 

De Jong's algorithm requires the values of xt\t-\, Pt\t-i, e*, F^1 and Kt to 
be computed in a forward pass of the Kalman filter. The backwaxd recursions 
for qt and Qt, which employ equations (51) and (52), then can be executed; and 
in each step the used values of e<, Ff1 and Kt can be deleted from memory. 
In combining the results by means of equations (76) and (77), we are able to 
generate both the smoothed estimate and its dispersion matrix. 

The first of the state-disturbances algorithms, which is Koopman's [9] al
gorithm, uses successively a forward, a backward and a forward run to obtain 
the smoothed estimates. First, et, F^"1 and Kt are calculated for all t via the 
Kalman filter. Then a backward recursion is used to generate the values of qt 

which are committed to memory. Finally, the smoothed estimates of the state 
vector are calculated using the forward recursion of (84). 

Since Koopman's algorithm and De Jong's algorithm both entail the cal-
culation of qt, their comparison amounts to the comparison of the equations 
xt\n = $txt-i\n + 1&tqt and «tjn = xt\t-i +Pt\t-iqt of (84) and (78) respectively. 
The latter equation—De Jong's—is favoured by the fact that it uses one less 
vector-matrix multiplication in each step. However, Koopman claims that the 
former equation leads to a more efficiënt algorithm when the structure of the 
matrices $ t and \&t is taken into account. A clear advantage of this algorithm 
over De Jong's is its limited use of memory, since there is no need to retain the 
values of Pt\t-\ and xt\t-i- However, this advantage does not extend to the 
calculation of the dispersion matrix of the smoothed estimates. 

The second of the state-disturbance algorithms, which is Whittle's [12] 
algorithm, consists of a forward and a backwaxd pass. Of the products of 
the forward pass, which involves the Kalman filter, only the value of xn\n is 
used in further calculations. The backward pass is initialised with x n | n and 
qn+i = 0; and, in each step, values of st and qt are calculated, via (94) and 
(89) respectively. The smoothed estimate follows from equation (88). This 
algorithm is efficiënt in both time and memory; and virtually no storage is 
required. Its disadvantage is that it is prone to numerical instability; which 
limits the size of the sample to which it can be safely applied. The primary 
source of this instability is in the calculation of st via equation (94) wherein 
the elements of ft-1 and of yt — Htxt\n are liable to have disparate magnitudes. 
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7. The Forward—Backward Algorithm 

The approach pursued in this final section differs from those found else-
where in the paper. Instead of conditional expectations, Bayesian analysis is 
used in deriving a smoothing algorithm; and it is assumed that all random 
variables are nonnally distributed. 

The forward-backward algorithm which is presented here has been de-
rived by Mayne [10] via the principle of least-squares. It has been rediscovered 
recently De Vos and Merkus [7], who have used the principle of combining 
informationto develop a variety of algorithms. 

Combining Informat ion. Imagine that the sample is split into two sets 
1-x = {yi,---,Vt-i} and Z2 = {i/t , . .- ,yn}- Then, by applying Bayes' rule 
twice, we get 

= ^ ( j 2 | 6 ) iV(e t | ï i ) ( 9 5 ) 

where the symbol of proportionality indicates that a factor has been omitted. 
The omitted factors make no reference to the state vector £t. 

Within the final expression, the factor JV(£tfZi) stands for the density 
function associated with an estimate of £t based upon the information of X\ 
and upon prior information. The factor iV(^t|J2) relates to the density function 
of an estimate based upon prior information and upon the information J 2 from 
the second half of the sample. The factor N(£t) stands for a Bayesian prior 
relative to the state vector. 

The formula under (95) indicates how the three factors may be combined 
to form a smoothed estimate of £t based upon all of the information. The 
presence of the prior in the denominator of the final expression indicates that 
the prior information must be subtracted somehow from one or other of the 
numerator factors to avoid its being used twice in forming N(£t\2i, J 2 ) . 

The decision to subtract the prior information from iV(£t|Z2) leads to a 
so-called inverse model which satisfies 

NUt\I2;Jnv)cx^^-. (96) 

Substituting (96) into (95) gives 

N(tt\Ii, J 2 ) oc JV(et|Ji)iV(6p2;Inv). (97) 

Let us denote the expectation and the dispersion of the inverse model by 

£* = •£(& h/t,--.,yn;inv), (98) 

Pt = D((t\yu...,yn;lnv). (99) 
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Then, after taking logaxithms in equation (97), we can manipulate the expo-
nents of the normal density functions to show that 

-21n{JV(£t |yi , . . . ,y„)} 

oc -21n{JV(6 |y i , • . . , y t - i ) } -2]n{N(Zt\yt,...,y„;Inv)} 

oc (& - Xtlt-O'-Ptj;1-!^ - *t | t - i ) + Ut - x t ) 'P t
_ 1 (6 - xt) (100) 

« ö(ptTii+fr1)** - 2e;(ptj;
1_1x<|t_1+Pr'xt) 

CX (tt ~ Xt\n)'PqnUt ~ Xt\n)-

It follows, from comparing the final and the penultimate expressions, that 

*«i» = {p^tlx+Pr1)'1 töjii*«i«-i+pr'zt), (ïoi) 

Pt\n = (p^.1 + pt-T
1- ao2) 

Equations (101) and (102) show that the estimate of £t which uses all of 
the data is a weighted average of the estimate using data 'from the left' and 
the estimate using data 'from the right'. 

Although Xt|*-i and Pt\t-i m a y be calculated via the Kalman filter, it is 
more efficiënt to employ the information filter which is defined under (15) and 
(16), since only a t | t_j = -P^L^tl t - i and Ptït-i a r e needed m (101) and (102). 
To obtain xt and Pt, we may apply filtering techniques to the inverse model; 
and, for this, we need to derive recursive equations which run in reversed time. 

Derivation of the Inverse Model. First, consider the update step of the 
inverse model. On the one hand is the equation 

W(6|V<> • • • iVnJ Inv) oc ' '-

_ N(yt\tt )N(tt\yt+u...,yn) (103) 

« N(yt\tt)N(£t\Vt+u••••>Vn\Inv). 

which shows how additional information is assimilated to the inverse model. 
The first and the final proportionalities follow from the definition of the inverse 
model, whilst the second one comes from applying Bayes' rule. Notice also 
that, in writing N(yt\£t) in the final expression, we omit to make yt conditional 
on the observations y«+i, . . . , yn since these are redundant in predicting yt if & 
is known. On the other hand is the equation 

N(Zt\yt, •..,y„; Inv) oc N(yt\(t,y*+i, • • • ,yn; Inv)iV(f t |y<+1 , . . . , yn; Inv). 
(104) 
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By comparing equations (103) and (104), we see that 

#(V«I6. Vt+i> • • • ,yn;Inv) oc N(yt\tt), (105) 

which indicates that the inverse model has the same measurement equation as 
the ordinary (forward) state-space model. 

In the prediction step, we have, on the one hand, the equation 

W(6-i m, • • •, yn; inv) <x 

-I W(6-i 16, yt, • • •, yn)N(tt\yt, • •., yn) 
<*6 

oc ƒ —M^IT)—iiNr(6lyt,...,yn;Inv)rfe 

ƒ tf(&|6-i W&|y«, • • •, y»; k*)<%, 

(106) 

where we have used the equality JV(̂ t—11̂ «, y*,. - -, yi») = N ( 6 - i | 6 ) ? which 
holds due to the fact that the information contained in y<,... ,y„ which is not 
in £t, relates solely to observation errors. On the other hand, we have the 
equation 

•W(&-i |yt , . . . ,yn;mv) = 

/ -W(6-i 16» yt, • • • ,yn; Inv)JV(£ t |y t,..., y„; Inv)dt> 

The comparison of (106) and (107) shows that 

iV(6-i|6,yt,...,yn;lnv)ocJV(et|6-i). (108) 

The latter implies that, in the inverse model, yt,...,yn are redundant for pre-
dicting 6 -1 if 6 is known, and that the transition equation of the inverse model 
can be calculated from 

- 2 1 n { t f ( 6 - i | 6 , I n v ) } 

cx-21n{i\T(6|6-i)} 

oc ( 6 - $ t 6 - i ) ' ^ r 1 ( 6 - * « 6 - i ) (109) 

oc (6-a - $r16)'(*r1*t*r1,r1(6-1 - «r1**)-
Here we have assumed that $!t is invertible. However, the result also holds if 
this matrix is singular. The initialisation of the inverse model follows from the 
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prediction step, for t — 1 = n. Since JV(fn|Inv) oc N(£n)/N(£n) = 1, the inverse 
model has a non-informative prior distribution. 

Equations (105) and (108) thus lead to the following equations for the 
inverse model: 

Vt = Httt + ijt, (HO) 

6-i = $rx6+vu (in) 
where 

fjt~N(0Mt), fjt=Vu (H2) 

i/t~iv(o,$r1*t*r1') (113) 

are mutually independent random vectors. Application of the information filter 
to the inverse model shows that the backwaxd recursions which we are seeking 
are 

at = H'tÜTxyt + « l + i t ö + i + *«+i)~1Pt+ia«+i, (H4) 

Pf1 = E[üTxHt + *J + 1 (A+i + ^ t + i ) " 1 * ^ ! , (115) 

where at = P^Xf 
To summarise, the forward-backward algorithm consists of three steps: 

1. calculate P ^ L i ajl^i at\t-i > using the information filter or the Kalman filter. 

2. calculate Pf1 and a*. 
3. combine both estimates using the smoothing formulae (101) and (102) to 

get the smoothed estimates. 

A relation with the algorithm avoiding an inversion is found by applying 
the matrix inversion lemma to (102); this results in 

Pt\n = Pt\t-i ~ Pt\t-i(Pt\t-i + Pt)~1Pt\t-i- (H6) 

As is easily verified, (101) can now be rewritten as 

*t\n = *«|t-i + Pt\t-i(Pt\t-i + Pt)~l{xt - xt\t-i)- (H7) 

The comparison of (117) and (78) indicates that 

qt = (Pt|t_x + PtTH^t - xt|t-i); (118) 

equations (116) and (79) together show that 

Qt = (Pt\t-i+Pt)-1. (119) 

These identities suggest that the forward-backward algorithm is less efficiënt 
than the algorithms of De Jong [6] and Koopman [9]. 
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In concluding this section, we should mention that the forward-backward 
smoothing algorithm is particularly useful in computing cross-validation errors 
for a state-space model. The cross-validation error associated with a given 
sample element is the error in predicting that element using the information 
from the rest of the sample. The estimate of the state vector upon which the 
prediction is based can be calculated most efficiently by combining the products 
of a forward and a backward filter proceeding from either end of the sample. 
These filters stop short of including information from the sample element whose 
value is to be predicted. Alternative algorithms which serve the same purpose 
has been provided by De Jong [5] and by Ansley and Kohn [3]. 
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