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Abstract 

It is argued by various authors that the usual splitting of the set of 
variables in endogenous variables and exogenous variables (including 
Instruments), should not be done a priori, i.e. before estimation, but 
a posteriori. The idea is that the estimation procedure should produce 
the possible splittings in endogenous and exogenous variables. 

In this paper we try to make a first step in this direction by con-
sidering the (linear) relations between the variables as being stochas­
tic, instead of the variables themselves. One then has the freedom 
to f ixa number of variables (the exogenous variables, including the 
instruments) and as a result the remaining variables (the endogenous 
variables) are stochastic. 

This is worked out by making the sets of linear relations, the so-
called Grassmannians, into a metric space and using a generalization 
of Gaussian densities to such spaces. An important technical aspect of 
the analysis is the representation of the elements of a Grassmannian 
by symmetrie idempotent matrices, also called orthogonal projection 
matrices. In the case of two variables it is shown that the densities 
that we use are in fact the Von Mises densities. For that case the 
Maximum Likelihood Estimators are derived. Remarks are made about 
the M.L.E. in the general case. 

'Paper submitted to the ESEM91, Cambridge, U.K. 
'Address: De Boelelaan 1105, 1081 HV Amsterdam, Holland; E-mail: bhnz@sara.nl 
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1 Introduction 

In the Standard multiple regression model one distinguishes a priori (stochas-
tic) endogenous variables and (deterministic or at least "predetermined") 
exogenous variables, including instruments. In many econometrie models 
the choice of what is endogenous and what is exogenous is rather arbitrary. 
For one thing many of the exogenous variables are only taken to be exoge­
nous because it is decided that for the application in mind it is not necessary 
or appropriate to model this variable. K at some other stage of the modelling 
process it is decided to model such a variable af ter all one speaks of "endo-
genization" of the variable! Another class of exogenous variables is formed 
by the socalled instruments, or control variables. At first it seems that one 
could argue that such variables are truly exogenous because their value is 
determined by some decision maker and its value is not determined by the 
market etc. However this argument clearly depends very much on who anal­
yses the economie phenomena under consideration, because if this is not the 
decision maker, the argument becomes a weak one, as in economics most 
variables are in the end the result of human decisions. Furthermore there is 
a more fundamental issue: by declaring certain variables to be instruments 
or exogenous one implicitly states a proposition about the model and this 
proposition is usually not verified empirically. The proposition is that the 
variable involved can be chosen freely, i. e. can take any value in its domain 
and is not restricted by the model equations. This point has been taken up 
by Willems [6,7,8] in a deterministic context. 

To avoid the a priori choice of what are endogenous variables and what 
are exogenous variables and instruments, several approaches can be taken. 
One of them is to assume the exogenous variables are stochastic and to treat 
them in the same way as the endogenous variables are treated as far as the 
estimation procedure is concerned. This leads to "errors-in-variables" meth-
ods, to factor analysis and to principle component models. See e. g. [1] and 
the references given there. Here we want follow another line of thought. The 
disadvantage of the methods just mentioned is that they require the exoge­
nous variables and the instruments to have a stochastic nature, usually even 
to be a drawing from a probability distribution which does not change over 
time. However this is really a crude way of "endogenizing" the exogenous 
variables and the instruments, which is in most cases not at all a realistic 
way of modelling these variables. Therefore we present here an alternative. 
The idea is simply to consider the relations between the variables as stochas­
tic. This then leaves room for several of the variables to be chosen freely 
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(the exogenous variables and the instruments) and the remaining variables, 
the endogenous variables, are then detennined by the stochastic relation(s); 
conditionally on the choice of the exogenous variables and the instruments 
the endogenous variables are stochastic. Which variables can serve as ex­
ogenous and instrument variables and which as endogenous variables follows 
from the estimation procedure, i. e. is detennined a posteriori. 

To enlighten these ideas we start with a simple case in section 2 in which 
this approach leads very naturally to the socalled orthogonal regression. 

lï one wants to apply such a scheme more generally, the question arises 
what dass of probability measures one chooses on the set of stochastic rela­
tions. The problem here is that even for /inear stochastic relations, the set of 
such relations is not a linear vector space. Therefore we study an analogon 
of the mean and the variance for genera! metric spaces, which we call the 
centre (s) and the centre -variance. And as an analogon of the Gaussian dis-
tribution on Euclidean space, we denne the maximum entropy distribution, 
given the centre(s) and the centre-variance, on the metric space. 

Next the sets of linear relations, the socalled Grassmannians, are con-
sidered. They can be handily represented by sets of symmetrie idempotent 
matrices (also called orthogonal projection matrices) of a prescribed rank. 
A Grassmannian can be made into a metric space in several ways, one of 
which is just to take it to be equal to the metric space of symmetrie idem­
potent matrices. Having done that we can calculate the maximum entropy 
distributions as described above and in the case of two variables present the 
maximum likelihood estimators that follow from this. We make some re-
marks about the maximum likelihood estimator in the general case and the 
paper finishes with some remarks, open questions and directions of further 
research. 

2 A simple case 

In order to present the idea of stochastic relations we start with a simple 
case. Consider the following regression model. 

yt = 0xt + ut, (1) 

where /3 is a deterministic parameter (later on we will allow /? to be stochas­
tic) and ut is stochastic, with a Gaussian distribution with mean a and 
variance er2 and with «t and ua stochastically independent if t ^ s. 
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This is the usual regression model, except for the fact that we have not 
yet made a statement about the nature of yt,xt. There are several possibil-
ities: 

(a) Both yt and x.t are stochastic, with a parametrized probability distri­
bution with known or unknown parameters. This leads to the errors-
in-variables problem etc. [1]. 

(b) Xt is deterministic (or at least "predetermined", exogenous) and yt is 
stochastic (endogenous). This leads to the Standard least squares for-
mulas of regression analysis. 

(c) yt is deterministic (or "predetermined", exogenous) and xt is stochastic 
(endogenous). This leads again to the Standard least squares formulas 
for regression analysis, but now with the role of yt and xt interchanged. 

(d) Any of the preceding possibilities, but we do not know which one (or 
we do not want to use such information for one reason or another). In 
this case, which is the case that we want to treat in this paper, we will 
interpret an observation (xt,yt) as an observation on the stochastic 
relation that exists between xt and y<. 

In the present case the relation between xt and yt that is imposed by 
the model (1) is a line in the (x,y) -plane. lts slope is determined by /?, 
which is supposed to be deterministic in this case. However its constant 
term is stochastic, with Gaussian probability density, which makes that the 
set of parallel lines all with the same slope determined by /? has a probability 
distribution. This probability distribution can be described in various ways, 
depending on how one parametrizes the set of parallel lines. It is crucial 
for the application of the Maximum Likelihood Principle to define a metric 
on each set of parallel lines. Because we only have parallel lines here, an 
obvious choice for the distance between any pair of lines is the minimal 
distance between any pair of points the first of which is from the first line 
and the second of which comes from the second line. Of course, this is the 
length of any piece of line which connects the two lines and is orthogonal to 
both of them. Any set of parallel lines can now be parametrized by choosing 
one of them (e.g. by the rule that it be the one that crosses the origin, or 
the centre of gravity of the observations) and desribing the others by their 
distance "to the right or to the left" of this first line. In this parametrizati 
on the probability distribution is again Gaussian, with as its mean the line 
y = (ix + a and with variance ^TÖS-
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Note that although we have implicitly excluded the vertical line in our 
formulation of the model (1) it would at this point be no problem to intro­
ducé it. In that case it would be natura! to assume a Gaussian distribution 
over the set of verticals using the same concept of distance between two par­
allel lines as above. (This would not be possible if we measured the distance 
between two lines along the y—axis, i.e. by the distance between the two 
points where the two lines cross the y—axis.) 

Before the Maximum Likelihood Estimator (MLE) can be derived a few 
remarks about its definition in this case should be made. 

(1) In a metric space the following generalization of the Maximum Likeli­
hood Estimator can be used. Let d(0i, 62) denote the distance between 
two points 9i,02 in the metric space 0 . For each positive e consider 
the e-balls B(0o,e) := {0\d(0,0o) < e} and define the c—Maximum 
Likelihood Estimator as 

0t = arg max P[B(0o, e)] (2) 
0o€6 

The (generalized) Maximum Likelihood Estimator 0 is now defined as 
the limit 9 = limejode. (In case 0t is a set of points one should take 
the limit of the sets 0e, for e i 0.) 

In case a probability density is defined on the metric space this im-
plies the more usual notion that the estimator(s) can be found at the 
point(s) with maximal density. But even if the probability density 
has a support that is smaller than the whole of the metric space, this 
definition can still be applied. This definition also shows clearly the 
dependence of the M.L.E. on the metric that is used. 

(2) Note that in our set-up we consider the observations as (sometimes par-
tial) observations on the relations. Therefore the Maximum Likelihood 
Principle has to be applied to the probability density of (or at least-as 
treated in (1)- the probability of each small e—ball around) the (par-
tially) observed relations, that are implied by the different models. 
This leads to the M.L.E. of the relation involved. 

(3) In the present case we have not defined the distance between two non-
parallel lines. In fact this is needed to apply (1) and (2). However 
the metric in the present case can be viewed as a limiting case of a 
generalization, involving scaling, of the metrics that will be defined in 
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section 4 on the set of all Unes in R2 (and more generally on linear 
relations in R n) . So the correct interpretation of the M.L.E. that will 
be derived in this section is as a limiting case of the M.L.E. that will 
be derived in the subsequent sections (if one allows for scaling). 

In order to prepare for the following proposition, let us note some prop-
erties of the well-known orthogonal regression. Given T observations 

( i i ,y{) , . . . ,(zj ,yr) , the orthogonal regression line is the one for which 
the sum of the squares of the distances of the points (xi ,yi),..., (XT, yr) to 
that line is minimal over all possible lines (cf. e.g. [1]). 

The orthogonal regression line can be found as follows. Let 6 = (—/?, 1), 
then the distance of a point z% — (xt,yt) to the line through the point ZQ = 
(so>ïto) and orthogonal to the vector b is equal to ' 1wi*° • ^ e orthogonal 
regression line is obtained by minimization of the sum of squares of these 
distances, i. e. by minimization of 2 ^ 1 b>h° vAth respect tob and ZQ. 
Minimization with respect to zo can easily be seen to lead to choosing zo to 
be the centre of gravity: ZQ = z := y YA=\ zt 

Let zt := zt — ZQ. Then the minimization problem can be formulated as 

6#o ^ lv6'6 

mintr{(-—-
/ T 

ïïfe^WE^)* 
min T.trCüS), (3) 

rp=n,rjkn=i v ' v ' 
where the matrix II stands for the rank one projection matrix 575 and S 
denotes the sample covariance matrix of z. According to the theorem of 
Courant-Fischer the minimum is obtained by the projection matrix of rank 
one corresponding to the smallest eigenvalue of S. 

We can now state the following result 

Proposition 2.1 The Maximum Likelihood Line Estimator, with respect to 
the described distance function between parallel lines, is equal to the line that 
results from orthogonal regression. 
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Proof. For a given b = (—/?, 1) and z0 the distance between the lines 
orthogonal to b and crossing the points z% and ZQ respectively, is equal to 

Iffeïi • !• e- i* ifi equal to the distance of the point zt = (xt,yt) to the line 
through the point z0 = (*o> Vo) and orthogonal to the vector 6. 

Because on the set of all lines orthogonal to 6, parametrized with respect 
to these distances, the model (1) implies a Gaussian distribution, the M.L.E. 
is obtained by minimizing the sum of squares of these distances over the set 
of all lines orthogonal to b. 

This implies that the M.L.E. is indeed the orthogonal regression line. If 
the variance of the Gaussian distribution is unknown, the sample mean of 
the squares of these distances is the M.L.E. of this variance. 

Q.e.d. 

3 Generalization of mean and variance to gen-
eral metric spaces: Centre and centre-variance. 

Use will be made of a generalization of mean and variance to spaces more 
genera! than Euclidean spaces. Generalizations of this type have been pro-
posed under various headings by several authors. We mention e.g. [3]. Here 
we will use a definition for the case of metric spaces. Let 0 be a metric 
space with metric d as before. 

Definition 3.1 Let a probability measure P be defined on the metric space 
0 and let E denote the corresponding expectation operator. For any point 
00 consider the expectation E[d(0,0o)2]. Each point in 0 which minimizes 
this expression over all 0Q 6 0 is called a centre of the probability measure. 
The minimal value of E[d(0,0o)2] is called the centre-variance or shortly the 
variance of the probability measure in the metric space. 

Remarks. 

(1) A centre does not have to exist in general. However if the metric space 
is compact at least one centre exists. This follows from the continuity 
in this case of E[d(0,0o)2] as a function of 0Q , which in turn follows 
from the triangle inequality for the metric, together with the fact that 
in a compact metric space the metric is bounded. 

A centre does not have to be unique. E. g. for the uniform distribution 
on the circle, each point on the circle is a centre. 
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(2) In general the vaxiance does not have to be defined. If it exists it is 
unique by construction. 

If the metric space is compact, the variance exists. This follows from 
the argument above. 

(3) Clearly if the metric space is a Euclidean space with the Standard met­
ric, the centre is just the mean and the centre-variance is the usual 
variance. 

(4) The concept of unbiased estimator can be defined in the same spirit. 
See [3]. 

(4) In the case of a von Mises distribution on the circle, the localization 
parameter is equal to the centre in our terminology. Compare Section 
6 

(5) The choice of the metric plays a crucial role. In many examples there 
are several "naturaF metrics. E. g. in the case of a circle, the distance 
between two points can be measured by the angle between these two 
points ("the inner metric''); however one can also choose the chordal 
distance between those points ("outer metric''). 

For different choices of the metric different variance values and different 
centres may result. 

4 A metric on the Grassmannians 

A k—dimensional linear subspace S of the n—dimensional Euclidean space 
R n can be represented in various ways, for example by a basis of k inde­
pendent vectors from the subspace, or more generally as the image of some 
matrix Y with rank k. One possibility is to represent such a subspace by its 
orthogonal projection matrix (also called symmetrie idempotent matrix in 
the econometrie literature) 

n = n(5) := Y(YTY?YT, (4) 

where f denotes the operation of taking the Moore-Penrose generalized in­
verse of a matrix (see e. g. [4]); of course if the matrix is nonsingular, this 
coincides with the usual inverse. This representation is unique, i. e. inde­
pendent of the specific choice of Y. This follows directly from the property of 
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such a matrix, that it maps each vector £ in Rn to its orthogonal projection 
II£ on the subspace involved. We will make use of this representation. 

The set of all k—dimensional linear subspaces of the n—dimensional Eu­
clidean space Rn is denoted by G(k,n) and is called the Grassmannian 
manifold of k—planes in the n—dimensional Euclidean space. Using the rep­
resentation of the elements of the Grassmannian by their orthogonal projec­
tion matrices, we will find it useful to consider G(k, n) as the set of rank k 
orthogonal projection matrices of size n x n. It is well-known that a Grass­
mannian is a differentiable manifold. It is in fact a Riemannian manifold, if 
one uses the Standard Fubini-Study-Leichtweiss metric on the tangent bun­
die. The corresponding minimal arclength metric is the generalization of 
the angular distance on the circle ("inner metric''). A generalization of the 
chordal distance on the circle ("outer metric") is defined as follows: 

Definition 4.1 Let the distance function d : G(k, n) x G{k, n) —• [0, oo) be 
defined by d(Iïi,n2)2 := *r[(IIi - n2)2] = 2fc - 2ir[HiII2], *'• e. the distance 
is equal to the socalled Prohenius norm of IIi — II2. 

This metric is the one that is induced by the Standard Euclidean metric 
in Rn X n by considering each orthogonal projection matrix II in G(k,n) as 
an n2—vector in Rn X n . The representation of the elements of the Grassman­
nian by their orthogonal projection matrices produces therefore an isometric 
inbedding of the Grassmannian G(k,n) in the n2—dimensional Euclidean 
space R n x n . 

It forms clearly a closed and bounded subset of RnXn and therefore the 
well-known fact that a Grassmannian is compact follows. 

5 Maximum entropy distributions on a Grass­
mannian 

Combining the results of the previous two sections, it follows that any proba-
bility distribution on a Grassmannian has a finite variance and a well-defined 
centre or set of centres. In order to find an analogon of the Gaussian dis­
tribution in a genera! metric space, one can try to make use of the crucial 
property of a Gaussian distribution with mean // and (scalar) variance o2 

that it is the maximum entropy distribution with that mean and variance. 
In a genera! metric space the role of the mean is taken over by the centre 
and the role of the variance by the centre-variance. Therefore the problem 
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arises to find, given a point üo € G(k,n) and a positive number a2, the 
maximum entropy distribution with centre üo and centre-variance o-2. We 
assert that the density p = p(II) of such a distribution (w.r.t. the volume 
element rfm(II) that is derived from the Fubini-Study-Leichtweiss metric) 
takes the following form: 

p(U) = exp[ - iKd(n ,n 0 ) 2 - | -7 ] = 

= exp[-K{fc - t r ( n n 0 ) } + 7] (5) 

where K is a concentration parameter, related in a bijective way to the 
variance and 7 is the normalization parameter. That JLo is the centre of the 
distribution in the case K > 0, is formulated, among other related properties, 
in the next theorem. 

Theorem 5.1 Consider a probability density on G(k, n) of the form (5). 
The expectation of II with respect to this probability density is of the form 

E(Il) = collo -I- ci(I - Ho) (6) 

where co and c\ are nonnegative numbers. 
If co > c\ then üo G G(k, n) is the (unique) centre of the probability 

distribution. This occurs if n > 0. 
If co = ei then the distribution is the uniform distribution on the Grass-

mannian, which corresponds to K = 0. 
If Co > cj the numbers co and C\ are related to the variance a2 of the 

distribution as follows: 

« = ^-s) 
Cl = 2 ( ^ 1 ) (7) 

Remark Note the difFerence between the centre of the distribution and 
the expectation E(R) which is well defined only due to our inbedding of the 
Grassmannian in Rn X n . 

Proof Without loss of generality one can make an orthonormal change 
of basis such that Ho G G(k, n) takes the form 

üo = d i a g [ l , . . . , l , 0 , . . . , 0 ] . 
First it will be shown that E(Il) is diagonal. Consider the set S of 2" 

diagonal sign matrices S = diag[si,S2,. . . ,sn] with S{ E { + 1 , - 1 } for each 
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value of i G {1,.. .}. Given an arbitrary orthogonal projection matrix II, 
and an arbitrary sign matrix S € S, the matrix SUS is again an orthogonal 
projection matrix. Furthermore due to the special form of ü© it is easy 
to see that d(IL0,SI\.S) = d(IIo,II) for all S G S. Therefore for a fixed 
II the density at all points SJIS,S G S is equal. From this one obtains 
£(H) = E(SJ1S) = SE{IL)S for each S G S which in turn implies that 
E(TL) is diagonal. 

Let {ei , . . . ,en} denote the Standard basis in Rn . Let T denote the set of 
matrices which are obtained from the identity matrix by interchanging the 
i— th and j—th column, or equivalently, interchanging the i—th and j—tk 
row. We will formally allow t = j to hold, in which case no interchange of 
columns takes place. Let 7* X Tn-k denote the set of matrices which are 
obtained from the identity matrix by interchanging at most two of the first 
k columns and interchanging at most two of the last n — k columns. Note 
that if T G % X 7ï,_fc, then T2 = I and T is symmetrie. Therefore, if II is 
an orthogonal projection matrix, then so is TUT. It can easily be seen that 
for an arbitrary II G G(k, n) and any T G 7* X Tn-k one has 

d(n0,n) = rf(n0,rnr). (8) 

From this it follows that for all T G Tk x Tn-k one has 

E(E) = E(TllT) = TE(E)T (9) 

from which one can derive 

E(E) = c0diag[l,..., 1,0,..., 0] + cidiag[0,..., 0 , 1 , . . . , 1] = 

= c0iio + cx(j - n0) (io) 

This shows (6). Note that 

trJS(II) = EtrE = k = 
= cotrn0 + Ci t r ( J -n ) = cofc + ci(n-fc). (11) 

Suppose co > ei. In order to show that IIo is the unique centre of the 
distribution, we have to prove E\\ÏL - E0\\

2
F < E\\Jl - lli\\2

F for all ü i G 
G(k, n) and equality holds if and only if Öi = IIo- This is equivalent to 
tr£(IIIIo) > tr-E(IIIIi) for all TIi G G(k,n) and equality holds if and only if 
ui = n0. 

11 



From (6) it follows that 

tr[£(n)iii] = tr[c0n0n1 + c i ( / -n 0 )n i ] = 
= tr[(co - c^IIoIIi] + citrni = 

= (co - ci)tr[n0n!] + Clk. (12) 
Now trpolli] can be interpreted as the inner product < IIo, u i > which 

corresponds to the Frobenius norm of matrices. Using this norm ||II[|2 = k 
for all II G G(fc,n) and therefore £tr[n0IIi] =< % , ^ >< 1 and equality 
holds if and only if IIo = ü i . This shows that indeed IIo is the unique centre 
if co > ei. 

If co = ei the same argument shows that J5||n — üo||2 = E\\Jl — IIi||2 

for all Ei G G(k,n) and therefore all elements of G(k,n) are centres in this 
case. 

So if co > ei we know that IIo is a centre. Therefore the centre-variance 
is 

<r2 = f?(||n - n0 | |2) = 

= 2fc - 2tr[£(n)n0] = 
= 2fc - 2tr[(con0 + ci(j - n0))n0] = 
= 2fc - 2cofc = 2fc(l - co). (13) 

From this together with (11) it follows that 

q.e.d. 
Remark Without going into the proof (which is not difficult) let us state 

what the centres are in the case K < 0, which is equivalent to CQ < ei. Three 
possibilities have to be distinguished: 

(i) If k < n — k then (the orthogonal projection operator of) each 
fc—dimensional linear subspace of the n — k dimensional image space of 
/ — IIo is a centre. 

(ii) If fc = n — fc then I — ILQ is the centre. 
(iii) If fc > n — fc then (the orthogonal projection operator of) each 

fc—dimensional linear subspace which contains the n — fc dimensional image 
space of I — H is a centre. 
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Now we come to a sketch of the proof that the distributions given in (5) 
are indeed the maximum entropy distributions for a given centre üo and 
a given centre-variance a2. Let f {JU) := logp(II) denote the logarithm of a 
positive probability density p(II) on G(k, n). The desired maximum entropy 
distribution is found by maximizing the entropy integral 

L /(n)exP(/(n))dm(n) (15) 
G{k,n) 

under the restrictions 

(1) a2 = E\\TL - IIoll2 *=> 

^ 
n exP( ƒ (n))dm(n)n0] = k - )-a2 

G(fc,n) 2 

(2) / exp(/(n))dm(n) = 1. (16) 
JG(k,n) 

Note that we have not included the restriction that Ho is the centre! There-
fore (1) should be interpreted as stating that the "üo—variance'' U||II—nollp-
is equal to o2. Of course the centre-variance is by definition smaller than 
or equal to the Ho—variance. Maximization of the entropy under (1) and 
(2) will turn out to lead to maximization of the centre-variance, and the 
maximal centre-variance is obtained if the centre-variance is equal to the 
üo—variance in which case üo is by definition a centre. 

So consider the Lagrangian 

L{f) = f /(n)exP(/(n))dm(n) + 
JG(k,n) 

A{tr[ / n exp( ƒ (n))dm(n)n0] + 
JG(k,n) 

- ( * - 1 " 2 ) } + 
+4 exp(/(n))dm(n) - 1 } (17) 

G(k,n) 

The function ƒ is a stationary point of L if a variation 6 f of ƒ produces a 
vanishing variation in the value of L : 

0 = *7 = 
= exp(/(II)) + /(II)exp(/(II)) + 

+Atr[nexp(/(n))n0] + 

+Mexp(/(n)) (18) 

13 



for all II G G(k,n), which implies 

f (E) = -Atr[Iffl0] - fi - 1 (19) 

which shows that, with the correct choice for K and 7 the probability distri-
bution takes the form (5) indeed. 

Q.e.d. 

6 The Von Mises dist rib ut ion on the projective 
line 

On the circle one of the Standard probability distributions is the Von Mises 
distribution, given by the density 

p(0) = exp[K cos(0 - 0o) + 7], (20) 

where 0Q is the localization parameter, K the concentration parameter and 
7 the normalization parameter; 0 € (0,2TT] the angle describing a point on 
a circle around the origin. 

It is well-known that the (real) projective line, i.e. G(l,2), is topologi-
cally equivalent to the circle. If we represent an element of G(l, 2), i. e. a 
line in R2 through the origin, by the angle w e (0, rr] that the line will make 
with the x—axis, then a homeomorphism of the projective line to the circle 
is given by 

0 = 2u>. (21) 

Using this homeomorphism, the maximum entropy distribution on G(l,2) 
with given centre Uo and centre-variance o1 induces also a density on the 
circle. We will show that this density is in fact the Von Mises density. 

A point in G(l,2) is representedby a rank-one orthogonal projection 

,trix n = q 
is of the form 
matrix II = *?£,y ^ 0. Let uo = T^Syo 7̂  0. Then the density on (7(1,2) 

p(E) = e x p ( K t r [ ( ^ ) ( ^ ) ] + 7 - ^ ) = 
y y yè yo 

= exp(« cos2(w — wo) + 7 — hu), (22) 
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where w — UQ is the angle between y and yo. This is equal to 
K 1 

p(n) = exp(-cos[2(w-w0)] + 7 - ( * - 2 ) K ) = 
= exp(-KCOs(0-0o) + 7) (23) 

with K = K/2; 6 = 2w. The Riemannian volume element, which in this case 
is derived from the Fubini-Study metric on the projective line, produces 
a constant factor in the transformation to the circle; therefore only the 
normalization parameter 7 is affected by this and the form of the density 
remains the same. So indeed the Von Mises density is obtained this way. 

7 The maximum likelihood est imator in the case 
of two variables 

Consider the simple regression model (1), but now assume that /3 is stochas-
tic and, for simplicity, «t = 0 (Think for example of a model written in 
deviations from the mean). Thus for each t € {0,. . . ,N} the vector (yt,Xt) 
lies on the line in R2 that is given by y = fax. Assume that this line is 
drawn at random from a probability distribution on (7(1,2) with density 
of the form (5). With each (nonzero) observation (yt,xt) / (0,0) corre­
sponds one possible line, namely the line in (7(1,2) that is represented by 
the orthogona! projection matrix ut := Yt{Y^Yt)~xY^ with Y? = (yt,xt). 

Suppose one has N stochastically independent observations u i , . . . ,11^. 
The joint probability density p(IIi,Il2,.. • ,IIjv) can easily be derived from 
(5) and k = 1 to be 

N 

KII i , . . . , J1N) = exp[Ktr(X; n t n 0 ) + JV(7 - K)]. (24) 

So the maximum likelihood estimator fl of the centre is 
N 

n = argmaxtr[(]TlIt)rio]. (25) 
n ° t=i 

This implies that the maximum likelihood estimator is the orthogonal pro­
jection matrix that corresponds with the eigenvector of the largest eigenvalue 
of 23 Ht, if this eigenvalue has multiplicity one. In case of higher multiplic-
ity, any one-dimensional linear subspace of the corresponding eigenspace is 
a maximum likelihood estimator (so in that case the MLE is not unique). 
For the variance the following result holds 
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Lemma 7.1 The maximum likelihood estimator a2 of the variance is 

è2 = 2(1 - Pl), (26) 

where p\ is the largest eigenvalue of ^ J^tLi Ut 

Proof Consider the loglikelihood divided by N (recall that k = 1): 

jlogp(E,...,JlN) = - i K { 2 - 2 t r [ ( £ ^ ) n 0 ] + 7(«)}, (27) 

where the fact that 7 depends on n is made explicit by writing 7 as a 
function of «. Substituting the maximum likelihood estimator IIo for IIo 
and maximizing the likelihood with respect to K one obtains the following 
first order condition 

o = ^iogp(n,...,nw) = 

= - l + tr[(Skiïi)no] + ̂ . (28) 

The derivative of 7 with respect to n can be calculated as follows: 
Because 7 is the normalization parameter it easily follows that 

e"'1' = / exp{-K(l - tr[nn0])}rfm(n). (29) 
JG(1,2) 

Differentiation with respect to K gives 

_ |I = _E{1 _ t r [nn0]) (30) 

wich is equal to —o1 /2. So 

| = ^ / 2 (3!) 

and therefore the first order condition (28) leads to the following fonnula 
for the maximum likelihood estimator of the variance 

2 = 2-2tr[(£*^)n0] = 
= 2(l-/>!) (32) 

q.e.d. 
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Remark If one considers linear models with more than two variables and 
one or more simultaneous linear equations, the calculation of the M.L.E. 
becomes apparently more complicated. The reason is that in the general 
case the model describes for each value of t a k—dimensional linear subspace 
(with k > 1 in general) in which the t—th observation lies. Now given an 
observation there are lot of k—dimensional linear subspaces that contain 
that observation! So all one observes is an event in the sense of probability 
theory. (This is somewhat similar to throwing a die and observing not the 
exact number of spots up, but only that the number of spots up is even.) 
To calculate the likelihood one has to integrate the density over the event 
set, which leads to some complicated integrals. This subject needs further 
research. 

8 Conchisions and remarks on possible further 
research 

In this paper a set-up has been proposed to deal with the problem that, on 
various grounds, one does not always want to make the distinction between 
endogenous variables and exogenous variables a priori, i.e. before the es-
timation of the model. The way in which the problem is dealt with is to 
consider the linear relations themselves as stochastic. This makes it possible 
to consider a number of variables as free to choose; after such a choice the re-
maining variables are determined by the stochastic model and are therefore 
themselves stochastic. Use has been made of the maximum entropy distri-
bution on a Grassmannian, given the centre, which is a generaüzation of the 
concept of a mean to a general metric space and given the centre-variance, 
which is a generaüzation of the concept of variance to a general metric space. 
By representing linear subspaces by their orthogonal projection matrices we 
were able to derive a number of results on the maximum entropy distribu-
tions. These were in turn used to study the maximum likelihood estimators. 
Only for the case of two variables an explicit expression for the MLE was 
presented. Research on the general case is still in progress. Let us make a 
number of final remarks about open problems and possibilities for further 
research. 

(1) In this paper no attention has been given to scaling parameters, and 
this would certainly be an important next step; in fact that should give 
the analogon for this case of the usual variance- covariance matrix. 
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(2) Further research is needed to calculate the normalization parameters of 
the maximal entropy distributions on a Grassmannian. 

(3) It is certainly possible to include a constant term in the model, in fact 
one can just apply the usual trick of introducing a dummy variable 
which has only one possible value, namely 1. 

(4) Generalization to linear dynamical models is an interesting open prob-
lem. 
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