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Abstract

It is argued by various authors that the usual splitting of the set of
variables in endogenous variables and exogenous variables (including
instruments), should not be done a priori, i.e. before estimation, but
@ posteriori. The idea is that the estimation procedure should produce
the possible splittings in endogenous and exogenous variables,

In this paper we try to make a first step in this direction by con-
sidering the (linear} relations between the variables as being stochas-
tic, instead of the variables themselves. One then has the freedom
to fix a number of variables (the exogenous variables, including the
instruments) and as a result the remaining variables (the endogenous
variables) are stochastic.

This is worked out by making the sets of linear relations, the so-
called Grassmannians, into a metzic space and using a generalization
of Gaussian densities to such spaces. An important technical aspect of
the analysis is the representation of the elements of a Grassmannian
by symmetric idempotent matrices, also called orthogonal projection
matrices. In the case of two variables it iz shown that the densities
that we use are in fact the Von Mises densities. For that case the
Maximum Likelihood Estimators are derived. Remarks are made about
the M.L.E. in the general case.
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1 Introduction

In the standard multiple regression model one distinguishes a priori (stochas-
tic) endogenous variables and (deterministic or at least "predetermined”)
exogenous variables, including instruments. In many econometric models
the choice of what is endogenous and what is exogenous is rather arbitrary.
For one thing many of the exogenous variables are only taken to be exoge-
nous because it is decided that for the application in mind it is not necessary
or appropriate to model this variable, If at some other stage of the modelling
process it is decided to model such a variable after all one speaks of "endo-
genization” of the variable! Another class of exogenous variables is formed
by the socalled instruments, or control variables. At first it seems that one
could argue that such variables are truly exogenous because their value is
determined by some decision maker and its value is not determined by the
market etc. However this argument clearly depends very much on whe anal-
yses the economic phenomena under consideration, because if this is not the
decision maker, the argument becomes a weak one, as in economics most
variables are in the end the result of human decisions. Furthermore there is
a more fundamental issue: by declaring certain variables to be instruments
or exogenous one implicitly states a proposition about the model and this
proposition is usually not verified empirically. The proposition is that the
variable involved can be chosen freely, i. e. can take any value in its domain
and is not restricted by the model equations. This point has been taken up
by Willems [6,7,8] in a deterministic context.

To avoid the a priori choice of what are endogenous variables and what
are exogenous variables and instruments, several approaches can be taken.
One of them is to assume the exogenous variables are stochastic and to treat
them in the same way as the endogenous variables are treated as far as the
estimation procedure is concerned. This leads to "errors-in-variables” meth-
ods, to factor analysis and to principle component models. See e. g. [1] and
the references given there. Here we want follow another line of thought. The
disadvantage of the methods just mentioned is that they require the exoge-
nous variables and the instruments to have a stochastic nature, usually even
to be a drawing from a probability distribution which does not change over
time. However this is really a crude way of "endogenizing” the exogenous
variables and the instruments, which is in most cases not at all a realistic
way of modelling these variables. Therefore we present here an alternative.
The idea is simply to consider the relations between the variables as stochas-
tic. This then leaves room for several of the variables to be chosen freely



(the exogenous variables and the instruments) and the remaining variables,
the endogenous variables, are then determined by the stochastic relation(s);
conditionally on the choice of the exogenous variables and the instruments
the endogenous variables are stochastic. Which variables can serve as ex-
ogenous and instrument variables and which as endogenous variables follows
from the estimation procedure, i. e. is determined a posteriori.

To enlighten these ideas we start with a simple case in section 2 in which
this approach leads very naturally to the socalled orthogonal regression,

If one wants to apply such a scheme more generally, the question arises
what class of probability measures one chooses on the set of stochastic rela-
tions. The problem here is that even for linear stochastic relations, the sef of
such relations is not a linear vector space. Therefore we study an analogon
of the mean and the variance for general metric spaces, which we call the
centre(s) and the centre -variance. And as an analogon of the Gaussian dis-
tribution on Euclidean space, we define the maximum entropy distribution,
given the centre(s) and the centre-variance, on the metric space.

Next the sets of linear relations, the socalled Grassmannians, are con-
sidered. They can be handily represented by sets of symmetric idempotent
matrices (also called orthogonal projection matrices) of a prescribed rank.
A Grassmannian can be made into 2 metric space in several ways, one of
which is just to take it to be equal to the metric space of symmetric idem-
potent matrices. Having done that we can calculate the maximum entropy
distributions as described above and in the case of two variables present the
maximum likelihood estimators that follow from this. We make some re-
marks about the maximum likelihood estimator in the general case and the
paper finishes with some remarks, open questions and directions of further
research.

2 A simple case

In order to present the idea of stochastic relations we start with a simple
case. Consider the following regression model.

Yo = P2 + Uy, (1)

where 8 is a deterministic parameter (later on we will allow § to be stochas-
tic) and wu, is stochastic, with a Gaussian distribution with mean a and
variance o2 and with u; and u, stochastically independent if ¢ # s.



This is the usual regression model, except for the fact that we have not
yet made a statement about the nature of y,z;. There are several possibil-
ities:

(a) Both ¥ and x; are stochastic, with a parametrized probability distri-
bution with known or unknown parameters. This leads to the errors-
in-variables problem etc. [1].

(b) =z, is deterministic (or at least "predetermined”, exogenous) and y, is
stochastic (endogenous). This leads to the standard least squares for-
mulas of regression analysis.

(c) w is deterministic (or "predetermined”, exogenous) and z; is stochastic
(endogenous). This leads again to the standard least squares formulas
for regression analysis, but now with the role of y; and z, interchanged.

(d) Any of the preceding possibilities, but we do not know which .one (or
we do not want to use such information for one reason or another). In
this case, which is the case that we want to treat in this paper, we will
interpret an observation (2, :) as an observation on the stochastic
relation that exists between z; and y;.

In the present case the relation between z; and y; that is imposed by
the model (1) is a line in the (z,y) -plane. Its slope is determined by 3,
which is supposed to be deterministic in this case. However its constant
term is stochastic, with Gaussian probability density, which makes that the
set of parallel lines all with the same slope determined by 8 has a probability
distribution. This probability distribution can be described in various ways,
depending on how one parametrizes the set of parallel lines. It is crucial
for the application of the Maximum Likelihood Principle to define a metric
on each set of parallel lines. Because we only have parallel lines here, an
obvious choice for the distance between any pair of lines is the minimal
distance between any pair of points the first of which is from the first line
and the second of which comes from the second line. Of course, this is the
length of any piece of line which connects the two lines and is orthogonal to
both of them. Any set of parallel lines can now be parametrized by choosing
one of them (e.g. by the rule that it be the one that crosses the origin, or
the centre of gravity of the observations) and desribing the others by their
distance "to the right or to the left” of this first line. In this parametrizati
on the probability distribution is again Gaussian, with as its mean the line
y = Bz + « and with variance TI?E'



Note that although we have implicitly excluded the vertical line in our
formulation of the model (1) it would at this point be no problem to intro-
duce it. In that case it would be natural to assume a Gaussian distribution
over the set of verticals using the same concept of distance between two par-
allel lines as above. (This would not be possible if we measured the distance
between two lines along the y—axis, i.e. by the distance between the two
points where the two lines cross the y—axis.)

Before the Maximum Likelihood Estimator (MLE) can be derived a few
remarks about its definition in this case should be made.

(1) In a metric space the following generalization of the Maximum Likeli-
hood Estimator can be used. Let d(6,, ;) denote the distance between
two points #;,82 in the metric space ©. For each positive € consider
the e—balls B(f,¢) := {6]d(8,0p) < ¢} and define the e—Maximum
Likelihood Estimator as

6. = arg max P[B(6o, )} (2)

The (generalized) Maximum Likelihood Estimator 0 is now defined as
the limit & = lim,jo 8. (In case 6, is a set of points one should take
the limit of the sets 8., for € | 0.)

In case a probability density is defined on the metric space this im-
plies the more usual notion that the estimator(s) can be found at the
point(s) with maximal density. But even if the probability density
has a support that is smaller than the whole of the metric space, this
definition can still be applied. This definition also shows clearly the
dependence of the M.L.E. on the metric that is used.

(2) Note that in our set-up we consider the observations as (sometimes par-
tial) observations on the relations. Therefore the Maximum Likelihood
Principle has to be applied to the probability density of {(or at least-as
treated in (1)- the probability of each small e—ball around} the {(par-
tially) observed relations, that are implied by the different models.
This leads to the M.L.E. of the relation involved.

(3) In the present case we have not defined the distance between two non-
parallel lines. In fact this is needed to apply (1) and {2). However
the metric in the present case can be viewed as a limiting case of a
generalization, involving scaling, of the metrics that will be defined in



section 4 on the set of all lines in R? (and more generally on linear
relations in R®). So the correct interpretation of the M.L.E. that will
be derived in this section is as a limiting case of the M.L.E. that will
be derived in the subsequent sections (if one allows for scaling).

In order to prepare for the following proposition, let us note some prop-
erties of the well-known orthogonal regression. Given T observations

{z1;,%),--.,(2T,y7), the orthogonal regression line is the one for which
the sum of the squares of the distances of the points (z,%1),...,(2T,%T) to
that line is minimal over all possible lines (cf. e.g. {1]).

The orthogonal regression line can be found as follows. Let b = (-5,1),
then the distance of a point z; = (2¢,:) to the line through the point 2, =
(2o, ¥0) and orthogonal to the vector b is equal to lﬂfﬁﬁ]ﬁ” The orthogonal
regression line is obtained by minimization of the sum of squares of these
distances, i. e. by minimization of 1.1, #Zt=2)” with respect to b and z.
Minimization with respect to zp can easily be seen to lead to choosing 2z to
be the centre of gravity: z =z := } Z‘,;‘;I %

Let 24 := 2; — zp. Then the minimization problem can be formulated as

T sz
min (b;;) =
b0 =1

RS N
Igggg r{(gp)aal =

} T
i () ) =

m=’r11'£n=1 T.tr(1LS), (3)

where the matrix II stands for the rank one projection matrix % and §
denotes the sample covariance matrix of 2. According to the theorem of
Courant-Fischer the minimum is obtained by the projection matrix of rank
one corresponding to the smallest eigenvalue of S.

We can now state the following result

Proposition 2.1 The Mazimum Likelihood Line Estimator, with respect to
the described distance function between parallel lines, is equal to the line that
results from orthogonal regression.



Proof. For a given b = (—f,1) and z the distance between the lines
orthogonal to & and crossing the points 2; and 2z respectively, is equal to
Mfﬁf]']ﬁu. I. e. it is equal to the distance of the point z; = (z¢, y:) to the line
through the point z5 = (2o, o) and orthogonal to the vector b.

Because on the set of all lines orthogonal to b, parametrized with respect
to these distances, the model (1) implies a Gaussian distribution, the M.L.E.
is obtained by minimizing the sum of squares of these distances over the set
of all lines orthogonal to b.

This implies that the M.L.E. is indeed the orthogonal regression line. If
the variance of the Gaussian distribution is unknown, the sample mean of
the squares of these distances is the M.L.E. of this variance.

Q.e.d.

3 Generalization of mean and variance to gen-
eral metric spaces: Centre and centre-variance.

Use will be made of a generalization of mean and variance to spaces more
general than Euclidean spaces. Generalizations of this type have been pro-
posed under various headings by several authors. We mention e.g. [3]. Here
we will use a definition for the case of metric spaces. Let © be a metric
space with metric d as before.

Definition 8.1 Let a probabilily measure P be defined on the metric space
© and let E denote the corresponding ezpectation operator. For any point
6o consider the expectation E[d(8,600)%]. Each point in © which minimizes
this expression over all 8y € © s called a centre of the probability measure.
The minimal value of E{d(8,00)?] is called the centre-variance or shortly the
variance of the probability measure in the metric space.

Remarks.

(1) A centre does not have to exist in general. However if the metric space
is compact at least one centre exists. This follows from the continuity
in this case of E[d(f,4,)*] as a function of 8y , which in turn follows
from the triangle inequality for the metric, together with the fact that
in a compact metric space the metric is bounded.

A centre does not have to be unique. E. g. for the uniform distribution
on the circle, each point on the circle is a centre.



(2) In general the variance does not have to be defined. If it exists it is
unique by construction. :

If the metric space is compact, the variance exists. This follows from
the argument above.

(8) Clearly if the metric space is a Euclidean space with the standard met-
ric, the centre is just the mean and the cenire-variance is the usual
variance,

(4) The concept of unbiased estimator can be defined in the same spirit.
See [3].

(4) In the case of a von Mises distribution on the circle, the localization
parameter is equal to the centre in our terminology. Compare Section
6

(5) The choice of the metric plays a crucial role. In many examples there
are several “natural” metrics. E. g. in the case of a circle, the distance
between two points can be measured by the angle between these two
points (“the inner metric”); however one can also choose the chordal
distance between those points (“outer metric”).

For different choices of the metric different variance values and different
centres may result,

4 A metric on the Grassmannians

A k—dimensional linear subspace § of the n—dimensional Euclidean space
R"™ can be represented in various ways, for exampie by a basis of k£ inde-
pendent vectors from the subspace, or more generally as the image of some
matrix ¥ with rank k. One possibility is to represent such a subspace by its
orthogonal projection matrix (also called symmetric idempotent matrix in
the econometric literature)

I = I(S) := Y(YTY)Y7, (4)

where { denotes the operation of taking the Moore-Penrose generalized in-
verse of a matrix (see e. g. [4]); of course if the matrix is nonsingular, this
coincides with the usual inverse. This representation is unique, i. e. inde-
pendent of the specific choice of Y. This follows directly from the property of



such a matrix, that it maps each vector £ in R™ to its orthogonal projection
II¢ on the subspace involved. We will make use of this representation.

The set of all k—dimensional linear subspaces of the n—dimensional Eu-
clidean space R™ is denoted by G{k,n) and is called the Grassmannian
manifold of k—planes in the n—dimensional Euclidean space. Using the rep-
resentation of the elements of the Grassmannian by their orthogonal projec-
tion matrices, we will find it useful to consider G(k,n) as the set of rank k
orthogonal projection matrices of size n X n. It is well-known that a Grass-
mannian is a differentiable manifold. It is in fact a Riemannian manifold, if
one uses the standard Fubini-Study-Leichtweiss metric on the tangent bun-
dle. The corresponding minimal arclength metric is the generalization of
the angular distance on the circle ("inner metric”). A generalization of the
chordal distance on the circle ("outer metric”) is defined as follows:

Definition 4.1 Let the distance function d : G(k,n) X G(k,n) — [0,00) be
defined by d(Iy,13)? := tr(I; — O3)?] = 2k ~ 24 {I111,), i. e. the distance
is equal to the socalled Frobenius norm of II; — Il5.

This metric is the one that is induced by the standard Euclidean metric
in R™** by considering each orthogonal projection matrix II in G(%,n} as
an n?—vector in R***, The representation of the elements of the Grassman-
nian by their orthogonal projection matrices produces therefore an isometric
inbedding of the Grassmannian G(k,=n) in the n?—dimensional Euclidean
space R#X",

It forms clearly a closed and bounded subset of R*** aand therefore the
well-known fact that 2 Grassmanrian is compact follows.

5 Maximum entropy distributions on a Grass-
mannian

Combining the results of the previous two sections, it follows that any proba-
bility distribution on a Grassmannian has a finite variance and a well-defined
centre or set of centres. In order to find an analogon of the Gaussian dis-
tribution in a general metric space, one can try to make use of the crucial
property of a Gaussian distribution with mean g and (scalar) variance o2
that it is the maximum entropy distribution with that mean and variance.
In a general metric space the role of the mean is taken over by the centre
and the role of the variance by the centre-variance. Therefore the problem



arises to find, given a point Iy € G(k,n) and a positive number o2, the
maximum entropy distribution with centre Ilg and centre-variance o2, We
assert that the density p = p(II} of such a distribution (w.r.t. the volume
element dm(1l) that is derived from the Fubini-Study-Leichtweiss metric)
takes the following form: '

p(H) = exp[—%nd(ll, H0)2 + 1'] =
= exp|-x{k - tr(llllp)} + 7] (5)

where k is a concentration parameter, related in a bijective way to the
variance and « is the normalization parameter. That Il is the centre of the
distribution in the case ¥ > 0, is formulated, among other related properties,
in the next theorem.

Theorem 8.1 Consider a probability density on G(k,n) of the form (5).
The expectation of IT with respect to this probability density is of the form

E(TX) = collp 4 e1 (I — Tlo) (6)

where ¢y and ¢, are nonnegative numbers.

If eg > c; then My € G(k,n) is the (unique) centre of the prodability
distribution. This occurs if k > 0.

If o = ¢1 then the distribution is the uniform distribution on the Grass-
mannian, which corresponds to k = (.

If co 2 ¢; the numbers cg and c, are related to the variance o2 of the
distribution as follows:

2
@ = (l”g_k)
o = g ™

Remark Note the difference between the centre of the distribution and
the expectation E(IT) which is well defined only due to our inbedding of the
Grassmannian in R**®,

Proof Without loss of generality one can make an orthonormal change
of basis such that g € G(k, n) takes the form

I, = diag{l,...,1,0,...,0].

First it will be shown that E(I) is diagonal. Counsider the set & of 27
diagonal sign matrices § = diag[s;,s2,...,85) with &; € {+1,—1} for each
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value of ¢ € {1,...}. Given an arbitrary orthogonal projection matrix II,
and an arbitrary sign matrix 5 € §, the matrix STLS is again an orthogonal
projection matrix. Furthermore due to the special form of Ilg it is easy
to see that d(Ily, SIIS) = d(Ip,II) for all § € S. Therefore for a fixed
I the density at all points SIIS,S € S is equal. From this one obtains
E(II) = E(STS) = SE(I)S for each § € & which in turn implies that
E(1) is diagonal.

Let {e1,...,¢,} denote the standard basis in R*. Let 7 denote the set of
matrices which are obtained from the identity matrix by interchanging the
i—th and j—th column, or equivalently, interchanging the i—th and j—th
row, We will formally allow ¢ = j to hold, in which case no interchange of
columns takes place. Let T; x T,_j denote the set of matrices which are
obtained from the identity matrix by interchanging at most two of the first
k columns and interchanging at most two of the last n — k columns. Note
that if T € Tx X Ta-k, then T2 = I and 7T is symmetric. Therefore, if II is
an orthogonal projection matrix, then 8o is TIIT. It can easily be seen that
for an arbitrary II € G(k,n) and any T € T; X T,~; one has

d(Ig, 1) = d(Ilp, TOT). (8)
From this it follows that for all T € 7; X T, one has
E(IT) = E(TUT) = TE(A)T (9)
from which one can derive

E(M) = ecodiag(l,...,1,0,...,0]+ c,diagf0,...,0,1,...,1] =
= ¢ollp + er(7 ~ M) (10)

This shows {6). Note that

trE(l) = Etll=Fk=
= egtrlly + eytr(J — If) = ok + e1{n — k). (11)

Suppose ¢ > ¢;. In order to show that IIg is the unique centre of the
distribution, we have to prove E||l - ipfZ < E|iIl - Mi||} for all IT; €
G(k,n) and equality holds if and only if II; = Ilp. This is equivalent to
trE(HI,) > trE(III,; ) for all II; € G(k,n) and equality holds if and only if
H1 = Ho.

11



From (6) it follows that

tr{E(INH1] = tr{eollolly + ey (1 — o)) =
= tr[(cp — €1 )lloHy] + ¢ytrlly =
= ((!o - Cl)tI[RDHI] + Clk. (12)

Now tr{IIoIl;} can be interpreted as the inner product < Iy, II; > which
corresponds to the Frobenius norm of matrices. Using this norm [[II|jZ = &
for all Il € G(k,n) and therefore }tr[lloIl;] =< 5},5}; >< 1 and equality
holds if and only if Iy = II;. This shows that indeed IIp is the unique centre
if ep > .

If ¢p = ¢; the same argument shows that Efjll — I,|f? = E||H - II;||?
for all I; € G(k,n) and therefore all elements of G(k,n) are centres in this
case,

So if ¢y > ¢1 we know that II; is a centre. Therefore the centre-variance
is

o' = E(J- o) =
2% — 2tr[E(I)ILy) =
2k — 2tr{(collo + e1 (I ~ Ilp))1Ig) =
2k — 2¢cok = 2k(1 — ¢g). (13)

From this together with (11) it follows that

f

o = (l-g%)
2
e = %‘E__k) (14)

q.e.d.

Remark Without going into the proof (which is not difficult) let us state
what the centres are in the case & < 0, which is equivalent to ¢p < ¢;. Three
possibilities have to be distinguished:

(i) ¥ k < n — k then (the orthogonal projection operator of) each
k—dimensjonal linear subspace of the n — k dimensional image space of
I — Ty is a centre.

(ii) If k = n ~ k then I — Il is the centre.

(iii) ¥ ¥ > n — k then (the orthogonal projection operator of) each
k—dimensional linear subspace which contains the n ~ k dimensional image
space of I —II is a centre.

12



Now we come to a sketch of the proof that the distributions given in (5)
are indeed the maximum entropy distributions for a given centre Ilp and
a given centre-variance o%. Let f(II) := log p(I) denote the logarithm of a
positive probability density p(H) on G{(k,n). The desired maximum eatropy
distribution is found by maximizing the entropy integral

/au..,} F(I) exp(f(IT))dm(1I) (1)
under the restrictions
(1) o= BT - Toff* =
trf /G o) Il exp( f(I1))dm(I)IIp) = k — % o2

@ [, eeUmnm =1 (16)

Note that we have not included the restriction that Il is the centre! There-
fore (1) should be interpreted as stating that the “Ily—variance” E||H—1Io||%
is equal to %, Of course the centre-variance is by definition smaller than
or equal to the Ilp—variance. Maximization of the entropy under (1) and
(2) will turn out to lead to maximization of the centre-variance, and the
maximal centre-variance is obtained if the centre-variance is equal to the
IIg—variance in which case Hp is by definition a centre.
So consider the Lagrangian

W = [, SOep(nm +
Melf, | Mexp(f(I)m(I)o) +
-(k-%a’)}+
([ e(()im(m) ~1) a7)

k)

The function f is a stationary point of L if a variation 6 f of f produces a
vanishing variation in the value of L :

0 = 6—‘[’ =
5f
= exp(f(Il)) + f(II)exp(f(II)) +
+\tr{l exp( F() L] +
+p exp(f(II)) (18)

13



for all T € G(k,n), which implies
S(I) = =Atz[llg) ~ pp - 1 (19)

which shows that, with the correct choice for x and ~ the probability distri-
bution takes the form (5) indeed.
Q.ed.

6 The Von Mises distribution on the projective
line

On the circle one of the standard probability distributions is the Von Mises
distribution, given by the density

P(8) = exp[& cos(0 - o) + 7}, | (20)

where g is the localization parameter, & the concentration parameter and
7 the normalization parameter; & € (0,2x] the angle describing a point on
a circle around the origin.

It is well-known that the (real) projective line, i.e. G(1,2), is topologi-
cally equivalent to the circle. If we represent an element of G(1,2), 1. e. a
line in R? through the origin, by the angle w € (0, #] that the line will make
with the z—axis, then a homeomorphism of the projective line to the circle
is given by

# = 2. (21)
Using this homeomorphism, the maximum entropy distribution on G{1,2)
with given centre Ilp and centre-variance o2 induces also a density on the
circle. We will show that this density is in fact the Von Mises density.

A point in G(1,2) is represented by a rank-one orthogonal projection
matrix II = ’:{f%,y # 0. Let Ilg = %“,-”—E,yo # 0. Then the density on G(1,2)
is of the form °

T T
pI) = e:cp(ntr[(;’g’i—y)(%)l +y-kr)=

- YN W 2 gy =
= exp(el(p ) Gt +7 ~#%)

= exp(kcos®(w — wo) +7v — kK), (22)

14



where w — wy is the angle between y and yo. This is equal to

HI) = exp(} cosl2(w —wo)) +7 = (k= 3)n) =
= exp(~Fcos(0 - o) +7) (23)

with & = k/2; # = 2w. The Riemannian volume element, which in this case
is derived from the Fubini-Study metric on the projective line, produces
a constant factor in the transformation to the circle; therefore only the
normalization parameter 7 is affected by this and the form of the density
remains the same. So indeed the Von Mises density is obtained this way.

7 The maximum likelihood estimator in the case
of two variables

Consider the simple regression model (1), but now assume that 8 is stochas-
tic and, for simplicity, v = 0 (Think for example of a model written in
deviations from the mean). Thus for each t € {0,...,N} the vector (¥, ;)
lies on the line in R2 that is given by y = B;z. Assume that this line is
drawn at random from a probability distribution on G(1,2) with density
of the form (5). With each (nonzero) observation (y:,2¢) # (0,0) corre-
sponds one possible line, namely the line in G(1,2) that is represented by
the orthogonal projection matrix II; ;= Y;(Y;TY;)~'YT with Y7 = (3, 2:).

Suppose one has N stochastically independent observations ITy,...,IIx.
The joint probability density p(Il;,II3,...,Hx) can easily be derived from
(5)and £ =1 to be

N
(I,...,. JIxn)= exp[fctr(z ILIy) + N(y — £)]. (24)
t=1

So the maximum likelihood estimator II of the centre is
N
II = argmax tr[(d_ 1) Ilo). (25)
Mo =t

This implies that the maximum likelihood estimator is the orthogonal pro-
jection matrix that corresponds with the eigenvector of the largest eigenvalue
of 3 II,, if this eigenvalue has multiplicity one. In case of higher multiplic-
ity, any one-dimensional linear subspace of the corresponding eigenspace is
a maximum likelihood estimator (so in that case the MLE is not unique).
For the variance the following result holds
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Lem:ﬁa 7.1 The mazrimum likelihood estimator &% of the variance is
&% = 2(1~ p1), : (26)
whese p; is the largest eigenvalue of § TN, 11,
Proof Consider the loglikelihood divided by N (recall that k = 1):

N
F0gp(L, .., ) = {2~ 2el(RELIOT) + 7)), (27)

where the fact that 4 depends on x is made explicit by writing v as a
function of x. Substituting the maximum likelihood estimator Iy for Il
and maximizing the likelihood with respect to x one obtains the following
first order condition

d
0 = Zlogp(ll,....ly)=

N
= -1+ tr[(—z%u')llo] + g%- (28)

The derivative of 4 with respect to k can be calculated as follows:
Because v is the normalization parameter it easily follows that

e = o12) exp{—#(1 — tr[IITo)) }dm(I). (29)

Differentiation with respect to x gives

- ?T; = —E(1 - t{llI,)) (30)
wich is equal to —¢%/2. So
g% =o?/2 (31)

and therefore the first order condition (28) leads to the following formula
for the maximum likelihood estimator of the variance

¢ = 2~ 2tr{(%)ﬁo] =
2(1-pm) (32)

q.e.d.
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Remark If one considers linear models with more than two variables and
one or more simultaneous linear equations, the calculation of the M.L.E.
becomes apparently more complicated. The reason is that in the general
case the model describes for each value of ¢ a k—dimensional linear subspace
(with £ > 1 in general) in which the t—th observation lies. Now given an
observation there are lot of k—dimensional linear subspaces that contain
that observation! So all one observes is an event in the sense of probability
theory. (This is somewhat similar to throwing a die and observing not the
exact number of spots up, but only that the number of spots up is even.)
To calculate the likelihood one has to integrate the density over the event
set, which leads to some complicated integrals. This subject needs further
research.

8 Conclusions and remarks on possible further
research

In this paper a set-up has been proposed to deal with the problem that, on
various grounds, one does not always want to make the distinction between
endogenous variables and exogenous variables a priori, i.e. before the es-
timation of the model. The way in which the problem is dealt with is to
consider the linear relations themselves as stochastic. This makes it possible
to consider a number of variables as free to choose; after such a choice the re-
maining variables are determined by the stochastic model and are therefore
themselves stochastic. Use has been made of the maximum entropy distri-
bution on a Grassmannian, given the centre, which is a generalization of the
concept of a mean to a general metric space and given the centre-variance,
which is a generalization of the concept of variance to a general metric space.
By representing linear subspaces by their orthogonal projection matrices we
were able to derive a number of results on the maximum entropy distribu-
tions. These were in turn used to study the maximum likelihood estimators.
Only for the case of two variables an explicit expression for the MLE was
presented. Research on the general case is still in progress. Let us make a
number of final remarks about open problems and possibilities for further
research.

(1) In this paper no attention has been given to scaling parameters, and
this would certainly be an important next step; in fact that shounid give
the analogon for this case of the usual variance-covariance matrix.

17



(2) Further research is needed to calculate the normalization parameters of
the maximal entropy distributions on a Grassmannian.

(3) It is certainly possible to include a constant term in the model, in fact
one can just apply the usual trick of introducing a dummy variable
which has only one possible value, namely 1.

(4) Generalization to linear dynamical models is an interesting open prob-
lem. ‘
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