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Abstract 
The projection filter is an approximate nonlinear filter 
based on orthogonal projection in the tangent space of 
a manifold of densities. The Riemannian metric used is 
the Fisher information metric. In this paper it is shown 
that if one uses Gaussian densities the projection filter 
equals a McShane-Fisk-Stratonovich version of the so-
called Assumed Density Filter. 
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1 Introduction 
Consider a dynamical system of the following form (cf. 
[8,2] ) 

(ITO)dx(t) = 
(ITO)dy(t) = 

f(x(t),t)dt + G(x(t),t)dP(t) 
h(x(t),t)dt + dr)(t) (1) 

Note. We will write "(ITO)" if an Ito stochastic differ
ential equation is meant, while we will write "(MFS)" 
if a stochastic differential equation is to be interpreted 
as being in McShane-Fisk-Stratonovich form. 

In (1) the symbols. have the following meaning: 
x(t) € R" is the state vector at time t; ƒ is an n-vector 
function, G(x,t) is an n X s matrix and fi with /? € R* 
a Brownian motion process with expectation zero and 
an sx s diffusion matrix Q(t); y(t) € R* is the stochas
tic measurement process, ft is a fc-vector function and 
T)(t) G R* a Brownian motion process with expectation 
zero and a. k x k diffusion matrix R(t),independent of 

The nonlinear filtering problem for such a system 
is to find the conditional probability density p(x,t) of 
x(t), given the measurements up till time t (/? and r] are 
not observed). Assume f,G,h are twice continuously 
differentiable. Let A(x,i) := G(x,t)Q(t)GT(x,t). As is 
well-known (see e.g. [8]) under certain mild conditions 
(for which we refer to the literature) p(x, t) satisfies the 
Kushner-Stratonovich equation (KS equation), 

(ITO) dp(x,t) = C(p(x, t ))dt + 

p(x,t)[h(x,t) - E{h(x(t),t)}fR-\t) X 
[dy(i)-E{h(x(t),t)}] (2) 

where both the caret symbol ~ and the expectation 
symbol E denote the conditional expectation of the 
corresponding variable given the observations up till 
time t, and where C is the differential operator given 
by 

Cp(x,t) = -1£±:(fi(x,t)p{x,t)) + 
dn tsl 

1 n " 

ïl^l^dxidxj 
d2 

(aijP(x,t)). (3) 

The corresponding MFS equation, written with sepa
rate terms for dt and dy and without arguments of the 
various functions in order to shorten the formulas, is: 

(MFS) dp = 

[Cp - l(hTR-lh - Ei^R^h^dt + 

p{h-h)TRrldy (4) 

An alternative to the Kushner-Stratonovich equation 
is the Duncan-Mortenson-Zakai equation (DMZ equa
tion) for an unnormalized version q = q(x,t) of p(x,t). 
It is given by (see e.g. [2,9]), 

(ITO)dq = Cqdt + qhFR-idy (5) 

Clearly this equation has a simpler structure then the 
Kushner-Stratonovich equation. The corresponding 
MFS equation is: 

(MFS) dq = (Cq-]-hTR-1hq)dt + 

+gftTi?_1dy (6) 

'Paper to be presented at the ECC-91, Grenoble, July 1991 

Closed form solutions of this equation are rarely found 
(for a discussion see e.g. [7]). Instead many possible 
schemes for approximate nonlinear filters have been 
constructed, like the Extended Kalman Filter (EKF) 
or the Assumed Density Filters (ADF). In [4] one of us 
proposed a class of approximate nonlinear filters, since 
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then called Projection Filters, based on the differential 
geometrie approach to statistics (see e.g. [1]). 

Consider a differential manifold of densities, e.g. the 
Gaussian densities. The solution of the DMZ equa-
tion will in general not remain within this manifold. 
However, if one projects the right-hand side of the 
DMZ-equation orthogonally, using the Fisher informa-
tion metric, onto the tangent space of the manifold, 
the solution of the resulting stochastic partial differen
tial equation will lie on the manifold - if one uses the 
MFS-form of stochastic differential equations. The re
sulting approximate filter is the Projection Filter. Be-
cause Fisher information is used in the projection the 
Projection Filter has the interpretation of being a lo-
cally most informative filter on the chosen set of den
sities (see Section 3). 

In this paper it will be shown that if one uses the 
manifold of Gaussian densities, then the Projection 
Filter comes very close to the Assumed Density Fil
ter mentioned before. In fact we argue that there are 
two types of ADF, one that follows from the Ito equa
tions for the conditional first and second moments, we 
will call this the ITO-ADF, and one that follows from 
the corresponding MFS-equations, the MFS-ADF. The 
ITO-ADF is the classical one, that is found in the liter-
ature (see Section 2). The main result of this paper is 
that the Projection Filter is equal to the MFS-ADF for 
the Gaussian case. This provides us with a much sim-
pler way to calculate the equations of the Projection 
Filter for the Gaussian case. Remarks will be made 
about generalizations.(See Section 4). 

The paper finishes with conclusions and directions 
of further research. 

2 Assumed Density Filters 

In the literature on approximate filters one finds among 
many others, the so-called Assumed Density Filters 
(ADF); see e.g. Section 12.7 of [8]. In order to ex-
plain what we mean by an ITO-ADF and a MFS-ADF 
and in order to compare these with the Projection Fil
ter, the construction of an ADF will now be presented 
in some detail. 

Consider the (exact) conditional moment equations 
(cf. equations (12-108),(12-109) from [8]): 

(ITO) dx = 

[ƒ - E{(x - x)/iT}JR-1h]dt + 

E{(x-x)hT}Rrxdy 

(ITO) dP = 

[E{(x-x)fT} + E{f(x~x)T} + 

E{GQGT} + 

-E{(x - £)/ iT}ir ^ { M * - *T)} + 
-E{((x - x)(x - xf - P)hT}R-lh)dl + 

E{((x-x)(x-x)T-P)hT}RTxdy (7) 

where x, P, ƒ, G, h, Q, R represent x(t), P(t), 

f(x(t),t), G(x(t),i), h(x(t),t), Q(t), R(t) respectively. 
These conditional moments equations require knowl-
edge of the entire density function, i.e. of all higher 
moments as well as the first two. However if we as-
sume that the density is Gaussian, which is admittedly 
a false assumption in general, then of course the first 
two moments determine the conditional density and 
(7) forms a closed system of ITO stochastic differential 
equations. This set of SDE's is called the (ITO-) As
sumed Density Filter (Gaussian case). This will be ab-
breviated to ITO-ADF. It can be generalized of course 
to incorporate non-Gaussian densities. For simplicity 
of exposition we will concentrate on the Gaussian case 
here. In Section 4 we will make a remark about gener-
alization. We stress the fact that equations (7) are Ito 
equations; the recipe to obtain the ADF is applied to 
these Itö equations and therefore we speak about the 
ITO-ADF. The resulting SDE's are in Itö form, but 
they can also be put in MFS form, while still describ-
ing the ITO-ADF. 

Example. The cubic sensor. 
Consider the system 

dx = gdp 
dy = x3dt + drj (8) 

In other words, consider (1) with f(x,t) = Q;G(x,t) = 
g(constant);h(x,t) = x3. Furthermore let R = 1;Q = 
1. For this case the Itö equations for the conditional 
mean and covariance of the state are 

(ITO) dx = [£{x4} - xE{x3}][dy - E{x3}dt] 
(ITO) dP = \32-(E{(x-x)x3})2]dt + 

E{(x-x)2(x3-E{x3}}x 
[dy-E{x3}dt] (9) 

In the Gaussian case one has 

E{(x- -£?} = p 
E{(x- - if) = • 0 

E{(x- -xf} = • 2P2 

E{(x- -xf} = • 0 

E{(x- -xf} = :15P3 

To obtain the ITO-ADF one replaces in the r.h.s. of (9) 
each higher order central moment by the corresponding 
expression in P from (10). One obtains: 

(ITO) dxA = (-2x5
APA - l2£3

APl - 9xAPl)dt + 

+(3xAPA + 3PA)dy 

(ITO) dPA = (g2 - \hx\P\ - Z&x^P3 - 9P*)dt + 

+(teAPl)dy (11) 

Putting these Itö equations in MFS form one obtains 

(MFS) dxA = (-ZxAPA - 30x3 P\ - 36xAPl)dt 

+(te\PA + 3Pl)dy 
(MFS) dPA = (ff

2 - \hx\P\ - Slx^Pi - 18P^)d* 
+(&xAPl)dy (12) 
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a 
The ITO-ADF is the "classicaT ADF as it is found 

in the literature . However one can apply the same idea 
also to the conditional mean and covariance equations 
in MFS form. They are (cf.[6],App.3B; these equations 
can be derived from [2],equation (40)) 

(MFS) dx = [f- \E{(X - è)hT BT^dt + 
Al 

E{(x - x)hT}R-1dy 
(MFS) dP = 

[E{(x-x)fT} + E{f(x-x)T} + 
+E{GQG?} + 

-±E{hTRTlh((z - x)(x - xT) - P)}]dt 

+E{((x - x)(x - x)T - PWR^dy (13) 

Just as for the corresponding Itö equations these condi
tional expectations equations require knowledge of the 
entire density function, i.e. of all higher moments as 
well as the first two. However if we make the assump-
tion (which is fake in general) that the density is Gaus
sian then the first two moments deteimine the condi
tional density and (13) forms a closed system of MFS 
stochastic differential equations. This set of SDE's 
is called the MFS-Assumed Density Filter (Gaussian 
case). This will be abbreviated to MFS-ADF. It can 
be generalized to incorporate non-Gaussian densities. 

~Example(continved). The MFS-ADF for the cubic 
sensor is given by the equations 

(MFS) dxB = (-Zx5
BPB - 30i |P£ - 45iBP%)dt 

+(UBPB + ZPB)dy 
(MFS) dPB = 

(g2 - 15xj,P| - 9 0 4 P | - A5Pè)dt + 
+(6xBP2)dy (14) 

Compaiing this with (12) it follows that these filters are 
unequal So in general the ITO-ADF and the MFS-
ADF are two different filters! There are systems for 
which the ITO-ADF and the MFS-ADF are the same; 
characterization of the class of systems for which they 
are the same is an open research problem. 

3 Projection Filters 

In this section we present a short recapitulation of the 
definition of the Projection Filter (cf. [4]). As stated 
in the introduction, the Projection Filter is an approx-
imate filter that is obtained by orthogonal projection 
of the r.h.s. of the Kushner-Stratonovich equation, in 
MFS form (or equivalently, projection of the r.h.s. of 
the DMZ equation in MFS form) on the tangent space 
of the chosen approximating manifold of densities. 

The metric that is used in the orthogonal projection 
is the Fisher information metric, and its generalization 
to nonparametric (i.e. infinite dimensional) classes of 
densities: the Hellinger metric (cf. [5,1]). This metric 

i 
i 

is defined on the set of finite non-negative measures on 
a measure space (iï, F) by the formula 

d(/*i,/i2) := | l lr i - ra||£,(A) = - ( ƒ (n - r2)
2dA)* 

(15) 
where A is any probability measure on (Q, T) such that 
/*i,/*2 «C A, with densities pi = -j£ and pi — -^ and 
r\ — y/p\,rï = y/p2. (Note: in [5] we called 2d(p 1,1*2) 
the Hellinger distance). The metric space of all nonneg-
ative measures on (fi.J7) with the Hellinger distance 
will be denoted by Ti. The subspace of all nonnegative 
measures which are absolutely continuous w.r.t. to a 
given nonnegative measure A and have a posüive den
sity function on the support of A, is denoted by H(X). 
From (15) it follows that it is isometric to the sub
set of all positive functions in the Hilbert space L2(A). 
We will use this Hilbert space structure and we will 
consider W(X) to be an infinite dimensional open sub
manifold of the Hilbert space L2(X). Let «S denote a 
smoothly embedded finite dimensional submanifold of 
W(A). Then W(A) induces a Riemannian metric on S. 
The corresponding Riemannian metric tensor is equal 
to the Fisher information matrix (cf.e.g. [1,5]). The 
tangent space of S at some point of S can be regarded 
as a linear subspace of the tangent space of %(A) at 
that point. The tangent space of %(A) is isometric to 
the Hilbert space L2(X). Therefore the orthogonal pro
jection n of the elements of the tangent space of %(A) 
onto the corresponding tangent space of S is well de
fined. Consider instead of the DMZ equation its "pro-
jected version" 

(MFS) dqn = Jl(Cqn - ifcTJT^«n)* 

+U(mhTR-1)dy (16) 

where H applied to a vector is to be interpreted as: n 
applied to each of the components of the vector. 

If the initial density qn(x, to) lies in the manifold S 
then the solution of (16) will remain in the manifold, 
because (16) is in MFS form! (cf. [3],p.l23). If one 
would use the corresponding Itö equations this essential 
property would not hold; this is one of the reasons 
that in stochastic differential geometry the MFS form 
of stochastic differential equations is often preferred 
over the Ito form (cf.[3]). 

Remarks. 

(a) If one chooses S to be the space of all probability 
densities in 7l(X) the projection filter only normal-
izes the densities: equation (16) is equal to the 
Kushner-Stratonovich equation (4) in that case! 
More generally speaking, if 5 consists only of prob
ability densities then it does not matter whether 
the projection takes place in the DMZ equation or 
in the Kushner-Stratonovich equation; the same 
(approximate) filter equations result. In fact the 
normalization factor plays only a trivial role here: 
It does not matter for the results of the Projection 
Filter whether one uses normalized densities and 
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the KS equation, or unnormalized densities and 
the DMZ equation, provided that normalization is 
then taken care of afterwards of course. 

(b) Calculation of the equations of the Projection Fil
ter can in principle take place by constructing an 
orthonormal basis of the tangent space oiS at each 
point and calculating the inner product of each of 
the basis elements with all the functions in the 
r.h.s. of the DMZ equation (or the KS equation) 
that are to be projected. However in the next sec-
tion we show an alternative and much simpler way 
to do the calculations for the Gaussian case (and 
more generally for the case of exponential densi
ties). 

(c) Because the Fisher information metric is in-
finitesimally equivalent to Kullback-Leibler infor
mation, one can say that within the tangent space 
of the manifold S the projection II [V] of a vector 
V in the tangent space of 7i(X), is the vector which 
contains maximal information about the vector V, 
if V and II [V] are interpreted as variations in a 
probability density. 

4 The relationship between the 
Projection Filter and the As-
sumed Density Filters 

In this section we want to show that the projection fil
ter is equal to the MFS-ADF in the Gaussian case, i.e. 
if the manifold of densities is taken to be the manifold 
of Gaussian densities on the state space. In fact the 
result holds more generally for exponential densities, 
i.e. probability densities of the form 

d 

p(x; ff) = « p ( £ Okck(x) - t/>(0)), (17) 
i = l 

where x = (xi,x2 , . . . ,x„)T € R-, 6 — 
(6i,62,...,ed)

T € e C Rd and exp(-V>(0)) is the nor
malization factor and d the dimension of the parameter 
space ©, i.e. of the manifold of densities. Of course 
the Gaussian densities belong to this class. In that 
case the functions ct(x),Jb = l ,2 , . . . ,d are the first 
and second degree monomials in x,-, i = 1,2,..., n and 
d = n + %n(n + 1) = ^n2 + | n . 

The 6k, k = 1,2..., d are called the naturul parame
ters of the exponential family. Consider 

to be positive definite. This is clearly the only restric-
tion on the parameter vector IJ = (iji, tft, • • •, Vd) in the 
Gaussian case. 

A crucial result from the theory of "information ge-
ometry" is that if one chooses the Fisher information 
metric as a Riemannian metric on manifolds of densi
ties, then the bases of tangent vectors {^f^yf-i and 
{sl"}k=i a r e biorthogonal, i.e. 

d d 
<Wk'Wk

>=hh (19) 

where 8ki is the Kronecker delta and < ,> is the Rie
mannian inner product on the tangent space at a point 
of the manifold of densities (cf. [1], p.79 etc). From 
this we will deduce the following result on projections: 

Theorem 4.1 Let S be a d—dimensional manifold of 
exponential densities that contains S as a submanifold. 
Consider a tangent vector T of the manifold S and 
suppose 

(20) 

at a point ofScS. The orthogonal projection TL(T) of 
T on the tangent space ofS, i.e. on the linear suhspace 
span{-gg-,....^f-} of the tangent space of S at that 
point, is given by the formula 

dm 
(21) 

where the ak are uniquely determined by the require-
mentJl^espani^,...,^} 

Corollary 4.2 The tangent vector II(T) lies in the 
tangent space of S; in terms of the basis {•jê-}k-i of 
the tangent space of S ai the relevant point, TL(T) can 
be expressed as 

n(r) = ï > 
i = l 

_d_ 
dm' 

(22) 

r)k = E[ck(x)],k = l,2,...,d (18) 

It can be shown that ij],, 772) • • • 1 *ld, which are called the 
expectation parameters, define indeed a parametriza-
tion of the manifold of exponential densities (cf. 
[I],p.l07,108). Clearly the domain of the expecta
tion parameters is a subset of Rrf. For example in the 
case of Gaussian densities, one has the restriction that 
E(x - Ex){x - Ex)T = (E(xiXj) - E(x,)E(xi))ij has 

Proof. Because T — ÏÏ(T) is orthogonal to 
span-t^fr. • • •. ëfj}. o n e h a s 

< ^ - , T - n ( r ) > = 0 , f c = l ,2, . . . ,d. (23) 
Ó9k 

Combining this with (19) it follows that the coefficients 
of j j | - , k = 1,2,..., d in a representation with respect 
to the basis {^-,..., ^ - } , of T and II(T) must be the 
same. 

Considerations of dimension show that the coef
ficients ak in (21) are determined uniquely by the 
{a*}i=i an<i by the fact that II(T) lies in the space 
sPan{aê7.--->8f7>> 

q.e.d. 
We can now present the main result of this paper. 
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Theorem 4.3 Let S be the manifold of Gaussian den-
sities on R n . The projeciion fiUer w.r.i. S is equal io 
the Gaussian MFS-ADF. 

Proof. Considei a Gaussian density p(x;0(i)). As 
remarked before a Gaussian density is an exponential 
density and can therefore be written in the form (17). 
The tangent vectors to the manifold S can be written 
as 

d 

££,hCitx)-1>'(8)è}p{x;6) (24) 
fc=i 

where ^>'[S) denotes the Jacobian of the function rl>(0). 
For a fixed value of 0 let us write the expressions 
that multiply dy and dt in the Kushner-Stratonovich 
equation (4) as zi(x)p(x;0) and Z2(x)p(x;0). (The 
functions z\ and z2 will depend on 0, but because 
6 is fixed here, one can consider them as functions 
of only the variable x.) Clearly zi(x) and z-i(x) can 
in general not be written as a linear combination of 
ei(*)|C2(*),...,Cd(x). Now for the sake of the argu
ment consider the exponential family S of densities of 
the form e x p Q ^ - x 0j.cjfc(a:) + 6d+1zi(x) + Öd+2z2(a:) -
ï>(0)), where {0d+i,9d+2) takes its values in some 
open set in R 2 containing (0,0), independently of 
(0i,---,0d). The tangent space in (0i,. . .,0<j,O,O) at 
S has the tangent space in (0\,..., 0<j) at S as a linear 
subspace, and clearly zi(x)p(x;6) and Z2(x)p(x;0) lie 

in TS^u^fitfifi)-
Consider the vector of expectation parameters r) = 

(TJI , . . . , jja, ijd+i, Vd+ï)T of the densities in S and let us 
denote the corresponding densities by PE(X;T)). SO if r\ 
is the vector of expectation parameters of the density 
p{x;0) then p{x;0) = PB(X;JJ ) . In terms of the corre
sponding basis {-^PE(X; »?),..., S^PE(X; »?)} of the 

tangent space of S at PE{X;TJ) one can write 

d+2 Q 

zi(x)pE(x;ri) = V a i t - r — p B ( x ; i j ) 
tel dT>k 

d+2 „ 

E Cf 

a2kT—PE(x]TJ) (25) 
fc=i * » 

According to theorem 4.1 and corollary 4.2 projec
tion of these elements of T«S($li...is(Jio,o) gives as a 
result respectively the elements Ylt=ia^''^PE(x'Ti) 
and E L i a2k-sfcpB(.x;r,) in T 5 ( 0 i , . . . ,04) ! This im-
plies that a projection filter update corresponds to an 
update of the expectation parameters JJI , . . . , r)d, where 
of course the knowledge of the density PE{X;0) and 
the fact that this density is completely characterized 
by the expectation parameters iji, . . . ,IJ<J, may be used 
to calculate this update. In the Gaussian case one 
has d = 2 and one only has to update the mean and 
covariance, using the fact that the Gaussian density 
p(x;0) = pE{x;rj) depends completely on the mean 
and covariance, 

q.e.d. 

R e m a r k . It is clear from the proof that the the
orem can be generalized to the more general case of 
exponential families without much difficulty, provided 
that the parameter vector 0 takes its values in an open 
subset of Hd. 

5 Conclusions and further re
search 

The result of this paper that the Projection Filter 
(Gaussian case) is equal to the MFS-ADF (Gaussian 
case) makes the derivation of the equations of the Pro
jection Filter much more tractable in a large number of 
cases. The Assumed Density Filters have the drawback 
that they are based on an assumption which is known 
to be false, which makes them logically unacceptable. 
This drawback is overcome for the MFS-ADF by the 
new interpretation of this filter as a Projection Filter. 
Further research is taking place in the following direc-
tions: 

(i) Comparison in simulations of the Projection Filter 
with several other approximating filters and with 
the numerical solution of the Zakai equation. 

(ii) Construction of "good" approximating manifolds 
of densities S and derivation of the corresponding 
filter equations. 

(iii) Construction of quantities which measure to some 
extend the quality of the approximation that is 
performed by the Projection Filter. 

(iv) Projection Filters for discrete time systems. This 
is in fact closely related to the problem of having 
a non-Gaussian initial probability density. 

We hope to present an extended version of the present 
paper which will include a simulation study and obser-
vations on some of the other items just mentioned, in 
the near future. 
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