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Abstract 

In this paper the boundaries of several families of (time-invariant) 
ARMA models and corresponding linear state space models are de-
scribed. The topology of pointwise convergence of the Markov param­
eters is used. 

1 Introduction 

In this paper we want to draw attention to certain results in system theory 
which are applicable to ARMA models; we will also treat the corresponding 
case of linear state space models. It is partly a survey and partly consists of 
new results. In this introduction we want to put the closure problems that 
are treated here in a somewhat broader perspective. We regard a model 
as an abstract object, which can be represented in different ways. In the 
case of linear dynamical models one can think of the fact that the same 
model can be represented by an ARMA model and by a linear state space 
model. And both for ARMA models and for linear state space models there 
are many different parametrizations. The question arises what are "good" 
or "well-conditioned" parametrizations and how they can be constructed. 
Such well-conditioned parametrizations can play an important role in the 
optimization problems of system identification (recursive and non-recursive), 
model reduction, etc. It also can play an important role in our understand-
ing of the structure of the model space and vice versa: the structure of the 
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model space may give us more insight in the parametrization problem. An 
important aspect of a model space is its topological structure. As has been 
argued before, one of the important issues in an investigation of the topo­
logical structure is to find the closure of the model set if this is embedded 
in some larger topological space in some "natural" way (cf. e.g. [7,2] and 
the references given there). In finding the closure of a set of models with 
some given structure a parametrization-independent characterization of the 
structure will play an important role as we shall see. In showing that all 
models of a certain type are in the boundary however, we will use a specific 
parametrization, which differs from case to case. In the present paper we 
will investigate the closure in the pointwise topology of the Markov parame­
ters (one could also say: the coemcients of the MA(oo)-representation of the 
model) of all ARMA-models resp. linear state space models with a given 
structure, namely: 

(i) All models with given order (i.e. McMillan degree). 

(ii) All multivariable models with given observability indices; for ARMA-
models this can be expressed in terms of the maximal delays in the 
ARMA-equations if these are put in a certain form, namely the so-
called minimal base form (see section 2); 

(iii) All multivariable ARMA(p, g)-models with given AR order p and MA 
order q. 

(iv) All scalar input/scalar output models with a given Cauchy index (for 
an explanation see section 2). 

We will treat the deterministic case here; most of the results have a 
counterpart in the stochastic case, however the results and the proofs are 
somewhat more complicated due to the special role played by the stability 
properties of stochastic models. We hope to return to the stochastic case 
elsewhere. 

2 The structure of a linear system in terms of its 
Hankel matrix 

Consider a time-invariant linear dynamica! model of finite order either in 
state-space form 
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xt+i = Fxt + Gut, xt € Rn,ut e R m 

yt = Hxt + Jut, y t € R m , (1) 

F e Rn x n ,G e nnxm',E e Rmxw, j e Rmxro', 
with (F,G,H,J) minimal, i.e. (F,G) reachable and (H,F) observable; 
or in ARMA-form 

A(L)yt = B(L)ut, (2) 

with A(L) = Y?k=QAkL
k and B(L) = E L o 5 * ^ » 

Ao nonsingular, i the lag operator and A(z),B(z) left coprime matrices 
(over the ring R[z] of real polynomials in the variable z). 

More generally we will still speak of an ARMA representation if the 
conditions Ao nonsingular and A(z),B(z) left coprime are not met, as long 
as A{z) is nonsingular (over the field R(z)). 

Two model representations (ARMA-representations and/or linear state 
space representations) are called equivalent if they describe the same input-
output behaviour. One speaks of input-output equivalence. This is an equiv-
alence relation on the set of model representations. A model corresponds in 
our set-up to an input-output equivalence class of model representations. 

Starting with a general ARMA representation A(z), B(z), with A(z) non­
singular, one can always construct an equivalent representation A(z),B(z) 
with Ao nonsingular and A(z), B(z) left coprime and furthermore, by tak­
ing suitable linear combinations (over R[z] ) of the rows of the polynomial 
matrix [A(z) | B(z)] one can construct an ARMA-representation put in 
so-called minimal base form. 

This means that the sum of the row degrees of [A(z) | B(z)] is minimal 
over all possible ARMA representations [C(z)A{z) \ C(z)B(z)], where C{z) 
is any square nonsingular rationalmatrix, such that C(z)A(z) and C(z)B(z) 
are polynomial matrices. There are algorithms to bring any pair A(z),B(z) 
in minimal base form. There may be more than one ARMA representation 
in minimal base form corresponding to one and the same ARMA model, i.e. 
the representation of an ARMA-model in minimal base form is not unique. 
However the corresponding row degrees are unique, up to permutation (cf. 
[3]). They are the observability Kronecker indices /c,-,i = l , . . . , m . Their 
sum is n = YAL\ Kiitne McMillan degree of the model. This is equal to the 
dimension of the state space in a minimal representation (F, G, H, J). 
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Consider the Markov matrices of a given linear dynamical model. They 
are parameter-independent quantities that fully determine the model. In 
terms of a state space representation (F,G,H, J) they are given by 

H0 = J 

Hi = HFi~lG,i = 1,2,... (3) 

In terms of an ARMA representation (A(z),B(z)) the Markov matrices can 
be obtained by the following algorithm. Let 

BQ\z) = B(z) 
B^(z) = {BV-1)(z)-A(z)A(p)-1BU-1\Q)}/z,j= 1,2,... (4) 

Then 

H0 = A(Q)-1B(Q) = Aö1B0 

Hj = A(0)-1B^(0),j = l,2,. (5) 

Now form the (block-)Hankel matrix 

H = 

H\ Hi Hz • • 
H2 H3 H4 . 
Hz H4 H*, . (6) 

We can now treat the four cases, numbered (i)-(iv) described in the 
introduction. 

(i) The McMillan degree can be found from the Hankel matrix by the 
formula 

rank(H) — n (7) 

We will assume that the McMillan degree is finite, so n £ N . 
(ii) The observability indices can be found by the following procedure 

(see e.g. [4]). 
Let 

*o = 0 

tj = rank 

Hi Hi 
H2 Hz 

Hj Hj+1 ... 

, i = i,2,. (8) 
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and 
Sj — Aï j — Ij — tj—i,j — 1,2,. (9) 

Note that Yl,%i sj = !£j=i s j = 12]=i &tj = tn = n, so {SJ} is a partition of 
n. Form the following socalled Young diagram of this partition: 

«1 « 2 K K K Km 

o O o o o o «1 

O o o o o «2 

o o o o 

o
o

o s. 
s. 
s. 

In this diagram the length of the i-th column is «,- and the length of the 
j'-th row is Sj. The total number of nonempty entries in the diagram is 
n. (So the Young diagram presented above corresponds to m = 6; n = 18; 
K\ — 1,«2 = «3 = «4 = «5 = 3 , «6 = 5; S\ = 6,S2 = «3 = 5,S4 = «5 = 1,-S6 = 

s7 = . . . = 0) 
Given the partition {SJ} of n one can read off the socalled dual partition 

of n. It consists precisely of the observability indices Ki,K2,... ,/cm, and 
clearly «i < K2 < K3 . . . < nm. 

(iii) Next we turn to ARMA(p, g)-models. Let arma(p,q) denote the 
set of all ARMA-models that can be represented by a pair of polynomial 
matrices (A(z),B(z)) withdegA(z) < p,degB(z) < q. ~Note:(A(z),B(z)) do 
not have to be in minimal base form here. 

One has the following characterization of models with this structure. 

Theorem 2.1 (cf. [4]) A linear dynamical model is an element of 
arma(p, q) if and only if 

rk 

Hq-P+I Ha-q-p+2 H, 
H, q-p+2 -"g-p+3 Ha-r. H, 

q+(m-l)p 

9 + ( m - l ) p + l 

Ha H, 9+1 H, q+mp-l 

rk 

Ha. q-p+1 
Ha-

Ha. q-p+2 
Ha-T q-p+2 - "g-p+3 

< mp (10) 

5 



(iv) Finally we turn to the Cauchy index of a SISO (i.e. m = 1, ra' = 1 in 
(1),(2)) linear dynamical model. As is well-known (cf. [1]) the Cauchy index 
is equal to the signature of the Hankel matrix %. According to Sylvester's 
theorem this signature is equal to the number of positive eigenvalues (which 
we will denote by n+ ) minus the number of negative eigenvalues (which 
we will denote by n_ ) of AWAr, for each matrix A for which AWAr has 
n well-defined non-zero eigenvalues (multiplicities included in all the eigen-
value counts). Of course n = n+ + n-. (Note that we are working here with 
oo X oo matrices and therefore we have to be careful in our formulations; for 
example eigenvectors and eigenvalues do not always have to exist etc. How-
ever because we are working with matrices of finite rank, many properties 
of these matrices are the same as for the case of Standard linear algebra, if 
properly formulated) 

3 Boundaries 

In order to clarify the meaning and to indicate the practical importance of 
the boundaries of a set of models with a given structure, we will start with 
a small example. Consider the following ARMA-equations 

V2,t - a?/i,t_i = ut (11) 

VU + 0L~xy2,t-\ = ut + a^ut-i (12) 

This can be written in terms of polynomial matrices in the lag operator L, 
as follows. 

A{L) ( ^ ) = B(L)ut, (13) 

with 

™ • f ~t x 'B^=(^UL) 
It is easy to see that these ARMA-equations are in a minimal base form and 
so the observability indices are (1,1). Now let us investigate what happens 
with the structure of the model if a converges to zero. If one takes the one 
period delayed version of the first equation of (11), multiplies it with Q _ 1 

and adds the result to the second equation of (11) one obtains the following 
ARMA-equations for the model: 

V2,t - aj/i.t-1 = ut 

Vi,t + Vi,t-2 = «t 
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If we let a go to zero in these equations one obtains 

V2,t = ut 

yi,t + yi,t-2 = ut 

It is again easy to see that these ARMA-equations are in minimal base form. 
However now the observability indices are (0,2)! So although the original 
ARMA-model can be represented by equations in which there is only a one 
time period delay, in the limit one has an ARMA-model that can only be 
represented by ARMA-equations with at least a two time periods delay! 
This shows that determining the boundaries of a set of ARMA-models is a 
non-trivial problem. 

Let us now turn to the question of identifying the boundaries for each of 
the structures treated in the previous section. The choice of a topology is 
of course very important. Here we will work with the topology of pointwise 
convergence of the Markov matrices. This is a rather weak topology, it only 
requires that each of the Markov matrices converges seperately. 

(i) To start with one has the following well-known result. 

Theorem 3.1 (cf. [2]) Consider, for a fixed choice of the number of inputs 
m' and the number of outputs m, all linear dynamical models with McMillan 
degree n. All limit points are linear dynamical models of McMillan degree 
< n. Also all such models are in the boundary. 

Proof. That all limit points are linear dynamical models of McMillan 
degree < n is well-known and can easily be shown using (7). 

That all models of McMillan degree < n are in the boundary is not hard 
to show; one way of proving this is as follows. Take an arbitrary model 
with McMillan degree n',n' < n. Let (Fn>,Gn',Hni,Jni) be a minimal state 
space representation of it. Let fni+\, , fn be n — n' different real numbers, 
none of which is an eigenvalue of Fni. Let gn'+i, • • • ,9n be arbitrarily small 
positive numbers. Let 

F = 

[ Fn' 0 
fn'+l 0 . . . 0 

0 fn'+2 ' ' • i 

0 • •. •. * . 

0 
0 0 fn . 
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/ Gn» \ 

\ 9n J 
H = ( J 7 n . | l , l , . . . , l ) , J = Jn, (14) 

Then (F,G,H,J) is a minimal representation of a model with McMillan 
degree n which can be taken arbitrarily close to the original model by taking 
the positive numbers gn'+i,- • • ,5n close enough to zero. • 

(ii) Next consider for a fixed choice of the number of inputs m' and 
the number of outputs m, all linear dynamical models with a given fixed 
nondecreasing sequence of observability indices K,-,Ï = 1,2,... ,m, with 0 < 
Ki < K2 < ... < nm where K,- € {0,1 ,2 , . . .} . Let us now introducé the 
socalled specialization order which plays an important role. 

Let K|,» = 1,2, . . . ,m, with 0 < K[ < K'2 < ... < n'm, and K- € 
{0,1,2, . . .} be another nondecreasing sequence of observability indices, not 
necessarily adding up to n = YALI K«> then iKi) w ^ be called "at least as 
special as" {«,} if 

k k 

£>< <]>>,•,* = l,2,...,m. (15) 

This will be denoted as {«(•} < {«,}. 
Someexamples are: {1,2,3} < {2,3,4};{1,2,4} < {2,2,3}. 
For nonincreasing sequences of nonnegative integers one defines a partial 

order •<' as follows: if s\,S2,... and s'x,s'^,... are two such sequences, then 

K ) <' {*>} if Ej=i«J < ZUsi'k = 1.2,.... 
It can be shown that ^ and <' are dual versions of each other in the 

following sense. 

Theorem 3.2 ([4]) If {Ki)^Lx and {K(-}£LI are nondecreasing sequences of 
nonnegative integers and if {si,S2,. • •} and {s^s^,.. •} are nonincreasing 
sequences of nonnegative integers and if furthermore {K,} J'S dual to {SJ} 
and {«(•} is dual to {s'j} in the sense of the Young diagram of Section 2. 
Then 

[s'.} -<' {Sj} <=* {«;•} -< {«,-} (16) 

It is important to note that if { K V } ^ is a partition of n and if { K ; } ? ^ 

is a partition of n', then n and n' do not have to be equal in this theorem. 
We will make use of the following lemma. 
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Lemma 3.3 Consider the set of all polynomial matrices of the form 
[A(z) | B(z)] with maximal row degrees d\,d2,... ,dm. The subset of all 

ARMA model representations in minimal base form is open and dense in 
the Euclidean topology of the parameters of the ARMA equations. 

Proof. A polynomial matrix of the form \A(z) \ B{z)\ is an ARMA-
model representation if A(z) is nonsingular, which is the case on an open and 
dense subset of the set of all polynomial matrices in the Euclidean topology 
of the parameters. The main theorem of [3] states, among other things, that 
a polynomial matrix of the form [A(z) \ B(z)] is in minimal base form ifT 
(a) the greatest common divisor of all the k X k minors is 1 and (b) their 
greatest degree is n. 

The matrix whose i-th row consists of the coefficients of zdi in the i-th 
row of [A(z) | B(z)] is called the high order coëfficiënt matrix. Condition 
(b) means that the high order coëfficiënt matrix has full row rank. 

Standard considerations about relative prime polynomials, determinants 
and matrices having full rank show that the combination of (a) and (b) holds 
on an open and dense set in the Euclidean topology of the coefficients of the 
polynomial entries of A(z),B(z). 

It follows that the subset of all ARMA model representations in minimal 
base form is the intersection of two open and dense subsets of the set of all 
polynomial matrices of the form [A(z) | B(z)} with maximal row degrees 
di, d2i • • •»dm and therefore is itself an open and dense subset. • 

In the proof of the main result for the present case use will be made of the 
following corollary (the main result will in fact encompass this corollary). 

Corollary 3.4 If K\ < K,-,i = l , . . . , m , then all models with observabiliiy 
indices { « i } ^ are in the boundary of the set of all linear dynamical models 
with observability indices {Ki}^L1. 

Proof. Consider the set of all ARMA model representations 
[A(z) | B(z)] with maximal row degrees di,dz,... ,dm with d\ < c^ < 

• •• < dm. Any linear dynamical model with observability indices { « i } ^ ! 
having the property K(- < d,-,i = l , . . . , m , has of course a representation 
in this set (not necessarily unique). Choosing d,- = K,-,I = 1, . . . , m it 
follows from the lemma that there exists a sequence of ARMA-models in 
minimal base form with indices {«t}£Li which converges in the Euclidean 
topology of the coefficients to the equations for our linear dynamical model. 
It then follows that this sequence also converges in the pointwise topology of 
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the Markov parameters to our linear dynamical model (because an ARMA-
representation and its Markov matrices are related as described in (4),(5)). 
D 

We can now state the following result, which in this genera! form appears 
to be new. 

Theorem 3.5 Let the number of inputs m' and the number of outputs m 
be fixed. The closure of the set of all linear dynamical models with observ-
ability indices {Ki}£Li consists precisely of all linear dynamical models with 
observability indices { K ; } ^ such that {K^} -< {«{}. 

Let arma({di}) denote the set of all linear dynamical models which can 
be represented by a set of ARMA-equations with the property that the i-th. 
equation has maximal delay < d,-. 

CoroUary 3.6 The closure of the set of models arma({d{}) is equal to 

U{<W{*} *rma({%}). 

Proof of theorem 3.5 Let {SJ} be dual to {«,}. From (8),(9) it follows 
that if {s'A corresponds to a model in the boundary of the set of all linear 
dynamical models with observability indices {«;}, then {s'j} •<' {sj}.From 
theorem 3.2 it follows that {KJ} •< {«,}. 

To show that a/Minear dynamical models with observability indices {«(•} 
such that {«(•} < {«,} are in the boundary, we will adapt a similar result 
for controllable pairs of matrices (F,G) (with n fixed) reported in [6]. The 
proof will be given in a number of steps in each of which the problem is 
reduced to a simpler one; in the last step the remaining problem is solved. 

Step 1. Choose an arbitrary linear dynamical model with observability 
indices {K(}£L-[ such that {«(•} •< {KJ}. We distinguish between two possi-
bilities, namely YALI

 K'i = n a n d X ^ i K'i < n- I*1 ^ n e l 3 ^ c a s e consider the 
observability indices { « f } ^ defined by 

K" = K(-, i = 1 , . . . , m — 1 
m - 1 

< = »-£«;• 
which have the properties 

m 
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{*:•> ^ K > =< M 
and 

Ki ^ K?>* = l , - . . , m . 

From corollary 3.4 it follows that our linear dynamical model is in the bound-
ary of the set of all linear dynamical models with indices {K"}^. Because a 
boundary of a set of boundary points is included in the closure of the origi-
nal set, it now follows that it suffices to show the desired result for the case 
in wich the observability indices add up to n. Therefore in the remainder of 
the proof we will assume YALÏ

 K'i = n-
Step 2. It is a basic result for the specialization order on partitions of 

n, that if two such partitions, {KJ}^.! and {K»}£LI, with {K^} < {x.i}, have 
the property that {«(•} •< {«"} •< {«,} implies {«"} = {«(•} or {«"} = {«;}, 
then the Young diagram of {K,;} can be obtained from the one of {«,-} by 
transporting one atom of the diagram. This means that there exist numbers 
io and ii with to < i\ such that 

K\ = K,-, if i ^ t'o,H 

Ki'o = K , 'o — 1 

< = «ü + 1. (17) 

Expressing this same property in terms of the dual partitions {s'j} and {SJ} 
(both nonincreasing sequences) one has that there exist numbers jo and j \ 
with jo < j \ such that 

s'j = Sj, if j ?t io. i i 
sjo = sh ~ •*• 

s'j, = sh + l. (18) 

Because the boundary of a set of boundary points is in the closure of 
the original set, this implies that it suffices to consider only the case where 
indeed (17) holds. 

Step 3. Consider a minimal state space representation (F,G,H,J) of 
our linear dynamical model with observability indices {«^}. We will make 
use of its dual (FT,HT,GT,JT). Of course the reachable pair (FT,HT) has 
reachability indices {/cj}. 

Given these reachability indices and therefore the Young diagram, a 
special reachable pair (FO,HQ) can be defined as follows. Let e\, e 2 , . . . , en 

denote the n Standard basis vectors in R n . Then 

H0
r = [e1\...\em] (19) 
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and FQ is given by an adapted version of the Young diagram, which is 
obtained by putting e i , e2 , . . . , e n in the diagram, starting with filling up 
the first row from left to right, then filling up the second row from left to 
right, etc. until the last row is filled up with the last basis vectors and so 
the south-east corner element of the diagram contains en; 

F£ is then defined by 

-̂ o (e«) = e*'> if ei' occurs just below e{ 

Fo(ei) = 0 otherwise (20) 

It follows directly that 

span[Hl | F0
Tif0

T | . . . | (Ffy^Hf] = span[eue2,... , e t ; ] , 
j = 1,2,... (21) 

where {<'•} is related to {s '} , which is the dual partition of {KJ}, as {i,} is 
related to {SJ} in (8),(9). From this it follows directly that the reachability 
indices of the pair (FQ,HJ) are {«;}. 

A famous result of Kalman states that using the elements of the socalled 
feedback group, which can be represented by (S,K,R),S G GLn(R.),K 6 
Kmxn,R € GLn(R) and which act on the reachable pair (FT,HT) to give 
the reachable pairs (S~1FTS + S~lHTK, S~1HTR) as a result, each reach­
able pair can be transformed into any other reachable pair which has the 
same reachability indices. 

It follows that there exists an element of the feedback group represented 
by (S,K,R) which transforms (FT,HT) to the reachable pair (FQ,HQ). 

The inverse of the element of the feedback group is represented by 
(S-l,-BTxKS-1,Br1) and this transforms ( F ^ , H$) back to (FT,HT). 

(Warning: note that we have not introduced a matrix GQ. In fact there may 
for some cases not even exist a minimal realization (given m and m') with 
reachable pair (FQ,HQ)\) 

Step 4- Define the reachable pair (Ff ,Hj) as follows. 

Hf = Hf (22) 

and Ff is defined by filling up the Young diagram of {^i}^ with the 
Standard basis vectors in the following way: at each entry where this Young 
diagram overlaps with the one of {«(•}£.! take the same basis vector as in 
the diagram of FQ . Because of what was said in Step 2 all Standard basis 
vectors except e« • _i+i are placed by this rule. Also there is (of course) only 
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one spot in the diagram of {K,} which is not yet ulied, namely the one at 
the entry which lies at the intersection of column io and row j 0 . There we 
put etj _!+i and the defimtion of f f is complete. 

It follows that 

span[Hf | Ff Hf ] . . . | (Ffy^Hf] = span[eue2,... ,c tj], 

j = 1 , 2 , . . . , ; 0 - 1 

«pan^f | Ff Hf | . . . | (Ffy-lHf\ = span[e^_ i + 1 ; e j , e 2 , . . . , et,.], 

j = jo,j0 + l,...,ji-l 

span[Hf | Ff Hf | . . . | ( f f y'"1 f/f] = span[e i , e 2 , . . . , e,,], 

i = Ji .Ji + l , . . . (23) 

It follows using (17), (18) from Step 2, that the reachability indices of 
the pair (Ff,Hf) are {K,-}J1X. 

Now let for each r G [0,1] the pair ( f f , fff) bedefinedby 

Ff = ( l - r ) F < f + r F f 

# T
r = H* = Hf. (24) 

Then for all r ^ 0 the spans of the initial parts of the reachability matrix 
are the same as for the case r = 1 and are therefore given by (23) if f f is 
replaced by Ff and Hf by Hf in that equation. So for all T ^ 0 the pair 
( f f , f i f ) has reachability indices {ni}^, while of course for r = 0 the pair 
has reachability indices { K J } ^ J , by construction. 

So the reachable pair ( f f , Hf) with reachability indices {«(•} is the limit 
(in the Euclidean topology of the entries of the pair of matrices) of a curve 
of reachable pairs with reachability indices {«i}. 

Step 5. Now we can apply the inverse element of the feedback group, 
as described in Step 3, to each of the pairs (Ff,Hf),r e [0,1]. Because 
the same element of the feedback group is applied to all the pairs the re-
sulting curve of pairs converges to the pair (fT , HT) for r converging to 
zero. Because the pair (GT,FT) is observable (i.e. the observability ma­
trix has full row rank) there exists an interval [0,e), for some e > 0, such 
that for each r € [0, e) the corresponding reachable pair from this curve, 
together with the matrix GT is observable and therefore forms a minimal 
triple. Joining JT and taking the duals again, one obtains a curve of lin-
ear dynamical models each with observability indices {«{}, which converges, 
in the Euclidean topology of state space representations and therefore also 
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in the pointwise topology of the Markov matrices, to the linear dynamical 
model with observability indices {«(•} that we started with in Step 1. D 

(iii) Let us now consider the set of all linear dynamical models (with m' 
input components and m output components) which have an ARMA(p, q) 
representation. The closure of this set is the same as the closure of the 
set arma(p,q), which we deflned in Section 2. Let o.rma({pi}1^L1,{qi}^Ll) 
denote the set of all linear dynamical models which have what we will 
call an ARMA({p,},{g;})-representation, namely an ARMA representation 
(A(z), B(z)) with the property that the degree of the i—th row of A(z) is 
< pi and the degree of the i—th row of B(z) is < g,-. We have the following 
result. 

Theo rem 3.7 Let Tn,m',p and q be fixed. Let d = q — p G Z. The closure 
of the set arma(p,q) is equal to the union of all sets a r m a d p , } ^ , ! } , } ^ ) 
for which 

m 

y^max(p,-,g, — d) < mp. (25) 
»=i 

Remark. One can reformulate the theorem in a slightly less formal way 
by saying that the closure of the set of all linear dynamical models which 
have an ARMA(p, g)-representation, consists of all linear dynamical models 
which have an ARMA({p,},{g,})-representation satisfying (25). 

Proof. We will consider a linear dynamical model with Hankel matrix 'K 
and direct feedthrough matrix #o- Let 7id+i be defined by 

Kd+i = 

Hd+l -ffd+2 
-ffd+2 Hd+3 

(26) 

Consider the linear dynamical model with Hankel matrix Ü equal to H = 
7Yd+i and with direct feedthrough matrix Ho = Hd- Let its McMillan degree 
be denoted by n, its observability indices by { K , } ^ ! and the corresponding 
dual partition by {Ij}. From theorem 2.1, combined with (8),(9) it follows 
that if the original linear dynamical model (with Hankel matrix H) is an 
element of the set arma(p, q) then 

l P + i = 0 (27) 

and therefore 
Ui <p,i= 1,2,...,m (28) 
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and 
n < mp. (29) 

If alternatively our original linear model lies in the closure of arma(p, q) 
then (28) no longer has to hold, only (29) remains valid, which implies 

m 
y ^ k,j < mp, i — 1,2,. . . , rn. (30) 

This implies that there is an ARMA representation (A(z),B(z)) of this 
model (with Hankel matrix H ) with the property Y%Li max(Pi>9t) < mp. 
As one would expect, pi denotes the degree of the i-th row of A(z) and gt 

denotes the degree of the i-th row of B(z). 
Now we distinguish the cases d > 0 and d < 0. 
If d > 0, let 

B^d\z) = B(z) and 

B^~l\z) = B^(z)z + A(z)Hj.1J = d,d-l,...,l, (31) 

Taking {A{z),B(z)) = (A(z),B^(z)) one has an ARMA representation of 
the original model in the closure, i. e. its Hankel matrix is Tï and its direct 
feedthrough matrix is Ho, and it has the property 

m 
y^max(p,yg,- — d) < mp. (32) 
t = i 

If d < 0 then the flrst d Markov matrices in Ü are zero. Applying the 
algorithm (4) to (A(z), B(z)) it follows from that algorithm and (5) that the 
coëfficiënt matrices of z°, z1,..., z d _ 1 in B(z) are zero and that the polyno-
mial matrix pair (A(z),B(z)) given by (A(z),B(z)) = (A(z),z~dB(z)) is an 
ARMA-representation of the original model. Clearly 

pi = pi and q~i = §,- — d, i = 1,2,. . . , m (33) 

and therefore for such a model in the closure one flnds an ARMA represen­
tation with the property Y,ï=i max(Pii1i ~d) < mp indeed. This shows that 
all models in the closure are of the form prescribed by the theorem. 

It remains to show that all models of the prescribed form are in the 
closure indeed. 

Again we distinguish the cases (i) d > 0 and (ii) d < 0. 
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(i) Suppose d > 0. As noted above, (2.1) is equivalent to the statement 
that a linear dynamica! model belongs to arma(p,q) iff the corresponding 
Hankel matrix Ti = Tid satisfies the property (28). There are no other 
restrictions on Ü and therefore it follows from Theorem 3.1 that all linear 
dynamical models for which (29) holds are in the closure indeed. In exactly 
the same way as above one can deduce that the set so obtained is the set 
of all models which have an ARMA-representation for which (32) holds, as 
was to be shown. 

(ii) Finally, suppose d < 0. In this case Ü will in general contain many 
zero entries by construction. Therefore Theorem 3.1 cannot be applied di-
rectly. Let (A(z),B(z)) € arma(p,q). As noted in the proof of (i), this 
implies that the corresponding Hankel matrix Ü = Hd satisfies the prop­
erty (28). As before let (A(z), B(z)) be an ARMA representation of a 
model with Hankel matrix H. If we do not take account of the zero re­
strictions for the moment, Theorem 3.1 tells us that there exists a sequence 
of ARMA(p,p) models that converges, in the topology of pointwise conver-
gence of the Markov matrices, to (A(z),B(z)). We know that the coëfficiënt 
matrices of z°, z1,..., z d _ 1 in B(z) go to zero in the limit. If in each element 
(A^k\z),B^k\z)),k = 1,2,... of the converging sequence of ARMA(p,p) 
models we put the coëfficiënt matrices of z°,z1,... , z d _ 1 in B^k\z) equal 
to zero, the resulting sequence, the fc-th element of which we denote by 
{A^k\z),B^k\z)), converges to (A(z),B(z)). In terms of the Markov matri­
ces this corresponds to putting the first d Markov matrices in H equal to 
zero and therefore convergence of the resulting sequence is clear. Finally, 
consider the sequence {(A<-k\z),z-tB^Xz))}^, oi ARMA{p,q) models. It 
converges to (A(z),B(z)) = (A(z),z~dB(z)) and the theorem is proved. • 

(iv) Now we turn to the Cauchy index. As we have seen in the previous 
section, the Cauchy index is equal to n+ — ra_. Because n = n+ + n_ we 
can in turn determine n+ and n_ from the Cauchy index if n is known. We 
can therefore work just as well with (n+,n_) as with the Cauchy index and 
we will in fact do so. The pair (n+,n-) will be called the Hankel inertia of 
the system. 

We will use the obvious ordering on the set {(n+, n_) |n+ £ N , n_ £ N } , 
namely the one given by: 

(n'+,n'_) < (n+,n„) «=$> n'+ < n+ and n'_ < n_ (34) 

We can now state the results for this case. First a formulation in terms 
of the Hankel inertia. 

16 



Theorem 3.8 Let ( n + , n_ ) be fixed. The closure of the set of SISO linear 
dynamical models with Hankel inertia (n+,n~) consists of all SISO linear 
dynamical models for which the Hankel inertia (n'+, n'_) satisfies the inequal-
ity (n'+,n'_) < (n+,n-). 

Corollary 3.9 The closure of the set of SISO linear dynamical models wiih 
McMillan degree n and Cauchy index 77,77 6 Z consists of all SISO linear 
dynamical models with McMillan degree n' = n — d with d £ { 0 , 1 , . . . , n} 
and with Cauchy index rf with rf € {n — d, 77 — d + 1 , . . . , 77 + d}. 

Proof of theorem 3.8. Consider a SISO linear dynamical model with 
Hankel inertia (n'+,n'_) in the closure of the set of SISO linear dynamical 
models with Hankel inertia (n+,n-). From the continuity of the eigenvalues 
of the Hankel matrix with respect to the Markov parameters, it follows that 
n'+ < n+ and n'_ < n_. 

Consider a SISO linear dynamical model, given by a minimal repre-
sentation (F,G,H,J), with Hankel inertia (n'+,n'_) such that (n'+,n'_) < 
(n+,7i_) and (n'+ + n'_) < (n+ + n_) . We wiU show in a number of steps 
that this linear dynamical model lies in the boundary of the set of SISO 
linear dynamical models with Hankel inertia (n+, n_). 

Step 1. Because the boundary of a set of boundary points is included in 
the closure of the original set, it suffices to show the case in which (??+ + 
n_) — (n+ + n_) = 1. Because multiplication of the model by — 1 has the 
effect that n+ and n_ are interchanged, it will be clearly sufficiënt to show 
the result for the case in which n'+ = n + — 1 and n'_ = n_. 

Step 2. We will now first treat the case in which the linear dynamical 
model is asymptotically stable, i.e. the eigenvalues of F all have modulus 
smaller than or equal to one. Without loss of generality it can be then 
assumed that the quadruple (F,G,H,J) is a balanced realization, as de-
scribed in [8,9]. This means that there are singular values o\ > a2 > ... > 
0k > 0 with multiplicities 711,712,...,n* adding up to the McMillan degree 
n'++n'_; signs Sj £ {—1,1}, j = 1,2,... ,fc and sequencesof positivenumbers 
{9j}kj=v {ai,i> • • • yaj,n}-i}, j = 1,2,...,k, such that 

GT = [ffief | g2el | . . . | gkel] 

H = [s^giej | s2g2e2 | • • • | skgkel] 

F = [F(i,j)]*ïij=i, with F(i,j) G RniXn> given by 
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F(jJ) = 

-5J/(2aj) ajtl 

-ajtl O a i ,2 
O a :i,3 

O aj,n,- i 

F(i,j) = 

-9i9j/(siSjai + aj) O . . . O 
O O . . . O 

O . . . O 

(35) 

' F 0 ' 
0 0 

It is well-known (cf. [8] ) that the Cauchy index is given by rj = Y$=i sj-
It can now easily be seen from this canonical form, that by choosing a small 
positive singular value <7fc+i, with multiplicity n,k+i = 1, such that ajt+i < ak 
and by choosing furthermore gk+i = r , r > 0 and Sfc+1 = 1 one obtains, for 
each positive value of r a system with McMillan degree n'+ + n'_ + 1 and 
with Cauchy index n'+ — n'_ + 1. So the Hankel inertia of such a system is 
(n+,n-) = (n'+ + l,n'_). If r converges to zero from above the corresponding 
curve of matrix quadruples converges in the topoiogy of the entries of the 
four matrices to the matrix quadruple 

.—h i m - J , 
and therefore the corresponding curve of linear dynamica! models converges 
in the topoiogy of pointwise convergence of the Markov parameters, to the 
model that we started with. This proofs the case of asymptotically stable 
F. 

Step 3. If F is not asymptotically stable, there exists a X € (0,1) such 
that X2F is asymptotically stable. According to the results of Step 2 there 
exists a curve of models with Hankel inertia (n+,n-) converging to the 
model with state space representation (X2F,G,H,J). Multiplication of F 
with A2 is equivalent to pre- and post-multiplying the Hankel matrix by A = 
diag(l,X,X2,...). Therefore according to Sylvester's theorem the resulting 
Hankel inertia will not have changed. Pre- and post-multiplying the Hankel 
matrices of all the linear dynamica! models on the curve by A _ 1 one obtains 
a curve of linear dynamical models having Hankel inertia ( n + , n _ ) which 
converges in terms of the matrix entries of a state space representation 
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and therefore also in the topology of pointwise convergence of the Markov 
parameters, to the linear dynamical model that we started with. • 

4 Conclusions 

The results presented on the boundaries of several families of ARMA mod­
els (linear time-invariant dynamical models) show that these boundaries 
are nontrivial, especially in the multivariable case. We have shown how 
the boundaries can be identified using results from mathematica! systems 
theory. Understanding these boundaries can be important in practical sit-
uations. E.g. if one uses the maximum likelihood method to identify (i.e. 
estimate) the model, and the maximizing model happens to lie on the bound-
ary, in running some iterative optimization algorithm one will typically flnd 
that some of the parameters tend to infinity, while in fact convergence is 
taking place. To avoid this kind of problem one could use an overlapping 
parametrizations approach to system identification (see e.g. [4] and the 
references given there). An interesting open question is: do there exist al-
ternative parametrizations for ARMA models from which convergence to 
another "structure" can be seen directly, just as convergence to a lower or­
der system can be seen directly from a balanced realization by monitoring 
the smallest Hankel singular value, and if so how can they be constructed? 
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