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MONOTONE IMPROVEMENT OF THE SOCIAL WELFARE IN AN INDUSTRIAL 
NETWORK. 

1. Introduction 

In this paper we consider an industrial network, which consists of n production 
sectors. Each sector produces one good and uses the other goods as inputs. A network 
state is a collection of production vectors y = {y*,...,yn}, with y1 the production vector of 
inputs and output of sector i, i = l,...,n. A network state yields a net output vector Ej y1, 
which is consumed by an external consumption sector. A network state is optimal if it 
maximizes the utility of the consumption sector. Initially, the prices of the commodities 
are fixed. Given the fixed prices, each production sector maximizes its profit over the 
production set. Ho wever, the inputs are con trolled by a central planning institution. This 
institution rations the inputs of the production sectors. The task of the central planning 
institution is to maximize the utility of the consumption sector by setting an efficiënt 
rationing scheme. Under the profit maximizing behaviour of the production sectors, a 
rationing scheme is efficiënt if there is no other rationing scheme, such that the resulting 
network state yields a higher utility to the consumption sector. In Braverman and Levin 
[1] the necessary conditions for an efficiënt rationing scheme have been discussed. In this 
paper we first discuss the question how to reach an efficiënt rationing scheme. Therefore 
we introducé an adjustment process, which adjusts the rationing scheme until an 
efficiënt rationing scheme has been achieved. Along this adjustment path the utility of 
the corresponding net output vector increases monotonically. 

In the second part of the paper prices and rationings are adjusted until under the 
profit maximizing behaviour of the production sectors an optimal state has been reached. 
Again we show that along the path the utility increases monotonically. Furthermore, the 
price adjusting process is based on local information. 

2. The model 

We consider a production network consisting of n production sectors, indexed j = 
l,..,n. There are also n commodities. Production sector j produces commodity j and uses 
the commodities i = l,...n, i # j as inputs. So, production sector j is characterized by a 
production set YJ C {y e R n | yj < 0, i * j}. Each production sector is profit maximizing 
given the prices of the commodities. Let Y = Ej Y1 be the total production set. 
Furthermore R n

+ denotes the set {y e R n | yj > 0, j = l,...,n}. We make the following 
assumptions on the production sets. 

Assumptions. 
Aj . Y1 is closed, convex and strict convex with respect to the output. 
A2- Y1 has a smooth boundary with respect to the output. 
A3. -R n

+ C Y1. 
A4 . for all i, 0 e Y1. 
A5. Y n - Y = {0}. 
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With strict convex with respect to the output we mean that if y1 E Y* and z1 e 
Y1 and yxj > 0 and/or z\ > 0, then x1 is not in the boundary of Y* with x* = ay1 + (1-
a)zx for any 0 < a < 1. With smooth boundary with respect to the output we mean that 
the boundary is smooth at any point y1 in the boundary with yJj > 0. Let 5Y1 = {y1 E 
Y^z1 £ Y1 if z\ > y\ and z1^ < y1^, k # i}, i.e., 5Y1 is the upper boundary of Y1. So, 
according to A2 and A3, SY1 contains the zero point and all production vectors y1 on the 
boundary of Y1 with positive output of commodity i. Under assumption Aj and A2 this 
upper boundary SY1 of the production set can be characterized by a differentiable 
strictly convex transformation function f1 satisfying f^y1) = 0 for all y1 € SY1 and fKy1) 
< 0 for all y'1 E Yi\5Yx. At a point y* E 6Y\ let DÏ(yi) be the gradiënt of f1 at y'1, i.e., 

Di(yi)-(fifi/*yii,...,«fi/*yin)T-

A network state is a collection y = {y1,...^11}, such that y'1 £ Y1, i = l,...,n. Let 
x(y) = Ej y1 be the net output of network state y = {y1,...^11}. Assume w > 0 to be a 
vector of initial resources. 

Definition 2.1. 
A network state y = {y*,...,yn} is admissible if x(y) + w > 0. 

The consumption sector is modelled by an agent having a utility function u: Rn
+ —• R. An 

admissible network state yields a utility u(y) & u(x(y)+w) to the consumption sector. We 
make the following assumptions on the utility function. 

Assumptions. 
Bj. The utility function u is strict quasi-concave and continuously differentiable. 
B2. The utility function u is strict monotone increasing, i.e., u(x) > u(y) for all x,y e 
Rn

+, such that with XJ > yj, j = l,...,n and for at least one j , XJ > yj. 

A central planning institution wants to maximize the utility of the consumption 
sector. In this paper we want to discuss two questions. First of all, we consider the 
situation that all commodities have fixed positive prices. Under these fixed prices the 
production sectors want to maximize their profits. However, profit maximizing does not 
lead to a utility maximizing network state. To improve on the situation the central 
planning institution sets maximum quantities on the inputs of the production, i.e., the 
inputs are rationed by the planning institution. Let E1 = {e1 G Rn | e1^ > 0, k = 1,..., n 
and e*i = 00} be the set of rationing vectors of sector i. So, e1 E E1 is a vector of 
maximum inputs for production sector i, i = l,...,n, with e^ = 00. Then, for e1 E E1, let 
Yi(ei) = {y* E Y* | yi > -e*} be the feasible production set of sector i under the rationing 
vector e1. Furthermore, let y^P.e1) = {y1 E Y^e1) | pTyi > p1^* for all zx E Y^e1)} be the 
set of profit maximizing production vectors of sector i, given the vector p of fixed 
prices and the feasible production set Y^e1). Under assumption Ai we have that y\v,Ql) 
is unique and that y^P»-) : Rn -+ Y1 is a continuous function. Finally, let y(p,e) denote the 
network state {y^(p,e^),...,yn(p,en)}. A rationing scheme e = (e^,...,en) is efficiënt if it 
maximizes the utility under the profit maximizing behaviour of the production sectors. 
So, efficiency is defined with respect to a vector p of fixed prices. 
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Definition 2.2. 
Let p = (pi,.-»Pn)T be a vector of fixed positive prices. Then the rationing 

scheme e = {e*,...,en} is admissible if y(p,e) is an admissible network state. 

Lemma 2.3. There exists an admissible rationing scheme e. 

Proof. For all i, take e1^ = 0, k # i. From assumptions A4 and A5 it follows that yHp.e1) 
= 0 and hence x(y(p,e)) + w = w » 0. 

Definition 2.4. 

Let p - (pi,.»»Pn)T b e a vector of fixed positive prices. Then the rationing 
scheme e = {el,...,en} is efficiënt if it is admissible and if u(y(p,e)) > u(y(p,d) for each 
admissible rationing scheme d = {d^,...,dn}. For an efficiënt rationing scheme e = 
{e*,...,en}, y(p,e) is an efficiënt network state. 

An efficiënt network state maximizes the utility under the profit maximizing 
behaviour of the production sectors given the vector of fixed prices. In the next 
definition we define an optimal network state. In such an optimal network state the 
utility of the consumption sector is maximized, given the production technologies. 

Definition 2.6. 
A network state y is optimal if y is admissible and if u(y) > u(z) for any 

admissible network state z. 

We want to give an adjustment process which starts at an admissible rationing 
scheme under a vector of fixed prices. In the next section we describe the adjustment to 
an efficiënt rationing scheme given the vector of fixed prices. We show that there exists 
an adjustment process along which the utility of the consumption sector increases 
monotonically. In section 4 we show the existence of a price adjustment process such 
that the utility of the corresponding efficiënt network state increases monotonically until 
an optimal state has been reached. 

3. Adjustment of the rationing scheme 

In this section we give an adjustment process from an admissible rationing 
scheme to an efficiënt rationing scheme given a vector p of fixed positive prices. The 
main result is that there exists an adjustment path along which the utility of the 
consumption sector increases monotonically. This implies that at any admissible rationing 
scheme the utility can be increased by an arbitrarily small change of the rationing 
scheme. Hence, at any admissible rationing scheme it is possible to improve the network 
state locally. We first introducé some notation. The set 

XJ(p) = {y1 e YJ| there exists some e* e E*, such that y1 = y^P^e1)}. 
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Since y1(p,e1) maximizes the profit of the production sector given the vector p of prices 
and the rationing scheme e1, we have that y1(p,e1) G 5Y1. Under profit maximization of 
the production sector, any y1 e XJ(p) can be forced by the central planning institution 
through rationing of the inputs of sector i. We have the following lemma. 

Lemma 3.1. 
Under Assumptions Aj and A2, X*(p) = {yi G «Y»| D^y^/D^y 1 ) > Pk/pj, k * 

i}. 

Proof. The vector y1(p,e1) solves the maximization problem 

(3.1) max py1 subject to y1 G Y1 and y\ > -&\, k # i. 

Since p » 0 it follows that y^P.e1) G SY1 so that y*(p,e*) satisfies f*(yi(p,ei) = 0. Since 
pyi is a concave function of y* and f^y1) is a convex function we can apply the Kuhn 
Tucker theorem and it follows from the extended Lagrangian 

L = pyi - Xf'W - Ek#i Mk(yJk + *k) 

that the solution y1(p,e1) satisfies 

P i = X D^y1) 
and 

p k = A D^y1) + fik 

with /ik > 0 the Kuhn Tucker multiplier of y*k + e1^ > 0. From this it follows that 
DVyVüij/yi) > Pk/Pi, k # i, for any y* G X^p). On the other hand, if y*1 G SY'1 

satisfies Dxk(y 1)/D1i(y *) > Pk/Pi» t n e n y 1 solves (3.1) with y Jk = - e ^ , k #i. 

Lemma 3.1 says that X*(p) is the set of production vectors on SY1, such that the 
rate of commodity transformation between the commodities k and i is at least equal to 
the ratio of the prices of the commodities k and i. So, XJ(p) is the set of prodution 
vectors at which the shadow prices of the inputs are at least equal to the real prices. 
Furthermore, let PJ(p) be the orthogonal projection of X*(p) on {x G Rn| XJ = 0}, i.e., 

Px(p) = {z G Rn| ZJ = 0 and there exists some yj, such that 

zi,-,zi_i,yi,z1+1,...,zn)T e XJ(p)} 

From Assumption A3 it follows that P*(p) C Y1. 

Assumption. 

C. for each i, P*(p) is convex. 

For y e XJ(p), let y"1 = (yi,...,yi_i,0,yj+i,...,yn)T G P*(p) be the corresponding vector of 
inputs. Then, assumption C says that for each two x, y G Xx(p) and for any 0 < a < 1, 
there is a vector z G Xx(p), such z"1 = ax -1 + (l-a)y-1, i.e., for each mixture of the 
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inputs of x and y, there is a z G X*(p) which inputs are exactly that mixture. So, if two 
production vectors can be forced by the central planning institution, then the production 
vector in SY1 corresponding to any mixture of the two input vectors can be forced. This 
is a rather strong assumption, which does not follow from assumption A\. In appendix A 
we show that a Cobb-Douglas transformation function satisfies assumption C. In 
appendix B we give an example of a transformation function, which satisfies assumption 
Aj, but does not satisfy assumption C. 

Finally, we define Ö(p) - Conv {X*(p), pi(p)}, where Conv {A,B} means the 
convex huil of the sets A and B and let C(p) = Ej C*(p). 

Lemma 3.2. For all i, CKp) C Y1 and 0 e C^p). Moreover, C(p) is convex and C(p) c Y. 

Proof. 
Since XJ(p) c Y1, PJ(p) C Y1 and Y1 is convex it follows that d(p) c Y\ i = l,...,n. 
Moreover, analogously to lemma 2.3 we have that 0 G X*(p) and hence 0 G C1(p). 
Clearly, since the sum of convex sets is convex, C(p) is convex. Finally, from •CI(p) c Y1 

it follows that C(p) - Ej d(p) C Ej Y1 = Y. 

From lemma 3.1 it follows that X*(.p) belongs to the boundary of CKp), while 
X(p) s Ej X^p) belongs to C(p). Now, let e = {e1,...^11} be an admissible rationing 
scheme. From lemma 2.3 we know that such a rationing scheme exists. Furthermore, let 
e (p) = {e 1(p),...,e n(p)} be an efficiënt rationing scheme and x (p) = x(y(p,e (p)) = Ej 
yJ(p,e a(p)) the corresponding net output vector. 

Lemma 3.3. There exists an efficiënt rationing scheme e (p) = {e ^(p),...,e n(p)}. 
Moreover, x (p) is unique. 

Proof. Clearly x (p) follows from 

max u(z) such that z e C(p) and z + w > 0. 

From Lemma 3.1 it follows that XJ(p) is closed in SY1, so that CHp) is a closed subset of 
Y1. By definition, we have that C1(p) is convex. So, C(p) is closed and convex as the sum 
of closed and convex sets. From assumption Aj it follows that Y is closed and convex, so 
that also Yw s Y n { z G Rn| z + w > 0} is closed and convex. Moreover, from the 
assumptions A3 and A5 it follows that the set Yw is bounded and hence Yw is compact 
and convex and hence C(.p) n Yw is compact and convex. Since C(p) c Y we have that 
C(p) n Yw = C(p) n {z G Rn | z + w > 0} and hence C(p) n {z G Rn | z + w > 0} is 
compact and convex. Since 0 G C(p) it follows that there exists a feasible z with z G 
C(p). From assumption Bj it follows that u(z) has a unique maximum x (p) on C(p) n {z 
G Rn | z + w > 0}. Since C(p) = Ej C*(p) we have that there exists elements x1 G CHp), i 
= l,...,n, such that x (p) = Ej x1. From assumption B2 it follows that x1 G SY1 and hence 
it follows with assumption C that x1 G X^p), i = l,...,n. By definition this implies that 
there exists a rationing scheme {e 1(p),...,e n(p)} such that x1 = y^P^ HP))» i = l,—,n. 
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Let x (p) be the utility maximizing element of C(p) and x* = y*(P>e *) 
corresponding profit maximizing elements in SY1 under e 1. Although x (p) is unique, it 
may be sustained by various rationing schemes. For instance, suppose that e J satisfies 

* ril rit * * ' r i t * ' i k ' 

y1k(p,e ) > -e *k. Then each rationing e1 with y^p .e ) > -e1^ and e1; = e 1 j , j # k 
yields x* = yi(p,e*). To obtain a unique choice of the rationing scheme we define the set 
E*(p) of minimal rationing vectors given the price vector p, i.e., 

EJ(p) = { e1 G Rn | e1! - oo and e ^ - -y^ÏP.e1), k * i } . 

So, if e1 G E1(p), we have that in the profit maximizing point each input is equal to the 
maximium input. Now, let E(p) = lij Ei(p) and let e (p) = {e ^p),...^ n(p)} be the 
unique rationing scheme in E(p) sustaining x1, i = l,...,n, with x1 G X*(p), i = l,...,n, 
such that x (p) = Ej xK 

We consider now the problem how to reach the efficiënt rationing scheme e (p) -
(e HP)»—.e n(p)} G E(p). Let e = {e1,...e11} be an arbitrarily admissible rationing scheme 
given a vector of fixed prices p and let y^P.e1) be the corresponding profit maximizing 
production of production sector i. Furthermore, let d = {d*,...,dn} G E(p) be the 
corresponding minimal rationing scheme. We now define a path of rationing schemes in 
E(p) from d to e and we show that adjusting the rationing scheme from d to e the 
utility of the network state increases monotonically by using a Liapunov function. For t 
G [0,oo), let e(t) be defined by 

(3.2) 6e(t)/5t - e*(p) - e(t) with e(0) - d. 

Lemma 3.4. 
For any t, e(t) is a rationing scheme in E(p). 

Proof. 
The solution to (3.2) is e(t) = (1 - e-t)e (p) + e- td, t > 0. Hence, for each t, e(t) is a 

rit ri^ 

convec combination of e (p) and d. Since e (p) and d are both minimal rationing 
schemes we have for all i that 

(3.3) yi
k(p,e*(p)) - - e ^ p ) and yik(p,d) = - d V for all k # i. 

Because of assumption C there is for all t a rationing scheme e^(t) G E(p), such that for 
all i 

(3.4) yyp,e0(t)) = (1 - e-t)yik(p,e*(p)) + e"tyik(p,d), k # i, 

Since e^(t) is a minimal rationing scheme we also have that 

(3.5) yi
k(p,e0(t)) = -eO^t), k + i. 

From (3.3), (3.4) and (3.5) it follows that eoi
k(t) = ( l - e ' ^ V P ) + e" t d ik a n d h e n c e 

eoi
k(t) = e ^ t ) , k # i, i = l,...,n, which proves that e(t) G E(p) for all t. 
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We now define the function V: E -» R by V(e) = u(y(p,e*(p))) - u(y(p,e)). Recall that 
u(y(p,e)) - u(x(y(p,e))+w) with x(y(p,e)) - 2^ yi(p,e). 

Lemma 3.5. The function V(e) is a Liapunov function. 

Proof. 

By definition, V(e (p)) = 0 and V(e) > 0 for all e # e (p). It remains to show that 
5V(e(t))/« < 0 for t > 0. To do so we define for each t the function ft(r): [0,1] -+ E(p) by 

ft(r) . re*(p) + (1 - r)e(t). 

We have that 

(3.6) 6ft(T)/6T\T=0 = e*(p) - e(t) - 6e(t)/«t. 

According to Lemma 3.4 we have that e(t) E E(p), so that for all r e [0,1], ft(r) is a 
convex combination of the two rationing schemes in E(p). Analogously to the proof of 
Lemma 3.4, we have that fj(r) e E(p) for all r. Hence, it follows that for all i 

Y V P . W ) - ry\(p,e*(p)) + <l-r)e-ty*k(p,e(t)), k # i 

and hence we have that the inputs in T are a convex combination of the inputs at r = 0 
and T = 1. Since the production sets are strict convex and y1(p,ft(7')) £ SY1, this implies 
that 

yilfoft to) > Ty'^(p,e*(p)) + (l-rWiüMt)) 

Since the production sets have a smooth boundary this implies that there exisits a smooth 
function rt: [0,1] -* Rn , such that 

(3.7) x(y(p,ft(r)) = Ej yKp.ftW) = ^ i YKPAP)) + <l-r)Ei yHp,e(t)) + r t(r), 

with rt(0) = r t(l) = 0 and for all r, 0 < r < 1, rti(r) > 0, i = l,...,n. From (3.7) it follows 
that 

(3.8) 5[x(y(p,ft(r))]/5r = Ei y»(p,e*(p)) - Ei yi(p,e(t)) + Srt(r)/Sr = 

= x(y(p,e*(p)) - x(y(p,e(t))) + Srt(r)/Sr. 

On the other hand we have that 

(3.9) «[x(y(p,e(t))]/5t = EiEk [Sx/sék][Se\(t)/St]. 

From (3.6) and (3.9) it follows that 
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(3.10) *[x(y(p,e(t))]/5t = E ^ •[fix/fie»kI«ft(r)V**1f^o] = «tx(y(p,ft(r))]/5r1r=0. 

Hence it follows with (3.8) and (3.10) that 

SV(e(t))/tt = - *u(y(p,e(t)))/St = - (Du)Tsx(y(p,e(t)))/5t = 

= -(Du)T[x(y(p,e*(p)) - x(y(p,e(t))) + 5rt(r)/5r|T=0] 

with Du = (5u/5xj,...,5u/5xn)
T the gradiënt vector of the utility function u in 

x(y(p,e(t))). Since u is strict quasi-concave we have that (Du)T[x(y(p,e (p)) - x(y(p,e(t)))] 
> 0. Moreover, since rtj(r) > 0, i = l,...,n and rt(0) = 0, we have that 5rtj(r)/Sr-|r_Q > 0, i 
= l,...,n. Since u is strictly monotone increasing it follows thast (Du)T[Srt(7-)/Srir_o] > 0. 
This proves that 5V(e(t))/« < 0 for all t. 

Theorem 3.6. Under the assumptions A, B and C we have that 
(i) The solution path of the system of differential equations 5e(t)/5t = e (p) - e(t) with 
e(0) = d converges to the efficiënt rationing scheme e (p) for each d E E(p). 
(ii) The utility u(y(p,e(t))) increases monotonically along the solution path. 

Proof. 
(i) From Lemma 3.4 we have that e(t) is in the compact set E(p) for all t. Lemma 3.5 
says that V(e) is a Liapunov function satisfying V(e) > V(e (p)) = 0 for all e # e (p) and 
5V(e(t)/5t < 0 for all t > 0. This proves assertion (i). 
(ii) This follows immediately from the fact that 5u(y(p,e(t)))/5t = - SV(e(t))/St > 0 for all 
t > 0. 

To define the system of differential equations we have to know the efficiënt 
rationing scheme e (p). This is rather unsatisfactorily, because it means that we have to 
know the global optimum in advance in order to be able to define the adjustment 
process. In fact we are looking for an adjustment process based on local information. 
Although such a process is not available, theorem 3.6 implies an important result. It says 
that for any initial rationing schem d e E(p), the utility increases along the line from d 
to e (p). So, for any d we have that the rationing scheme e = d + A(e (p) - d) yields a 
higher utility for any A > 0. So, the utility can be improved locally and to find a better 
rationing scheme a local sea*ch suffices. This gives the main result of this section. 

Main result. For any d e E(p), d # e (p), there is a rationing scheme e E E(p) 
arbitrarily close to d, such that the utility under e is higher than the utility under d. 

4. Adjustment of the orices. 

In this section we give a price adjustment process along which the utility under 
the efficiënt rationing scheme increases monotonically. It will be shown that the process 
converges to a system of prices at which the corresponding network state is optimal. 
Because of the strict convexity of the production sets and the strict quasi-concavity of 
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the utility function there is a unique optimal network state y = {y ,...,yn}. It is well-
known that under the assumptions A and B there exists a price vector p > 0, such that 

(i) p*yi > p*yi for all y1 e Y1, i - l,..,n, 
(ii) p x > p x(y) for all x such that u(x) > u(x(y)) 

for the optimal network state y = {y1,...,yn} (see e.g. Debreu [2]). So there is a price 
vector p , such that the optimal network state y is an equilibrium of the economy 
relative to the price system p . In the following we normalize the sum of the prices to be 
equal to one, so that each price vector p G S « {p G R n | pj > 0 and Ej pj = 1}. We also 
normalize the sum of the components of the gradiënt of u to be equal to one. Then, 
because of the differentiability of the utility function the price vector p is unique and 
equal to the normalized gradiënt of u(x) at x(y). We show that for any arbitrarily chosen 
initial price system jfi, there exists a price adjustment mechanism leading from p^ to p , 
such that along the path of prices the utility of the efficiënt network state y(p,e (p)) 
increases monotonically. At p , we reach the optimal network state as the efficiënt 
network state y(p ,e (p )). Let u(p) « u(x (p)+w) be the utility of the unique optimal 
element of C(p). Then we define Du(p) to be the normalized gradiënt of u at x = 
x (p)+w, i.e. 

Du(p) = (5u/5x1,...,5u/fix1)T/[Ej 6U/SXJ] 

at x = x (p)+w. Observe that assumption B2 implies that at each x > 0, SU/5XJ > 0, j = 

l,...,n. We now define for t > 0, the system of differential equations 

(4.1) 5p(t)/5t = Du(p(t)) - p(t), 

with p(0) = p G int S some arbitrarily chosen initial price system. We show that the 
solution of this system of differential equations converges to p . 

Lemma 4.1. 

For any t, p(t) e S. 

Proof. Take h(t) = Ej pj(t). Then 6h(t)/5t = Ej 6pj(t)/6t - Ej {Du(p(t))j - Pj(t)} = 1 - 1 = 
0. Hence h(t) i a constant function of t and E; p;(t) = E: p;(0) = E: pj = 1 for all j . 
Moroover, Du(p(t))j > 0 and hence 5pj(t)/5t > 0 if pj(t) = 0. Hence, for any t, pj(t) > 0, 
j = l,...,n. This proves that p(t) G S for all t. 

We now define the function V: S -» R by V(p) = u(x (p )+w) -u(x (p)+w). 

Lemma 4.2. The function V(p) is a Liapunov function. 
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Proof. 
By definition, V(p ) = 0 and V(p) > 0 for all p * p . It remains to show that 5V(p(t))/6t 
< 0 for t > 0, or equivalently that Su(x*(p(t))+w)/6t > 0 for t > 0. With u(t) = u(p(t)) we 
have by definition of u(p) that 

u(t) = u(x*(p(t))+w) = maxe G E(p( t)) u(y(p(t),e)). 

Equivalently for a network state y - {y*,...,yn} we have with u(y) = u(x(y)+w) that 

u(t) = maxy u(y) such that y1 G XKp(t)), i = l,...,n. 

Let y l(t), i = l,...,n, be the solution to this maximization problem. Then we have from 
the convexity of u that on t = r, (Du(r))Tyi < (Du(r))Ty*i(t) for all y* e XKPCO). Hence, 
on t = r, y *(t) is the solution to 

max (Du(7-))Tyi such that y» e XHp(t)) 

Let 7IV0 be defined by 

fl-Vt) = max (Du(r))Tyi such that y* G XHp(t)). 

So, by definition we have that i r^ t ) = (Du(r))Ty *(t) on t = r. Hence, 

5u(t)/5t|t=T = Su(x*(p(t))+w)/St|t=r = {(Du(t))T Ei Sy*'\t)/St)\t=T 

= (Du(r))T Ej «y*i(t)/5t}|t=r = Ei S^t)/St\t=T. 

It remains to prove that Ei far^O/Stlj-,- > 0 for all r. Therefore we prove that for all i, 

5:ri
T(t)/5t|t=T > 0 for all r. 

From Lemma 3.1, it foliows that 

Xkp(t)) = {y1 G SYi | Dik(yi)/Dii(yi) > pk(t)/P i(t), k # i}, 

where D W ) = «WVSy 1 ; , j = l,...,n, with f'1: R n -f R such that W ) = 0 if y* G 8Y'1. 
From production theory we know that f1 can be chosen such that fKy1) = y*i - g1(y"1) 
with g1 the strict concave efficiency function yielding output y*i to the input vector y"1 

- (y1
-l,-.y1i-l.y1l+l«-»y1n)T; Taking f^y1) = y^ - gKy"*1), we have that D^y1) = 1 for 

all y1. So, for this function f1, X1(p(t)) becomes 

XHP(O) = {y1 G SY* | -Dik(yi) > pk(t), k # i}, 

with pk(t) = pk(t)/Pi(t). Hence ir^t) = max (Du(r))Tyi such that fi(yi) = 0 and D ^ y i ) 
> pk(t), k # i. Let 

LVyUwt) = (Du(r))V - ^W - Ek#i #ik{pk(t) - D^y*)} 
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be the associated Lagrangian with solution y1(t), A(t) > 0 and /zk(t) > 0 to the 
maximization problem and with nk(t) > 0 if the corresponding constraint is binding. Then 
applying the envelope theorem we have that 

(4.2) STrVO/St = 8Vj(yiXn;t)/8t = - E k # i Mk(t)5pk(t)/5t. 

Now observe that 

(4.3) *pk(t)/« = «(pk(t)/Pi(t))/5t = {«(pk(t)/«t}/Pi(t) - pk(t){5pi(t)/5t}/{pi(t)}
2. 

With u(t) s u(p(t)) it follows from (4.1) and (4.3) that 

(4.4) 5pk(t)/5t - 5(pk(t)/Pi(t))/«t = 

{Du(t))k - pk(t)}/Pi(t) - pk(t){Du(t))i - Pi(t)}/{Pi(t)}2 = 

{Du(t))i/pi(t)){Du(t))k/Du(t))i - pk(t)}. 

From (4.2) and (4.4) it follows that 

(4.5) 6^t)/6\\t=r = - E k # i nk(.r)Spk(t)/St\t=T -

- E k # i Mk('-){Du(r))i/pi(r)){Du(r))k/Du(r))i - pk(r)} -

- E k # i /x*k(r){Du(r))k/Du(r))i - pk(r)} 

with /i*k(r) = %(r){Du(r))i/pj(7-)} > 0, k - l,...,n. From S L ^ A ^ t ) / ^ = 0 we obtain 
that 

(4.6) Du(r)j = A(r)Dj(yi) - E k # i nk{r)T>\p\ 

at y1 = yV), j = l,...,n, where Vl
kp

{) = SD^y^/Syij = ^ f K y t y t y W j - s i n c e & W 
= 1 and hence D1

kj(y
1) = D1jk(y1) = 0 , for j = i expression (4.6) becomes 

(4.7) Du(r)i = A(r)Di(yi) = A(r). 

Hence 

(4.8) «7rVt)/«| t=f = - E j # i /j(r){Du(r))j/Du(r))i - Pj(r)} = 

- E j # i /j(r){A(r)Dij(yi) - E k # i Mk(r)Di
kj(yi))/Du(r))i + E j # i /j(7-)Pj(r)} = 

E j # i M*j(r)(Pj(r) - A(r)Dij(yi)/Du(r))i} + 

Ej#i /i*j(r){Pj(r) - Dij(yi)} + EjEkAij(r)/xk(r)Dikj(yi)/pi(r). 

Since for all j # i, /i j(r) = 0 if Pj(r) # Dij(y*) and the Hessian matrix 

[D1kj(y1)]j,k=l,...,n °f t h e convex function f^y1) is positive definite, (4.8) becomes 
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S*Vt)/tt|t=r = SjEk/ij(r)/ik(T)Dikj(yi)/Pi(r) > O, i = l,...,n. 

This proves that 6u(t)/6t|t=r = Ej 57r1
T(t)/5t|t_r > 0 and hence V(p) is indeed a Liapunov 

function. 

Theorem 4.3. Under the assumptions A, B and C we have that 
(i) The solution path of the system of differential equations 5p(t)/5t = Du(p(t)) -

p(t) with p(0) = p converges to the optimal price vector p for each positive price vector 

P°. 
(ii) The utility u(p(t)) = u(x (p(t))) increases monotonically along the solution 

path. 

Proof. 
(i) From Lemma 4.1 we have that p(t) is in the compact set S for all t. Lemma 4.2 says 
that V(p) is a Liapunov function satisfying V(p) > V(p*) = 0 for all p * p* and 
SV(p(t)/5t < 0 for all t > 0. This proves assertion (i). 
(ii) This follows immediately from the fact that 5u(p(t))/5t = - 5V(p(t))/6t > 0 for all t > 
0. 

The main result of Theorem 4.3 is that the local adjustment of the prices 
according to the system of differential equations (4.1) yields a convergent process along 
with the utility increases monotonically. 
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Appendix A. 

In this appendix we show that Cobb-Douglas production functions satisfy assumption C. 

In case sector i has a Cobb-Douglas production set, we have that 

Yi = {y* G RUf yij < Kjüj^i ( - y ^ , y*j < 0}. 

Let the transformation function be given by 

f i ( y i ) . l n y i . . m K i - E j # i ajln(-yij) 

Then we have that D1ic(y
1)/D1j(y1) = a^y^/C-y1^) and hence 

XJ(P) - {y1 G SYH a k yV(-yi k ) > p k / P i , k # i}. 

With y*i = KjIIj^i ( -y ' j^ j for y* G SY1 we obtain 

X H P ) - {y1 G sYh {akKiPi/Pk}nj#i,k (-yijW * ( -y^ ) 1 " 0 * . k * i}. 

Now, let y* an element of P*(p). Then by definition of pi(p), y*i = 0 and the other 
components of y1 satisfies the 'Cobb-Douglas' restriction 

(-yik) l-"k < {a k K i P i /p k }n j # i j k (-yij)°j, k # i. 

From this it follows that for any two elements u* G P*(p) and v1 G PJ(p) als the convex 
combination 

w* = tuJ + (l-t)vi 

is in PJ(p) for any t G [0,1]. Hence P*(p) is convex. 
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Appendix B. 

In this appendix we show by a counterexample that the assumption of the convexity of 
Y1 does not imply the convexity of Px(p)- For n = 3 we take for i = 1 

fl(y) = yj + (y2 + 1)2 + (y3 + 1)2 _ (y2)2y3 _ 2 

and 

Y1 - {y1 G R3 | -1 < y ! 2, y*3 < 0 < y 1 ! and f^y1) < 0} 

This set Y1 is convex. However, for p = (1,1,1)T, we obtain with for ease of notation y1 

denoted by y that 

XKP) = { y e SYh 2(y2 + 1) - 2y2y3 > 1 and 2(y3 + 1) - (y2)2 > 1} 

and hence 

pi(p) - {y G R 3 | yi = 0, -1 < y2 , y3 < 0, 2(y2 + 1) - 2y2y3 > 1 and 

2(y3 + 1) - (y 2 ) 2 > 1). 

Hence, for y G P^p), -1 < y2 , y 3 < 0 satisfy 

-y 2 < 1/(2 - 2y3) and (y2)2 < 1 + 2y3. 

This set of feasible values of y2 and y 3 is not convex. 


