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Abstract

In this paper we consider the problem of achieving an optimal state in an industrial
network. In such a network of production sectors each sector maximizes its profit. For
given prices an network equilibrium is attained by quantity rations on the inputs of the
production sectors. It is shown that there exists a price adjustment process with the
property that the utility of the consumption sector at the resulting equilibrium network
state increases monotonically, As a result of this property the process converges to an
optimal network state,
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MONOTONE IMPROVEMENT OF THE SOCIAL WELFARE IN AN INDUSTRIAL
NETWORK.

}. Intreduction

In this paper we consider an industrial network, which consists of n production
sectors. Each sector produces one good and uses the other goods as inputs. A network
state is a collection of production vectors y = {yl,...,y“}, with yi the production vector of
inputs and output of sector i, i = 1,...,n. A network state yields a net output vector I; yi,
which is consumed by an external consumption sector. A network state is optimal if it
maximizes the utility of the consumption sector. Initially, the prices of the commodities
are fixed. Given the fixed prices, each production sector maximizes its profit over the
production set. However, the inputs are controlled by 2 central planning institution. This
institution rations the inputs of the production sectors. The task of the central planning
institution is to maximize the utility of the consumption sector by setting an efficient
rationing scheme, Under the profit maximizing behaviour of the production sectors, a
rationing scheme is efficient if there is no other rationing scheme, such that the resulting
network state yields a higher utility to the consumption sector. In Braverman and Levin
[1] the necessary conditions for an efficient rationing scheme have been discussed. In this
paper we first discuss the question how t6 reach an efficient rationing scheme, Therefore
we introduce an adjustment process, which adjusts the rationing scheme until an
efficient rationing scheme has been achieved. Along this adjustment path the utility of
the corresponding net output vector increases monotonically.

In the second part of the paper prices and rationings are adjusted until under the
profit maximizing behaviour of the production sectors an optimal state has been reached.
Again we show that along the path the utility increases monotonically. Furthermore, the
price adjusting process is based on local information,

2. The model

We consider a production network consisting of n production sectors, indexed j =
1,..,n. There are also n commodities. Production sector j produces commodity j and uses
the commodities i = 1,...n, 1 # j as inputs. So, production sector j is characterized by a
production set Yic {v € RB | y; <0, i # j). Each production sector is profit maximizing
given the prices of the commodities. Let Y = I Yl be the total production set.
Furthermore RT, denotes the set {y € R" | ¥j 2 0, j = 1,...,n). We make the following
assumptions on the production sets.

Assumptions,

Aj. vi js closed, convex and strict convex with respect to the output.
Ay, Y! has a smooth boundary with respect to the output,

A3. -RP, C YL,

Ag. for all i, 0 € Yi,

As. Y N -Y = {0).



With strict convex with respect to the ocutput we mean that if yi € Yiandzl €
Yl and yii > 0 and/or zii > 0, then xi is not in the boundary of Yi with xi = oyl + (1-
Q)Zi for any 0 < a < I. With smooth boundary with respect to the output we mean that
the boundary is smooth at any point yi in the boundary with yii > 0. Let §Y! = {yi e
Yizi ¢ vi if zii > yii and zik < yik, k # i}, i.e., §Y1 is the upper boundary of Yi. So,
according to A and A3, §Y1 contains the zero point and all production vectors yi on the
boundary of Yl with positive output of commodity i. Under assumption A and A3 this
upper boundary §Y1 of the production set can be characterized by a differentiable
strictly convex transformation function £l satisf ying f i(yi) = 0 for all yi € §Yiand f i(yi)
< 0 for ali yi e Yi\sYi. At a point yi € -SYi, let Di(yi) be the gradient of fl at yi, ie.,
Di(yl) = (sfi/syt),... 60 /6y1)T.

A network state is a collection vy = {yl,...,y"), such that yi € Yi, i=1,.,n Let
x(y) = I; y! be the net output of network state y = {yl....yR). Assume w > 0 to be a
vector of initial resources.

Definition 2.1
A network state y = {yl,...,y0} is admissible if x(v) + w > 0.

The consumption sector is modelied by an agent having a utility function u: RU_, — R. An
admissible network state yields a utility u(y) = u(x(y)+w) to the consumption sector. We
make the following assumptions on the utility function.

Assumptions,

B). The utility function u is strict quasi-concave and continuously differentiable.

By. The utility function u is strict monotone increasing, i.e., u(x) > u(y) for all x,y €
RE,, such that with Xj 2 ¥j» j = 1,...n and for at least one j, Xj > ¥i-

A central planning institution wants to maximize the utility of the consumption
sector. In this paper we want to discuss two questions. First of all, we consider the
situation that all commodities have fixed positive prices. Under these fixed prices the
production sectors want to maximize their profits. However, profit maximizing does not
lead to a utility maximizing network state. To improve on the situation the central
planning institution sets maximum quantities on the inputs of the production, i.e., the
inputs are rationed by the planning institution. Let Ei = {ei e RN | eik >0 k=1,.,n
and eii = oo} be the set of rationing vectors of sector i. So, el € El is a vector of
maximum inputs for production sector i, i = 1,...,n, with eii = oo, Then, for el e Ei, let
Yi(ei) = {yi evi ) yi > -¢l) be the feasible production set of sector i under the rationing
vector el, Furthermore, let yi(p,ei) = {yi € Yi(ei) | pTyi > pTzi for all 2l € Yi(ei)} be the
set of profit maximizing production vectors of sector i, given the vector p of fixed
prices and the feasible production set Yi(ei). Under assumption A| we have that yi(p,ei)
is unique and that yi(p,.) : RD  Yi is 3 continuous function, Finally, let y(p,e) denote the
network state {y!(p,el),...y"(p,eM)}. A rationing scheme e = {el,....eM} is efficient if it
maximizes the utility under the profit maximizing behaviour of the production sectors,
So, efficiency is defined with respect to a vector p of fixed prices.



Definition 2.2,
Let p = (py,...0p)" be a vector of fixed positive prices. Then the rationing
scheme e = {el,...,e“} is admissible if y(p,e) is an admissible network state.

Lemma 2.3. There exists an admissible rationing scheme e.

Proof. For all i, take eik = 0, k # i, From assumptions A4 and As it follows that yi(p,ei)
= 0 and hence x(y{p,e)) + w = w >> 0,

Definiti 4

Let p = (py....Pp)T be a vector of fixed positive prices. Then the rationing
scheme e = {el,....eN} is efficient if it is admissible and if u(y(p,e)) = u(y(p,d) for each
admissible rationing scheme d = {dl,..,d0). For an efficient rationing scheme e =
{el,...,e“}, y(p,e) is an efficient network state.

An efficient network state maximizes the utility under the profit maximizing
behaviour of the production sectors given the vector of fixed prices. In the next
definition we define an optimal network state. In such an optimal network state the
utility of the consumption sector is maximized, given the production technologies.

Definition 2.6.
A network state y is optimal! if v is admissible and if u(y) = u(z) for any
admissible network state z,

We want to give an adjustment process which starts at an admissible rationing
scheme under a vector of fixed prices. In the next section we describe the adjustment to
an efficient rationing scheme given the vector of fixed prices. We show that there exists
an adjustment process along which the wutility of the consumption sector increases
monotonically. In section 4 we show the existence of a price adjustment process such
that the utility of the corresponding efficient network state increases monotonically until
an optimal state has been reached.

3. Adjustment of the rationing scheme

In this section we give an adjustment process from an admissible rationing
scheme to an efficient rationing scheme given a vector p of fixed positive prices. The
main result is that there exists an adjustment path along which the utility of the
consumption sector increases monotonically. This implies that at any admissible rationing
scheme the utility can be increased by an arbitrarily smali change of the rationing
scheme. Hence, at any admissible rationing scheme it is possible to improve the network
state locally., We first introduce some notation. The set

Xi(p) = '{yi 3 Yil there exists some el € Ei, such that yi = yi(p,ei)}.



Since yi(p,ei) maximizes the profit of the production sector given the vector p of prices
and the rationing scheme el, we have that yi(p,ei) € §Y1, Under profit maximization of
the production sector, any vig Xi(p) can be forced by the central planning institution
through rationing of the inputs of sector i. We have the following lemma.

mm 1
Under Assumptions A} and As, Xip) = (yi € 6Yi| Dig(yl)/Dij(y) > py/p;, k #
i}

Proof. The vector yi(-p,ei)-solves the maximization problem
(3.1) max pyi subject to yi € Yt and yik p -eik, k#i,

Since p »> 0 it follows that y‘(p el) € §Y! so that vi(p,el) satisfies fi(yi(p,el) = 0. Since
pyl is a concave function of yl and fl(y') is a convex function we can apply the Kuhn
Tucker theorem and it follows from the extended Lagrangian

L = pyl - Mi(yl) - iy melyli + elp)
that the solution yi(p,ei) satisfies

pi = A Dij(yl)
and
Pk = A Dy + pg

with pg 2 0 the Kuhn Tucker multiplier of y‘k + el > 0. From this it follows that
le(yl)[Dll(yl) pk/p k # i, for any y‘ [ X‘(p) On the other hand, if ¥ * e gyi
satisfies D‘k(y l)/D‘,(y l) > pk/pj, then y *i solves (3.1) with y Y= -elk k #i.

Lemma 3.1 says that Xi(p) is the set of production vectors on aYi, such that the
rate of commodity transformation between the commodities k and i is at least equal to
the ratio of the prices of the commodities k and i. So, Xi(p) is the set of prodution
vectors at which the shadow prices of the inputs are at least equal to the real prices.
Furthermore, let Pi(p) be the orthogonal projection of Xi(.p) on {x € RY x; =0}, ie.,

Pi(p) = {z € RMY z; = 0 and there exists some yj, such that
z] v--szi-ls)Fiazi-pls"-’zn)T € Xl(p)}

From Assumption Aj it follows that Pi(p) c Yi,

Assumption.
C. for each i, P)(p) is convex.

Fory € Xi(p), let y'i = (¥Y]sea¥i- l,O,yi.,.],...,yn)T e Pi(p) be the corresponding vector of
inputs. Then, assumption C says that for each two x, vy € XXp) and for any 0 < @ < 1,
there is a vector z € XXp), such z™! = ax™! + (l1-a)y™}, ie., for each mixture of the



inputs of x and y, there is a z € Xi(p) which inputs are exactly that mixture. So, if two
production vectors can be forced by the central planning institution, then the production
vector in Y1 corresponding to any mixture of the two input vectors can be forced. This
is a rather strong assumption, which does not follow from assumption A). In appendix A
we show that a Cobb-Douglas transformation function satisfies assumption C. In
appendix B we give an example of a transformation function, which satisfies assumption
Ay, but does not satisfy assumption C.

Finally, we define Ci(p) = Conv {X‘i(p), Pi(p)}, where Conv {A,B} means the
convex hull of the sets A and B and let C(p) = Z; Ci(p).

Lemma 3.2, For all i, Ci(p) cYiandOe Ci(p). Moreover, C(p) is convex and C{p) C Y.

Proof,

Since Xi(p) ¢ Y1, Pi(p) ¢ Yi and Y} is convex it follows that Ci{p) c Yi, i = 1,...n.
Moreover, analogously to lemma 2.3 we have that 0 € Xi(p) and hence 0 € Ci(p).
Clearly, since the sum of convex sets is convex, C(p) is convex. Finally, from -Ci(p) c vl
it follows that C(p) = Lj Ci(p) CLj Yi=y,

From lemma 3.1 it follows that Xi(p) belongs to the boundary of Ci(p), while
X(p) = 54 Xi(-p) belongs to C(p). Now, let e = {el .21} be an admissible rationing
scheme. From lemma 2.3 we know that such a rationing scheme exists. Furthermore, let
e*(p) - {e*l(p),...,e*“(p)} be an efficient rationing scheme and x*(p) = x(y(p,e*(p)) = I;
yi(p,e*i(p)) the corresponding net output vector.

Lemma 3.3. There exists an efficient rationing scheme e*(p) = {e*l(p),...,e*n(p)}.
Moreover, x‘(p) is unigue,

Proof, Clearly x‘(p) follows from
max uw(z)such thatz€ C{p)and z + w = (.

From Lemma 3.1 it follows that Xi(p) is closed in 6Yi, so that Ci(p) is a closed subset of
Yi. By definition, we have that Ci(p) is convex. So, C(p) is closed and convex as the sum
of closed and convex sets. From assumption A it follows that Y is closed and convex, so
that also Yy, = Yn {(z€ RN z + w > 0} is closed and convex. Moreover, from the
assumptions A3 and Aj it follows that the set Yy, is bounded and hence Y., is compact
and convex and hence C(p) N Y, is compact and convex. Since C(p) C Y we have that
CO)NYy=Cp)n{z€e RO | z+ w>0)and hence C(p) Nn{z € R | z+ w 2> 0} is
compact and convex, Since 0 € C{p) it follows that there exists a feasible z with z €

C(p). From assumption By it follows that u(z) has a unique maximum x*(p) on C(p)n {z
€ R | z + w > 0}. Since C(p) = L; Ci(p) we have that there exists elements xi € Ci(p), i
= 1,..,1, such that x’(p) = B; xi. From assumption B it follows that x1 & §¥1 and hence

it follows with assumption C that xi € Xi(p), i = 1,...,n. By definition this implies that

there exists a rationing scheme (e‘l(p),...,e*n(p)} such that xi = yi(p,e*i(p)), i=1,..,n



Let x’(p) be the utility maximizing element of C(p) and xl = yi(p,e*i)
corresponding profit maximizing elements in §Y1 under e'i, Although x‘(p) is unique, it
may be sustained by various rationing schemes. For instance, suppose that e*l satisfies
yik(p,-e') > -e*ik. Then each rationing el with yik(p,e‘) - -'ei-k and eij = e*ij_, i+ k
yields xi = yi(p,ei). To obtain a unique choice of the rationing scheme we define the set
Ei(p) of minimal rationing vectors given the price vector p, i.e.,

Ei(p) = { el € RN el; = 00 and ely = -yiy(p,el), k #i ).

So, if el € Ei(p), we have that in the profit maximizing point each input is equal to the
maximium input. Now, let E(p) = II; 'Ei(p) and let e*(p) = {e‘l(p),...,e‘“(p)} be the
unique rationing scheme in E(p) sustaining xi, i = l,...,n, with xi g Xi(p), i=1,..n,
such that x‘(p) =5 xi.

We consider now the problem how to reach the efficient rationing scheme e*(p) =
{e*l(p),...,e‘“(p)} € E(p). Let e = {el,...eN} be an arbitrarily admissible rationing scheme
given a vector of fixed prices p and let yi(p,el) be the corresponding profit maximizing
production of production sector i. Furthermore, let d = {dl,...d") € E(p) be the
corresponding minimal rationing scheme. We now define a path of rationing schemes in
E(p) from d to e* and we show that adjusting the rationing scheme from d to e’ the
utility of the network state increases monotonically by using a Liapunov function. For t
€ [0,00), let e(t) be defined by

(3.2)  Se(t)/t = e'(p) - e{t) with e(0) = 4.

Le 4
For any t, e(t) is a rationing scheme in E(p).

Proof,
The solution to (3.2) is e(t) = {1 - e‘t)e*(p) + e~td, t > 0. Hence, for each t, e(t) is a

convec combination of e*(p) and d. Since e*(p) and d are both minimal rationing
schemes we have for all i that

(33)  yip.e' () = -e*i(p) and yi(p,d) = -di, for all k # i.

Because of assumption C there is for ail t a rationing scheme ¢0(t) € E(p), such that for
all i

(3.4)  yip,e0) = (1 - e~tyiy(p,e*(p)) + e~tyly(p.d), k # i,
Since e0(t) is a minimal rationing scheme we also have that
(3.5 yip,e0t)) = -e0ip (1), k # i.

From (3.3), (3.4) and (3.5) it follows that eOi_k(t) = (l-e'f)e*ik(p) + e‘tdik and hence
eO‘k(t) = el (t), k # i, i = 1,...,n, which proves that e(t) € E(p) for all t,



We now define the function V: E — R by V(e) = u(y(p,e*(p))) - u(y(p,¢)). Recall that
u(y(p,e)) = u(x(y(p,e))+w) with x(y(p.e)) = I; yl(p,e).

Lemma 3.5. The function V(e} is a Liapunov function,
Proof,
By definition, V(e*(p)) = 0 and V(e) > 0 for all e # e (p). It remains to show that
§V{(e(t))/5t < 0 for t > 0. To do so we define for each t the function fi(r): [0,1] — E(p) by
£(r) = re"(p) + (1 - n)et).
We have that
(3.6) 8f(r)/6nipap = €' (P) - (1) = se(t)/st.
According to Lemma 3.4 we have that e(t) € E(p), so that for all r € [0,1], f(r) is a
convex combination of the two rationing schemes in E(p). Analogously to the proof of
Lemma 3.4, we have that fy(r) € E(p) for all 7. Hence, it follows that for all i
Vi £n) = 1yilp.e*(0)) + (1-r)e~tyly(p,e(t)), k # i
and hence we have that the inputs in r are a convex combination of the inputs at r = 0

and r = 1. Since the production sets are strict convex and yi(p,f ) € SYi, this implies
that

Vi .54 > mvi)(p.e* D)) + (1-n)yi (p.e(t))

Since the production sets have a smooth boundary this implies that there exisits a smooth
function rg [0,1] ~—~ RD, such that

B xELL) = T; Yip,In) = 1E; yi(p,e ) + (1-N5; vi(p,e(t) + re(r),

with 14(0) = r(1) = Q and for ali r, 0 < 7 < 1, 1yi(7) > 0, i = 1,...,n. From (3.7) it follows
that

(3.8)  SIxYDLUNYor = T; yip,e"(0)) - j Yip,e()) + Srr)/or =
= x(y(p,e" (D)) - x(y(p,e(t)) + sry(r)/6r.

On the other hand we have that

(3.9)  SIx(y(p,e(t)}/6t = ;5 [6x/5ey [beiy (1)/5t]).

From (3.6) and (3.9) it follows that



(3.10)  SIx(y(p,e(t))]/5t = BTy [8/8el)Ef(r)ik/67lrmp] = SX(YD,E(T))/b7hrmp.
Hence it follows with (3.8) and (3.10) that
SV(e(t))/6t = - su(y(p,e(t))/8t = - (DU)Tx(y(p,e(t)))/st =
= ~(Du)T[x(y(p.¢*(P)) - X(y(D.e(1))) + bre(r)/6rl;=0)

with Du = ($u/éxj,..,5u/8x,)T the gradient vector of the utility function u in
x(y(p,e(t))). Since u is strict quasi-concave we have that (Du)T[x(y(-p,-e*(.p)) - x(w{p,e(t))]
> 0. Moreover, since rg3(r) > 0, i = 1,...,n and r{0) = 0, we have that §ryj(r)/6r;20 > 0, i

= 1,...,0. Since u is strictly monotone increasing it follows thast (Du)V([5r¢(r)/6ri;=q} > 0.

This proves that §V(e(t))/5t < 0 for all t. '

Theorem 3.6. Under the assumptions A, B and C we have that

(i) The solution path of the system of differential equations Se{t}/6t = e*(p) - e(t) with
e(0) = d converges to the efficient rationing scheme e*(p) for each d € E(p).

(ii) The utility u(y(p,e(t))) increases monotonically along the solution path,

Proof,
{i) From Lemma 3.4 we have that e(t) is in the compact set E(p) for all t. Lemma 3.5
says that V{e) is a Liapunov function satisfying V(e) > V(e‘{p)) =0 foralle# -e*(p) and
sV{e(t)/6t < 0 for all t > 0. This proves assertion (i).
(ii) This follows immediately from the fact that su{y(p,e(t)))/6t = - §V{e(t))/ét > O for all
t>0.

To define the system of differential equations we have to know the efficient
rationing scheme e*(p). This is rather unsatisfactorily, because it means that we have to
know the global optimum in advance in order to be able to define the adjustment
process. In fact we are looking for an adjustment process based on local information.
Although such a process is not available, theorem 3.6 implies an important resuit. It says
that for any initial rationing schem d € E(p), the utility increases along the line from d
to e*(p). So, for any d we have that the rationing scheme e = d + A(e'-(p) - d) yields a
higher utility for any A > 0. So, the utility can be improved locally and to find a better
rationing scheme a local sea.ch suffices., This gives the main result of this section.

Main _result, For any d € E{p), d # e*(p), there is a rationing scheme e € E(p)
arbitrarily close to d, such that the utility under e is higher than the utility under d.

4, Adjustment

In this section we give a price adjustment process along which the utility under
the efficient rationing scheme increases monotonically. It wili be shown that the process
converges to a system of prices at which the corresponding network state is optimal.
Because of the strict convexity of the production sets and the strict quasi-concavity of



the utility function there is a unique optimal network state y = {yl,...,yn). It is well-
known that under the assumptions A and B there exists a price vector p* > 0, such that

() p'yizp'yiforallylevii=1,.,n,
(ii) p‘x > p‘x(y) for all x such that u(x) > u(x(y))

for the optimal network state y = {yl,..,y2} (see e.g. Debreu [2]). So there is a price
vector p., such that the optimal network state y is an equilibrium of the economy
relative to the price system p*. In the following we normalize the sum of the prices to be
equal to one, so that each price vector p € S = {p € R pj2 0 and Ej pj = 1}. We also
normalize the sum of the components of the gradient of u to be equal to one. Then,
because of the differentiability of the utility function the price vector p* is unigue and
equal to the normalized gradient of u(x) at x(y). We show that for any arbitrarily chosen
initial price system po, there exists a price adjustment mechanism leading from po H) p*,
such that along the path of prices the utility of the efficient network state y(p,e*(p))
increases monotonically. At p‘, we reach the optimal network state as the efficient
network state y(p*,e*(p*)). Let u{p) = u(x‘(p)+w) be the utility of the unique optimal
element of C(p). Then we define Du(p) to be the normalized gradient of u at x =
x*(-p)d-w, ie.

Du(p) = (8u/6x1,....,6u/8x1)T/[Ej éu/éx;l

at x = x‘(p)+w. Observe that assumption Bs implies that at each x = 0, 5u/6xj >0, )=
1,...,n. We now define for t > 0, the system of differential equations

(4.1)  ép(t)/st = Du(p(t)) - p{t),

with p(0) = p € int S some arbitrarily chosen initial price system. We show that the
solution of this system of differential equations converges to p*.

Lemma 4.].
For any t, p(t) € S.

Proof, Take h{t) = B; pj(-t). Then §h(t)/5t = I 6pj(t)/6t = Ej {Du(p(t)j - pj(t)} =[-1=
0. Hence h(t) i a constant function of t and Ej pj(t) = Bj pj(O) = EJ- pj = 1 for all j.
Moroover, Du(p(t))j > 0 and hence Spj(t)/st >0 if pj(t) = 0. Hence, for any t, p_j(-t) >0,
j = 1,....,n. This proves that p(t) € S for all t.

We now define the function V: S — R by V(p) = u(x*(p')q-w) -u(x*(p)+w).

Lemma 4.2, The function V(p)} is a Liapunov function.
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Proof.

By definition, V(p*) =0and V{ip)> 0 forallp # p‘. It remains to show that §V{(p(t))/5t
< 0 for t > 0, or equivalently that 8u(x*(p(t))+w)/8t > 0 for t = 0. With u(t) = u(p(t)) we
have by definition of u(p) that

u(t) = u(x"(p()*W) = maxeeE(p(t)) WI(P().e)).
Equivalently for a network state y = -{yl,...,yﬂ} we have with u{y) = u(x(y)+w) that

u(t) = maxy u(y) such that yi € Xi(p(t)), i = 1,...,n
Let y‘i(t), i = I1,..,n, be the solution to this maximization problem. Then we have from
the convexity of u that on t = r, (Du(r))Tyl < (Du(r))Ty*i(t) for all yi € Xi(p(t)). Hence,
on t = 7, y i) is the solution to

max (Du(r)) Tyl such that yi € Xi(p(t))
Let 7iy(t) be defined by

xi(t) = max (Du(r))Tyl such that yi € Xi(p(t)).

So, by definition we have that ri,(t) = (D-u(f))Ty*i(t) on t = 7, Hence,

SU(t)/Stlpmr = SU(X (P(OIW)/tltay = (DU()T I; 8y 1(1)/60) s
= (Du(r)T I; sy"i(t)/stleey = By 57I(1)/50,_,.
It remains to prove that I; 61ri.,(t)f6tlt=,. » 0 for all . Therefore we prove that for all i,

§7i,(t)/8tl=y > O for all r.
From Lemma 3.1, 1t follows that

Xi(p(t)) = {yi € Y1 | Diy(y)/Dij(yl) > py(t)/py(t), k # i},
where Dlj(yl) = 6{‘1()")/6}"], j = L,..,n, with fi: RB — R such that fl(yl) =0 if yl € §Y1,
From productlon theory we know that fi can be chosen such that fi(yl) = yl - g‘(y")
w1th g' the strict concave efficiency function yleldmg output yl to the mput vector y‘l

= (yi o SV LY ,yln)"' Taking fiy!) = yi; - gi(y~¥), we have that Diyl) = 1 for
alt yl So, for this function fl Xl(p(t)) becomes

Xi(p(1)) = {yl € §Y1| Dig(yl) 2 py(t), k # 1,

with pp(t) = pi(t)/p;(t). Hence xi(t) = max (Du(r))Tyl such that fi(yl) = 0 and Di(yl)
2 Bi(t), k # i Let

Li(ylaut) = (Du@) Tyt « AfiyD) - By mdbi(t) - Di(y)
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be the associated Lagrangian with solution yi(t), AMt) 2 0 and gy (t) = O to the
maximization problem and with u(t) > 0 if the corresponding constraint is binding. Thea
applying the envelope theorem we have that

@.2)  sxin)/6t = SLi(yi A m1)/8t = - Dyyq mlOSDILL)/6t.

Now observe that

(4.3)  8pi(1)/t = S(pi(t)/pi(t))/8t = (8(pR(t)/68}/i(t) - Pi(OSpi(1)/61}/(Di(t))2.

With u(t) = u(p(t)) it follows from (4.1) and (4.3) that

(4.4)  SpR(0)/6t = S(pR(t)/pi(D)/6t =
Du(t)k ~ PE)/pi(t) - pR()Du()); - P}/ (pi(1))? =
{(Du(t)i/PiHNDU())/Du(t)); - B(t)).

From (4.2) and (4.4) it follows that
(4.5) a1 (t)/8thyr = ~ icyi BRIISPK(D/Sthor =

- Dkei nk(r){Du(t))i/pi(f)}{Du(r))k/Du(f)')i - pi(n)} =
- Biai 8* K OHDUE)/Du(n); - Prle))

with u"(r) = p(HDUO)/Di()} 2 0, k = 1,..,n. From §Li(yi,\,ut)/6y1; = 0 we obtain
that

(4.6) Du(n)j = XODj(yD) - Ticpj #(rIDigjyh),

at yi = yi(r), j = 1,..,n, where Dij(y}) = SD‘k(y‘)ﬁy‘, = §2fi(yl)/sylysyl;. Since Diyl)
= 1 and hence Dik,(yl) D’lk(y‘) 0,forj=1i expressmn {4.6) becomes

(4.7) Du(r); = XnD;(yl) = A(?).

Hence

(4.8)  Smi0)/8tlpar = - Sjgi 8°JEHD();/Du(); ~ pi(r)) =
- Bjgi 8 NOMDLY) - By wdnDiGEHYDuM); + Bigi 8”050 =
Zigi #°5(0Bj() - MDij(yl)/Du(r);} +
[Du(r )il Ej4iZppips JOmNDj(yD) =
Tigi 8 JOD(r) - DijyD} + TjTiemynu(rIDi;(v)/y(r).

Since for all j # 1, p J(r) = 0 if pj(r) * Dl_,(yl) and the Hessian matrix
[D‘kj(y‘)]_l,k.. .,n of the convex function fi(yl) is positive definite, (4.8) becomes



12

sxi(1)/8ttr = TjEps;(DurDi;(/pir) > 0, i = 1.0,

This proves that §u(t)/Stly—, = Z; Sa-i,.(t)ﬁtlt__.,- > 0 and hence V(p) is indeed a Liapunov
function.

Theorem 4.3. Under the assumptions A, B and C we have that
(i) The solution path of the system of differential equations &§p(t)/ét = Du(p(t)) -
p(t) with p(0) = p converges to the optimal price vector p* for each positive price vector
0
pv.

(ii) The utility u(p(t)) = u(x*(p(t))) increases monotonically along the solution
path.

Proof.

(i) From Lemma 4.1 we have that p(t) is in the compact set S for all t. Lemma 4.2 says
that V{(p) is a Liapunov function satisfying V(p) > V(p*) = 0 for all p # p* and
§V(p(t)/6t < O for all t » 0. This proves assertion (i).

{ii) This follows immediately from the fact that su(p(t))/6t = - §V(p{t))/ét > 0 for all t >
0.

The main result of Theorem 4.3 is that the local adjustment of the prices
according to the system of differential equations (4.1) yields a convergent process along
with the utility increases monotonically,
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Appendix A,

In this appendix we show that Cobb-Douglas production functions satisfy assumption C.
In case sector i has a Cobb-Douglas production set, we have that

Yi={yl e RY i < Killj¢i (-Yij)“', Yij < 0}
Let the transformation function be given by
fi()ri) =In yii -InK; - Ej*i ajln(-yij)
Then we have that Dik(yi)/Dii(yi) = akyii/(-yik) and hence
xkp) = (yi € 6YH axyli/(-yly) 2 pispy, k # i)
With yii = Killj¢i (-yij)aj for yi € §Yi we obtain
Xi(p) = {yi € 81| (K ipi/priMjgi k (-¥1j)% 2 (yll-o%k, k # i),

Now, let yi an element of Pi(p). Then by definition of Pi(p), yii = 0 and the other
components of y! satisfies the 'Cobb-Douglas’ restriction

(-¥it ok < (oKipi/PidMsi x (-¥5%5, K # i,

From this it follows that for any two elements ul € Pi(p) and vi € Pi(p) als the convex
combination :

wl =l + (1-t)vi

is in Pi(p) for any t € 10,1]. Hence Pi(p) is convex,
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Appendix B.

In this appendix we show by a2 counterexample that the assumption of the convexity of
Y! does not imply the convexity of P)(p). For n = 3 we take for i = 1

fliy) =y + (ya + 12+ (y3 + 1)2 - (y2)%y3 - 2
and
Y!=(yl e Ry -1 syly, yl3 <0<yl and iyl < 0

This set Y1 is convex. However, for p = (1,1,1)7, we obtain with for ease of notation y!
denoted by y that

Xi(p) = {y € §Y1| 2(yy + 1) - 2yay3 2 1 and 2(y3 + 1) - (y2)? > 1}
and hence

Pip) = {y € R3|y; =0, -1 s y3, ¥y3 <0, 2(ys + 1) - 2y5y3 > ! and
Ayz + 1) - (y2)2 2 1),

Hence, for y € Pi(p), -1 < y3, y3 < 0 satisfy
-y2 < 1/(2 - 2y3) and (y2)? < 1 + 2y3.

This set of feasible values of y; and y3 is not convex,



