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Abstract 

Recently an error bound theorem was reported to conclude analytic error 
bounds for approximate Markov chains. The theorem required a uniform bound 
for marginal expectations of the approximate model. 

This note will relax this bound to steady state rather than marginal expec
tations as of practical interest: 

(i) to simplify verification and/or 
(ii) to obtain a more accurate error bound. 

An ALOHA-type Communications example is studied to support the results. 
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1 Introduction 

Recently, in [8], the author proposed a general approximation or perturba-
tion theorem to conclude a priori error bounds for the accuracy of approxi-
mate Markov chains such as due to: 

• perturbations (e.g. reflecting parameter interval estimates) 
• s tate space truncations (e.g. for reducing numerical computations), or 
• system protocol modifications (e.g. for proposing simple estimates). 

The theorem required to establish: 

(i) A bound for so-called bias-terms of an appropriate reward structure. 
(ii) A uniform bound for marginal expectations of the approximate chain. 

The first step can usually be performed analytically by induction, based on 
the recursive Markov reward (or dynamic) programming equation. This has been 
applied successfully for various non-product queueing network applications 
(see [8] and references therein). The second step, in contrast, relies more 
specifically on insight, monotonicity assumptions and technicalities for the 
system in order that do not generally apply. 

This note presents a technically minor but practically important extension, 
which relaxes the second step to merely a steady state estimate of the ap
proximate model. This relaxation is practically appealing as: 

• The steady state distribution for the approximate model is often avail-
able or rather easily computed. 
The accuracy of the error bound can hereby be improved. 

Though the extension is technically minor, given its simplicity and impact, 
the proof is kept self-contained. To illustrate the effect of the relaxa
tion, an ALOHA-type Communications example is studied. This example motivat-
ed the ïmprovement as the proposed approximation for this example, as adopt-
ed from [10], did not fit in well with the theorem from [8]. The present im-
provement avoids technically complicated verifications and leads to a more 
accurate error bound. Further application of the improved error bound theo
rem seems promising. 

2 Model and result 

As most applications will concern a continuous-time setting, the presenta-
tion will directly be restricted to the continuous-time case. The discrete-
time case is hereby implicitly included (see remark 2.4). 

Further, a more detailed motivation and discussion of the type of error 
bound theorem under investigation, i ts practical relevance, the important 
role of bias-terms, and an extensive list of related references to motivate 
the theorem can be found in [8]. Throughout, a vector V is assumed to be a 
column vector, while as a row vector it is denoted by V . 
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2.1 Model 

Let (S,Q,r) denote a continuous-time Markov reward chain with state space S, 
one-step reward ra te r(i) when the system is in state i and transition ra te 
q(i,j) for a transition from state i to j . We assume the Markov chain to be 
irreducible at S with unique steady state distribution: 

<* ( i»1€s 

as well as to be uniformizable, that is, for some M<eo: 

(2.1) £ q(i,j) £ M (ieS) 

so that the uniformized one-step transition matrix P can be defined by: 

(2.2) p(i,j) = 
' q ü . j ) M"1 (j*i) 

1 i - E J g t l qci.j) M ' 1 (j=i). 

ij 
Let P denote the k-th power of P and for t=0,l ,2, . . . define functions V 

by: 

(2.3) Vt(i) = M'1 j £ J Pk r(i) = M-1 j £ J [^ Pk(i,j) r(j)] 

representing the expected cumulative reward over t-steps of length M each 
when starting in state i at time O. Now let p be an arbitrary probability 
distribution at S at time 0. Then, by the irreducibility assumption, Stan
dard Markov reward arguments and the method of uniformization (cf.[7],p.H0) 
the value 

(2.4) g - lint M hT V 1 - l lm M j ; p ( 1 , Wil) = j ; . ( 1 , r(i) 

is well-defined as a single scalar, independent of 3, which represents the 
average expected reward per unit of time of the continuous-time Markov r e 
ward chain. It is noted here that the factor M could have been excluded in 
(2.3) and (2.4). However, it is included as condition (2.5) below then be-
comes more natural with both the reward and transition ra tes per unit of 
time while also the verification of this condition, most notably the estima-
tion of bias-terms, becomes more convenient (e.g. [10]. 

2.2 Error bound theorem 

Now suppose that we are faced with: 
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An o r i g i n a l Markov reward chain (S,Q,r) 

An approximate Markov reward chain (S,Q,r), 

as described above, where also the approximate chain is assumed to be uni-
formizable with the same constant M,_ i.e. (2.1) applies with q replaced by 
q, and where we impose the condition: ScS. 

With the notation of section 2.1 adopted for the approximate model with an 
upper bar "-", the following theorem will then enable one to conclude an 
error bound on the dif f erence | g-g | . 

Theorem (Error bound) Suppose that for some function ö(.) at S, all ieS 
and t£0: 

(2.5) 

Then 

(2.6) 

(?-r)(i) + ^ [q(i,j)-q(i,j)]fv t(j)-V t(i)l | s 5(i) 

g-g £ n 8 

Proof Let the initial distribution £ and 0 be the same and given by 
3=|3=7t. Then by virtue of (2.3) we can write: 

(2.7) 
—X — —T 

(ÏI V - u V ) 

n T [r M"1 + P V _ ] - 7rT [r M"1 +P V ] = 

- T 
ir (r-r)M + (P-P) V _ + P(V. -V )1 = 

t-i t-i J 

-T „ t - i -k r ( ~_ r ) M - i + ( p _ p ) v 1 + n T P 1 (V -V ) 
*1c=0 [ N-k-lJ 0 0 

where the last equality follows by iteration. First, as V (.)=V (.)=0, the 

last term directly cancels. Secondly, as both P and P are stochastic matr i 
ces with rqw-sums equal to 1, for any s and in any state ieS we can write: 

(2.8) (P-P) V (i) = T [p(i,j)-p(i,j)] V (j) 
s j s 

= E, tpü,j)-p(U>] [vt(j)-vt(i)l 

• ^ ' i ( U M q " , J " [v.u>-v.«>] «««a-
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Last but not least, as ir represents the steady state distribution of the ap-
proximate Markov chain with one-step transition matrix P, we have for all k: 

(2.9) irT Pk = nT P (P*-1) - nT Pk_1 - ... = üT 

which remains restricted to ScS. As a consequence, for arbitrary N: 

(2.10) \nT VN - nT V j = 

C l Ei "T(i) {(?~r)(i) + 

2 ^ [q(iJ)-qUJ)] [ v ^ J J - V ^ i ) ] ) - - 1 
- M & « • 

Application of (2.4) with fS=fi=n now directly yields inequality (2.6). a 

Remark 2.1 (Bias-terms) 

Essentially the theorem requires one to find bounds on the so-called bias-
terms V (j)-V (i), where i and j can be restricted to "adjacent" states, 

uniformly in all t^O. Theoretically, such bounds are known to exist based on 
mean first passage time results. Practically, such bounds, or usually much 
more accurate bounds than by mean first passage time results, can be estab-
lished analytically by inductively using the Markov reward relation: 

V = £ + P V . 
t+i M t 

This estimation of bias-terms is discussed in more detail and illustrated 
for various multi-dimensional non-product form queueing network applications 
in [8] and references to the author therein. 

Remark 2.2 (Advantage) 

The theoretically minor but practically major advantage of the above version 
over the earlier one in [8] is that it only requires to estimate 

(2.11) nT 8 

rather than 

(2.12) sup p T Pk 5 
k 

for some appropriate initial distribution {§, usually concentrated at one ap-
propriate initial state. Indeed, (2.12) can always be estimated from above 
by 151 . However, in various applications this will not yield a reasonable 

error bound. For example, if the approximate model is a truncated version of 
the original, the difference 5(i) will generally be 0 for states i<L where L 
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represents the state where truncation takes place, but bounded away from 0 
in states i=L when truncation takes place. However, the likelihood of being 
in such states must be thought of as being very small, say ir (L)«n(L)«27. or 

less, so that a small estimate for (2.12) can be expected. Small estimates 
of (2.2) have so been found by analytically showing 

(2.13) j§T Pk 5 * i? S. 

However, monotonicity conditions on 5 and system input characteristics, such 
as of s tate dependent service rates in queueing networks, technical exploi-
tation of the specific approximate transition structure q and an appropriate 
choice of 0, are hereby usually required (see for example references [32] 
and [34] in [8]. 

In the present version, in contrast, a step like (2.13) and its underlying 
conditions are no longer required. For example, in the application of the 
next section, the function 5(.) will not be monotone and even more irnpor-
tantly, the actual structure of q of the proposed approximation ir has no 
simple physical probabilistic interpretation as it sterns from a purely ana-
lytical truncation of a (so-called) Möbius series. 

In various applications the approximate model will just have been devised to 
guarantee easily computable approximate values n, so that an estimate for 
(2.11) can be obtained rather directly once S(.) is known. 

Remark 2.3 (Further related literature) 

Next to the related reference [8] with the time-dependent condition (2.12) 
rather than the steady state condition (2.11), as other related literature, 
a result similar to (2..) has already been reported in [2], p.42 and 43, and 
implicitly been obtained in [3] and [6]. As essential difference though, in 
these references the time-dependent bias-terms in (2.5) are replaced by 
time-independent relative value (or gain) terms (or relatedly coefficients 
of the fundamental matrix). This time-dependent form is crucial as it allows 
us to prove bounds for the bias-terms by induction using the Markov reward 
relation as per remark 2.1. 

Remark 2.4 (Fundamental matrices) 

In fact, the bias-terms V (j)-V (i) for t-x» correspond to the i , j - th coëffi
ciënt of the fundamental matrix. The time-dependent formulation which ena-
bles one to inductively prove bounds on these bias-terms uniformly in t thus 
implicitly also provides a means to evaluate fundamental matrices. This in 
turn can be of interest for estimating mean first passage times or for em-
ploying the average policy improvement technique. 

Remark 2.5 (Discrete-time case) 

The theorem directly applies to discrete-time Markov reward chains (S,P,r) 
and (S.P.r), where P and P denote one-step transition matrices if we substi-
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tute: 

, M = 1 

- q ( i , j ) = p(i,j) 

*• q ( i , j ) = p(i.j) 

Summary: To conclude an error bound | g -g | it suffices to establish: 

1. Di f fe rence e s t i m a t e s |q( i , j ) - q ( i , j ) | 

2. Bounds f o r b i a s - t e r m s |V ( j ) -V ( i ) | 

3 . The approx imate s t e a d y s t a t e d i s t r ibu t ion n 

3 An application: An ALOHA-model 

In this section an illustration of the error bound theorem will be provided 
which will lead to accurate anaiytic error bounds for a specific elegant 
anaiytic approximation technique, based on truncating Möbius expansions, as 
recently developed and applied in [10], section 2.4.1. The actual applica
tion concerns an ALOHA-type communication (or computer) model with different 
source characteristics. This application actually motivated the reseach of 
this paper. 

3.1 Model 

Consider an ALOHA-system with M sources (transmitters or processors) number-
ed 1,...,M, which are alternatively idle and busy (transmitting) as follows. 
When H={h h } denotes that sources h h are currently busy, an 

I n I n 
idle source h will request to become busy (to s tar t a transmission) at an 
exponential ra te y . This request is accepted with probability: 

h 

S» (1_w ]> 
s€H s 

while otherwise it is rejected and lost. Conversely, a busy source h will 
become idle again (complete its transmission) at an exponential ra te (i . 
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Example 3.1 (Memory module) 

As an example, w may represent the fraction of time that a busy source s 
s 

communicates (retrieves or stores data) at some memory module M, but where a 
transmission can be started only if this memory module is free (such as for 
addressing). 

Example 3.2 (Slotted-ALOHA) 

As another example, when transmissions are time-slotted in time-slots of 
length A, as in slotted-ALOHA, while a transmission can be started only if 
the actual transmission switch is free, this is modeled by: 

-Afi 
(1-w ) = e s. 

No simple solution 

Despite the simple formulation, as per section 3.1 in [10], the present sys
tem has a simple product form solution n(H) only if all values w are equal: 

s 
w =...=w while otherwise no simple expression exists. 

3.2 Approximation 

To evaluate the above system with unequal w -values, in [10] approximations 
s 

{ir(H)> where computed by analytically truncating the Möbiüs-expansion (re-
lated to [4]}: 

(3.1) 

, n(H) = exp W(H) 

JC-IBI J r l H H B K 
l WCH) = Z B S H , | B | S K W(B) ^ r ' ( - D J ( j ) . 

with |B | the cardinality of a set B, at truncation level K=2. 
Roughly speaking, this approximation comes down to neglecting interactions 
between states that differ in more than two sources, as corresponding to 
particle-interaction approximations in statistical mechanics.) 

3.3 Error bound 

To determine an error bound on the accuracy of this approximate steady state 
distribution TT, or rather associated performance measures g such as the sys
tem throughput, let q(H,H+h) and q(H,H-h) denote the transition rates of the 
original model from state H into H+h respectively H-h. As the approximate 
model has no direct probabilistic interpretation or Markovian transition 
structure, define artifical transition rates q by: 
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(3.2) 5(H,H') = i |q(H,H') + q(H' ,H) - ^ ^ l 
* L n(H) J 

for H' =H+h or H-h while q(H,H') is defined to be 0 otherwise. One then 
directly verif ies f or all H and H' : 

(3.3) w(H) q(H,H') = ü(H') q(H',H). 

This relation, also known as reversibility (cf. [2]), directly guarantees 
that n is the steady state distribution of this artificially defined chain 
with transition rates q. To compare n and ir or, relatedly, associated mea-
sures g and g, we can thus apply theorem 1. To this end, in the first place, 
note that for all H,H'=H±h: 

(3.4) |q(H,H') - q(H,H')| - 1 q(H.H') - q(H',H) 
ir(H' ) 

Secondly, as proven more generally in [9], where we need to substitute 
p(h|H) = II (1-w ) for the present application, 

h€H 

(3.5) |V (H) - V (H' ) | s 1 (H'=H±h) (t^O) 

for various monotone reward rate functions, in particular, for 

(3.6) r(H) = 1 ^ yh J H d-ws), 

in which case g, as per (2.4), represents the throughput of the system. 
By choosing r=r so that 

(3.7) g = V rr(H) r(H) 
ri 

is an approximate value of the system throughout, and substituting (3.4) and 
(3.5) in (2.5), the error bound theorem then provides the error bound: 
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(3.8) II - gl * 

è £H
 S(H) {^H q(H,H+h) /tT i. , n ir(H+h)l - q(H+h,H) + 

n(H) J 

5;6H[q(H.H-h) - q(H-h,H) i ( H - h , l 
n(H) J 

> 

3.4 Numerical illustration 

Numerical results are given for M=4 so that also the exact values rc(.) could 
be computed numerically for the purpose of comparison. However, in [10] the 
approximation technique as sketched in section 3.2 has also shown to be ac
curate for larger M-values. 

As performance measure the number of busy sources or equivalently the 
throughput is evaluated. Two error bounds are compared. the first one that 
could be provided as based in [8] and showing (2.13) which, however, r e -
quires the term within braces in the right hand side of (3.8) to be boundd 
by a monotone function. The second is the error bound as per (3.8) which is 
an improvement in avoiding a technical proof for (2.13) and, most notably, 
in accuracy as illustrated. (Between parenthesis the relative error bound 
with respect to g is presented). For a measure as the number of idle sources 
the accuracy in the given examples is over a factor 3 better. 

Remark 3.1 (Nearly reversible?) 

As ir turns out to be an accurate approximation at f irst impression, from 
(3.4) and (3.8) one might also conclude that TC is more or less reversible. 
However, this is true only if all the probabilities w are more or less 

s 
equal, while in the examples they are not. 

Remark 3.2 (Advantage of relaxation) 

As mentioned earlier in remark 2.2, the advantage of (2.11) over (2.12), is 
particularly reflected in the above application. In the first place, the ac-
tual transition structure q as defined by (3.2) is not of simple probabilis-
tic form. Secondly, the differences (3.4) are not monotone in H. A statement 
like (2.13) would thus become more complicated to prove. 

Acknowledgement The author likes to thank Paul Schweitzer for a useful dis
cussion in which he pointed out the related references [1], [3] and [6] and 
in which he suggested remark 2.5. Further, he wishes to thank Michel van de 
Coevering for his numerical assistence. 
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Numerical examples 

u = u = u = u = 1 
*I *2 * 3 ^4 
Error bound 1 by (2.13) 
Error bound 2 by (3.8) 
Performance measure g: Expected number of busy sources. 

Example 1 

y x - . 4 w = .45 
l 

Max w(i)--ü(i)| 17 x 10"' 

r2--3 

*3 = -2 

w = .40 
2 

w = .45 
3 

g 

g 

.6463969 

.6463961 

r 4 - . i w = .40 
4 

|g-g 8 x 10~7 

Error bound 
Error bound 

1: 
2: 

.0789 

.0096 
(12.27.) 
(1.5%) 

Example 2 

7 = .40 
1 

w = .20 
1 

Max 
1 

| i t( i) -ü(i) | 34 x 10" 

r 2 - .35 w = .15 
2 g .887883 

T3 - -30 

r 4 = .25 

w = .20 
3 

w = .15 
4 

g 

|g-g 

.887876 

7 x 10"6 

Error bound 
Error bound 

1: 
2: 

.049 

.012 
(5.5%) 
(1.5%) 

Example 3 

r1 = .40 w = .25 
1 

Max I 
i ' w(i)-•rê(i)} 9.9 x 10 

r 2 = .30 w = .20 
2 

g .700818 

r 3 = .20 w = .30 
3 

g .700801 

7 , = .10 
4 

w = .15 
4 

|g-i| 1.7 x 10" 

Error bound 1: 
Error bound 2: 

.138 

.016 
(19.8%) 
(2.3%) 

Example 4 

r = .10 
i 

w = .40 
1 

Max | 7T(i)-• * ( i ) | 1.6 x 10" 

r 2 = .20 w = .30 
2 g .407325 

r 3 = .05 w = .20 
3 

g .407297 

r - .15 
4 

w = .10 
4 

|g~g| 2.8 x 10" 

Error bound 
Error bound 

1: 
2: 

.3265 

.0159 
(80.2%) 
(3.9%) 

-5 

-5 

12 



Example 5 

y = .05 
i 

w = .40 
i 

Max n(i)--TC(i) | 2.8 x 10"7 

72 = -20 

y3 = .15 

w = .45 
2 

w = .40 
3 

g 

g 

.4485327 

.4485324 

y4 = .20 w = .45 
4 

|g-g 2.9 x 10"7 

Error bound 
Error bound 

1: 
2: 

.0817 

.0044 
(18.27.) 
(1.07.) 

Example 6 

y = .01 
i 

w = .20 
1 

Max 
i 
7r(i)-n(i)| 3.0 x 10"8 

y = .02 
2 

w = .30 
2 

g .09546422 

y = .03 
3 
y = .04 
4 

w = .20 
3 

w = .30 
4 

g 

|g-g 

.09546414 

8.0 x 10"8 

Error bound 
Error bound 

1: 
2: 

.133 

.0004 
(1407.) 
(.57.) 

ND9031D4 
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