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1 Introduction 

Motivation 

As present-day communication becomes more and more digitized tools from clas-
sical continuous-time queueing analysis are no longer applicable. A simple model 
for digital transmissions is a slotted server that transmits packets in a time-
slotted manner. Multiple packets hovvever may arrive during a time-slot such as 
according to a Poisson arrival process. 

In particular each packet or message itself may generate a number of service 
quanta or scgments of sonic fixcd or random number. 

For example, as per Potter and Zukerman (1989), (1990), the main capacity 
limitations of a "router" used for interconnection of "metropolitan area networks" 
(MANs) will be the number of packets, where, as per the IEEE 802.6 Standard, 
a packet may consist of a largc nuinbcr of scgments. This capacity constraint 
on batches of segments plays an essential role in the newly introduced "Cyclic 
Request Control (CYREC)" scherne for DQDB (Distributed Queue Dual Bus) 
protocols. 

When the number of packets (or workload) is restricted to a finite capacity con­
straint no solution for this generic time-slotted system seems to be available. 

Background 

The dynamics of a slotted service system somewhat resembles that of a queueing 
system with batch arrivals. 

Explicit results for continuous-time finite FCFS queueing systems with batch 
arrivals are limited to the case of Poisson arrivals and exponential services as 
based on a 'flow in equals flow out' principle for sets of the form {j, j + 1 , . . . , K) 
(cf. Kabak 1970, Mansfield and Tran-Gia 1982, Chaudhry and Templeton 1983, 
Takahashi and Katayama 1985 and Nobel 1987). Recently, in Van Dijk (1989) 
these results were relaxed to non-exponential finite source input but under the 
restrictive condition of a LCFS-Preemptive service discipline. 

The discrete-time formulation herein allows a non-exponential (or rather as dis­
crete analogue non-geometric) input and servicing. As a consequence, a direct 
recursive solution scheme as above is no longer applicable. 

As most closely related discrete-time result in the literature, in Daduna and 
Schassberger (1981) an elegant insensitive product form expression, in analogy 
with Standard continuous-time results, is established for a discrete-time queue 
under a LCFS-Round Robbin discipline and under the assumption of an infinite 
capacity. Further, the input is assumed to be Bernoulli so that only one customer 
or packet per time-slot can arrive. Ilowever, the combined features of multiple ar­
rivals and a finite capacity constraint in this paper are the essential complications 
which lead to a different (non-standard) expression. 
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Result 

An explicit expression will be obtained somewhat similar to that Van Dijk (1989). 
In contrast, though, genera! discrete packet lengths are allowed and the total 
workload distribution also applies to FCFS-disciplines. Furthermore, to obtain 
this result one has to regard the slottcd server model in a convenient manner. 
Most essentially, this requires different technical details as 

1. standard partial balance principles, which are known to be responsible for 
explicit product form type expressions, are no longer applicable. (Also see 
remark 3.2). 

2. in the discrete-time mechanism probabilities for both arrivals and depar-
tures at the same time have to be taken into account. (Also see remark 
3.3) 

Technique 

The result is obtained by an intermediate step of first establishing a detailed 
and insensitive steady state distribution under a LCFS-assumption. This result 
is of interest in itself as it is of non-standard form and based on a principle of 
balance per time-slot which seems promising for extension. For the FCFS-case 
of primary interest a recursive expression for the total workload distribution will 
then be derived. 

Outl ine 

First, in section 2 the model and the discrete-time mechanism are described. 
Next, in section 3 a detailed result for the LCFS-case is derived first and foliowed 
by the FCFS-total workload distribution. Section 4 gives a recursive relation for 
this distribution. 

2 Model 

Consider a single service systeni or transinission device which processes service 
segments in a slotted manner as follows. Time is slotted in fixed intervals of length 
A. At the end of a time-slot a munber (or batch) of packets (jobs, message 
requests or data frames) for processing may be generated, say k packets with 
probability ab(k) where 6(1) -f b(2) + . . . = 1. Hence, with probability (1 — a) 
no packets arrive at all. Each packet itself in turn will require a batch of service 
segments or quanta to be processed, say a batch of j segments with probability 

«0). 
During one time-slot exactly one segment is processed with probability v, pro-
vided no new packets arrive. Othervvise (also see remark below) no segment is 
processed. Processing takes place in a FCFS-manner, where service segments 
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that were gencratcd in one and the saine time-slot can be ordered in an arbitrary 
manner. 

Finite capacity constraint 

The system, furthermore, has a finite capacity to contain no more than a total 
number of K packets. To this end the 'total loss' protocol is in order. Under 
this protocol a new packet batch which leads to an excess is rejected in total. 
More prociscly, wlion k packets are already present, all packets of a new packet 
batch of more than K — k packets are rejected. Note that in view of this capacity 
restriction one is forced to keep track of both the residual number of packets and 
segments. 

Remark 2.1 (Assumption) The assumption that in time-slots during which a 
batch of packets arrivés no segment is transmitted may not be satisfied in general 
but does seem justified either 

• due to technical restrictions such as a comraon device to handle or process 
both arrival and departures, or 

• approximately as the number of transmission slots during which packet 
batches arrive can be relatively very small, recalüng that the time-slot is 
the length of time required to process just one segment. 

Remark 2.2 (Poisson input) As a special case a packet input according to a 
Poisson process with parameter A is included by 

ab{k) = e-AA(AA)fc/fc! 

[ 1 - Q ] = e " A A 

Remark 2.3 (Finite segment constraint) A finite capacity constraint K on 
the number of segments rather than the number of packets is covered by the above 
model by identifying a packet as one segment and incorporating the segment size 
distribution a(k) (by a convolution term) in the packet size distribution b(k). 

Objective 

We are interested in the steady state total workload distribution, that is in the 
steady state probabilities n(k) where k is the total residual number of segments 
that require to be processed. 

Steps 

In order to determine 7r(fc) we will fust analyze the system under a LCFS-
preemptive assumption in stead of the origmal FCFS discipline of interest. An 
explicit and insensitive steady state distribution will be obtained. Next, from 
this distribution the total workload distribution also for FCFS-disciplines is con-
cluded. 
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3 Steady State Distribution 

For convenience of analytical tractibility, we first assume that packets are pro-
cessed in the following last-come first-served preemptive (LCFS) manner. 

LCFS-description 

When during a time-slot a number of packets arrive, no segment in that time-
slot is transmitted and the ongoing transmission of segments of another packet 
is stopped. The next time slot a segment from one of the newly arrived packets 
is transmitted. More precisely, the newly arrived packets are numbered is some 
arbitrary order in which they have to be transmitted. The segments from the 
packet ordered first have to be transmitted first. Next, those from the second one 
in order etc. Further, with packets still present from n different time-slots, say ki 
from the t'-th time-slot in time-order, that is with kn representing the remaining 
packets that have entered last and ki that have entered first, the transmission 
order of these packets, provided no new arrive meanwhile, is the kn from the n-th 
ordered (that is, latest) anival time-slot first down to the ki from the 1-st ordered 
(that is the earliest) anival time-slot last. 

Nota t ion 

With fcj + . . . + kn < K, let the state 

[K, rn] = {{ki, n ) , . . . , (fc„, rn)) 

denote for each i-th ordered arrival time-slot, the number ki of remaining packets, 
as defined above, and r,- the number of remaining segments still to be transmitted 
of the packet from this group in first next transmission order. (Note that segments 
from only this remaining packet may already have been transmitted). Further, 
for any u and j with u + j < K and r, we introducé the notation 

(3.1) R(r) =j~Xa(k) 

-l£(*) 
k v 

Note that the above state description provides sufficiënt information for the tran-
sition mechanism. More precisely, the corresponding process constitutes an irre-
ducible Markov chain at the set of admissible state determined by k\ + . . . + kn < 
K. The existence of a unique steady state distribution is thus guaranteed (eg. 
Kohlas 1982, p 93). In what follovvs, steady state expressions are denoted by w(-) 
and without mentioning restricted to admissible states only. 



Th eorem 3.1 (Detailed distribution) For the LCFS case and with TT(0) a 
normalizing constant, we have 

(3.2) TT ([*„,fn]) = ;r(0)>+-^ { ~ f ft l % ) W i + • • • + *i-i)l 

Proof We need to verify the global balance equations for any state [fc„,rn] when 
substituting (3.2). To this end, for arbitrary vector [fc<,ft] = ((fci,ri),...,(fc|,r t)) 
and (k,r) let 

[{h, ft], {k, r)] = ((/CI,Ï 'I), . . . , {kt, r t) , (fc, r)) 

First, consider a state [fcn>rn] with n > 0 and let (kn,r„) = (k,r) as corresponding 
to the last ordered arrival time-slot. Recall that (1 — a) is the probability of no 
arrivals and b(k) the conditional probability of k arrivals given that arrivals occur 
in a time-slot. We now have to show that the probability (outrate) 

(3.3) TT ([£„, r„]) = TT ([&„, f„]) {(1 -a) + a} 

is equal to the total probability flux into this state given by 

ir([kn-1,rn-1],(k,r))(l-a)(l-v)+ 

j r ([fcn_ l lfn_1] , (fc ,r+l))( l -a) i /+ 

*{[kn-i,rn-i],(k + 1,1))(1 - <*)va(r)l{kï+„.+kn_i+k<K}+ 
(*X A\ 

«•([fcn_1,Fn_i]1(A,r),(l,l))(l-a)i/l{fc1+...+fcI,_1+fc<if}+ 

w(tfc»_i, rn-i])ab(k)a(r)+ 
oo 

*([kn-i,rn-i),(k,r))a{ £ 6(j)] 
j=A'-(fc,+...+fcn)+l 

where the first four terms all correspond to no packets arriving, while the last two 
terms concern arriving packets and where the last terra reflects the rejection of 
a total number of arriving packets when the level K is excessed. By substituting 
(3.2), writing £ = h + . . . + fcn_i and noting that V(k\e) > 0 if k + l < K we 
obtain 

*([fcn-i,f„-i],(A:,r + 1)) = *([K,rn])R(r + l)/R(r) 

*([h-i,rn-i}, (k + 1,1)) = ir([fc„,fn]M* + l\t)TR(l)/[V(k\e)R(r)} 

*(fe-i,fm_1],(lb fr) f (1,1)) = *([kn,rn])V(l\k + e)TR(l)a/{l - o ) 

* ( [ * . - ! , i w ] ) = T([fcn,fn])r-1[V(fc|£)il(r)]-1[(l - «OM 
(3.5) 
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By substituting these relations in (3.4) and noting that R(l) = [TV]"1, we obtain 
for k + l < K: 

(3.6) 

*([*», r„])(l - cv) {(1 - v) + / l ( r ) - 1 {vrt(r + 1) 

[V(k + lK)l{fc+,+1<K}a(r) + KkHr^l/Vikli)}} + 
00 

*(I*„,fn])a[V(l|* + *)l{*+«-l<lf} + E 6 W ] 

Now first note that the indicators l^+t+iKK} c&n be deleted as by (3.1): V(fc + 
\\t) = V{\ \k + l) = O for fc + t = K. Further, from (3.1) and the fact that the 
conditional packet number probabilities b(k) sum up to 1, we also conclude: 

(3.7) 

V(l\k + £) = 1 - £ b(j) 
j=K-{k+t)+l 

vR(r + 1) +a(7-)r"1 = vR(r) 

V(Jb + l|€) +b(k) = V{k\t) 

As a consequence, (3.6) now reduces to: 

*{[kn,fn)){(l-a) + a} 

by which the equality of (3.3) and (3.4) is proven for n > 0. For n = 0, the global 
balance equations in the empty state 0 lead to the boundary condition 

x(0) = TT(0)(1 - Q) + TT((1,1))(1 - a)v + TT(0)Q E m 
k=K+l 

This in turn is satisfied as substitution of (3.2), 12(1) = 1/[TJ/] and V(1|0) gives: 

TT(1,1) =7r (0)T[a / ( l -a ) ] / l ( l )y ( l |0 ) 

r=x(0)- a 

« / ( l - a ) i - E m 
k=K+l 

The proof of the theorem is hereby completed. 

As an immediate consequence, with k = {ki,..., kn) only denoting that ki packets 
from an t-th ordered arrival time-slot are still present the following insensitivity 
result is obtained. This result shows that the steady state packet distribution 
depends on the segment distribution a(k) only through its mean. Herein, let 
k = k\ + ... 4- kn be the total number of remaining packets (workload). 
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Theorem 3.2 (Insensitivity result) For the LCFS-case, with ?r(0) a normal-
izing constant and k = fcj + . . . -f kn the total number of packets, we have 

(3.8) *( t ) = 7r(0)rfc ( r ^ - V f[ V ( * # i + . . . + *,_,) 
\ i « / J = i 

Proof First note that the capacity restriction K allows an arbitrarily large num­
ber of segments (Note that this does not conflict with remark 2.3). For any given 
•t-th time slot and number ki we can thus arbitrarily vary the number r,-. The 
result now imincdiately follows usiug 

~ 1 ~ ~ afk) 1 Jï. * a(k) 1 ^ k 

(3.9) E^(0 = ; E E v i = 7 E E ^ i = i E ^ W = i 
r = l T r = l fc=r " T fc=l r = l v T k=\V 

Remark 3.1 (Interprctalion). Tlic term /?(?") exactly corresponds to the steady 
state excess probability of a residual number of r time units in a discrete-time 
renewal process with renewal probahilities a(-). The terms V(fc|£) would have a 
similar interpretation with renewal probabilities 6.(-) when K = oo. For the finite 
case K < oo, one could thus roughly think of state-dependent truncated steady 
state excess probabilities V(fc|£). 

Remark 3.2 (Insensitivity and partial balance). In continuous-time frameworks, 
explicit insensitive expressions are known to be related to special notions of partial 
balance as opposed to global balance relations, such as most notably: 'local 
balance'(cf. Schassberger 1978), 'job-local balance' (cf. Hordijk and Van Dijk 
1983), 'detailed balance' (cf. Barbour 1976, Kelly 1979) or 'partial balance' (cf. 
Whittle 1985). The present result relates to the principle of balance per batch 
generated per source as used for the finite source models in Van Dijk 1989, if 
one identifies each time-slot as a source. The number of 'sources', though, has 
now become unlimited. Further, in a finite source model the generation of new 
arrivals is stopped when the source becomes busy while here the arrival process 
always continues. 

Remark 3.3 (Simultaneous arrivals and departures). As a technical complica-
tion, note, though we assume upon packet arrivals no segment to be transmitted, 
that the probabilities for no joint arrivals and departures have to be taken into 
account in the balance equations. 

FCFS-case 

Now let us return to the original FCFS-case of interest. To this end, observe 
that the total number of packets present (workload) is determined only by the 
number of packets and thus segments that arrive per time unit or time slot and 
the service capacity of the system at a probability v per segment per time-slot. 
The actual packet precedence or order in which the packets are transmitted is 
hereby not relevant. (The conservation of workload principle). 
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As a consequence, the (workload) distribution for the total number of packets 
for both the LCFS and FCFS-case (as well as possible other disciplines such as 
processor sharing) is given by 

(3.10) * ( * ) = £ *(*) 
{k:ki+...+k„=k) 

with 7r(fc) as per (3.8). 

We have thus obtained an exact expression for the total workload distribution 
which is insensitive for the packet length distribution and which in principle 
can be computed straightforward. To possibly further reduce the computational 
complexity of (3.10), in the next section a recursive computational scheme will 
also be presented. 

4 Recursive Oomputat ion 

The recursive sclieme helow is related to the onc in section 4 of van Dijk (1989) 
but given in detail for selfcontainedness as now also the workload distribution is 
involved. 

First note that nor the total number of packets k nor n can ever exceed K. For 
any k\ + ... + kn <t < K and any n define 

t-(ki+...+k„-i 

Uil) Ut(kn\ki,...,kn-i)= £ b(j) 
v ' ' j=k„ 

*n(0 = E TP*+"+*J f[ *M*il*i."-.*i-i) 
A:,+...+fcn<t i = l 

Then by (3.10) and the nornialization condition P(K) = 1: 

P(t) = *(0)[l + X>/( l -a ) ]V ' (0] 
(4.12) K

 n = 1 

T(O)-1 = i + El« / ( i -« ) ]V"W 
n = l 

By recursively expressing <j>n(-) in 4>n *(•) we will hereby establish a recursive 
computational scheme for the cumulative workload distribution P(t). To this 
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Hence 
4 4 

(4.13) 
n*) 

I 

E W 

end, we write using (4.1) for n > 1: 

r(t) = É f.(i.) E nw#i,*2,---,*i-i) 
fcl = l *2+...+fen<t-fel J=2 

i t ,=l fc2+...+A:n<t-fcl j=2 

= E UtihW-'it-kx) 

<T_1(* - *i) (« > 1) 

<j>°{t) = 1 (* < tf) 
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