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Abstract 

Continuous-time Markov reward structures over a finite time interval are 
studied. Conditions are provided to conclude error bounds or comparison 
results when studying systems under modified data assumptions such as for 
sensitivity, computitional or bounding purposes. A reliability network is 
studied as an application. An explicit sensitivity error bound on the 
effect of breakdown and repair rates is obtained. 
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1. Introduction 

Motivation 
Continuous-time Markov chains have gained a widespread popularity over the 
last decade for modeling and evaluation purposes in computer performance 
evaluation, telecommunications and reliability. Particularly, transient 
analysis has hereby become more and more important. Most notably, for 
example, system availability or reliability during finite time interval 
currently receives considerable attention (e.g. [1], [2], [3], [4], [5], 
[6], [7], [9], [10], [13]). 

In contrast with steady state analysis explicit expressions are usually not 
available for transient characteristics and numerical computation is most 
commonly involved (cf. [3], [10]). As exact computations rapidly become 
costly, approximate procedures and truncations are frequently employed. 
Error bounds on the accuracy of such approximations are usually not 
available. 

More generally, systems may have to be studied under different parameter 
data or protocols. To give some examples, one may wish to evaluate the 
effect of parameter imprecisions such as due to statistical interval esti-
mation (perturbation or sensitivity analysis). Or, for computational pur­
poses, large or infinite state spaces can have been truncated by 
transition modifications (truncations). Similarly, a simple performance 
estimate can have been suggested by modifying some system assumptions 
(simple estimates). Or, relatedly, a system might be compared under two 
protocols or policies for optimizing or bounding purposes. 

Roughly speaking, error bound or comparison analysis to compare modified 
versions of some given Markovian reward structure are thus of practical 
interest. Particularly, transient structures may hereby be thought of for 
present-day applications such as performability analysis. 

Literature 
For the steady state case, a variety of perturbation results for numerical 
computations have been reported (cf. [11], [12], [14], [15] and references 
therein). For the transient continuous-time case such similar results are 
much less common. In [6] an elegant expression is derived for the deriva-
tive of marginal probability distributions with respect to a single system 
parameter as based on the well-known randomization method. Related 
parameter sensitivity results for reward structures can also be concluded 
(cf. [4], [6]). These results, though, still involve a large or in fact 
infinite recursive numerical scheme and do not concern other type 
perturbations such as truncations or system modifications. 

Results 
This note aims to show that by combining randomization with results from 
[14], one can provide conditions to conclude an error bound or monotoni-
city result when evaluating reward structures for a continuous-time Markov 
chain over a finite time interval under different system data. The 
verification of this condition is essentially based on estimating so-
called bias-terms. For concrete applications this can be achieved in an 
analytic manner. To illustrate the conditions and this estimation of bias-
terms, a reliability model will be studied. An explicit a priori error 
bound will be provided for the sensitivity in breakdown and repair rates. 
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2 General model and result 

2.1 Model and discrete-time transformation 

Consider a continuous-time Markov reward chain with state space S = 
{0,1,2...}, transition rates q(i,j) for a transition from a state i in a 
state j and reward rate r(i) whenever the system is in state i. Assume that 
for some constant Q 

(2.1) Sjq(i,j) < Q < » (les) 

and define the uniformization transition probability matrix P by 

r q(i.j)/Q for j*i 

(2.2) P(i,j) -1 
L l-2j#iq(i,j)/Q for j-i 

Let pt(i,j) denote the transition probabilities over time t. Then by the 
Standard uniformization technique (e.g. [4], [5]) 

(2.3) Pt(i,j) = sj = 0 e"
tQ -^g^-Pk(i,j) (i.jeS) 

where Pk is the k-th power of the uniformization transition matrix P. 
Further, define the expectation operators T, Tk and Tt on real-valued 
functions f: S->-R by: 

Tf(i) - SjP(i,j)f(j) 

(2.4) Tkf(i) - SjPk(i,j)f(j) 

Ttf(i) - SJPt(i,j)f(j) 

The function Vt as defined by 

t 

(2.5) Vt(i) = ƒ Tsr(i)ds (ieS) 
o 

then represents the expected total reward over time t conditional to the 
initial state at time 0. Now similarly define the uniforraized expected 
total reward functions V" by: 

(2.6) V»(i) = Q"1 s£:jTkr(i) (ieS) 

Lemma 1 (Reward uniformization) For all t > 0: 

(2.7) Vt - E * e'tQ ^ g f Vk 
v ' t k=o k! 
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Proof By using the Gamma-Poisson relation 

rt. -AS (As)"'
1 , =° -At (At)k J Ae 7 ' , ds = E e , . 

oJ (n-1)! k=n k! 

we obtain by substituting (3), p(k,i/) = e"" vk/k! and using (4) 

Vt = J* E* p(k,sQ) Tkr ds 

- s" (E? p(i,tQ)) Q"1 Tkr 
k = 0 i=k + l c 

- s£.0 p(-e.tQ) (Sflo T
kr)Q-i = s"=0 p(i,tQ) V-« D 

2.2 Error bounds 

Now suppose that we consider a similar Markov reward process with state 
space S, transition rates q(i,j) and reward rates r(i) where we make the 
assumptions 

(i) S c S 

(ii) SjqCi.j) < Q (ieS) 

The notation from section 2.1 is adopted for this Markov reward process 
with an upper bar "-" symbol, e.g. P as by (2.2) and Vt as by (2.5) with 
fs as by (2.4). A symbol "(-)" is used when both the original and modi-
fied process are meant. 

The following key-theorem strongly resembles theorem 2.1 in [14]. It dif-
fers though in that it concerns finite horizon (thus transient) reward 
structures as opposed to average rewards for continuous-time Markov 
chains. Basically, it shows that error bounds can be concluded by compar-
ing only differences in transition rates and estimating so-called bias-
terms. Though similar in nature to the proof in the above reference, 
because of its simplicity and some differences in view of the transient 
continuous-time case, we prefer to give a complete self-contained proof. 
The essential new step though is no more than Lemma 1 above. 

Theorem 1 (Error bound) Suppose that for some nonnegative function $(.), 
some initial state ieS, some constants e, S, P > 0, all ieS and all k^O: 

(2.8) |2j[q(i,j)-q(i)j)][V
k(j)-Vk(i)]| < e *(i) 

(2.9) |(r-r)(i)| < 6$(i) 

(2.10) Tk$(i) < fi 
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Then 

(2.11) |VZ-VZ| < [c+8]0 Z 

Proof By virtue of (2.6), we have 

(2.12) (V)k + 1(i) = ̂ (DQ" 1 + 'iV(i) 

As the transition probabilities P(.,.) remain restricted to ScS, for 
arbitrary ieS we can write: 

(2.13) (Vk-Vk)(.2) - (r-r)(i)+(TVk-1-TVk"1)(i) 

= (r-r)(i)+(T-T)Vk-1(i)+T(Vk-1-Vk-1)(i) 

- 2£~J Ts([r-r]+[(T-T)Vk-s-1])(^)+fk(V°-V°)(i) 

where the last step follows by iteration. First note that the last term in 
the latter right hand side is equal to 0 as V° (, )-V° (. )«0. Further, by (2) 
and (4) we can also write 

(2.14) (T-T)V(i) - 2j#itq(i,j)-q(i,j)]Q-
1Vs(j) 

+ S^i[q(i,j)-q(i,j)]Q-
1Vs(i) 

- SJ^l[q(i,j)-q(i,j)][V(j)-V(I)]Q-
1 

By substituting (2.14) in (2.13), taking absolute values and noting that 
Ts is a monotone operator for all s (i.e. Ts f<TS g if f<g component-
wise), we obtain from (2.8)-(2.10) for any h>0: 

(2.15) |(Vk-Vk)(i)| < [S+c] 2klJ Ts$(,e) < [S+cl/SkQ"1 

By lemma 1 and (2.15) we thus conclude: 

(2.16) |(Vz-Vz)(i)| < [6+c]fi S*_o kQ-ie-z<J ^ T - [c+S]pZ D 

As a less restricted version, similar to theorem 2.2 in [14] we can also 
conclude a monotonicity result as follows: 

Theorem 2.2 (Monotonicity result) Suppose that for all ieS and k>0: 

(2.17) [r-r](i) + Sj[q(i,j)-q(i,j)][Vk(j)-Vk(i)] > (<) 0 
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Then for all Z and ieS, we have 

(2.18) Vz(i) > (<) Vz(i) 

Proof This follows directly by substituting (2.14) in (2.13), noting 
that V° (. )-V° (. )=0 and recalling that the operators T's are monotone. • 

Remark (Bias-terms) The essential step for verifying the conditions is to 
find upper bounds on the so-called bias terms Vk(j)-Vk(i) of the form 

|Vk(j)-Vk(i)j < B l f j 

Bias-terms are generally known to be bounded of the form (e.g. [15]) 

|Vk(j)-Vk(i)| < 2 R mintRij.RjJ 

where R is some upper bound on the reward rate and where Rj, denotes the 
mean number of steps (first passage time) to reach state j out of state i. 
This estimate, however, can be very rough (e.g. [15]). More importantly, 
except for simple random walk type models bounds on mean first passage 
times are extremely hard to obtain such as most notably for queueing or 
communication network (and thus multi-dimensional) applications. 

In the next section, therefore, we will illustrate how for a concrete 
communication network application estimates Bi(j<B can also be obtained 
analytically by inductively using the Markov reward equation (2.12). This 
technique has already proven succesful in a number of non-product form 
queueing networks (cf. [14].). Roughly speaking, by theorem 1 we can thus 
conclude error bounds for continuous- time and transient behaviour 
basically by inductive verification (particularly estimation of bias 
terms) of the conditions. 

Remark ($-function) For a detailed discussion of the role of the bounding 
function $ we refer to section 2.2 of [14]. It enables for instance state 
space truncations, say at state L, by choosing $ to be the indicator of 
state L (i.e. $(i)=l{i=L}). (see section 3.4 of [14]). 

As another application, by choosing <£>(n)=l+n, where n is the population 
vector of jobs in a queueing network and n the total number of jobs, a 
finite source input with M sources with exponential parameter 7 could be 
compared with a Poisson input rate A»7M (see section 3.5 of [14]). 

Though in the remainder of this paper we will only use $(.)—1, we have 
included the $-function in the theorem for completeness. 

3 Application: An availability model. 

3.1 Model. 

Consider an availability model which consists of N components, numbered 
1,...,N. Each component is alternatively up and down as follows. When H -
(hj,....,!̂ ) is the vector of components hx , . . . .h,, that are down, a com­
ponent h^H will go down at an exponential rate 

jS(h|H) 
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Here we assume that the breakdown rate of a particular component will 
become less if more components are down, that is 

(3.1) 0(h|H) > /3(hJH+s), 

which may reflect for instance that a comraon maintenance device is shared 
over the remaining up components or that the breakdown rate of a component 
depends on the system speed which in turn slows down when more components 
are down. When a component h is down it is repaired at an exponential rate ph 
independently of the status of the other components. 

Here, as natural, we also assume the overal breakdown rate to be relatively 
small as opposed to the repair rates of individual components, that is 
for any state H and component h: 

(3.2) S ^ H /3(h'|H) < ph 

As performance measure of interest we wish to investigate the total number 
of breakdowns Bz(H) during a fixed time interval of length Z when starting 
in a particular down state H. More precisely, we wish to provide an error 
bound on the effect of imprecisions or changes in the breakdown and repair 
rates on this value Bz (H) . That is, we will employ sensitivity analysis for all 
parameters synchronously. 

3.2 Sensitivity error bounds 

Consider the original system with parameters /3(h|H) and ph as well as a 
perturbed system with parameters j8(h|H) and ph where we assume that for 
some A>0 and all h,H 

(3.3) S^alPh-AVI + SheH|0(h|H)-,9(h|H)| < A 

We adopt all notation from section 2 without upper bar "-" symbol for the 
original and with upper bar symbol "-" for the perturbed system. With 

S - S - {H|H-(hj. K), h^U M}} 

and choosing 

Q > 2 s p s + 2 s 0 H /J(h |H) 

the cor responding t r a n s i t i o n p r o b a b i l i t i e s become: 

V(H,H+h) - y(hlH)Q-1 

(3.4) 

y (H,H-h) - y c r 1 

Further, by setting a reward rate 

(3.5) y <H) - S^j^OilH) 

the measure Bz(H) is given by 

(3.6) CVZ(H) =
 (BZ(H) 

To apply theorem 2.1, the following lemma is essential. 



Lemma 3.1 For all h,H: 

(3.7) 0 < Vk(H) - Vk(H+h) < 1 

Proof We will apply induction to t. (3.7) holds for k=0 by V°(.)=0. 
Suppose that (3.7) holds for k<m. The following relation is then obtained 
by comparing the one-step reward relation (2.12) in state H and state H+h 
where (3.4) and (3.5) are'substituted. Hereby we note in advance that some 
terms are artificially split (e.g. £(h|H) in /3(h|H+h) + [£(h|H)-£(h|H+h)]) 
or added and subtracted (e.g. phQ"

1Vm(H)), in order to compare transitions 
with equal coefficients pairwise. 

( 3 . 8 ) V» + 1 (H) - Vm + 1(H+h) 

{ s s * H + h £ ( s | H ) Q - i + ^ ( h l H ) Q " 1 + 

E S 6 H P S Q"1Vn i(H-s) + P h Q - i V ^ H ) + 

2 s*H+h yÖ(s|H+h)Q-1Vm(H+s) + 

2seH + h [ )9 ( s |H) -^ ( s |H+h) ]Q- 1 V m (H+s )+^ (h |H)Q- iV n ' (H+h) + 

[1 " 2 S 6 H P S
 Q _ 1 " 2 s ^ H + h ) 9 ( s | H ) Q - 1 - p h Q - 1 - ^ ( h | H ) Q - 1 ] V m ( H ) j 

j s s É H + h / 8 ( s | H + h ) Q - i + 

2 s e H P s Q- 1 V m (H+h-s)+p h Q- 1 V»(H) + 

S s*H+h ^ ( s |H+h)Q- iV»(H+h+s) + 

S.«H + h [ ^ ( s |H) -^ ( s |H+h) ]Q- 1 V n ' (H+h)+^(h |H)Q- iV» ' (H+h) + 

[1 - S s e H p s Q - 1 - p h Q - i - S s ^ H + h / 3 ( s | H ) Q - 1 - / 9 ( h | H ) Q - 1 ] V m ( H + h ) } 

^ ( h l H ) Q - 1 + 

2 s e H + h C ^ ( s | H ) - / 9 ( s | H + h ) ] Q - 1 + 

S S É H P * Q _ 1 I V » ( H - s ) - V ( H - s + h ) ] + 

phQ" i [V" (H) -V» (H) ]+j8(h|H)Q-1 [V» (H+h) -V» (H+h) ] + 

2s*H + h 0 ( s | H + h ) Q - i [ V » ( H + s ) - V » ( H + s + h ) ] + 

2 s * H + h [ ^ ( s | H ) - ^ ( s | H + h ) ] Q - 1 [ \ P ( H + s ) - V ™ ( H + h ) ] + 

[1 - E s e H P s Q ^ - P h Q ^ - S s ^ H ^(s |H)Q- 1 ] [V m (H)-V«>(H+h)] 



- 9 -

Here, first of all, note that the fourth and fifth erm are indeed equal to 
0, but kept in for clarity and arguments below. Further, note that 

(3.9) VMH+s) - V^H+h) = [Vm(H+s) - V" (H) ] + [V" (H) - W (H+h) ] 

where the first term in the right hand side is nonpositive but estimated 
from below by Vm(H+s)-Vm(H)>-1, as per induction hypothesis. As a conse-
quence, by combining the one but last term of the right hand side of 
(3.8), with (3.9) substituted, with the second term 

S,*H + h[/8(s|H)-^(s-|H+h)]Q-
1, 

substituting the induction hypothesis Vm(H)-Vm(H+s)>0 for all H and s in 
the other terms and noting that all coefficients sum up to 1, we have 
proven V"*1(H)-V»*1(H+h) > 0. 

To prove the upper estimate 1 of (3.8) with k=m+l, now recal.1 that the 
fifth item is equal to 0 which compensates for the first additional term 
/3<h|H)Q-1, while also the fourth term is 0 which compensates for the 
second additional term by virtue of the estimation 

2seH + h[^(
slH)-/9(s|H+h)]Q"1 * 2s(ÉH)3(s|H)Q-

1 < phQ"i 

as guaranteed by assumption (3.2). Further, by (3.9) and the induction 
hypothesis (3.8) for t-m, we also have 

V^H+s) - V™(H+h) < V^H) - V^H+h) 

With these arguments, substitution of the induction hypothesis V™ (H)-
Vtn(H+s)<l for all H and s, and using again that all coefficients sum up to 
1, we also conclude Vm+1(H)-V"*1(H+h)<l. • 

Theorem 3.1 For all finite time intervals [0,Z] and initial states H at 
time 0: 

(3.10) |BZ(H)-BZ(H)| < A[l+Z]. 

Proof We will apply theorem 2.1. Condition (2.9) hodls with 6-A by 
virtue of (3.3) and (3.5) and when choosing $(.)=1. Condition (2.10) is 
satisfied with /3=1. And by lemma 3.1 above, condition (2.8) is verified 
with e=A by 

(3.11) EH,[q(H,H')-q(H,H')][V
k(H')-Vk(H)] -

SseH[Ps-Ps][V
k(H-s)-Vk(H)] + 

2 S*H i~P(s |H) -^(s |H) ] [ [Vk (H+s) -Vk (H) ] D 
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As a special case, we can also obtain monotonicity results by: 

Theorem 3.2 Suppose that for all h and H: 

(3.12) \ 
^ yS(h|H)>(<)̂ 3(h|H) 

Then for all Z and H 

(3.13) BZ(H) > (<) BZ(H) 

Proof We need to verify condition (2.17) of theorem 2.2. By (3.5): 

(3.14) r(H)-r(H) - S,ÉH [J9(s|H)-0(s|H) ] 

while by lemma 3.1 for all H and s: 

Vk(H-s) - Vk(H) > 0 
(3.15) 

Vk(H+s) - Vk(H) > -1. 

Combining (3.11) with (3.14) and substituting (3.15) proves (2.17). Theorem 
2.2 completes the proof. £ 

Evaluation Transient analysis of continuous-time Markov chain reward 
structures is frequently demanded in practice such as to evaluate the num-
ber of breakdowns or availability level of a reliability network in a 
fixed time interval. As explicit parametric expressions are most rarely 
available while input data are often subject to imprecisions, sensitivity 
or error bound analysis with respect to data perturbations are of practi­
cal interest. This paper addresses this issue by providing conditions from 
which a priori error bounds can be concluded. In concrete situations veri-
fication of these conditions can be performed in an inductive analytic 
manner, as is illustrated by a reliability network. Further application in 
the area of performability analysis seems promising. 

Acknowledgement I am indebted to Dick Muntz for a discussion which sti-
mulated this paper. 
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