
ET

«culteit der Economische Wetenschappen en Econometrie
05348

Inherently Flexible Information Syste

M. Boogaard
MJJ.A. Gambin
E.R.K. Spoor and
RJ. Veldwijk

Research Memorandum 1991-55

vrije Universiteit amsterdam

Inherently Flexible Information Systems

M BOOGAARD, M J J A GAMBIN, E R K SPOOR, and R J VELDWDK

Vrije Universiteit
Faculteit der Economische Wetenschappen en Econometrie

Vakgroep Bestuurlijke Informatiekunde
De Boelelaan 1105

1081 HV AMSTERDAM

Evolving information requirements often force the restructuring of database structures,
resuhmg in major adjustments in many application programs that run against the
database. The introduction of inherent flcdbility by means of on integrated data
dictionary provides a way to reduce maintenance effort significantfy. The development of
models that explicitfy support the construction of inherently flexible information systems is
the overall objective of the MESDAG Research Group. This paper describes one of the
directions within this research framework.

1. INTRODUCTION

Formerly, the acceleration of the usage of information technology by organizations was primarily
connected with the advances in hardware technology. However, nowadays software has become the
leading component of computerization. The shift of dominance from hardware to software technology
is caused by the awareness of the rapidly growing gap between the suppry and demand of information
systems, i.e., the so-called application backlog or software crisis.

Another aspect pertaining the current infonnation technology is the automation of processes in
unstable and unstructured environments. These "new" environments, for example management
information systems and decision support systems, are characterized by different object structures and
highly evolving information requirements. The continually evolving information requirements of
organizations are intrinsic to the nature of information system utilization (see Lehman 1985) and
organizational processes.

Both features of the contemporary infonnation technology described, result from the lack of inherent
flexibility of the information systems which is a predominant contributor to the current maintenance
mess (see Martin and McClure 1985). Traditional modelling methodologies and tools are not equipped
for explicit support of the development of flexible information systems. This observation forms the
basis of the mission of the MESDAG Research Group1, i.e, to prove the feasibility of developing
inherently flexible information systems by introducing higher levels of logica! data independence. The
MESDAG philosophy sterns from the premise that inherent flexibility requires self-knowledge (see
Hofstadter 1979).

The MESDAG project k a joint project endotsed by three organizations in the Netherlands: Netherlands
Railways Company, RAET N.V., and the Vrije Universiteit of Amsterdam. MESDAG is the acronym of
MEta Systems Design And Generation. The MESDAG Research Group consists of the following four
members: dr. E.RJC Spoor (associate professor at the Vrije Universiteit), drs. RJ. Veldwijk (consultant
at RAET N.V.), MJJA. Gambin (researcher at the Vrije Universiteit), and drs. M. Boogaard (assistant
researcher at the Vrije Univeristeit).

1

The core of self-knowledge consists of simple rules, metarules to change these simple rules,
metametarules to changes the metarules, etc. Consequently, flexibility proceeds from an enormous
amount of rules on different levels. Information systems model the rules of their universe of discourse.
To achieve flexibility, the information systems thus should contain a metamodel, a metametamodel,
etc. The uncontrollable accumulation of metamodels can be eliminated by storing the description of
the metamodel in the metamodel itself (see Ross 1981, Nijssen and Halpin 1989, and Veldwijk et al.
1991c). This leads to a self-referential metamodel that replaces the complete hierarchy of metamodels.
Integration of this metamodel with the "simple model" blurs the distinction between the different levels
of both models which results in inherentry flexible information systems (see Veldwijk et al. 1991a-c,
Spoor et al. 1991, and Boogaard et al. 1991).

This paper elaborates on one of the objectives of the MESDAG Research Group. It is based on the
research plan of the first author. It focuses on an elementary operations approach aimed at the
automatic restructuring of information systems. Section 2 describes the "state of the art" with respect
to maintenance and the extent of the flexibility of current information systems. Furthermore, this
section justifies the selection of the relational model as the starting-point. Section 3 introduces the
research approximation to be foliowed. The first subsection of section 3 illuminates the concepts of an
automatic restructuring mechanism based on the MESDAG philosophy. The second subsection
explores the application of this restructuring mechanism to the creation of a data independent object
representation which introduces flexibility for end-users. Section 4 concludes the paper by listing
suggestions for future research directions and other applications of the concepts presented.

2. STATE OF THE ART

There exist several designing actions that can ease the maintenance of information systems. For
example, (1) adapt maintainability as a major principle of information system design, (2) minimize the
complexity of the information system and application program structures, (3) use a structured
development approach, (4) increase productivity, etc. by using new technologies like CASE, 4GL, and
RDBMSs. However, these solutions address only the symptoms of the underiying origin of
maintenance, Le., the lack of inherent flexibility of information systems (see Boogaard et al. 1991). In
conclusion, current software technologies mainly focus on productivity, and technical and development
facets rather than flexibility.

Object oriented approaches (see, e.g., Meyer 1988) and the relational model (see, e.g., Codd 1990)
are concerned with the development of flexible information systems. The premise of the MESDAG
Research Group is the relational model, because the object oriented approach, although conceptuaUy
promising, is not fully crystallized yet. Consequently, there is no agreement on the object oriented
model and a formal definition of the approach is not yet at hand. This deficiency restricts the
development of a self-referential metamodel of the object oriented model which is essential to
accomplish inherentry flexible information systems. Furthermore, the concepts to be presented can
easily be implemented in RDBMS environments which are widely used nowadays.

2

The relational model, however, is a formal, mathematically based data model, which can be modelled
using the relational model itself (see Veldwijk et al. 1991c). It claims to introducé a degree of
flexünlity by means of physical and logica! data independence (see Figure 1).

Externat

Level

Logical data independence

Conceptual

Level

Physical data independence

Internat

Level

Figftre 1. Data independence

Although current RDBMSs (Relational Database Management Systems) provide physical data
independence to a large extent, the level of logical data independence is still limited. The relational
model and RDBMSs endeavour to actieve logical data independence using the view concept (see
Figure 2).

Application

Programs
Users

Enbeddt »d
f

DML |
. T -Dal tabai

| DML
ie • -1

1 Views 1
1 | Napping 1
1 Base tables 1
. . J

Fifftn 2. Current situation

However, the use of views results in a unsatisfactory level of logical data independence, even when
RDBMSs adequately support view updatability (see Veldwijk 1991a). In conclusion, the current level of
logical data independence attained does not result in inherenüy flexïble information systems. However,
as will be explained in the subsequent sections, the relational model can be used to accomplish these
systems because a self-referential metamodel of the relational model can be developed .

Actually, the internat catalog of a RDBMS is a metamodel of the relational model. However, the
catalogs of contemporary RDBMSs do not fully support all features of the relational model (see Codd
1990). Furthermore, these catalogs cannot be used integrated with the database structures because the
catalogs are masked (except for retrieval) and can only be altered indirectly by means of DDL (Data
Definition Language).

3

3. MODUS OPERANDI

The lack of logical data independence has severe negative repercussions on both application programs
and users. This section describes the modus operandi to be foliowed striving after logical data
independence to both of them. It will be amplified by means of the following two steps:
1. Logical data independence from an application program's point of view.
2. Logical data independence from a user's point of view.
During these steps an active, self-referential data dictionary will be used. This data dictionary is the
metamodel of the relational model structured by the relational model itself and is integrated with the
database structure.

3.1 Step 1: Application Programs

The first step concentrates on the introduction of logical data independence for application programs.
Figure 3 illustrates the underlying architecture for this step.

Application

Programs

Embedded DHL
Database

Application

Programs
Database

Inplosion |

Conversion

A

Explosion |
T

Application

Programs

Embedded DHL
Database

Application

Programs
Database

Fiffire 3. Application program's point of view

Whenever a database structure is no longer in the condition to represent the status of its universe of
discourse, alteration of the database structure is necessary. Part of these changes are information-
preserving and can be considered restructuring.

For example, consider the following database structure (the primary key of the relations is
underlined and the characters represent the aliases designated to the columns which is necessary to
identify the columns during the EDSO procedure to be explained, see Figure 4 below):

DEPARTMENT fDEPNO. DEPNAME, BUDGET)
A B C

EMPLOYEE (EMPNO. EMPNAME, DEPNO)
D E F

In the original situation, the database structure reflects a one-to-many relationship between
DEPARTMENT and EMPLOYEE which means that a department can employ more than one
employee but an employee can only work on one department. Suppose that in consequence of an
alteration in the environment, the relationship between DEPARTMENT and EMPLOYEE must
change into a many-to-many relationship because an employee can now work on more than one
department. The following database structure meets this requirement:

4

DEPARTMENT fDEPNO. DEPNAME, BUDGET)
' A B C

ASSIGNMENT (DEPNO. EMPNO^
F G

EMPLOYEE rEMPNO. EMPNAME)
D E

In prindple, restructuring processes must be analysed separately. However, it is possible to decompose
the modificatiions required into a certain number of elementary operations, ie., Elementary Database
Structure Operations (EDSOs). These operations are generalized and thus applicable for every
database structure.

Whenever the EDSOs required are determined, the procedure consists of three steps that must be
executed for each EDSO selected:
1. Implosion: each relation of the source database and all the embedded DML (Data

Manipulation Language) queries of the application programs affected must be imploded into
the data dictionary,

2. Conversion: having checked several constraints, both the imploded relations and DML queries
are converted conform to the spedfications of the structure modification, which is specific for
the EDSO executed;

3. Explosion: the original data content is re-stored into the new database structure, and the
restructured queries are embedded into their original application programs.

Figure 4 illustrates the working of the EDSO required for the example, Le., the transformation of a
one-to-many to a many-to-many relationship. It also shows the consequences for an examplary
embedded query which is formulated in SQL (Structured Query language). It should be noted that
the scope of the paper is to prove the feasibility of the EDSO procedure rather than to describe it in
detail (see Veldwijk 1991a for an in-depth analysis). Consequently, only a concise description of the
procedure is given. Furthermore, the EDSO procedure described is a conceptual framework. It is
conceivable to implement it in a different way using this framework.

5

DEPARTMENT EMPLOYEE

DEPNO DEPNAME BUDGET

D1
D2

STAFF
SALES

100,000
150,000

EMPNO EMPNAME DEPNO

El
E2

SMITH
JONES

D1
D2

VALUES

VALUES

DEPARTMENT EMPLOYEE

select EMPNAME,
DEPNAME

from EMPLOYEE EMP,
DEPARTMENT DEP

Uhere EMP.DEPNO = DEP.DEPNO
order byEMP.DEPNO

Implosion

RELATIONNAME COLUMNNAME TUPLECODE VALUE

DEPARTMENT DEPNO 1 D1
DEPARTMENT DEPNAME 1 STAFF
DEPARTMENT BUDGET 1 100,000
DEPARTMENT DEPNO 2 D2
DEPARTMENT DEPNAME 2 SALES
DEPARTMENT BUDGET 2 150,000
EMPLOYEE EMPNO 1 El
EMPLOYEE EMPNAME 1 SMITH
EMPLOYEE DEPNO 1 D1
EMPLOYEE EMPNO 2 E2
EMPLOYEE EMPNAME 2 JONES
EMPLOYEE DEPNO 2 D2

select

f rooi

where
and
and
and
and
and
and
and
and
and
and
order by

E.VALUE,
B.VALUE
VALUES A,
VALUES B,
VALUES E,
VALUES F
A.RELATIONNAME
A.COLUMNNAME
B.RELATIONNAME
B.COLUMNNAME
E.RELATIONNAME
E.COLUMNNAME
F.RELATIONNAME
F.COLUMNNAME
A.TUPLECODE
E.TUPLECODE
F.VALUE
F.VALUE

'DEPARTMENT'
'DEPNO1

'DEPARTMENT1

'DEPNAME'
'EMPLOYEE'
'EMPNAME'
'EMPLOYEE'
'DEPNO'
B.TUPLECODE
F.TUPLECODE
A.VALUE

Conversion

RELATIONNAME COLUMNNAME TUPLECODE VALUE

DEPARTMENT DEPNO 1 D1
DEPARTMENT DEPNAME 1 STAFF
DEPARTMENT BUDGET 1 100,000
DEPARTMENT DEPNO 2 D2
DEPARTMENT DEPNAME 2 SALES
DEPARTMENT BUDGET 2 150,000
EMPLOYEE EMPNO 1 E1
EMPLOYEE EMPNAME 1 SMITH
EMPLOYEE EMPNO 2 E2
EMPLOYEE EMPNAME 2 JONES
ASSIGNMENT DEPNO 1 Dl
ASSIGNMENT EMPNO 1 El
ASSIGNMENT DEPNO 2 D2
ASSIGNMENT EMPNO 2 E2

select

from

Where
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
order by

E.VALUE,
B.VALUE
VALUES A,
VALUES B,
VALUES D,
VALUES E,
VALUES F,
VALUES G
A.RELATIONNAME
A.COLUMNNAME
B.RELATIONNAME
B.COLUMNNAME
D.RELATIGNNANE
D. COLUMNNAME
E.RELATIONNAME
E.COLUMNNAME
F.RELATIONNAME
F.COLUMNNAME
G.RELATIONKANE
G.COLUMNNANE
A.TUPLECODE
D.TUPLECODE
F.TUPLECODE
F.VALUE
G.VALUE
F.VALUE

'DEPARTMENT'
'DEPNO'
•DEPARTMENT'
'DEPNAME'
•EMPLOYEE'
•EMPNO'
•EMPLOYEE'
•EMPNAME'
•ASSIGNMENT'
'DEPNO'
•ASSIGNMENT1
•EMPNO'
B.TUPLECODE
E.TUPLECODE
G.TUPLECODE
A.VALUE
D.VALUE

Explosion

DEPNO DEPNAME BUDGET

D1
D2

STAFF
SALES

100,000
150,000

EMPNO EMPNAME

E1
E2

SMITH
JONES

ASSIGNMENT

DEPNO EMPNO

D1
D2

E1
E2

select

from

uhere
and

EMPNAME,
DEPNAME
EMPLOYEE EMP,
ASSIGNMENT ASG,
DEPARTMENT DEP
ASG.DEPNO = DEP.DEPNO
ASG.EMPNO * EMP.EMPNO

order by ASG.DEPNO

Fig/av 4. EDSO procedure

Every database structure can be transferred to the content of the VALUES relation . Implosion means
that each value of a relation together with its structural characteristics is incorporated in the data
dictionary relation VALUES. Hence, the distinction between structural data (metadata) and "simple"
data disappears. The only structural description that is left, is the invariant structure of VALUES:

VALUES fRELATIONNAME. COLUMNNAME. TUPLECODE. VALUE)

Except for TUPLECODE, the infonnation represented by the columns of VALUES was explicitly
present in the initial situation. The addition of TUPLECODE is necessary in order to reflect the
implicit connection between the values of the original tuples. However, TUPELCODE is not added to
order the tuples and thus does not violate relational principles.

The DML queries affected are transformed conform to the implosion of the original database
structure. These queries are also stored in data dictionary relations.

Consequently, every alteration of the database structure and as a result the DML queries, now
requires modification of the content of data dictionary relations. This can be directly accomplished by
means of DML. Normally, DDL (Data Definition Language) would be needed to change the source
database structure into the required database structure. Furthermore, several complex operations
would be required to adjust both the content of the source relations and the embedded DML queries
of application programs to the new database structure.

The determination of a powerful or even complete set of EDSOs will be crucial in this step. With
this set of EDSOs every desired database alteration and application program adjustment can be
executed automatically on the basis of one or more EDSOs. Other conceivable EDSOs are, for
instance:
• The transfonnation of a many-to-many into a one-to-many relationship, Le., the inversion of

the EDSO described.
• The transfer of a descriptive column of a relation on the one-side of a relationship to the

relation on the many-side.
• The transfer of a descriptive column of a relation on the many-side of a relationship to the

relation on the one-side.
The following important consideration must be taken into account. The application programs still

depend on the logica! structure of the database after the restructuring. However, this dependence can
be bypassed using the automatic restructuring tooi. Such a restructuring tooi supports the database
administrator during the maintenance process and permits enhancements of the database structure,
which would probably be denied in the original situation. Thus, a surrogate logical data independence
can be achieved from an application program's point of view.

32 Step 2: Users

The second step involves the user's point of view. The problem of logical data dependence appears
when users try to translate their requests into DML queries. The query contains several database
structural terras and thus depends on the current structure of the database. Consequently, users must
have a complete overview of the database structure at that point of time. As a result, a future
alteration of the database structure affects the query composed. The original infonnation request,
however, remains the same.

Because the VALUES relation is a canonical form, even the metametadata, i.e., the data dictionary
description itself, can be stored in the VALUES relation.

7

Two important condusions of the first step form the foundation of the second step towards a higher
level of logical data independence. First, the utilization of DML will always lead to a structural
dependence even when the database structure is invariant. The examplary queries of Figure 4 on the
VALUES relation still contain structural information, i.e., the equations with RELATIONNAMEs,
COLUMNNAMEs, and TUPLECODEs in the WHERE-dauses. Second, the EDSO concept is a
useful vehide to alter existing structures automatically. Figure 5 shows the conceptual approach which
enables logical data independence from a user's point of view.

Users

OML |

Object

Representations

DML j

Database

Figure 5. User's point of view

Instead of interacting directly with the database structure, each user can define his own perspective in
terms of objects, properties, and relationships between objects, i.e., an object representation.

Consequentry, the users no longer depend on the logical structure of the underrying database. Thus,
the users thus do not have to abide by a discipline in contrast with Codd's allegation (1990, p. 5). The
database structure (using EDSOs) may change without impairing the perspectives of the users, Le.,
EDSO transparency. Furthermore, the object representation can be altered by users (whenever he or
she wants) within a framework of rules without affecting the database structure by means of the
execution of conceptual EDSOs on his or her object representation.

As far as the users are concemed, the object representations can be considered external schemata.
Thus, from a user's point of view logical data independence is achieved as originaUy described by
means of the three schema distinction (see Figure 1). An important observation is that the users are
now dependent on their object representation. This seems just a postponement of the problem.
However, the users can change their object representations whenever and in any information-
preserving way they want without affecting other users and application programs. Furthermore, the
structure of the database can change without affecting the perceptions of the users in the first
instance. The users interact with the database using an object manipulation language (OML) which
contains more natural constructs than DML. Consequently, OML simplifies the interaction between
users and the stored data considerably.

8

4. CONCLUDING REMARKS
i.

In this paper one of the objectives of the MESDAG Research Group is explored. The MESDAG
philosophy is applied to the maintenance of information systems within the context of the relational
model. Furthermore, it is stated that the concepts for maintenance also form the basis for database
structure-independent perpectives of end-users. However, the appUcability of the underlying philosophy
is not limited to automatic restructuring and users' database inquiry only. Without listing a complete
set of possibilities, these prospects are illustrated by two directions for further research which are
directly related to the content of this paper.
The necessity of language development (OML) requires further research and can be seen as a bottom-
up approach to accomplish the user's interaction with information systems on the basis of natural
language. If an OML can be formally defined, it is also applicable for the application programs, i.e.,
embedded OML. Figure 6 depicts the resulting ideal situation of logical data independence.

Application

Programs
Users

Embedck sd OML | | OML

Object

Representations

DML |

Database

Figftre 6. Further research

In conclusion, logical data independence can be achieved as meant by the three level distinction, i.e.,
interna!, conceptual and external schema (see Figure 1). The object representations conform to the
definition of external schemata for both application programs and users. Comparing this to the current
situation (see Figure 2), "views" on the database are transferred before instead of after the use of
DML.

Obviously, the presented approach affects the development process of information systems in highly
dynamic environments. However, the merits of the utilization of the underlying data dictionary not
only cover these environments. The data dictionary can also be used passively to control and support
most aspects of the development process. Furthermore, it is possible to use the data dictionary partly
actively, for example to support structures in which objects belong to multiple object types, e.g.,
generalization (see Boogaard 1991). The decision on how to use the data dictionary, or in other words
how flexible should the information system be, should be an essential element of the first stage of the
development process. Moreover, a methodology must be constructed to measure the flexibility required
for the information system to be developed. In conclusion, application of the MESDAG philosophy
should result in adjustments of the current information system development methodologies.

9

REFERENCES

Boogaard, M., Veldwijk, RJ., Spoor, E.R.K. and Dijk, M.V. van (1991) "On Generalization in the
Relational Model," Serie Research Memoranda, Research Memorandum 1991-37, Amsterdam: Faculteit
der Economische Wetenschappen en Econometrie, Vrije Universiteit Amsterdam (suhmitted to DFTP
WG 8.1 Working Conference on "Information Systems Concepts: Improving the Understanding",
Alexandria/Egypt, April 1992).

Buitendijk, R.B. (1991), Towards an Effective Use of Relational Database Management Systems,
Amsterdam: Thesis Publishers (no 4. of the Tinbergen Institute research Series).

Codd, EJF. (1990), The Relational Model for Database Management: Version 2, Reading, Massachusetts:
Addison-Wesley Publishing Company.

Lehman, M.M. and Belady, LA. (1985), Program Evolution: Processes of Software Change, London:
Academie Press.

Martin, J. and McClure, C. (1985), "The Maintenance Mess," Software World, 14, 4, pp. 10-16.

Meyer, B. (1988), Object-Oriented Software Construction, New York: Prentice Hall.

Nijssen, G.M. and Halpin, TA. (1989), Conceptual Schema and Relational Database Design: A Fact
Oriented Approach, New York: Prentice Hall.

Ross, R.G. (1981), Data Dktionaries and Data Administration: Concepts and Practices for Data
Resource Management, New York: AMACOM.

Spoor, EJA.K., Veldwijk, RJ., and Boogaard, M. (1991), "The Transformation of Extended Entity
Relationship Generalization Hierarchies into Tables and Meta Tables," Serie Research Memoranda,
Research Memorandum 1991-47, Amsterdam: Faculteit der Economische Wetenschappen en
Econometrie, Vrije Universiteit Amsterdam (submitted to the European Journal of Information
Systems).

Veldwijk, RJ., Boogaard, M., Dijk, van M.V., and Spoor, E.R.K. (1991a), "EDSOs, Implosion and
Explosion: Concepts to Automate Part of Application Maintenance of Relational Databases,"
Information and Software Technology, 33, 5, pp. 343-350.

Veldwijk, RJ., Spoor, EJUL, Boogaard, M., and Dijk, M.V. van (1991b), "On the Expressive Power
of the Relational Model: A Database Designer's Point of View," Serie Research Memoranda, Research
Memorandum 1991-49, Amsterdam: Faculteit der Economische Wetenschappen en Econometrie, Vrije
Universiteit Amsterdam (to appear in the Proceedings of the Twelfth Annual International Conference
on Information Systems, New York, December 1991).

Veldwijk, RJ., Buitendijk, R 3 , Spoor, EÜ.K., and Boogaard, M. (1991c), "Towards a Catalog
Standard for the Relational Model Version 2: A Manifeste," Serie Research Memoranda, Research
Memorandum 1991-50, Amsterdam: Faculteit der Economische Wetenschappen en Econometrie, Vrije
Universiteit Amsterdam.

10

