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Abstract 

This paper addresses decision problems with ordinal data (weights, 

criterion scores). A random sampling approach is proposed to generate quan-

titative values which are consistent with the underlying ordinal 

information. An attractive feature of the approach is that it is applicable 

with mixed (quantitative/ordinal) data. Another feature is that the ap

proach can be extended to rankings with degrees of difference. 

The outcome of the approach is a distribution of performance scores. 

Stochastic dominance concepts are proposed to arrive at a final ranking of 

alternatives. An application of these procedures is given for a location 

study of nuclear power plants. 

Keywords: multicriteria decision analysis, uncertainty, ordinal data, 

stochastic dominance. 
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1. Introduction 

The complexity of many present day policy problems calls for a multi-

dimensional analytical framework in order to capture a wide range of 

relevant aspects. Two problems can be mentioned in this respect. Firstly, 

the various aspects (criteria) to be taken into account are often difficult 

to compare: it is hard to arrive at quantitative figures to trade them off 

against each other. Secondly, for some relevant criteria it often proves to 

be difficult to obtain quantitative data on the impacts of policy alterna-

tives. 

As a result of these problems a need exists of multicriteria decision 

methods which can handle qualitative information on weights and criterion 

scores (cf Janssen et al., 1989, and Nijkamp et al., 1990). Among the 

methods which have been developed for this purpose are regime analysis 

(Hinloopen et al., 1983), QUALIFLEX (Paelinck, 1977) and a multidimensional 

scaling approach (Voogd, 1983). One of the problems with these methods is 

that they are not so easy to apply in the case of mixed data, i.e., when 

part of the criteria are quantitative and part are qualitative of nature. 

In some applications of these methods it even occurs that available quan

titative data are 'downscaled' to ordinal data in order to be able to apply 

a qualitative multicriteria method (cf. Tweede Kamer, 1986). This is of 

course an unfortunate state of affairs which has lead to the development of 

special methods for mixed data. An example of this is the EVAMIX method 

(Voogd, 1983), which is based on concordance analysis. 

In the present paper we will present a stochastic approach to ordinal 

data which is both applicable when all data are qualitative and when a mix 

of quantitative and qualitative data occurs. In this approach quantitative 

values for weights and/or criterion scores are generated which are consis

tent with underlying ordinal data. The approach is quite flexible since it 

can deal with various kinds of ranked data: usual ordinal data, ordinal 

data with degrees of difference, ties, and incomparable data. Thus, from 

the input side, the stochastic method bears a certain resemblance to 

Saaty's analytical hierarchy approach (Saaty, 1977). The stochastic ap

proach entails the use of Monte Carlo procedures to generate the sets of 

possible outcomes for the alternatives. The concept of stochastic dominance 

is proposed to arrive at a final ranking of alternatives. The method is 

illustrated by means of an application to the location of nuclear power 

plants. 
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2. Ordinal data: a stochastic interpretation 

As a starting point for the discussion of ordinal data in multi-

criteria decision making we take the case of ranked criteria. Suppose that 

criteria have been ranked in decreasing order of importance. Let A. denote 

the (unknown) quantitative value of the weight of criterion j (j-l,..,J). 

Assume that the weights are non-negative and add up to 1. Then, the set of 

weights S which is consistent with the information on the ranking reads as 

follows: 

S = [(A ,..., A )|0 < X < A . < Xj ; E A - 1] (1) 
j J 

The set S is a convex polyhedron with J vertices. Thus, ordinal information 

on weights gives rise to a large set of possible quantitative values of the 

weights. The problem is how to make the set S tractable in the context of 

multicriteria analysis. In this paper we distinguish two approaches: the 

extreme value method and a stochastic approach. 

The Extreme value method focusses on the vertices of the set S. For 

example, if there are three criteria, the weight combinations taken into 

consideration are: (0, 0, 1), (0, 1/2, 1/2), and (1/3, 1/3, 1/3), as also 

illustrated in Figure 1. Examples of this approach can be found in Paelinck 

(,1977), Kmietovich and Pearman (1981) and Voogd (1983). As indicated in 

Janssen et al (1989), the extreme value method is easy to apply, but it has 

as a main disadvantage that the interior points of S are neglected. 

Fig. 1. Set of feasible weights in the case of 3 criteria. 
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In order to overcome this problem a stochastic approach is proposed. 

This is done by introducing the probability that a certain weights combina-

tion is the 'true' combination the decision maker has in mind. The 

probability distribution which is most easily to defend in the absence of 

further prior information is the uniform distribution: all elements in S 

are equally probable. This gives rise to the following distribution: 

f ^ \j-i) = c if: °^xi^1/J 

X1<X2<l/(J-l) - Aj/CJ-l) 

\j-2-AJ-l-1/2"Ai/2" ••• - AT-O/ 2 (2) 

— 0 elsewhere 

where c can be shown to be equal to (J-1)!J! (Rietveld, 1989). Once the 

values of A.. , . . . , A - are known, the value of A. can be found as: 

1 " Ai " ••• " \j-r 

On the basis of this distribution one may proceed in two different 

directions. The first direction is that one focusses on the expected values 

of the weights, given distribution (2), as the best representation of the 

set S. As shown in Rietveld (1984, 1989) it is possible to derive the ex

pected values (E) in an analytical way. The following results are found: 

E(A1) - W 
E(A2) - l / J 2 + 1 / [ J ( J -D] 

E(AJ_1) = l / J 2 + 1 / [ J ( J -D] + . .. +1/[J.2] 

E(AJ) - l/j2 + 1/[J(J-1)] + . .. +1/[J.2] + 1/J.l 

(3) 

In table 1, the outcomes of (3) are presented for some selected values of 

J. The table clearly reveals that this approach gives rise to a car-

dinalization which is different from the usual 'naive' approach to ordinal 

numbers. The naive approach - interpreting rank numbers as if they were 

cardinal - would, for example, in the case of J-3 amount to cardinal 

weights equal to 1/6, 2/6, 3/6, a result different from that in Table 1. 

A disadvantage of the expected value method is that only one interior 

point of S is generated. If one wants to investigate more elements of S one 

may proceed in another direction: generation of a random sample of weight 

combinations on the basis of (2). 
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number of expected values 

criteria •E(A1) E(A2) E(A3) E(A4) E(A5) E(A6) 

2 .25 .75 

3 .11 .28 .61 

4 .06 .15 .27 .46 

5 .04 .09 .16 .26 .46 

6 .03 .06 .10 .16 .24 .41 

Table 1 Expected values of ranked weights for various 

numbers of criteria. 

It may be tempting to draw random combinations of weights by the fol-

lowing approach. Draw J numbers a. (j=l,...,J) from a uniform distribution 

on the interval [0,1] and define A» as the smallest value of a. divided by 

S a.. This does not lead to the uniform distribution defined in (2), 

however. 

An operational approach to generate a random sample of weight combina

tions consistent with (2) is the following (see Rietveld, 1988). The 

approach consists of two steps. In the first step the marginal distribution 

of A- , the conditional distribution of A„ given A, , etc. are derived. In 

Appendix 1 it is shown how these distributions f(A,), f(A_|A-), 

f(A_|A,,A~), etc. can be obtained in an analytical way on the basis of (2). 

In the second step a random generator is used to draw subsequently a 

value of A.. , based on f(A..), a value of A„ based on f(A„|A,), etc. In 

Appendix 1 it is indicated that no Standard random generators exist to do 

this job because of the special forms the conditional distribution func-

tions assume. It can be shown, however, that a Standard random generator 

can be used after an appropriate transformation of the weights. 

The above approach holds true for ordinal information on weights. In 

the case of ordinal information on criterion scores a similar approach can 

be foliowed. There is a difference, however, since weights are usually 

standardized such that they add up to 1, whereas for criterion scores other 

standardizations are used. A common way of standardizing criterion scores 

is to divide all elements by the highest attainable value. In this case, 

the highest standardized value is 1. Further, assume that alternatives are 

ranked in increasing order of attractiveness according a certain criterion 
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j, and that all criterion scores are non-negative. Then the set T. of com-

binations of criterion scores which are consistent with the ordinal 

information reads: 

Tj = K P j ! PjI)'|Q<p.jl<Pj2<...<PjI-lï (4) 

where p.. is the score of altemative i (i=l,...I) according to criterion 

j. For the convenience of notation we will'drop the subscript j where pos-

sible. T is a convex polyhedral set. In the case of 1=3, T assumes the form 

of a triangle with extreme points (0,0,1), (0,1,1) and (1,1,1). When we 

assume along the same lines as above that the p.'s are uniformly dis-

tributed on T, the following probability density function results: 

g(p1,...,p11) = (1-1)! if 0<?1< 1 

Pl<P2< 1 

: (5) 

*I-2^1-1* l 

- 0 elsewhere 

The expected value approach can be shown to lead to the following 

results if applied to (5): 

E (Pi)- i/I i-1 1. 

Appendix I contains a description of the procedure for generating random 

combinations of criterion scores which are consistent with (5). 

3. Rankings with degrees of difference 

Consider ordinal information such as x..<x„ and x„<x„ . Hitherto we have 

assumed that the degree of difference between x.. and x„ is equal to that 

between x~ and x~. In certain cases, decision-makers or analysts may be 

able to express their opinions in terms of rankings with varying degrees of 

difference. For example: x. is smaller than x„, which in turn is con-

siderably smaller than x~ . Information of this type is used in the 

analytical hierarchy process developed by Saaty (1977). 

We will show that it is possible to develop the stochastic approach of 

section 2 in such a way that it can deal with rankings of weights or 
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criterion scores with varying degrees of difference. For this purpose the 

following notation will be used: 

x< y x is smaller than y acc'ording to degree m 

where m «' 1,2,3, .... . In our stochastic approach variations in the degree of 

difference are taken into account by introducing auxiliary variables. For 

example, when x<„ y, an auxiliary variable b is added such that x<b<y. 

Similarly when x<-, y, two auxiliary variables b and c are added such that 

x<b<c<y. 

Consider the case of ranked information on criterion scores. The fol

lowing notation will be used: 

0< pn < p„ < pT = 1 (6) 
-m, Kl ~nu vï -mT *i

 x ' 

where m. is the degree of difference between p. 1 and p. for i=l,...,I. 

Further, let q., denote the k'th auxiliary variable between p. 1 and p. 

(k=l m.-l). For notational convenience we set q. =p.. Then (6) is 
' 1 ' Him. *i v ' 

ï 

equivalent to: 

°^11^ • ̂ I n u ^ l ^ • -^2m^ ^Imf l (7) 

For the stochastic aproach this means that instead of the original I vari

ables now 2 m. variables have to be generated. The modified probability 
i 

density functipn reads 

*«11 ^I.m,-!) " ( S m i - 1 ) ! (8) 

I 1 

for all q., satisfying (7). 

Of the generated values only the q. (~P-) are used in the further 
i 

analysis. The structures of (8) and (5) are very similar; if m. - 1 for all 

i, (8) and (5) coincide. A high degree of difference between subsequent 

criteria scores can be shown to lead to a small variance of the p.. For 

expected values another result can be proved: if the degree of difference 

is the same for all subsequent criterion scores (m, - nu - ... - m_ - N), 

the expected values of the criterion scores do not depend on N. 

For weights, the introduction of varying degrees of differences leads 

to a more complex adjustment of the original formulations. Using the same 

notation as above, our point of departure is: 
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We 

0< A, < A„< < AT 
-m, i "ia,, L~ —m. J 

2 A. = 1 

i J 

introducé auxiliary variables /x., 

(9) 

(k=l m.-l) satisfying: 

0 < p n < / i 1 2 . • • -<M l m i < P2V . . -<M2m2<. • • • <MJffij 

(10) 

SA»- - l 
J J J 

where A. is denoted as u. for national convenience. 

It can be shown that the probability density function f is equal to: 

J-l m. 
f (̂ -,...,/i. -) - ( S -m.-l)! H (J+l-j) 2 (11) 

J j-l J j-l 

for all it., satisfying (10). Note that when m. = 1 for all weights, (11) 
JK J 

coincides with (2). In Appendix 1 it is shown how random samples of weights 

can be generated on the basis of (11). 

4. Ties and incomplete rankings 

Ties deserve special attention in ordinal data; the probability that 

ties occur is large in the case of a large number of observations. Consider 

a ranking such as A..< (A„,A„) < A, . This may have different interpreta-

tions: 

A„ and A~ are exactly equal 

A„ and A_ are approximately equal 

A„ and A„ are incomparable: A„ may be both larger and smaller than A„, 

and the difference between the two is not necessarily small. 

Each of these cases deserves its own treatment in the stochastic ap-

proach outlined above. 

When observations are exactly equal. one only needs to draw one random 

value which is assigned to all observations concerned. An inspection of (8) 

and (11) reveals that this can be done in a consistent way by interpreting 

an exact equality as <„ (i.e., m. - 0 in such a case). Thus, there is no 
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need to design special procedures to deal with exact equality: one can 

still use the formulas derived in Appendix 1 . 

In the case of incomparable observations (an incomplete ranking) one 

can still use the stochastic approach. Consider for example a cluster of 

incomparable observations consisting of A„,A_ and A, . Then random numbers 

a<b<c are generated which are assigned to A„,A„ and A, in a random way. 

Thus, in one case A„ may be assigned the largest value (c), and in another 

case the smallest value. 

In the case of approximately equal observations, one may proceed as 

follows. In a first step, a value is generated for these observations as if 

they are exactly equal (along the lines sketched above). In the second 

step, the observations are assumed to be uniformly distributed in an ap-

propriately defined interval around this value. Consider for example three 

clusters: {p, } , {p„ ,p„} and {p, ,p,.} with the following features: 

p1<p,?=:p.,<p,=pc-, where p„=p, means that p„ and p„ are approximately equal. 

The Standard stochastic approach leads to values a.. , a„ and a_ for the 

three clusters. Then in the last step, values for p„ and p^ are drawn from 

a uniform distribution on the interval 

[T a, + TT a„, -~ a~ + -x a, ]. This approach can also be foliowed for 

weights, but in that case an additional condition (p«+Po — 2a_) has to be 

imposed to ensure that the additivity constraint on the weights is 

satisfied. 

We conclude that the stochastic approach outlined above is quite 

flexible. It can deal with all kinds of ordinal data on weights criterion 

scores: 

Standard ordinal data 

ordinal data with degrees of difference 

ties of exactly equal observations 

ties of approximately equal observations 

incomparable observations. 

The question remains how this stochastic approach can be used to generate a 

final ranking of alternatives. This will be the subject of the next sec-

tion. 

5. A stochastic dominance approach to multicriteria decision making. 

The stochastic approach leads to a large set of cardinal values for 

weights and criterion scores which are consistent with ordinal data. 

Assuming that the uniformity assumption on which these values are based is 
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appropriate, the stochastic approach gives an adequate representation of 

the distribution of the weights and criterion scores. 

The cardinal values obtained in this way can be used as an input to 

various multicriteria decision methods such as ELECTRE (Roy, 1968) or 

utility based approaches. For each combination of values drawn another run 

has to be made of the multicriteria decision method. The question arises 

how the outcomes of all these runs can be summarized to arrive at a final 

ranking of alternatives. In the present paper we will show that stochastic 

dominance is a promising tooi if a weighted summation utility structure is 

used. 

Stochastic dominance is a concept to analyze decision making under 

risk (e.g., portfolio analysis as described by Whitmore and Findlay, 1978). 

Consider the distribution functions of the outcome x of two alternatives i 

and k: F.(x) and F. (x). If one wants to select the most attractive alterna-1 k 

tive, one may use the mean value as a criterion. If one is risk averse, the 

variance can be used as a second criterion, which leads to mean-variance 

analysis (Markowitz, 1987). However, as noted by Fishburn and Vickson 

(1978) mean-variance analysis has certain defects so that other approaches 

have to be considered. 

Stochastic dominance is addressed to the following question. Let the 

mean value of x for alternative i be larger than for alternative k: E(X,F.) 

> E(,F,). Does this result still hold true if a transformation is applied 

to x? For example: v(x) - In x. To answer this question, two classes of 
2) utility functions will be distinguished (V- and V„): 

V, is the set of all utility functions v(x) which are continuous, 

bounded and increasing 

V„ is the set of all utility functions v(x) which are continuous, 

bounded, increasing and concave. 

Clearly, V, is a quite general set of utility functions. The concavity 

property added in V„ means that V. is the set of risk averse utility func

tions . 

We will use the symbols SD.. for first degree stochastic dominance and SD„ 

for second degree stochastic dominance. Then stochastic dominance of the 

first degree is defined as: 

- F± SD]_ Fk if and only if E [v(x),F.(x)] > E [v(x),Ffc(x)] 

for all v in V.. 

Similarly, stochastic dominance of the second degree is defined as: 
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- F± SD2 Fk if and only if E [v(x),F1(x)] > E [v(x),Fk(x)] 

for all v in V„ 

Thus, in the case of first degree stochastic dominance, the mean of dis

tribution i is larger than that of distribution k for a quite general class 

of utility functions. In the case of second degree stochastic dominance the 

same result is obtained for the class of risk averse utility functions. 

Stochastic dominance can be shown to be transitive: F. SD F, and F, SD F-

imply F. SD F. for both degree 1 and 2. Further, it can be shown that F. 

SD1 F, implies F. SD- F,. 

Assume that x takes on values on the interval I -[0,«>J. Then the fol-

lowing theorems can be proved (Fishburn and Vickson, 1978): 

Fi SD1 Fk i f a n d ° n l y i f Fk (x) - Fi" ( x ) f o r a 1 1 x i n I 

F. SD, F, if and only if fx F. (y)d > fX F.(y)d for all x in I. 
1 Z K

 QJ
 K y gj -1- y 

These theorems are illustrated by means of Figure 2. In Fig. 2(a) the 

distribution functions do not cross: alternative i stochastically dominates 

alternative k to the first degree. Hence, stochastic dominance of the 

second degree also applies. In Fig. 2 (b), the distribution functions do 

cross. Hence, stochastic dominance of the first degree does not occur. In 

this case alternative i is stochastically dominant of the second degree 

with respect to alternative k since the size of area A is larger than of 

area B. Finally, in Fig. 2(c) stochastic dominance of neither degree 1 nor 

2 occurs since the size of area A is smaller than of area B. 

In most applications of stochastic dominance x refers to an uncertain 

monetary variable. In the present multicriteria decision context, x is 

defined as a weighted summation performance indicator: 

x. - E A. p.. (12) 

where the stochastic background of x. has been explained above. Thus by 

using a stochastic dominance approach one can address the question whether 

or not a ranking of alternatives on the basis of the mean value of x. is 

sensitive to transformations of the functional form of x. such as for ex-
2 x 

ample x. — (E A. p..) . 
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(a) 

A 

(b) Fi SD2 Fk 

but not: F. SD, F, 1 I k 

/^ 

(c) neither F. SD., F. 1 I k 

A 
nor F. SD2 F, 

Fig. 2. Examples of stochastic dominance relationships. 
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6. Application: the siting of nuclear power plants in the Netherlands 

Compared with other European countries, the share of nuclear power in 

total power production is very small • in the Netherlands. After a long 

public debate in the beginning of the 1980's, the Dutch government ex-

pressed in 1985 the intention to build two new nuclear power plants with a 

capacity of 1000 MWe each. As a first step towards implementation a loca-

tional study was carried out. After some initial scoping, nine potential 

locations have been selected (see Figure 3). 

0 potential site i Bath/Hoedekenskerke 6 Maasvlakte 
2 Borssele 7 Moerdijk 

0 20 km range around the 3 Eems 8 West NOP-dijk 
potential site u Flevo Noord 9 Wieringermeer 

5 Ketelmeer 

Figure 3. Potential locations for nuclear power plants. 
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The Dutch national advisory council for physical planning RARO has 

carried out a multicriteria analysis of the site selection problem (Tweede 

Kamer, 1986). Fifteen criteria were formulated, only one of which measured 

in quantitative terms (population at risk); the remaining 14 criteria were 

measured in an ordinal way (see Table 2). The ordinal data are presented in 

increasing order, i.e., the higher a score the more favourable the perfor

mance of an alternative. Appendix II gives a more precise definition of the 

criteria. Table 2 shows that there are many ties and that in this case the 

degree of difference between the ordinal criterion scores is the same. 

The RARO council has formulated the following ranking of weights to be 

attached to the evaluation criteria: 

10' 9 8' 11' 1?' 13' 14 6' 7' o» l*v ' i' S' — k— 1 

Thus, population at risk receives the highest weight, foliowed by industry 

at risk, which in its turn is foliowed by agriculture at risk and fresh 

water at risk (ex equo). Here again a considerable number of ties can be 

observed. 

Bath Bors- Eems Flevo Ketel Maas Moer- NO Wiering 
sele vlak dijk Polder 

Population 51 49 16 27 30 43 100 19 21 
Evacuation 2 1 2 2 2 1 2 2 2 
Agriculture at risk 2 2 2 2 2 3 1 2 2 
Industry at risk 5 2 3 4 5 1 3 5 5 
Fresh water at risk 2 2 2 1 1 2 1 1 1 
Cool-water quantity 2 3 3 3 3 3 1 3 3 
Cool-water quality 2 3 2 1 1 3 2 1 1 
Air pollution 1 1 1 1 1 2 1 1 1 
Thermal pollution 1 2 2 2 1 3 2 1 1 
Indirect land use 3 2 2 3 4 3 1 4 4 
Landscape 1 3 3 3 1 3 2 1 1 
National environment 1 3 1 3 2 3 3 3 3 
National grid 2 2 1 3 3 2 2 2 1 
Infras truc ture 1 2 2 1 1 2 2 1 1 
Coal location 5 2 4 5 6 1 3 7 7 

Table 2. Impact matrix. 
(Source: Tweede Kamer 1986, pages 43-44) 
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We use the procedures described in sections 2-4 to transform the im

pact matrix in Table 2 into a score matrix P where p.. denotes the cardinal 

score of alternative i on criterion j. Also a weight vector X is calculated 

where X. denotes the weight of criterion j. Further a linear additive 

utility function is adopted to calculate the performance x. of each alter

native by means of (12). 

By carrying out these calculations n times one finds empirically the 
3) cumulative distribution function (cd. f) of x. based on n drawings . 

As already mentioned in section 4, ties can be interpreted in various 

ways. First we discuss the results when all ties are interpreted as 

"exactly equal". Table 3 shows some descriptive statistics of the cd.f of 

each alternative. 

Alternative Mean St. dev. 

1 Bath .593 .071 

2 Borssele .555 .086 

3 Eems .809 .064 

4 Flevo .669 .062 

5 Ketel .655 .053 

6 Maasvlak .589 .090 

7 Moerdijk .419 .093 

8 NO Polder .771 .057 

9 Wiering .735 .054 

Table 3 Mean and Standard deviation of 9 alternatives 

(n - 1000) 

Looking just at the means suggests that four different clusters can be 

distinguished. The cluster with the most attractive alternatives consists 

of (3, 8, 9}. The other clusters are {4,5}, {1,2,6} and {7}. 

When a decision-maker is risk averse, he prefers the alternative with 

the lower Standard deviation if the means are equal. Further, when the 

means are not equal, the alternative with the lowest mean is said to be 

dominated if it has a larger variance than the alternative with the highest 

mean. In the case of Table 3, this would imply that the alternatives 3, 5, 

8 and 9 are non-dominated. 
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Next we consider the complete cd.f. by using the concept of stochas

tic dominance (SD). The results are summarized in Table 4. The upper-

triangular part of the table (above the main diagonal) contains information 

about the first order stochastic dominance- (see section 5). The lower tri

angular part of the table is dealing with second order stochastic 

dominance; whenever there is a '+' this means that the row-alternative is 

stochastically dominating the column variable, whereas a '-' means the 

reverse. Undecided relationships have been represented by a dot '.'. 

Remember that SD.. implies SD„ but not vice versa. This is reflected by the 

observation that a '+' in the upper right corner implies a '-' in the lower 

left corner but not vice versa. Thus the ' + ' for the SD.. relation between 2 

and 7 implies a '-' for the SD„ relation between these two alternatives, 

but the '-' for the SD„ relation of 2 and 1 has no implication for their 

SD.. relation. The alternatives are rearranged so as to reach a table with 

as many '+''s as possible in the upper right corner and as many '-''s as 

possible in the lower left corner. Note that it is always possible to rear-

range the alternatives in such a way that there is no '-' in the upper 

right corner, nor any '+' in the lower left corner. This is because of the 

transitivity of the SD relations. 

Alternative 

3 

8 

9 

4 

5 

1 

6 

2 

7 

+ 
+ 

+ 

+ 

+ 

+ + 

+ + 

+ + 

+ + 

+ + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Table 4 Stochastic dominance relationships (upper right corner: 

SD.. ; lower left corner SD„) 

Table 4 displays a relatively large number of '+''s and '-''s. This means 

that for the given example SD is a powerful decision criterion. Next we see 
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that there are six relations undecided in the SD, for two of which there 

exists an SD„ relation (the pairs 1,6 and 1,2). 

The conclusions reached with mean-variance dominance are not entirely 

consistent with stochastic dominance. For example, alternative 9 is 

stochastically dominated by alternative 8, whereas with mean-variance 

analysis this dominance relationship does not apply. 

The methods presented thus far do not take into account the correla-

tion between the alternatives. No attention is given to the relative 

rankings of the alternatives each time a score vector is calcu-

lated.Therefore we constructed Tables 5 and 6. Table 5 contains information 

on how often a certain alternative gets a particular place in the ranking 

of alternatives. Thus in 76% of all cases alternative 3 scores best, and in 

13% it is second best. Alternative 7 is worst in 98% of all cases. Table 6 

looks at the scores of the alternatives in still another way. This table 

relates to the number of times one alternative scores better than the 

other. Thus alternative 3 has a higher score than 8 for 79% of the times 

and alternative 9 is in 10% of the cases better than 3. 

The sequence in which the alternatives are presented in Table 6 is 

based on the mean performance values presented in Table 3. All elements in 

the upper right part of Table 6 are higher than 50%. This means that in 

this example the probability that any alternative performs better than 

another alternative with a lower mean value is higher than 50%. Such an 

outcome does not necessarily hold true in all cases; it shows that in the 

present case a detailed analysis of pairwise relationships between alterna

tives does not add much information compared with the outcomes presented in 

Tables 3 and 4. 
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Rank: 

A l t e r n a t i v e 1 2 3 4 5 6 7 8 9 

3 76 13 8 2 1 0 0 0 0 

8 20 71 7 2 1 0 0 0 0 

9 0 9 73 9 5 2 1 0 0 

4 1 3 5 53 26 7 4 1 0 

5 0 0 1 22 50 15 8 4 0 

1 0 0 1 4 7 43 21 23 0 

6 3 4 4 7 8 23 35 15 1 

2 0 0 1 2 3 9 30 55 1 

7 0 0 0 0 0 0 1 2 98 

Table 5 Probability matrix that alternative i gets position n in 

final ranking, for all i and n. 

A l t e r n a t i v e 3 8 9 4 5 1 6 2 7 

3 79 90 98 99 100 97 100 100 

8 21 100 96 100 100 93 98 100 

9 10 0 89 99 98 89 96 100 

4 2 4 11 71 89 81 95 100 

5 1 0 1 30 88 73 89 100 

1 0 1 2 11 12 51 72 100 

6 3 8 12 19 27 49 82 99 

2 0 2 4 5 11 28 18 99 

7 0 0 0 0 0 0 1 1 

Table 6 Pairwise comparison matrix with probability that 

alternative i performs better than i'. 
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All results discussed so far stem from an 'equal to' interpretation of 

ties. Given the great number of ties in the impact matrix this means that 

there is little source of variation between the alternatives. This might 

explain the quite strong results of the SD. This point may be best il-

lustrated by looking at the impact scores of alternatives 8 and 9 (Table 

2). Both alternatives have the same impact on all but two alternatives 

both of which show a more favourable impact for alternative 8. Thus while 

we interpret a tie in terms of 'equality' 8 is definitely judged the bet-

ter. The difference is small but inevitable. 

The results of alternative interpretations of ties are given in 

Appendix III and IV. It appears that the difference between an interpreta

tion of ties in terms of 'exactly equal' and 'approximately equal' 

observations is rather small in this case. However, the outcomes with the 

'incomparability' interpretation are rather different. As shown in Table 

IV.1 the uncertainty intervals of the performance of alternatives are 

strongly overlapping. This implies that the position the alternatives may 

get in the final ranking varies strongly (cf. Table IV.3). Nevertheless, 

even in this case the number of undecided outcomes according to stochastic 

dominance is limited. 

7. Goncluding remarks 

We have developed a multicriteria method with the following features. 

1. The method can deal with ordinal information on criterion scores, 

weights and the combination of both. 

2. The method can also be used in the case of mixed (ordinal/cardinal) 

data. 

3. The method can be applied in the case of ordinal data with degrees of 

difference. 

4. The method can deal with various types of ties. 

The method leads to random distributions of performance indicators of 

the alternatives. In the present paper we propose to analyse these dis

tributions by means of the stochastic dominance concept, although also 

other approaches might be adopted to derive a ranking of alternatives. 
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This paper contains an application of the method to the problem of 

siting nuclear power plants. It should be noted, however, that the stochas-

tic interpretation of ordinal data developed in this paper can also be used 

in contexts to outside multicrtiteria analysis, for example: decision 

making under uncertainty (cf. Rietveld, 1989). Also outside the realm of 

decision making the stochastic approach is of potential relevance, for 

example in the case of economie modeling with qualitative information on 

parameters. We refer to Nijkamp et al. (1990) for an example in the field 

of qualitative input-output analysis. 
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Notes 

1) 

2) 

3) 

For example, in the case of 0<„ A.. <, A« — A„ <- A, , one has m, =2, 

nu—1, nu«0, ni/=l and the following random numbers are drawn: 0^-IT < 

Mi o ̂ Moi 5; *Vi • ̂ e v a l u e s assigned to the weights A, , A„, A~, A, are: 

M12' ̂ 21' M21' M41-

For precise definitions refer to Fishburn and Vickson (1978). 

For the first criterion (population) a stochastic approach is not 

necessary because quantitative values are available. In order to ar-

rive at a standardisation for this criterion which is consistent with 

the scaling of the random values of the other criteria, the following 

transformation is used: sn .— min (p.. . , )/p.. . . 
li ., vrli' " l i 
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APPENDIX 1. Generating random values for weights and criterion scores 

1. Generating weights 

The starting point is the joint density function of weights: 

f (A1,...,AJ_1') - 0< X± < l/J 

Ax< A2 < (1-A1)/(J-1) 

A2< A3 < (l-\-X2/(J-2) (2) 

AJ-2^AJ-l^1-Al'-----AJ-2)/2 

= 0 elsewhere 

where c = (J-1)!J! 

Then the marginal density function of A, can be derived as: 

f(A1)«=(J-l)J(l-JA1)
J"2 for 0< Xx < (l/J) 

- 0 elsewhere 

Further, the conditional density functions can be shown to read as follows 

for j - 2.....J-1 

fOjl^ \J_:L) 

[1-A -...-A -(J-j+l)A ] J - J _ 1 

- (J-jXJ-j+1) ~ ll1 H~ 
[1-A1-...- (J-j+2)Aj;L]

J-J 

where Aj;L < Xj < (l-X1 -...- Aj;L)/(J-j+l) 

Then, a random weight vector can be generated by drawing a value for A.. on 

the basis of f(A-), foliowed by drawing a value for A„ on the basis of 

f(A„|A,), etc. Finally, A. can be computer as 1-A-, ...- AT ,. 

The conditional distributions mentioned above are not included in Standard 

statistical packages. Therefore, random weight vectors cannot be directly 

created by means of random generators. A solution for this problem is given 

by the theorem which says that if F(x) is the distribution function of x, 
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then u=F(x) is uniformly distributed on the interval 0<u<l (Hogg and Craig, 

1970, p. 349). For the latter uniform distribution, Standard random gener-

atiors are available. Then, if u.. is uniformly distributed on the interval 
_1 l 

[0,1], A.j=F (u-) can be shown to be distributed according to the density 

function (f(A-) corresponding with the distribution function F(A..). Thus, 

random values for A.. can be found by using the following transformation: 

For A„,...,AT 1 the following transformation has to be used: 

A - [(l-A1-...-Aj_1)-(l-A1-...-Aj_2-(J-j+2)Ajl)(l-uj)
1/(J-J)]/(J-j+l) 

Finally, AT can be computed as 1-A.. - . . .-A_ ,. 

2. Generating criterion scores 

As indicated by Mood and Graybill (1963), it is not difficult to gen-

erate random values for p1 pT .. . They show by means of order statistics 

that one can start with drawing I-l numbers from the uniform distribution 

on [0,1], after which p, is assigned the smallest number, p„ the one but 

smallest number, etc. An alternative approach would be to follow the proce

dure described above for weights after the necessary adjustments. Taking 

(5) as a starting point, it can be shown that: 

g(Pl) = (I-l)(l-p1)
1"2 , 0<Pl<l, 

and 

gCpJP! Pi.1) = (I-i)(l-pi)
I"1"i/(l-Pi.1)

I"i 

where 

V±,±< P±< 1 . i - 2 I-l. 

Let again u. denote a number drawn from the uniform distribution on the 

interval [0,1]. Then it can be shown that the following transformation has 

to be used to generate random values of x- : 

Pl - 1 - (1-up
1"1 

For i-2 I-l the following transformation has to be used: 
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P l - i - a-v±.±) ( i - u . ) 1 ' 1 

3. Generating weights in the case of rankings with degrees of difference. 

Consider the probability density function (11) under the constraints 

in (10). Let M be equal to 2 m.. Then the conditional distribution of A. 
j J J 

(=u. ) reads: 

f(Aj|Al Aj-1' "j.i-j-l* 

j 
M - S n^-l 

j-1 k = 1 

. [1- S Ak - (J+l-j)Aj] 

(M-S V^+1-J> — F ï M - I mfc 
[1- S A. - (J+l-j)/*. .] k-1 

k-1 J J 

where u. , < A. < (1-A,- ... -A. n)/(J-j+l) *j ,m -1 - j - 1 j-ly/ J 

For the distribution of u. , a similar formula can be derived. 
1 fin. - 1 

Let v denote a random number drawn from the uniform distribution on 

the interval [0,1]. Then it can be shown that the following distribution 

has to be used to generate random values for A.: 

j 
1/(M-S m ) 

j-1 j-1 k-1 
A - [1-S A - (1-2 A - (J+l-j)/i. O.d-v) ]/(J+l-j) 
J k-1 K k-1 K J' j 
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APPENDIX 2 

Definition of evaluatïtra criteria 

Population 

Evacuation 

Industry/Agriculture 
at risk 

Fresh water at risk 

To calculate this score a weighted sum of popula
tion around a location was calculated. The weight 
designed decreases with distance. The result is 
standardized by division through the maximum score. 
The criterion is a cost criterion. 

The score reflects the availability 
transport infrastructure. 

of sufficiënt 

This score reflects the size and importance 
industry/agriculture near the location. 

of 

This 
that 
location 

score reflects the 
may be affected 

quantity of fresh water 
by a nuclear plant at each 

Cool-water quantity 

Cool-water quality 

Air pollution 

Thermal pollution 

Indirect land-use 

Landscape 

Natural environment 

This score represents the quantity of available 
water for cooling the nuclear plant. 

This score represents the capacity of coolant to 
flush out pollution originating from a nuclear 
plant at each location. 

It is assumed that the nuclear plant is an alterna-
tive to a conventional coal power plant. This is 
assumed to have the most beneficial effects at the 
most polluted location. 

The amount of pollution is lower if users of the 
heat generated are available. The score reflects 
the availability of such users. 

This score reflects limitations on the potential 
land-uses around nuclear plant. 

This score reflects the visual effects the 
landscape round the landscape and the extent to 
which a nuclear plant fits in with existing ac-
tivities. 

This score reflects expected damage to the natural 
environment 

National grid This score reflects the availability near of at the 
location of high voltage lines and connector sta
tions . 

Infrastructure This score reflects the availability of transport 
and other infrastructure around the location. 

Coal-location It is assumed that the nuclear plant is an alterna-
tive to a conventional coal power plant. The score 
reflects the cost of the lost opportunity to build 
a coal plant at the location if a nuclear plant is 
constructed. 
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APPENDIX III Evaluation results if ties are interpreted as approximatelv 

equal outcomes 

Altemative Mean St. dev. 

1 Bath .550 .081 

2 Borssele .512 .114 

3 Eems .786 .069 

4 Flevo .629 .064 

5 Ketel .610 .052 

6 Maasvlak .540 .104 

7 Moerdijk .382 .112 

8 NO Polder .729 .065 

9 Wiering .686 .059 

Table III.1 Mean and Standard deviation of 9 alternatives 

(n - 1000) 

A l t e m a t i v e 3 8 9 4 5 1 6 2 7 

3 + + + •+ + + + + 

8 - + + + + + + + 

9 - - + + + + + + 

4 . . . + + + + 

5 - - - . + . + + 

1 . . + 

6 + + 

2 - + 

Table III.2 Stochastic dominance relationships (upper right corner: 

SD,; lower left corner SD0) 
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Rank: 

Alternative 1 2 3 4 5 6 - 7 8 9 

3 86 10 3 2 0 0 0 0 0 

8 11 66 9 6 4 2 1 0 0 

9 0 5 67 9 6 5 5 3 0 

4 0 7 9 48 24 8 3 1 0 

5 1 2 3 22 48 8 8 9 0 

1 0 1 2 4 8 45 22 18 0 

6 2 6 4 6 7 23 44 9 1 

2 0 4 4 4 4 9 15 59 0 

7 0 0 0 0 0 0 1 1 99 

Table III.3 Probability matrix that alternative i gets position n in 

final ranking, for all i and n. 

A l t e r n a t i v e 3 8 9 4 5 1 6 2 7 

3 88 97 99 98 99 98 99 100 

8 12 94 86 96 97 88 90 100 

9 3 6 77 88 91 82 85 100 

4 1 4 23 72 89 83 89 100 

5 2 4 12 28 81 74 80 100 

1 1 3 10 11 19 54 68 100 

6 2 12 18 17 26 46 79 99 

2 1 10 15 11 20 32 21 99 

7 0 0 0 0 0 0 1 1 

Table III.4 Pairwise comparison matrix with probability that 

alternative i performs better than i'. 
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APPENDIX IV Evaluation results If ties are interpreted as incomparable 

outcomes 

Alternative Mean St. dev. 

1 Bath .505 .066 

2 Borssele .522 .076 

3 Eems .672 .065 

4 Flevo .562 .066 

5 Ketel .545 .063 

6 Maasvlak .572 .058 

7 Moerdijk .322 .062 

8 NO Polder .599 .067 

9 Wiering .535 .070 

Table IV.1 Mean and Standard deviation of 9 alternatives 

(n - 1000) 

Alternative 3 8 6 4 5 9 2 1 7 

3 + + + + + + + + 

8 - . + + + + + + 

6 - . . . . . + + 
4 . . . + + + + + 

5 . . . . + + 

9 . + + 

2 . . . . . . + 

1 . . . . . . . + 

Table IV.2 Stochastic dominance relationships (upper right corner: 

SDn; lower left corner SD„) 
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Rank: 

Alternative 1 2 3 4 5 6 - 7 8 9 

3 71 17 7 3 1 1 0 0 0 

8 9 31 18 16 12 8 5 1 0 

6 9 17 19 16 14 16 9 2 0 

4 4 13 15 20 19 14 10 5 0 

5 2 6 12 16 20 19 14 10 0 

9 2 5 15 12 12 14 20 20 0 

2 3 9 8 10 10 14 18 28 1 

1 1 3 6 7 12 14 23 33 1 

7 0 0 0 0 0 0 0 1 99 

Table IV.3 Probability matrix that alternative i gets position 

n in final ranking, for all i and n. 

A l t e r n a t i v e 3 8 6 4 5 9 2 1 7 

3 86 87 93 96 96 94 98 100 

8 14 58 67 77 87 74 86 100 

6 13 42 54 63 67 78 81 100 

4 7 33 46 63 61 68 76 100 

5 4 24 37 37 57 59 70 100 

9 4 13 33 39 44 53 64 100 

2 6 26 22 32 41 47 57 100 

1 2 14 19 24 30 36 43 99 

7 0 0 0 0 0 0 0 1 

Table IV.4 Pairwise comparison matrix with probability that 

alternative i performs better than i'. 
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