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Abstract In this note it is shown that the Hilbert-Schmidt-Hankel norm
(HSH-norm) of a transfer function of a stable system is equal, up to a con-
stant factor, to the square root of the area enclogsed by the oriented
Nyquist diagram of the transfer function (multiplicities included). A gene-
ralization is presented for the case of systems which have no poles on the
stability boundary, but otherwise have no restrictions on the pole loca-

tions.

Keywords Nyquist diagram * linear systems * Hilbert-Schmidt-Hankel norm *

families of linear systems.

1 INTRODUCTION

In problem areas' like model reduction, robust control, system identifi-
cation and system parametrization, where families of linear systems play an
important role, several norms are in use, which make it possible to tell
whether two systems are clese or far apart. For stable finite dimensional
systems we would like to mention the Hw-nor‘m, the Hankel-norm and the
H’-norm. For certain applications it is a disadvantage of the H”-norm and
the Hankel-norm that there is no inner product associated with it, like in
the case of the H°-norm. For families of stable systems with a given finite
order and without direct feedthrough term, the H”-norm and the Hankel-norm
are equivalent, but the H*-norm is not, it is a topologically different
norm. A norm that does have a corresponding inner product and is equivalent
to the H -norm and the Hankel-norm on such a amily is the Hilbert-~-Schmidt-

Hankel norm (HSH-norm). Tt is defined as the Hilbert-Schmidt norm of the



Hankel operator that is associated with the system. It is well-known (see
e.g. I5]) that the square of this norm is equal to the sum of squares of the
Hankel singular values of the system.

The H -norm and the Hz-nor'm of a system have a direct interpretation in
terms of its transfer function restricted to the stability boundary, i.e. to
the unit circle in the discrete time case and to the imaginary axis in the
continuous time case. In fact the H -norm only depends on the image of the
transfer function on the stability bourndary: the Nyquist diagram. The pur-
pose of this note is to give an interpretation of the HSH-norm in terms of
the Nyquist diagram. Our main result is that n times the square of the HSH-
norm is equal to the area enclosed by the oriented Nyquist diagram, multi-
plicities included. This will be established in section 2. In section 3 a
generalization tc systems with anti-stable part will be presented. Several

implications of these results will also be treated.
2 THE HILBERT-SCHMIDT-HANKEL NORM AND THE NYQUIST DIAGRAM

Consider single input single output (SIS0O) linear dynamical systems

with a state space representation

x =Ax + bu, 1te€Z, x eR", u eR
t+1 t t t t
(% (2.1

=cx + R
¥ = X, dut, yte
in the discrete time case or .

x(t) = Ax{t) + bult), teR, x(t)eR", ult)eR
(%) (2.2)
y{t) = ex(t) + dult), y(tleR,

in the continuous time case. Clearly there is one input and one output and
the state space dimension is n; A, b, ¢ are real matrices and vectors of the
sizes nxn, nx1, lxn, respectively and d is scalar. Two state space represen-
tations will be considered to be input-output equivalent ("i/o-equivaient”)
if they have the same input-output behaviour. Without loss of generality it
will be assumed that (A,b,c,d} is a2 minimal representation. It is well-known

that two such quadruples {A,b,c,d), (?{,'E,E,E) are i/o-equivalent if they
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have the same transfer function

T(z) = clzI-A)b + d = o(zI-A)"% +d

from which d=d follows immediately.

In this section we will consider systems which have no direct feed-
through term, i.e. d=0, and which are i/o-stable {(also called "asymptotical-
ly stable"), i.e. the spectrum (A} of the matrix A lies:

{i} in the open unit disk {discrete time case}
(ii) in the open left half plane (continuous time case).

Let hk=cAk-lb, k=1,2,... denote the Markov parameters of the system.
The Hankel operator of a system is given by:

(i} the Hankel matrix

l’l1 h2 hs.
hz h:3 h4...
H= (2.3)
h h h ...
3 4 s

in the discrete time case,

(ii) the Hankel integral operator H with kernel

eA(t+s)b

k{t,s)=c {2.4)

in the continuous time case.

The set of all finite dimensional i/o-stable systems can be considered to be
a linear vector space with the following definitions of scalar multiplica-
tion and addition:
If £ is represented by (A,b,c) and £ by (A ,b,c ), then AT, 2AeR,
1 11" 2 2’2t 2 1
js the system which is represented by (e.g) (Al,hbl,cl) and 214-2:2 is the

system which is represented (possibly non-minimally) by

(s, o b,
, e ,c )
0 A b e

2 2



Equivalently one can express this with the transfer functions or the Hankel
operators:

If T1 resp. T2 are the transfer functions of 21 resp. }:2, then ?LEI has
the transfer function ATI and Zl-rzz has the transfer function T1+T2; if El
resp. Ez has the Hankel operator H1 resp. Hz’ then AEl, AeR, has the Hankel
operator M—Il and }",.1+22 has the Hankel operator H1+H o

The Hilbert-Schmidt norm of the Hankel operator can be considered as a
norm on the linear space of i/o-stable systemns. In the discrete time case it
is given by

m
LI -war'= T kil. 2.5
HSH k=1

In the continuous time case it is given by: -

Iz -]

HSH
¢=0 T=0

k(t,0)% dr de . (2.6)

——y B

It is well-known that both in the discrete time case and the continuous time
case the square of the Hilbert-Schmidt norm is equal to the sum of squares
of the singular values of the Hankel operator, which provides the means to

calculate the HSH-norm explicitly as:

| T1% =trPQ 2.7
HSH

where P and Q are the contrellability Grammian, resp. the observability
Grammian of the system. The positive definite symmetric matrices P and Q can

be obtained as the unique solution of the Lyapunov eguation

P-APAT=bb (2.8a)
resp.

Q-ATQA=c ¢ (2.8b)
in the discrete time case, and

AP+PAT=-b 0" (2.9a)
resp.

QA+ATQ=-c¢ (2.9b)



in the continucus time case.

The HSH-norms in the discrete time case and in the continuous time case
can be related to one another by the following well-known bijective trans-
formation (cf. [1], p.1119-1120):

A = (I+1)" A-D) (2.10a)
b =v2 (1+A)" © (2.10b)
c=v2 o (A" | (2.10¢)

where (X,E,E) represents an i/o-stable discrete time system F and (A,b,c) a
corresponding i/o-stable continuous time system Z. This transformation
leaves the controllability Grammians invariant and therefore also the HSH-
norm, Furthermore it is a linear mapping from the space of discrete time,
i/o-stable, strictly proper linear systems to the linear space of continuous
time, i/o-stable, strictly proper systems. This can be seen by considering

the same transformation in terms of the corresponding transfer functions:

T(s) = § [ }j_z] - R (2.11)

where T is the transfer function of £ and T the transfer function of %. Note
that

Tlw) = T(-1) - T(-1) = 0 (2.12)

and therefore T is strictly proper indeed. Our main result will be a charac-
terization of the HSH-norm in terms of the associated oriented Nyquist dia-
gram of the system, i.e. the image that the transfer function produces of
the unit circle (with anti-clockwise orientation) in the discrete-time case,
and of the imaginary axis (with the orientation that is obtained by going
from -ie to 0 to +iw) in the continuous time case.

By the area enclosed by such a closed oriented curve y in the complex

plane will be meant the following. For each point zoeﬁ:\g', let

1 1
nw(zo) = 5= Im ir == dz € Z (2.13)

0

denote the winding number of y with respect to 2, i.e. the number of times
¥ winds around z, in the anti-clockwise direction minus the number of times

¥ winds around z0 in the clockwise direction. For an n-th order transfer



function it is well-known that
[nvtzo)[ =n forall zeC. (2.14)

The area enclosed by such an oriented closed curve, multiplicities included,

is usually defined as the integral

o M
Aa(z'] = I I n, {x+iy) dx dy . (2.15)
- -

Of course it follows that if ¥ winds in clockwise direction Aa(?{) will be
negative. To avoid confusion we will therefore define Ac(';) to be the area

enclosed by y with respect to clockwise orientation, i.e,
A () = -A (7). (2.16)
< a

Because the curve is closed, nw[z) vanishes outside some closed bounded set
and therefore the integral is weli-defined.

We can now state our main result:
2.1 Theorem

The HSH-norm squared of an i/o-stable, strictly proper system T is

equal to 7! times the area enclosed by its oriented Nyquist diagram:

| ¥ ||}";SH - % A (7) (2.17)

where

(i) 9(8) = T(elel, 6¢[0,2n) running from O to 2mn, in the discrete time
case,

or

(i) ¥(w) = T(iw), weR running from - to +w in the continuous time case.

See Figure 1 (p.15)



Proof It will suffice to show the result in the discrete time case, be-
cause the bijective transformation presented in (2.10a, b, ¢) leaves the
HSH-norm invariant and, as can be seen frem (2.11), shifts the oriented Ny-
quist diagram, which implies that the area enclosed by the oriented Nyquist
diagram remains invariant as well.

In the discrete time case the HSH-norm squared of an i/o-stable

strictly proper system I with Markov parameters {hk}'::_1 can be written as

ISP = owd-on § Dng)( Dz E-
‘HSH k=1 k=1 k=1
lzl=1
_ 1 -1 dT(z)| dz _ _ 1 ol dT(z) _
T 2mi {T( ]}{z dz }z_ 2ni §TZ) dz
|z|=1 |z|=l
=z T2 dT(z) = == [ Tdr
2ni 2 '
lzl=1 TEY

where ¥ now denotes the oriented Nyquist diagram, i.e.

¥ = {T(eiel | o: O—)er} )

Consider
1 T dT = L (x-iy} d(x+iy) = 1 I (xdx + ydy) +
2i 2i 21
TEY T=x+iy€Y T=x+lyEY
x,yER
- J i(xdy - ydx)  (2.18)
T=x+iyEY

The first term on the right hand side is zero; one has

yz + const {2.19)

J‘xdx-l-ydy=—é-x2+%

and therefore this integral over the closed curve y vanishes. The second

term on the right hand side of (2.18) is equal to



1 =
5 I xdy - ydx = Aa(ﬂ (2.20)

T=x+1yE€Y

according to Green’s theorem. Therefore

2 1
121 =24, (2.21)
HSH
where gy is the oriented Nyquist diagram . Q.E.D.

2.2 Remarks

1

(ii)

For an n-th order system I with i/o-stable strictly proper transfer
function T(z), such that T(z)+d is all-pass for some suitable choice of
deR, i.e. |T(z)+dl=1 for all z in the stability boundary, it follows
that

I T)® =isw=n (2.22)
HSH

because the oriented Nyquist curve y of an i/o all-pass transfer func-
tion winds n times around the unit circle in c¢lockwise direction. (The
fact that such an all-pass function is usually not strictly proper does
not matter here, because adding or substracting a constant term to a
transfer function means only a transiation along the real axis of the
oriented Nyquist diagram, which clearly does not affect Ac['a'), nor does
it affect the HSH-norm).

As it is well-known that the n positive Hankel singular values o

of such a system are all one,

n
|£§> =L o’=n (2.23)
HSH k=

and the two ways of calculating the HSH-norm squared indeed give the
same result.
It follows immediately from this result that, for a system Z of order

n,



IZ1®2 =n]Z)®. (2.24)
HS [

H

where [J] = denotes the H-norm of ¥, i.e.

| & ||‘m = Imax | T(2)|

z =1

in the discrete time case and

| & ||m = max |T(z)|
Im({z)=0

in the continuous time case,

because Inv{z)I =n for all zeC, and

n7(2)=0 for all zeC with |z| > ||):||w
See Figure 2 (p.15)

(iii) Consider the group of all automorphisms ¢ of the unit disk (in the
discrete time case) that map the reals to the reals. It is weli-known

(cf. {4]) that such an automorphism ¢ can be written as:

az+b

2 .2
boia a,beR, a = ~b'=l (2.25)

plz) = »

Because ¢ maps the unit circle to the unit circle, it is clear that the
system with strictly proper transfer funection Top(z)-Tog{w)} has the
same HSH-norm as the system with transfer function T. In other words,

the mapping of systems given in terms of their transfer functions, by

T |—— Top - Top(w)

is an isometry with respect to the HSH-norm, and the set of these
isometries forms a group (of course). It is easy to see that these iso-
metries leave the McMillan degree invariant, This group of isometries
was found before, in a completely different way in [4), see also [2],
[3).

A similar group of isometries exists for the continuous time case.

It corresponds to the automorphisms of the left half plane.



(iv) It follows from the theorem, that if for a discrete time system Zl with
transfer function T(z) we denote by Zk the system with transfer
function T(zk), k=1,2,..., then

ILJ® =% 5l . @20
Ek HSH ! HSH

This can be concluded from the fact that if z=eie runs once through to
unit circle (6: O - 2u), then z° runs k times through the unit circle
(k6: 0 » 2km) and therefore the area enclosed by the oriented Nyquist
diagram of Ek, multiplicities included, will be k times the area en-
closed by the oriented Nyquist diagram of Ei. Meore generally, consider
an all-pass (rational) function b(z) which leaves the unit disk invar-
iant, Then clearly all the zeros of b{z) must lie in the open unit disk
and therefore all its poles must lie outside the unit cirele. (It is
easy to see that this is also a sufficient condition.) If b(z) is of
order k, then the i/o-stable system Eb with transfer function T(b(z))-
T(blew)) has HSH-norm given by

2 2
=k E " . {(2.27)
ﬂ Eb “ HSH ]| ! HSH

(v} Of course the Nyquist diagram relates the (i/o-stable) system to its
behaviour under output feedback. If one uses output feedback u = % + v
then the closed loop system will have a number of unstable poles equal
to the winding number of the Nyquist diagram w.r.t. the point k. If we
allow for complex xk then the Lebesgue measure of the set of k’s in C
which lead to an unstable closed loop system, where the k’s are counted
sponding closed-loop system, is equal to w times the HSH-norm squared.
So, loosely speaking, in this interpretation the HSH-norm is a measure
of how easy the system can be destabilized under complex output feed-
back (multiplicities of the unstable poles included). This is "easy" if

the HSH-norm is large.
Using (2.27) we will now give an alternative proof of the known fact that

the minimum phase factors In spectral factorization are also minimum

HSH-norm factors. The proof that is given here does not involve Nehari's
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theorem. {(More generally one can show that minimum phase factors have the
smallest singular values; this can be shown using Nehari’s theorem, but we

will not go into that here.)

2.3 Corollary
Let y(z) be a rational spectral density function bounded on the unit circle

and consider spectral factorization
Y(z) = T(2)* T(z) (2.28)

where the “"root" T(z) is the transfer function of an i/o-stable strictly
proper discrete time system. Of all such roots the minimum phase roots %

Tm(z) have minimal HSH-norm.

Remark

A similar result holds in the continuous time case; it can be derived di-
rectly from the result in the discrete~time case using the usual transforma-
tion (see (2.11)).

Proof of _2.3 First note that if T has transfer function T and T has trans-
fer function -% T(z), then

J12 =lziP-1zl? (2.29)
HS 4 HS

H H

(Warning: this holds only for the discrete-time case,)

(1]
This follows easily from formula [2.5), from the fact that T{z}l=k§1 hkz-k
and from the formula |£|% = & n®.
2z k=1 k

Now consider the all-pass first order factor

z = bls) = S5%9 | ¢ dec, |e|?-[d| %=,

which maps the unit disk to the unit disk and therefore has its zero (——gl

inside the unit disk. Then

il



and this is also an element of the group of automorphisms of the unit disk.

Now consider, in an obvious notation:

i 2 1 -1 2
I 5057 T = | = T (z)
bls “HSH z "HSH

according to (2.27) with k=1, applied with s=b '(z) instead of b. Note that
-;- T(b"}(2)) is strictly proper. Applying (2.29) one obtains

12 167 @]® = [TeT @)+ TR -T2
~ HSH HSH

z T @) ~ T @)|® = [T
HSH HSH

again due to (2.27) with k=1, now applied with z=b(s}. S0 we conclude that

1
||

sy T = T

HSH HSH

and the inequality is strict if T=O0.

Now if the zero s = r happens to coincide with a zero of the transfer

function T(s), then b(_;i T(s) is the transfer function that is obtained by

replacing the factor es+d = c(s-(-d/c)) by ds+c = d [S-{— g)] Of course
d

-(%] is the (usual) reflection of (- %l w.r.t. the unit circle. By repeating
this argument for each unstable zero in the transfer functions, it follows
that the spectral factor with all its zerces in the open unit disk has smal-
ler HSH-norm than a spectral factor with one or more zerces outside the unit
circle. Q.E.D.

3 GENERALIZATION TO UNSTABLE SYSTEMS

Let T(z} be a transfer function which has no poles on the stability

boundary. Let

12



T(z) = Tl(z) + Tz(z} +d (3.1)

be the additive decomposition in the strictly proper stable and the strictly
proper anti-stable part of the transfer function and a comstant term d. Then
Tl(zi and ‘I"z(z_l} (in the discrete time case) resp. TZ(-z) (in the conti-

nuous time case} are strictly proper transfer functions of stable systems.
In the discrete time case let {h;n}:_l denoté the impulse response of TI{z]
and {+h'?)”
k k=l
Define the following impulse response function:

the impulse response of T2(l/z).

', ko
- k
h =4 4d , k=0 . (3.2)
k (2)

h'?, ko

Analogously, in the continucus time case, define the impulse response func-

tion

V), ©o
h{t) = { arbitrary, t=0 . : (3.3)

%), <o

Then the foliowing generalization of theorem 2.1 holds:

Lam =1 kB=gI® -IL) 3.4
keZ HSH HSH

in the discrete time case, where ):1 and ):2 are the stable systems that
correspond to Tl(z') resp. Tz(%);

A= [tBo =g -5 (3.5)
¢ teR HSH HSH

in the continuous time case, where }:1 and I:z are the stable systems that

correspond to Tl(z} resp. Tz(-z].

Proof Completely analogous to the proof of theorem (2.1).
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Remarks
For an all-pass function with k stable and n-k unstable poles it follows

that

ILI? - IT)’ =3 A =02, (3.6)
HSH HSH

because the total increase in argument of the all-pass function along the
unit circle is -2rk (due to the stable poles) plus 2r(n-k) (due to the
stable zeroes), which makes 2n(n-2k). Therefore the total area enclosed by
the Nyquist diagram, multiplicities included, is w(n-2k) and (3.6) follows.

This result can also be shown using the techmiques of [1], by applying
Theorem 5.1 of that paper to the sum of the balanced state space representa-
tions of T1 and T2. However, the proof given here is shorter and it gives

more geometrical insight.

References

[11 Glover, K., "All optimal Hankel-norm approximations and their L”-error
bounds”, Int. J. Control 39, pp.1115-1193.

[2] Hanzon, B., "A geometric approach to system Iidentification using model-
rttalg.iuction techniques”, pp.695-700 in: H-F Chen (ed.}, Proceedings of
8 IFAC/IFORS Symposium, Beijing, China, August 1988, Pergamon Press
(1988).

[3] Hanzon, B., "Riemannian geometry on families of linear systems, the
deterministic case", Report 88-62, Fac. Tech. Math. and Inf., Delft
University of Technology, Delft (1988), submitted to MCSS.

[4] Hanzon, B., "Identifiability, Recursive Identification and Spaces of
Linear Dynamical Systems"”, CWI Tracts 63 and 64, Centre for Mathematics
and Computer Science, Amsterdam, 1989,

[51] Partington, J.R., "An Introduction to Hankel Operators”, Londen Math.
Soc. Student Texts 13, Cambridge Univ. Press, Cambridge, 1988.

BHS02H1

14



s 0 5

2
HSH

Figure 1 A7) = A + 2A = n|5]

1

K 0 5

2

Figure 2 n=2; njZ| dsH

] - 2
= A +2A = 2(A+A +A#A) = 2ufT]



198%.]
15892

1989-~3

1989-4
1989.5

198%-6

1989.7

198%-8

198%-6

1989-10
1989-11
1989-12
1989-13
1989-14
1989-15
1989-16

1989-17

1989-18

1989-19

0.J.L. Cornielje
J.C. wvan Ours

H. Viazer

G.van det Lzan
A.J.J. Talman

.M. van Dijk

K.M. van Dijk

P.Spreij

H.Visser

J.C. van Dure

H., Tieleman
A. Laliveld

H.M. van Dijk

F.4.G. den Butter

N.M. wvan Dijk
H. Clemens
J.P. de Groot
I.J.5ceymn

I.J.5teyn

B.Vogelvang

J.Co van Qurs

H. Fox

A time-garies of Total Accounts for the Ne-
therlands 1978-1984

Self-Seérvice Activities and Legal or Illegal
Market Services

The Monétary Order

Price Rigidities and Rationing

A Simple Throughput Bound For Large Closed
Queueing Networks With Finite Capacities
#nalycic Error Bounde For Approximations of
Queusing Necworke with an Application to

Alrternate Routing

Salfexciting Counting Process Systems with
Finite State Space

Rational Expectations and Rew Classical
Macroecononics

De Hederlandse Boakenmarkt tussen Stabiliteit
an Verandering

Traditional "Social Security Systems” and
Secio-economie Processes of Chenge: The Chase
of Swariland; opportunities for research

“Steop = Recirculate®™ for Exponential Product
Form Queueing Networks with Departure Eloc-
king

Modalbouw en matigingsbeleid in Nederland

Simple performance estimates and error bounds
for slottad ALOHA loss systems

Sugar Crisis, a Compariscn of two Small Pe-
ripharasl Economies

Consietent Diffuse Inirial Conditions in the
Falman Filter :

Ala Estimation of Parameters in & State Spaca
Model

Dynamic Interrelationshipe betwwen Spot Pri-
cas of some Agricultural Cotmodities on Rela-
ted Markets

Zosken nosr nieuve medsverkers

Integration of Environmental Externalities in
International Commodity Agreements

1989-20

1989-21

1989-22

1989-22

1989-24

198925

1989-26

1989-27

lgge-28

i989-29

1989-30

1989-31

1989-32

1989-33

1989-34

1989-35

1989-36

1989-37

1989-38

P.H.F.M. van
Castaren
A.H.Q.M. Merkies
J.C. van Durs

R.J.Boucherie
H.M. van Difk
N.M. van Dijk

AP.de Vou
J.a. Bikker

A.F. de Voes
N.H. wan Dijk
H.Clemens

H.M. wvan Dijk
F.J.J. Trapman
H.M. van Dijk

A. Perreals

J.C. van Durs
G.Ridder

H.M. wan Dijk
A. v.d. Elzen
G. v.d. Lasn

N.M, wvan Difk

E.Vissaer

N.M. van Dijk

A.F. de Vos

R.J. Hulskamp

Micro Labour Demsnd Functions with Heteroge-
neous Cutput for Dutch Houwsing-Construction

An empirical Analysia of Employers® Search

Product Forms for Gueueing Recuworks with
State Dependent Multiple Job Ttansitions

On "atop » repeat” Servicing for Non-Exponen-
tial Queueing Networks with Blocking

An Empirical General Equilibrium Model for
the Spatial Igteractions of Supply, Demand
and Cholce

Fansen en risico's - Over de fundementen wan
statistische uitspraken door accountants

A Hote on Extended Uniformizaticn for Non-
Exponential Stochastic Networks

Cortadores de Cafe an Tres Regiones Cafetale-
ras an Niceragua (1980-41)

Exact Solutions For Central Service Syetems
With Breéakdowme

Product Forms For Queusing With Limited Clus-
ters

Tijdsindeling vdn hulshoudeld fke aktiviteiten
in relatie tot kenmerken van huishoudans

An Empirical Analysis of Vacancy Durations
and Vacancy Flowe: Cycliecal Variation and Job
Requiremencs

A Simple Performabiliry Estimate for Jackson
Maetworks with sn Unreliable Cutput Channel

Price Adjustment in a Two-Country Model

An Eguivalence of Comminication Protocols for
Interconnaction Hetworks

Micro-Foundations of Monaysand Finance

The Importance of Blias-Terms for Error Bounda
and Comparisct Reeults

On Regression Sampling in Statistical Audi-
ting: Bad Answers to the Wrong Quastions ?

Company Stratwgy and the {Re)Design of In-
duetrial Relations, some ceea studies in the
Ratherlande

91



