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Let (2, F,F, P} be a complete filtered probability space. Let M : 2 x [0,00) — R"
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Abstract

In this paper the correlation between two multivariate martingales is stud-
ied. This correlation can be expressed in a non decreasing process, that remains
zero in the case of linear dependence. A key result is an integral representation
for this process.

introduction

and m : 0 x [0, 00) — R* be locally square integrable martingales.

Denote by {m, M) the predictable covariation process of m and M. So {m,M) :
€ x [0,00) — R**" and if m’ and M? are the i-th and j-th components of m and
M respectively, then the ij entry {m, M} of (m, M} equals the real valued process

{mf, M3}, {m} = {m,m) and (M) = {M, M) are defined likewise.

Assume now that for some ¢ > 0 the matrices {m); and (M), are invertible. Then,
parallel to what one can do when dealing with multivariate random variables, it is

natural to express the correlation between m and M over the interval [0,t] by

p(m, M), = (m); ¥ (m, M) (M); ®

Let c(m, M); = {m); — {(m, M), {M)7"{M,m),. Then we have the identity

I — p(m, M)ip(M,m), = (m); 2e(m, M)(m); .



It follows that c(m, M), carries the same amount of information about the correlation
between m and M as p(m, M),. It turns out that it is more convenient to study
c(m, M), than p(m, M),. The process ¢(m, M) is of interest in its own right, because
1t appears at several places in probability and statistics. For example, this process —
or rather a slightly different one — appears in 1], where we studied a strong law of
large numbers for martingales. The results of the present paper offer an alternative
approach to such a study. In a statistical context ¢(m, M) can be interpreted as a
measure of deficiency when comparing an arbitrary estimator with an optimal one.
Cf 2] for details.

In the present paper we drop the restrictions that {m), and {M}, are invertible. So
we have to replace (M);} in the definition of ¢(m, M), by a suitable generalized
inverse. The Moore- Penrose inverse turns out to be a good choice. Working with a
generalized inverse however complicates the analysis of ¢(m, M) considerably.

The rest of the paper is organized as follows. In section 2 we describe some properties
of {M}, its Moore-Penrose inverse process {M}* and invariance properties of M under
a to {M); related orthogonal projection. Section 3 coniains an important integral
representation of c¢{m.Af). In section 4 linear dependence between m and M is
defined by c{m, M) = 0 and characterized by the property that there is constant
(random} matrix C such that m = CM. The familiar case where m and M are
random variables is easily recognized.

2 some technical results

In this section we describe some properties of the process {AM}. (M} takes its values in
the space of positive semidefinite n x n matrices P,, and if ¢ > s, then (M}, — (M), €
Py

For fixed t, w {Af}; = (Al};(w) may have non trivial kernel. This is typically the case
if M, = ¥i_, z:€i,where ¢; is a real valued martingale difference sequence and z a R*
valued predictable process. Then {M), for ¢ < n is always a singular matrix.

For t > s we always have Im{M), 5 Im{M},, where Im{M), is the image space of
(M), a linear subspace of R".

Define r : & x {0,00) — {0,...,n} by ry = dim Im{M}, = rank{M),. Then r is
a predictable process (see proposition 2.1). Although (M)} is a right continuous
process, r may fail to be right {or left) continuous. See example 2 below. Define
the stopping times T (k = 0,...,n+ 1) by Ty = 0 and T}y = inf{t > T} : r, >
rr, J(inf @ = 00). Then each Ty : @ — [0,00], and T4 = 0o. The T} are in general
not predictable. See example 1. For (w,t) € }Tx, Tk41[ we have that Im{M}, does
not depend on t, and hence r is constant on this stochastic interval. So we can find
a (random) matrix F(k) of size n X r; such that the columns of F(k) span Im{M),
and F(K)TF(k) = I,,, the r, X r, identity matrix. Similarly we can find matrices
G(k) of size n X r7, 17, <o) such that the columns of G(k} span Im{M)r,1ir.<c0}
and such that G(k}TG(k) = L (5, <oy Moreover, since Im(M), D Im{M), for
t > 8, we can always assume that F(k) is of the form [G(k), U;(k)], where Uy (k) is a
n X (7 — r1,1{T<00) ) matrix for (w,t) € )Tk, Tiya[. and likewise G{k) is of the form
(F(k— 1), Us(k))



Then for (w,1) € [Tk, Tiq1[ there exists a r; X r; matrix Vi{%) such that
(M), = FO:)Vi(k)F (k)T

and there exists a 77,17, <c0} X T3 1{Ti<oo) Mmatrix W (k) such that
(M)1,iTico0y = GIR)W (K)G(E)T.

Notice that the Vi(k) and the W (k) are in general not diagonal. Hence
(M), = 3 hn e FEV(RFET + 3 Ly Ge)W{E)G(k)T (2.1)
k=0 k=0

On the sets where the Vi(k) and W(k) are defined, these matrices are invertible.
Therefore we can define the generalized inverse process {(M)}* by

(MY = 3 Lo PRV R PR + 3 g GRIW R GHRT  (29)
k=D

k=0

PROPOSITION 2.1 (M)} defined by equation {£.2) is for each t the Moare-Penrose
inverse of (M); and r and {M}* are predictable processes.

PROOF: First we show that the map rank : R™** — {0,...,m A n} is upper semi-
continuous, that is the sets G, = {A € R™*" : rankA = p} are open in the ordinary
topology on R™**. Let A € G}, and rankA = ¢ = p. Then A contains a2 submatrix
A, € R¥™ with rank A, = q. Let {ex} C R™*" be a sequence of matrices converging
to zero. Let ¢, be the submatrix of ¢ that is obtained in the same way as 4,, that
is by deleting the same rows and columns. Then lim,_ . det(A,; + eu) # 0. (by
continuity of the determinant). Hence rank{A, + €,) = ¢ for all k large enough
and consequently rank{A + €} > ¢ for the same k. This shows that G, is open.
As a consequence rank is a (Borel) measurable map. Since r is the composition
r = rank{M}, it is predictable. Since (M); and {M)} are both symmetric and since
they commute, it follows from {3] that {M){ is the Moore-Penrose inverse of (M},.
To show predictability of (M)}*, we need the following algorithm for the computation
of the Moore-Penrose inverse of any symmetric matrix A € R™", Let 0 € k < n
be the multiplicity of A = 0 as a root of the characteristic polynomial p of A. Then
7(A) = A7 p(A) = A1+ g A» % + . +4,_4) is a polynomial and it is easy to see
that #(A4) = 0. Notice that a,_; is equal to the product of all nonzero eigenvalues
of A (an empty product equals 1). Hence a,_x % 0. Let q be the polynomial of
degree n-k-1 defined by ¢{}) = -—3571“-_—,‘-[11'()\) —~ @y_;A]. (The zero polynomial has
degree -1). Then Ag(A)A = A%g(A) = A, as can easily be verified. Next we define
At = ¢(A)Aq(A). Using again the characterization of [3], we see that A* is indeed
the Moore-Penrose inverse of A. Apply this procedure to A = {M);. Because the
characteristic polynomial and the eigenvalues are obtained by a continuous trans-
formation of the elements of a matrix, we easily obtain that in the above algorithm
@n-t = [1 il >0), with the d; the eigenvalues of (M), yields a predictable process.
Moreover in this context k¥ = n — r; is predictable. Hence {¢({Af},)} and (M)T are
predictable processes. ]



REMARK: Proposition 2.1 really needs a proof, since another generalized inverse of
{M}; may not yield a predictable process. Consider the following example. {M}, =

[ E g . Let a; be an arbitrary stochastic process, possibly not adapted. Then for

1

t>0 [ a? ;::2 ] is a generalized inverse of {M),, different from the Moore-Penrose
a; ta?

inverse (which corresponds with a; = 0}, and viewed as a stochastic process it is in
general not predictable.

EXAMPLE 1: Let N be the standard Poisson process. Define T = inf{t > 0 :
Ny = 1}. Then T is a totally inaccessible stopping time. Define now the martin-
gale M by My = Ny —t — (Nyar =t AT). Then (M), =t —tAT. But now
Ty = inf{t > 0: (M), > 0} = T. So T} is not predictable. Notice that ry = 1y>1y is
predictable.

We need some technical properties of M ans {M}, to be used in section 3. These are
formulated in the next three lemmas. In the notation introduced above we have the
following

LEMMMA 2.2 On the set {T} < o0} we have

(1) Vr—{k — 1) = limyg, Vi(k — 1) exists and is invertible.

(it) If F(k)=G(k), then limyg, Vi(k) = W{(k). If F(k) = [G(k), U1(k)], with Uy(k)

nontrivial, then we can write V,(k) = Ry(k)R,(k)T with R(k) = [ {_I‘[(]k) itg;; },
Wk

decomposed in blocks of appropriate sizes such that lim;g, b (k) = 0, limy 1, ¢, (k) =0

and limy 1, a(k)a (k)T = W(k).

PROOF: (i) is obvious.
(i) If F(k)} = G(k), then right continuity of (M) yields the result. Assume therefore

that F(k) = [G(k),Us(k)]. Then (M)s, = F() [ Wik g]F(k)T, with the zero
blocks of appropriate dimension.
Vilk)ir Vi(k)re .
Vilklan Vilk)aa |- Since
Vi(k) > 0, we also have Vi(k)s, > 0. Sinee on JT;, Tiys[ also (M), — (M}, > 0, we
Vi(k) = W(k) Vi(k)ie | 0

Vilk)n Vilk)oa | =
Hence Vi(k)11 — W(k) — Vi(k)12Valk)22 Va(k)ar = 0. Use the decomposition V,(k) =
Ri(k)Ry(k)T to write this inequality as

ay(k)ay(k)" + b(k)be(k)T — W (k) — b(k)eu(k) es(k)ed(B)T ] el k)be(k)T 2 O
But ¢ (k) is invertible, so this inequality becomes

as{k)a (k)T — W(k) 20 : (2.3)

Decompose Vi(k) in blocks of the same dimension as

have that



S,

Right continuity of (M) gives limy 7, Vi(k)n = W(k). So
0= BmlVi(k)u — W) = liml(ai(k)a (k)T — W(k)) + b(k)bi(k)7]
1T tiT
The term in brackets is because of equation (2.3) the sum of two nonnegative matrices.

Hence Bmy g, a:(k)a: (k)T = W (k) and limyg, b:(k) = 0. Because lim 7, Vi(k)22 = 0,
we obtain limg g, ¢(k) = 0. O

Introduce the following notation. P, = (M),(M)f. Observe that P, for fixed (¢,w) is
the orthogonal projection on Im{M}, along Ker{M},. P as a process doesn’t depend
on t on |7y, Tiyi[. It is, like r, nor right or left continuous at the 7). Furthermore,
for t > s, we have PP, = P,P, = P;, because Im{M), C Im{M}..

LEMMA 2.3 M is indistinguishable from the stochastic inlegral P.M and from the
product PM.

PROOF P is predictable (from proposition 2.1). Hence P.M defines again a martin-
gale. Then {M — P.M) = {{I ~ P).M) = [;(I — P)d{M)(I — P)T. On [T}, Tes1[ we
have Pd(M) = d(P{M)) = d{M) which makes the integral zero over }T%, Trs1[. On
{T% < oo} we can apply the same argument if Pr, = Pr,_. Otherwise we get

(I = Pp)a{M)y, = (I = Pr)[{M)g, — (M}g,-] =
—( = Pr M) = (I = Pr)Pr,_(M)r,_ =0,

since Py, Pr,. = Pr,.. Hence (M — P.M) is indistinguishable from the zero process,
Consider now the product PA. On [Ty, Tiyr] we have d{PM) = PdM. Let T) < cc.
Then

PT, MT] = ‘PTIAMTJ = A(PAJ)T] = Aﬂﬁ’fx = MTl-

Now we use an induction argument. Let Ty < oo and assume that Pr_ Mg, _ =
Mr,_,. Then

A(Pr,Mz,) = Pry Mg, — Pr,_Mzg,_ = Pr,oAMz, + (P4 — P )My, =

A"'MTk + (PTk‘{' - PTR—)(ﬁ:er— ™ A{Tk—j) + (PTI:+ - PTk—)‘PTk-»‘lﬂka—l =

AMTk +(PT,,+ ”‘PTk—) PdM +0=
{Th—1.T%)
AMg, + (Pry — P, )Py, j( oy M =AMy,
Hence PM and M are indistinguishable. O

The covariation process {(m, M} enjoys the following property.

LEMMA 2.4 {m, M) = {m, M)P.



PROOF:

(m’M)iPt]']Tk.THl[ = [IJ

0] 1]3“*‘7',‘“ [d(m, M)3P3 = ][.0 0 1]Tk.Tx+1ﬂd(?ne P.f’lﬁf)s =

f[o & 7, T 18lm, M};(by lemma 2.3) = <m=M)illTk‘Tk+il'

On {T}; < oo} we have
{m, M)q, Py, = A{lm, M)z, Pr, + (m,M)g,.(Pr, — Pr,.) + {m,M)q,_Pr,. =
A{m,P.M)7, + (m,M)7,_(Pr, — Pr,.-) + {m, M), _Pr,_ =
A{m, M)z, + {m,M}r,_Pr, -,

because the second term equals zero, as can be seen by the first part of the proof and
by using an induction argument like in the proof of lemma 2.3. By the same argument
it follows that {m, M}, _Pr_ = lmgr {m, M):P; = limgr (m, M) = {m, M)7,_.
So {m, M)1, Py, = (m, M)z, Combining this with the first part of the proof we get
{m, M) ={m,M}P. m]

REMARK: Lemmas 2.3 and 2.4 as well the results in subsequent sections can he
generalized by taking other generalized inverses of (M). P, is then still a projection,
although not symmetric. For our purposes the specific choice of the Moore-Penrose
inverse suffices.

3 the process ¢(m,M)

Let m and M be as in section 1. Define the predictable process (related to the
correlation between m and M) ¢{m, M) : © x [0,00) — R¥* by

e(m, M) = (m) — (m, M){M)* (M, m)

The main result of this section is an integral representation for ¢(m, M). The difficulty
that we encounter is that {M)}* and even {(m, M){M)* may not be right continuous.
See example 2. Typically right limits of (M}t at the T} are not finite. Take for
example the trivial case where (M), = t —t A1, then (M)} = L5, for t > 1.
Therefore we need some agreements concerning the notation that we will follow. The
considerations above forbid us to define A{(M}} as (M), — (M)} . Therefore we
adopt the convention

AM)} = (M) — (M)

All integrals of the type J; = foq0ad(M}* are then to be understood such that
AJ; = oAM= a({M)F — (M)E), provided of course that a is such that this
convention makes sense, which is the case if J is right continuous.

We need the following representation result (Cf [4] for the univariate case).



LEMMA 3.1 There exists a (in general not unique} predictable process k : §} X
10,00) — R**®, such that m — .M is an R* valued square integrable martingale,
orthogonal to M in the sense that {m — k.M, M) = 0. However the martingale
m — &M is uniquely defined (up to indistinguishability). ' O

With a process « as in lemma 3.1 we can write

e{m,M) = {m~-«&M)+{.M)—{m,MYM*{M,m)
= (m—&M)+c(eM,M)

The proof of theorem 3.3 below involves some calculus rules. As for {M)+, we also
use for P the notation AP, = F, — P,_.

LEMMA 3.2 (i) d{M) (M)} = (M), d{M)} + dP,
(i) d(M)e = —(M)e- (M)} {M): + dP (M),

PROOF On )Tk, Ti4:[ the ordinary calculus rules apply to Vi(k) and P doesn’t vary
with t on this stochastic interval. Hence the result follows in this case. Consider now
what happens if t = T < oc. If (A} happens to be left continuous at this point we
are back in the previous case. So assume that A{M )y, 3£ 0. Then

AM)p M), _ + (M2, MM}, = (M), (M)7, — (M), (M)}, = AP,

This proves (i). Similarly we have |
A{M)g, + (Mg, - AM) (M)7, = (M)g, — (M)7,- + (M)5,-Pr, — P, (M),
= (I - Pr,_ M)z, — (M}5,-(] - Pr,) = AP, {M)q,

which proves the second assertion. O

In the notation that we introduced above we are now able to present the principal
result of this section.

THEOREM 3.3 (i} ¢(m, M) is a right continuous process.
(ii) With k as in lemma 3.1 we have for m = k.M the following integral representa-
tion:

olm, M) = = [(s(M) — (m, M){M)* (5(M) = {m, M))”
= = [ 6 = fom, MYMYFNM)AMY* (01) (1 = (m, M) (M)*)T
=~ [(s = m, M) (MY} (M) d(MY* (M) = m, M)— (M) 3)T
=+ [(x — (m, M) (MY1)(T ~ ACM) (MY )M (6 = m, M) (MYH)T



PROOF (i) This is a simple consequence of right continuity of all involved pro-
cesses if we restrict our attention to the open intervals |7y, Tiy1[. Therefore we con-
sider what happens at the Tk (on {Tx < oo}). Define the process ¢ on 7%, Trs1[
by ¢ = {m, M) F(k)R,(k)"!, where R,(k) is as in lemma 2.2. We will show
that lim, 7, g7 exists. Write ¢, = ¢ + ¢2, with ¢} = (m,M)TkF(k)Ri(k)“T and
gt = ({m, M) — (m, M)z, )F(k)R:(k)~T. First we will show that lim, 5, ¢> = 0.
It is sufficient to prove that tr[g?(¢?)¥] tends to zero for ¢t | Ty Write ¢2(¢¥)T =
S0 cd{ MM} [z, g d{M)xT > 0. Let &; be the i-th row of x and write (M)F =
i1 Q_,,Qﬁ, where the @;; are R™ valued random variables and Q}:Qﬁ = 0 if i#].
Then tr(gf¢}") = Ti;lfn. . €:d(M)Qje]*, which is by Schwartz’ inequality less than

S o AT [ Q)@=

@ |
z: Jpg AT QUM = (M)} =
wfo (A1) (M 00 (31)

The first factor of this product tends to zero as ¢t | 7. Consider now the second
factor. First we notice that tr[{M),(M)]] = tr[F(k)F(k)T] = tr[F(E)TF(k)] = rs.
(Remember that ry = rank{M),). Next we compute

tr({M) 1, (M)}] = tr[G(R)W (k)G (k)T F(R)V(k) " F (k)] =
tr{Vi(k) " F(k)TGR)W (B)G (k)T F(K)] =

k) 0 (k) 0

oty | "0 0 = vt | M 0] mavT -
tr{[az(g)-l IHWm OH (B 'g] _
tr[(“‘(k)“‘(’")T) Wik) 0 ] = trl(a(k)as(k)) W (W)

which tends to tr[W (k)" 'W(k)] = rr,. Hence limy 7, [({M}, ~ (M} M) = rpq —
rr, < 00. So from equation (3.1) we obtain that indeed ¢ — 0 as ¢ | T%. Secondly
we look at ¢. From lemma 2.4 we see that there exists a random matrix A(k) such
that (m, M)r, = A(k)G(k)T. Hence

o = AE)GHETFE)R(K)T
= AR)[1I o][“‘(?_r 2]
A(k) [ k)T 0].

So ¢} (g))T = A(k)(a(k)a(k)T)TA(E)T — A(K)W (k)1 A(k)T, since W (k) is invert-
ible and a,(k)a,(k)¥ — W{k) by lemma 2.2. Because of the fact that lim,z, ¢* =

g :



0, and that e, (k) is bounded for t | T, we get limy1, qqf = limgr, g} (g})T =
AR)W (k) 1A(K)T.

But  (m, M)y (M)$(M,myz, =  ARGCRTGERW(E)IGET G AR
= A(K)W(k)"'A(k)¥, which gives right continuity of (m,M){M)}+(M,m) at the
Ty (on {T} < oo}), thus proving the first assertion of the theorem. In order to prove
the second one we proceed as follows. Because ¢{m, M) is right continuous we can
use the results of lemma 3.2 in the computations below.

de(m, M) = &d{M)&T — (m, M)_(M)¥d(M)xT

~{m, M}_d{MY* (M, m) — ed{ M} M)}t (M, m) (3.2)
from which we obtain by lemma 3.2
de(m, M) = —(x{M)- ~ (m, M)_}d{M}*(x(M) — (m,M))"
+xdP{M}«kT — (m, M)_dPx* — xdP{M,m) (3.3)
= —(k(M) = {m, M))A(MY* (x(M) = {m, M))T
+&dP{M) kT — {m, M)_dPxT — kdP{M,m)_ {(3.4)

It is immediately seen that on )Tk, Tk4:[ the last three terms vanish, whereas on
{7 < oo} we have

AP (M)g,- = AP, Pr,— (M)Tk" =0
and
(?‘?1, M)nAPT,‘ = (m, ﬂ'ﬂTkPTk-APTk = 0',

since Pr,_ APy, = 0. This proves the first formula of the second assertion. The other
ones follow similarly. O

REMARK At ¢ = T} it is not true that A{M}F < 0 and that (M), A(MY (M), <0.
However for all t one has (M), A{M)] (M), £ 0. This is trivially true on the open
intervals |7, Th41[. Consider what happens at Ty on {7} < oo} if A{(M}r, # 0. We
know that G(kYW(k)G(k)T — F(k— DWr (k= 1)F(k—1)T > 0 or, with an obvious
decomposition of W{k):

Wi(khy ~ Vp-(k~1) W(k)y

= Q0.
W(k)s, Wikl | = 0
Hence, since W{k),, is invertible, we get
Wk ~ W(k)uW(Eka W)y -V (k—1) >0 (3.5)

Now look at
(M>Tk-A(M>£ {M)Tk—
= (M)5,— (M3, (M)1,- — (M)7,-
= Flk~DVg_(k=1D[F(k~-D)TGEWETIGCETFE-1) -
Vi (k= 1) Vg _(k = 1)P(k = 1)7.

Consider the term in brackets. Again in obvious notation, it becomes

9



W) = Vo-(k-1)"" =
W (k) = W (k)W (B)5 W (k)] ™ — Vo (k= 1) <0,

from equation{ 3.5). Thus we have proved the following

COROLLARY 3.4 The process c(m, M) is non decreasing.

4 linear dependence

In this section we will study a suitably defined notion of linear dependence between
two square integrable martingales m and M. By analogy with the situation in which
one deals with multidimensional random variables we have the following

DEFINITION 4.1 (i} m is said to be linearly dependent on M if the process
c(m, M) € R¥* is indistuinguishable from zero.

(i) m and M are said to be mutually Eneerly dependent if both c(m, M} and (M, m)
are indistuinguishable from zero.

Here is the main result of this section.

THEOREM 4.2 m is linearly dependent on M iff there ezists a (possibly random)
matriz C € R¥*™ with C{M) a predictable process such that m = CM. Moreover in
this case C{M} = (m, M). Furthermore m and M are mutually lincarly dependent
iff there exist matrices Cy and Cy such that m = C1\M and M = Cym. In the latier
case we also have that Cy and C, are each others Moore-Penrose inverses.

REMARK The matrix C in theorem 4.2 is not necessarily F,- measurable. See
example 3.

PROOF Define v, = {m, M} (M}}. Then (M), = (m, M), from lemma 2.4.
On |7, Tiq1{ we have

dye = {(m,M)_d(M)} 4 d{m, M), (M)}
Y- AM),_d{M)] + s, d(M) (M)
= (Y- — &) M) d(M)F

So if ¢(m, M) = 0, then from theorem 3.3 we obtain that v is constant on [T%, Trsq[.
This also implies that v admits right limits at 7} if T < co. We need some more
properties of 4. On {7} < oo} we have

(7Tx+ - 7Tk)G(k) =0 (41)
I — 10— = T, [G(k)G(k)T — F(k—1)F(k - l)T] = s, AP, (4.2)
Indeed right continuity of {m, M} gives

TTe (M)Tk = (ma M-)Tk = }il%:(m!M)t = }iITI: 'ﬁ(M)i = 7Tk+(ﬂ4)Tk'

10



Hence (yr,+ ~ 1. ){M)g, = 0, which is equivalent to equation (4.1). Next we use
lemma 3.2 to write

— M- = (ma M>T3(M>;k = (th}Tk-(M>£—
(m$M)Tk-A(M>£ + K'TkA(‘Mr)Tk (M)i

= YTy~ (A{{)Tk—A(M}i + "‘TkA<M)Tk(M>;}

= 'TTk—(M>Tk-A(M)£ - KTy (ﬂf}Tg;A(ﬂf)%k + 7, APy,
= (- — 53 ) (M), A(M)}, + 53, APy,

The assumption that ¢(m, M) = 0 yields the first term zero from theorem 3.3, which
gives equation 4.2. Nofice that equation 4.1 and equation 4.2 imply

(7Tk - 7Tk-)(M)Tk— =0, (77'” - 'TTk)(M)Tk =0 (43)

Hence y7, (M), = 0 and A(yr, (M)n, ) = y0, A(M)1,, or A{m, M7, =y, A(M)q,.
Define now C = lim;_, 7. We claim that this is the matrix in the assertion of the
theorem. Notice that on the set @y = {Ti < 00,741 = o0} C equals v7,,. Further- -
more Up_o i = Q and Q, N = 0 if k # 1. First we prove the following facts. CM
is a martingale and CM; = v, M, = (v.M),.

From lemma 2.3: CM; = C{M){M)F M,. On §; we have for j < k:

C(M)1; = g, (M), Z(?:r, — YT, ) (M), Z('n + = 1= M),

Z('m - v My, = 4 (M1,

since (yn4 — v )(M)r, = 0if ¢ < j. But
1+ M = (vn 4 ~ 1 M), + 93 (M = v, (M),

by equation( 4.3}.

Furthermore on € x [0, 0c0)N]T}, T;j41[ we have in the same way C{M); = y7;4. (M},
because (yr.y — 5= )F(J) = 0if § < 7 and so C{M} is equal to y(M}.

Hence CM, = M, = (vM), + f[o,t} dvysM,_. Now on 0 for 7 < k we have
Ayp,Mr,.. = A’yTj(M)T_f(M);:jMTj_ = 0. Hence f{ﬂ,t] VM- = Forc Ay, Mr,- =
0.

Predictability of 4 (lemma 2.3) gives that CM = 4.M is indeed a martingale.
Finally we have to show that m and CM are indistuinguishable. Compute (m —
CM) = (m—~1.M) = ((x = 7).M) = fpu(x — v)d(M)(x — 7)7. Consider (x —
Ted{M)y = d{m, M), — d{M}, = d(7{M),) = 7d(M) = dv.{M), which is zero
on all |T¢, Tis:[, because here dy; = 0. At ¢ = T} < oo we also get zero from equa-
tion {(4.2). This proves the only if part.

Next we prove the converse statement. Assume that C{M) is predictable, equiv-
alently CP is predictable. Then the product m = CM is a martingale. Indeed
CM = CPM is adapted. Let now ¥ = CP. Then m = +.M + [jdyM_ =
.M + fdvP_M_. The last integral is easily seen to be zero. Se m is equal to
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~.M and thus a martingale. Moreover we also obtain {m, M) = 4y (M} = v(M) —
Jody(M)_, where again the last integral vanishes. But 4{M)} = C(M). Similarly
(m) = C{M)CT. Hence ¢(m,M) = 0. Assume finally that m and M are mutu-
ally linearly dependent. Then there exists matrices ¢, and Cy as in the first part
of the theorem. They are of the form as in the first part of the proof. There-
fore we can compute C;CoCy = limuoo{m, M) {(M)F{M,m),(m)*{m, M) (M)} =
Hmy oo (e, M) (M) (M) (M)] = limyoo{m, M) (M)} = C,. Here we used in the
second equality the fact that ¢(M,m) = 0. Similarly one can prove that C,C;Cy = €,
and CyC; = (C,C2)T which shows that €y and C; are each others Moore-Penrose
inverses (Cf [3]). This completes the proof. ' 0

REMARK: Consider the other extreme case. One always has e¢(m, M), < {m),.
Here equality holds iff (m, M)}, = 0. Indeed, assume that equality holds, then
{m, M},(M), = 0, and hence {m, M), F; = 0 and by lemma 2.4 this implies {m, M), =
0. The converse statement is trivial.

By locabization it is possible to formulate a whole string of corollaries, which are
roughly zall of the {following type.

COROLLARY 4.3 Let S be a stopping time and assume thal
c(m1ﬁ4)31{5<oo} + C(m:ﬂf)oo—l{.‘i‘:ao} =0

Then the stopped martingale m® depends linearly on the stopped martingale M.
Equivalently there exists C such that lggs(m — CM) = 0.

PROOF 1t holds that ¢{m, M)® = ¢(m®, M?). Hence the assumption in the corollary
implies limy_c c(m%, M%), = 0. So c(m®, M), = 0 V¢ > 0, since c(m>, M) is non
decreasing {corollary 3.4}. The result now follows from theorem 4.2. |

EXAMPLE 2: Let W be Brownian motion and ¢ a N(0,1) distributed random
variable. Assume that W and ¢ are independent. Let y; = W) 4 lisqye. Define

1 1
¢ : [0,00) = R? by &(t) = [0 ] 1gy(t) + [t_l ] 1g.00)(t) and M = £, Let
Fi = o{W,,s < t;1sn¢}. Then M is a martingale with respect to the filtration
F = {.Ft]'fao and

(M), = [ (1) g ] Lapt) + [ %(ti 1y2 ig _ 32 ] 1(1.00)(2)

for () =t + 1(1,00)(t). Hence ry = rank{M), = 1113 (2) + 2.11,00)(1).
Let K : [0,00) = R**? be given by K(t) = K'15)(t) + K?1(1 0)(t), and m = K. M.
Then (m, M), = KM}, =

| 1y _1)2
K1 [ {1} g } Ly () + {K" [ é g ] + K? [ 1 i 1y gg - 33 }}1(1,00).(1)

2

A computation shows:
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M)y = [ 00 ] Tap{t) + [ e D) ] 1(1,00)(t)
sy Tere M YTy

Let K' = [KL) and K? = [K2]. Then v, = {m, M){M)} =

1 0 (47, +(—-1)K2,) I{ + B8(K2,-K1)
[ 8]0+ | wariums ot G, | o
K%, + Sl - K
i+3 {t—1)(t1+3)
Hence limy); 1 doesn’t exist for arbitrary K.
Assume now that ¢(m,M) = 0, then from theorem 4.2 we know that v is constant
on (1,00). So the following equalities have to hold: K}, = KZ and K}, = K2,. Now
~ becomes

0

And in agreement with theorem 4.2 (cf. its proof) we see that m =y M.

EXAMPLE 3: Let ¢; be iid N(0,1) random variables. Let F,, = a{ey,...,e,}. Let
ml ...Zn be an orthonormal basis for R® and z; = 0 for ¢+ > n 4 1. Let furthermore

: § = R¥*" be F;_; measurable. Define My = Y,c; i, my = S0 KiAM,.
Then (M) = Siqpzmiel, (MY = Sicmzizl. A simple calculation shows that
c(m, M) = 0 and that the matrix C in theorem 4.2 becomes C' = icn KiziaT,
which is F,,_; measurable.
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