Serie Research Memoranda

On Correlation Calculus for Multivariate Martingales

Kacha Dzhaparidze
Peter Spreij

Research Memorandum 1990.81 November 1990

On correlation calculus for multivariate martingales

Kacha Dzhaparidze
Centre for Mathematics and Computer Science
Kruislaan 413
1098 SJ Amsterdam
Peter Spreij
Department of Econometrics
Free University
De Boelelaan 1105
1081 HV Amsterdam

Abstract

In this paper the correlation between two multivariate martingales is studied. This correlation can be expressed in a non decreasing process, that remains zero in the case of linear dependence. A key result is an integral representation for this process.

1 introduction

Let $(\Omega, \mathcal{F}, \mathbf{F}, P)$ be a complete filtered probability space. Let $M: \Omega \times[0, \infty) \rightarrow \mathbf{R}^{n}$ and $m: \Omega \times[0, \infty) \rightarrow \mathbf{R}^{k}$ be locally square integrable martingales.
Denote by $\langle m, M\rangle$ the predictable covariation process of m and M. So $\langle m, M\rangle$: $\Omega \times[0, \infty) \rightarrow \mathbf{R}^{k \times n}$ and if m^{i} and M^{j} are the $i-t h$ and j-th components of m and M respectively, then the j j entry $\langle m, M\rangle^{i j}$ of $\langle m, M\rangle$ equals the real valued process $\left\langle m^{i}, M^{j}\right\rangle .\langle m\rangle=\langle m, m\rangle$ and $\langle M\rangle=\langle M, M\rangle$ are defined likewise.
Assume now that for some $t>0$ the matrices $\langle m\rangle_{t}$ and $\langle M\rangle_{t}$ are invertible. Then, parallel to what one can do when dealing with multivariate random variables, it is natural to express the correlation between m and M over the interval $[0, t]$ by

$$
\rho(m, M)_{t}=\langle m\rangle_{t}^{-\frac{1}{2}}(m, M\rangle_{t}\langle M\rangle_{t}^{-\frac{1}{2}}
$$

Let $c(m, M)_{t}=\langle m\rangle_{t}-\langle m, M\rangle_{t}\langle M\rangle_{t}^{-1}\langle M, m\rangle_{t}$. Then we have the identity

$$
I-\rho(m, M)_{t} \rho(M, m)_{t}=\langle m\rangle_{t}^{-\frac{1}{2}} c(m, M)_{t}\langle m\rangle_{t}^{-\frac{1}{2}}
$$

It follows that $c(m, M)_{t}$ carries the same amount of information about the correlation between m and M as $\rho(m, M)_{t}$. It turns out that it is more convenient to study $c(m, M)_{t}$ than $\rho(m, M)_{t}$. The process $c(m, M)$ is of interest in its own right, because it appears at several places in probability and statistics. For example, this process or rather a slightly different one - appears in [1], where we studied a strong law of large numbers for martingales. The results of the present paper offer an alternative approach to such a study. In a statistical context $c(m, M)$ can be interpreted as a measure of deficiency when comparing an arbitrary estimator with an optimal one. Cf [2] for details.
In the present paper we drop the restrictions that $\langle m\rangle_{t}$ and $\langle M\rangle_{t}$ are invertible. So we have to replace $\langle M\rangle_{t}^{-1}$ in the definition of $c(m, M)_{t}$ by a suitable generalized inverse. The Moore- Penrose jnverse turns out to be a good choice. Working with a generalized inverse however complicates the analysis of $c(m, M)$ considerably.
The rest of the paper is organized as follows. In section 2 we describe some properties of $\langle M\rangle$, its Moore-Penrose inverse process $\langle M\rangle^{+}$and invariance properties of M under a to $\langle M\rangle_{t}$ related orthogonal projection. Section 3 contains an important integral representation of $c(m, M)$. In section 4 linear dependence between m and M is defined by $c(m, M)=0$ and characterized by the property that there is constant (random) matrix C such that $m=C M$. The familiar case where m and M are random variables is easily recognized.

2 some technical results

In this section we describe some properties of the process $\langle M\rangle .\langle M\rangle$ takes its values in the space of positive semidefinite $n \times n$ matrices \mathcal{P}_{n}, and if $t>s$, then $\langle M\rangle_{t}-\langle M\rangle_{s} \in$ \mathcal{P}_{n}.
For fixed $\mathrm{t}, \omega\langle M\rangle_{t}=\langle M\rangle_{t}(\omega)$ may have non trivial kernel. This is typically the case if $M_{t}=\sum_{i=1}^{t} x_{i} \varepsilon_{i}$, where ε_{i} is a real valued martingale difference sequence and x a \mathbf{R}^{n} valued predictable process. Then $\langle M\rangle_{t}$ for $t<n$ is always a singular matrix.
For $t>s$ we always have $\operatorname{Im}\langle M\rangle_{t} \supset \operatorname{Im}\langle M\rangle_{s}$, where $\operatorname{Im}\langle M\rangle_{t}$ is the image space of $\langle M\rangle_{t}$, a linear subspace of \mathbf{R}^{n}.
Define $r: \Omega \times\{0, \infty) \rightarrow\{0, \ldots, n\}$ by $r_{t}=\operatorname{dim} \operatorname{Im}\langle M\rangle_{t}=\operatorname{rank}\langle M\rangle_{t}$. Then r is a predictable process (see proposition 2.1). Although $\langle M\rangle$ is a right continuous process, r may fail to be right (or left) continuous. See example 2 below. Define the stopping times $T_{k}(k=0, \ldots, n+1)$ by $T_{0}=0$ and $T_{k+1}=\inf \left\{t>T_{k}: r_{t}>\right.$ $\left.r_{T_{k}}\right\}(\inf =\infty)$. Then each $T_{k}: \Omega \rightarrow[0, \infty]$, and $T_{n+1}=\infty$. The T_{k} are in general not predictable. See example 1. For $(\omega, t) \in \rrbracket T_{k}, T_{k+1} \llbracket$ we have that $\operatorname{Im}\langle M\rangle_{t}$ does not depend on t, and hence r is constant on this stochastic interval. So we can find a (random) matrix $F(k)$ of size $n \times r_{t}$ such that the columns of $F(k)$ span $\operatorname{Im}\langle M\rangle_{t}$ and $F(k)^{T} F(k)=I_{r_{t}}$, the $r_{t} \times r_{t}$ identity matrix. Similarly we can find matrices $G(k)$ of size $n \times r_{T_{k}} l_{\left\{T_{k}<\infty\right\}}$ such that the columns of $G(k)$ span $\operatorname{Im}\langle M\rangle_{T_{k}} 1_{\left\{T_{k}<\infty\right\}}$ and such that $G(k)^{T} G(k)=I_{r T_{k} 1^{1}\left(T_{k}<\infty\right)}$. Moreover, since $\operatorname{Im}\langle M\rangle_{t} \supset \operatorname{Im}\langle M\rangle_{s}$ for $t>s$, we can always assume that $F(k)$ is of the form $\left[G(k), U_{3}(k)\right]$, where $U_{1}(k)$ is a $n \times\left(r_{t}-r_{T_{k}} 1_{\left\{T_{k}<\infty\right\}}\right)$ matrix for $(\omega, t) \in \rrbracket T_{k}, T_{k+1}[$, and likewise $G(k)$ is of the form $\left[F(k-1), U_{2}(k)\right]$.

Then for $(\omega, t) \in \mathbb{T} T_{k}, T_{k+1} \llbracket$ there exists a $r_{t} \times r_{t}$ matrix $V_{t}(k)$ such that

$$
\langle M\rangle_{t}=F(k) V_{t}(k) F(k)^{T}
$$

and there exists a $r_{T_{k}} 1_{\left\{T_{k}<\infty\right\}} \times r_{T_{k}} 1_{\left\{T_{k}<\infty\right\}}$ matrix $W(k)$ such that

$$
\langle M\rangle_{T_{k}} 1_{\left\{T_{k}<\infty\right\}}=G(k) W(k) G(k)^{T}
$$

Notice that the $V_{i}(k)$ and the $W(k)$ are in general not diagonal. Hence

$$
\begin{equation*}
\langle M\rangle=\sum_{k=0}^{n} 1_{\mathbf{1} T_{k}, T_{k+1} \mathbf{I}} F(k) V(k) F(k)^{T}+\sum_{k=0}^{n} 1_{\left[T_{k}\right]} G(k) W(k) G(k)^{T} \tag{2.1}
\end{equation*}
$$

On the sets where the $V_{t}(k)$ and $W(k)$ are defined, these matrices are invertible. Therefore we can define the generalized inverse process $\langle M\rangle^{+}$by

$$
\begin{equation*}
\langle M\rangle^{+}=\sum_{k=0}^{n} 1_{\mathbf{1} T_{k}, T_{k+1} \mathbb{I}} F(k) V(k)^{-1} F(k)^{T}+\sum_{k=0}^{n} 1_{\left[T_{k}\right]} G(k) W(k)^{-1} G(k)^{T} \tag{2.2}
\end{equation*}
$$

PROPOSITION $2.1\langle M\rangle_{t}^{+}$defined by equation (2.2) is for each the Moore-Penrose inverse of $\langle M\rangle_{t}$ and r and $\langle M\rangle^{+}$are predictable processes.

PROOF: First we show that the map rank: $\mathbf{R}^{m \times n} \rightarrow\{0, \ldots, m \wedge n\}$ is upper semicontinuous, that is the sets $G_{p}=\left\{A \in \mathbf{R}^{m \times n}: \operatorname{rank} A \geq p\right\}$ are open in the ordinary topology on $\mathbf{R}^{m \times n}$. Let $A \in G_{p}$, and $\operatorname{rank} A=q \geq p$. Then A contains a submatrix $A_{q} \in \mathbf{R}^{q \times q}$ with $\operatorname{rank} A_{q}=q$. Let $\left\{\epsilon_{k}\right\} \subset \mathbf{R}^{m \times n}$ be a sequence of matrices converging to zero. Let $\epsilon_{q k}$ be the submatrix of ϵ_{k} that is obtained in the same way as A_{q}, that is by deleting the same rows and columns. Then $\lim _{k \rightarrow \infty} \operatorname{det}\left(A_{q}+\epsilon_{q k}\right) \neq 0$. (by continuity of the determinant $)$. Hence $\operatorname{rank}\left(A_{q}+\epsilon_{q k}\right)=q$ for all k large enough and consequently $\operatorname{rank}\left(A+\epsilon_{k}\right) \geq q$ for the same k . This shows that G_{p} is open. As a consequence rank is a (Borel) measurable map. Since r is the composition $r=\operatorname{rank}\langle M\rangle$, it is predictable. Since $\langle M\rangle_{t}$ and $\langle M\rangle_{t}^{+}$are both symmetric and since they commute, it follows from [3] that $\langle M\rangle_{t}^{+}$is the Moore-Penrose inverse of $\langle M\rangle_{t}$. To show predictability of $\langle M\rangle^{+}$, we need the following algorithm for the computation of the Moore-Penrose inverse of any symmetric matrix $A \in \mathbf{R}^{n \times n}$. Let $0 \leq k \leq n$ be the multiplicity of $\lambda=0$ as a root of the characteristic polynomial p of A. Then $\pi(\lambda)=\lambda^{1-k} p(\lambda)=\lambda^{n-k+1}+a_{1} \lambda^{n-k}+\ldots+a_{n-k} \lambda$ is a polynomial and it is easy to see that $\pi(A)=0$. Notice that a_{n-k} is equal to the product of all nonzero eigenvalues of A (an empty product equals 1). Hence $a_{n-k} \neq 0$. Let q be the polynomial of degree $n-k-1$ defined by $q(\lambda)=-\frac{1}{\lambda^{2} a_{n-k}}\left[\pi(\lambda)-a_{n-k} \lambda\right]$. (The zero polynomial has degree -1). Then $A q(A) A=A^{2} q(A)=A$, as can easily be verified. Next we define $A^{+}=q(A) A q(A)$. Using again the characterization of [3], we see that A^{+}is indeed the Moore-Penrose inverse of A. Apply this procedure to $A=\langle M\rangle_{t}$. Because the characteristic polynomial and the eigenvalues are obtained by a continuous transformation of the elements of a matrix, we easily obtain that in the above algorithm $a_{n-k}=\prod \lambda_{i t} 1_{\left\{\lambda_{i t}>0\right\}}$, with the $\lambda_{i t}$ the eigenvalues of $\langle M\rangle_{t}$, yields a predictable process. Moreover in this context $k=n-r_{t}$ is predictable. Hence $\left\{q\left(\langle M\rangle_{t}\right)\right\}$ and $\langle M\rangle^{+}$are predictable processes.

REMARK: Proposition 2.1 really needs a proof, since another generalized inverse of $\langle M\rangle_{t}$ may not yield a predictable process. Consider the following example. $\langle M\rangle_{t}=$ $\left[\begin{array}{ll}t & 0 \\ 0 & 0\end{array}\right]$. Let a_{t} be an arbitrary stochastic process, possibly not adapted. Then for $t>0\left[\begin{array}{cc}\frac{1}{t} & a_{t} \\ a_{t} & t a_{t}^{2}\end{array}\right]$ is a generalized inverse of $\langle M\rangle_{t}$, different from the Moore-Penrose inverse (which corresponds with $a_{t}=0$), and viewed as a stochastic process it is in general not predictable.

EXAMPLE 1: Let N be the standard Poisson process. Define $T=\inf \{t>0$: $\left.N_{t}=1\right\}$. Then T is a totally inaccessible stopping time. Define now the martingale M by $M_{t}=N_{t}-t-\left(N_{t \wedge T}-t \wedge T\right)$. Then $\langle M\rangle_{t}=t-t \wedge T$. But now $T_{1}=\inf \left\{t>0:\langle M\rangle_{t}>0\right\}=T$. So T_{1} is not predictable. Notice that $r_{t}=1_{\{t>T\}}$ is predictable.

We need some technical properties of M ans $\langle M\rangle$, to be used in section 3. These are formulated in the next three lemmas. In the notation introduced above we have the following

LEMMMA 2.2 On the set $\left\{T_{k}<\infty\right\}$ we have
(i) $V_{T_{k}-}(k-1)=\lim _{t+T_{k}} V_{t}(k-1)$ exists and is invertible.
(ii) If $F(k)=G(k)$, then $\lim _{t \backslash T_{k}} V_{t}(k)=W(k)$. If $F(k)=\left[G(k), U_{1}(k)\right]$, with $U_{1}(k)$ nontrivial, then we can write $V_{t}(k)=R_{t}(k) R_{t}(k)^{T}$ with $R_{t}(k)=\left[\begin{array}{cc}a_{t}(k) & b_{t}(k) \\ 0 & c_{t}(k)\end{array}\right]$, decomposed in blocks of appropriate sizes such that $\lim _{t \backslash T_{k}} b_{t}(k)=0, \lim _{t\rfloor T_{k}} c_{t}(k)=0$ and $\lim _{\mathfrak{t l} T_{k}} a_{t}(k) a_{t}(k)^{T}=W(k)$.

PROOF: (i) is obvious.
(ii) If $F(k)=G(k)$, then right continuity of $\langle M\rangle$ yields the result. Assume therefore that $F(k)=\left[G(k), U_{1}(k)\right]$. Then $\langle M\rangle_{T_{k}}=F(k)\left[\begin{array}{cc}W(k) & 0 \\ 0 & 0\end{array}\right] F(k)^{T}$, with the zero blocks of appropriate dimension.
Decompose $V_{t}(k)$ in blocks of the same dimension as $\left[\begin{array}{ll}V_{t}(k)_{11} & V_{t}(k)_{12} \\ V_{t}(k)_{21} & V_{t}(k)_{22}\end{array}\right]$. Since $V_{i}(k)>0$, we also have $V_{t}(k)_{22}>0$. Since on $\| T_{k}, T_{k+1 \|}$ also $\langle M\rangle_{t}-\langle M\rangle_{T_{k}} \geq 0$, we have that $\left[\begin{array}{cc}V_{t}(k)_{11}-W(k) & V_{t}(k)_{12} \\ V_{t}(k)_{21} & V_{t}(k)_{22}\end{array}\right] \geq 0$.
Hence $V_{t}(k)_{11}-W(k)-V_{t}(k)_{12} V_{t}(k)_{22}^{-1} V_{t}(k)_{21} \geq 0$. Use the decomposition $V_{t}(k)=$ $R_{\mathrm{t}}(k) R_{t}(k)^{T}$ to write this inequality as

$$
a_{t}(k) a_{t}(k)^{T}+b_{t}(k) b_{t}(k)^{T}-W(k)-b_{t}(k) c_{t}(k)^{T}\left[c_{t}(k) c_{t}(k)^{T}\right]^{-1} c_{t}(k) b_{t}(k)^{T} \geq 0
$$

But $c_{t}(k)$ is invertible, so this inequality becomes

$$
\begin{equation*}
a_{t}(k) a_{t}(k)^{T}-W(k) \geq 0 \tag{2.3}
\end{equation*}
$$

Right continuity of $\langle M\rangle$ gives $\lim _{t \backslash T_{k}} V_{t}(k)_{\mathrm{II}}=W(k)$. So

$$
0=\lim _{t \mid T_{k}}\left[V_{t}(k)_{11}-W(k)\right]=\lim _{t / T_{k}}\left[\left(a_{t}(k) a_{t}(k)^{T}-W(k)\right)+b_{t}(k) b_{t}(k)^{T}\right]
$$

The term in brackets is because of equation (2.3) the sum of two nonnegative matrices. Hence $\lim _{t \backslash T_{k}} a_{t}(k) a_{t}(k)^{T}=W(k)$ and $\lim _{t\rfloor T_{k}} b_{t}(k)=0$. Because $\lim _{t \backslash T_{k}} V_{t}(k)_{22}=0$, we obtain $\lim _{\mathfrak{t} \mid T_{k}} c_{t}(k)=0$.

Introduce the following notation. $P_{t}=\langle M\rangle_{t}\langle M\rangle_{t}^{\dagger}$. Observe that P_{t} for fixed (t, ω) is the orthogonal projection on $\operatorname{Im}\langle M\rangle_{t}$ along $\operatorname{Ker}\langle M\rangle_{t} . P$ as a process doesn't depend on t on $\rrbracket T_{k}, T_{k+1}\left[\right.$. It is, like r, nor right or left continuous at the T_{k}. Furthermore, for $t>s$, we have $P_{t} P_{s}=P_{s} P_{t}=P_{s}$, because $\operatorname{Im}\langle M\rangle_{s} \subset \operatorname{Im}\langle M\rangle_{t}$.

LEMMA 2.3 M is indistinguishable from the stochastic integral P. M and from the product PM.

PROOF P is predictable (from proposition 2.1). Hence $P . M$ defines again a martingale. Then $\langle M-P . M\rangle=\langle(I-P) . M\rangle=\int_{0}(I-P) d\langle M\rangle(I-P)^{T}$. On $\rrbracket T_{k}, T_{k+1}[$ we have $P d\langle M\rangle=d(P\langle M\rangle)=d\langle M\rangle$ which makes the integral zero over $] T_{k}, T_{k+1}[$. On $\left\{T_{k}<\infty\right\}$ we can apply the same argument if $P_{T_{k}}=P_{T_{k}-}$. Otherwise we get

$$
\begin{aligned}
& \left(I-P_{T_{k}}\right) \Delta\langle M\rangle_{T_{k}}=\left(I-P_{T_{k}}\right)\left[\langle M\rangle_{T_{k}}-\langle M\rangle_{T_{k}-}\right]= \\
& -\left(I-P_{T_{k}}\right)\langle M\rangle_{T_{k}-}=-\left(I-P_{T_{k}}\right) P_{T_{k}-}\langle M\rangle_{T_{k}-}=0,
\end{aligned}
$$

since $P_{T_{k}} P_{T_{k}-}=P_{T_{k}-}$. Hence $\langle M-P . M\rangle$ is indistinguishable from the zero process. Consider now the product $P M$. On $\rrbracket T_{k}, T_{k+1} \|$ we have $d(P M)=P d M$. Let $T_{1}<\infty$. Then

$$
P_{T_{1}} M_{T_{3}}=P_{T_{1}} \Delta M_{T_{1}}=\Delta(P . M)_{T_{1}}=\Delta M_{T_{1}}=M_{T_{1}} .
$$

Now we use an induction argument. Let $T_{k}<\infty$ and assume that $P_{T_{k-1}} M_{T_{k-1}}=$ $M_{T_{k-1}}$. Then

$$
\begin{aligned}
& \Delta\left(P_{T_{k}} M_{T_{k}}\right)=P_{T_{k}+} M_{T_{k}}-P_{T_{k}-} M_{T_{k}-}=P_{T_{k}+} \Delta M_{T_{k}}+\left(P_{T_{k}+}-P_{T_{k}-}\right) M_{T_{k}-}= \\
& \Delta M_{T_{k}}+\left(P_{T_{k}+}-P_{T_{k}-}\right)\left(M M_{T_{k}-}-M_{T_{k-1}}\right)+\left(P_{T_{k}+}-P_{T_{k}-}\right) P_{T_{k-1}} M_{T_{k-1}}= \\
& \Delta M_{T_{k}}+\left(P_{T_{k}+}-P_{T_{k}-}\right) \int_{\left(T_{k-1}, T_{k}\right)} P d M+0= \\
& \Delta M_{T_{k}}+\left(P_{T_{k}+}-P_{T_{k}-}\right) P_{T_{k}-} \int_{\left(T_{k-1}, T_{k}\right)} d M=\Delta M_{T_{k}} .
\end{aligned}
$$

Hence $P M$ and M are indistinguishable.
The covariation process $\langle m, M\rangle$ enjoys the following property.
LEMMA $2.4\langle m, M\rangle=\langle m, M\rangle P$.

PROOF:

$$
\begin{aligned}
& \left.\langle m, M\rangle_{t} P_{t} 1_{] T_{k}, T_{k+1}[}=\int_{[0, t]}{ }^{1}\right] T_{k}, T_{k+1}\left[d\langle m, M\rangle_{s} P_{s}=\int_{[0, t]} 1_{1 T_{k}, T_{k+1}} d\langle m, P . M\rangle_{s}=\right. \\
& \int_{[0, t]} 1_{1 T_{k}, T_{k+1}} d\langle m, M\rangle_{s}(\text { by lemma } 2.3)=\langle m, M\rangle_{t} 1_{1 T_{k}, T_{k+1} 1} \text {. }
\end{aligned}
$$

On $\left\{T_{k}<\infty\right\}$ we have

$$
\begin{aligned}
& \langle m, M\rangle_{T_{k}} P_{T_{k}}=\Delta\langle m, M\rangle_{T_{k}} P_{T_{k}}+\langle m, M\rangle_{T_{k}-}\left(P_{T_{k}}-P_{T_{k}-}\right)+\langle m, M\rangle_{T_{k}-} P_{T_{k}-}= \\
& \Delta(m, P \cdot M\rangle_{T_{k}}+\langle m, M\rangle_{T_{k}-}\left(P_{T_{k}}-P_{T_{k}-}\right)+\langle m, M\rangle_{T_{k}-} P_{T_{k}-}= \\
& \Delta\langle m, M\rangle_{T_{k}}+\langle m, M\rangle_{T_{k}-} P_{T_{k}-}
\end{aligned}
$$

because the second term equals zero, as can be seen by the first part of the proof and by using an induction argument like in the proof of lemma 2.3. By the same argument it follows that $\langle m, M\rangle_{T_{k}-} P_{T_{k}-}=\lim _{t \uparrow T_{k}}\langle m, M\rangle_{t} P_{t}=\lim _{\mathrm{t} \mid T_{k}}\langle m, M\rangle_{t}=\langle m, M\rangle_{T_{k}-}$. So $\langle m, M\rangle_{T_{k}} P_{T_{k}}=\langle m, M\rangle_{T_{k}}$. Combining this with the first part of the proof we get $\langle m, M\rangle=\langle m, M\rangle P$.

REMARK: Lemmas 2.3 and 2.4 as well the results in subsequent sections can be generalized by taking other generalized inverses of $\langle M\rangle . P_{t}$ is then still a projection, although not symmetric. For our purposes the specific choice of the Moore-Penrose inverse suffices.

3 the process $c(m, M)$

Let m and M be as in section 1. Define the predictable process (related to the correlation between m and M$) c(m, M): \Omega \times[0, \infty) \rightarrow \mathbf{R}^{k \times k}$ by

$$
c(m, M)=\langle m\rangle-\langle m, M\rangle\langle M\rangle^{+}\langle M, m\rangle
$$

The main result of this section is an integral representation for $c(m, M)$. The difficulty that we encounter is that $\langle M\rangle^{+}$and even $\langle m, M\rangle\langle M\rangle^{+}$may not be right continuous. See example 2. Typically right limits of $\langle M\rangle^{+}$at the T_{k} are not finite. Take for example the trivial case where $\langle M\rangle_{t}=t-t \wedge 1$, then $\langle M\rangle_{t}^{+}=\frac{1}{t-1}$, for $t>1$. Therefore we need some agreements concerning the notation that we will follow. The considerations above forbid us to define $\Delta\langle M\rangle_{t}^{+}$as $\langle M\rangle_{t+}^{+}-\langle M\rangle_{t-}^{+}$. Therefore we adopt the convention

$$
\Delta\langle M\rangle_{t}^{+}=\langle M\rangle_{t}^{+}-\langle M\rangle_{t-}^{+}
$$

All integrals of the type $J_{i}=\int_{[0, t]} \alpha d(M\rangle^{+}$are then to be understood such that $\Delta J_{t}=\alpha_{t} \Delta\langle M\rangle_{t}^{+}=\alpha_{t}\left(\langle M\rangle_{t}^{+}-\langle M\rangle_{t-}^{+}\right)$, provided of course that α is such that this convention makes sense, which is the case if J is right continuous.
We need the following representation result (Cf [4] for the univariate case).

LEMMA 3.1 There exists a (in general not unique) predictable process κ : $\Omega \times$ $[0, \infty) \rightarrow \mathbf{R}^{k \times n}$, such that $m-\kappa . M$ is an \mathbf{R}^{k} valued square integrable martingale, orthogonal to M in the sense that $\langle m-\kappa . M, M\rangle=0$. However the martingale $m-\kappa . M$ is uniquely defined (up to indistinguishability).

With a process κ as in lemma 3.1 we can write

$$
\begin{aligned}
c(m, M) & =\langle m-\kappa . M\rangle+\langle\kappa . M\rangle-\langle m, M\rangle\langle M\rangle^{+}\langle M, m) \\
& =\langle m-\kappa . M\rangle+c(\kappa . M, M)
\end{aligned}
$$

The proof of theorem 3.3 below involves some calculus rules. As for $\langle M\rangle^{+}$, we also use for P the notation $\Delta P_{t}=P_{t}-P_{t-}$.

LEMMA 3.2 (i) $d\langle M\rangle_{t}\langle M\rangle_{t-}^{+}=-\langle M\rangle_{t} d\langle M\rangle_{t}^{+}+d P_{t}$
(ii) $d\langle M\rangle_{t}=-\langle M\rangle_{t-} d\langle M\rangle_{t}^{+}\langle M\rangle_{t}+d P_{t}\langle M\rangle_{t}$

PROOF On $\rrbracket T_{k}, T_{k+1} \llbracket$ the ordinary calculus rules apply to $V_{t}(k)$ and P doesn't vary with t on this stochastic interval. Hence the result follows in this case. Consider now what happens if $t=T_{k}\langle\infty$. If $\langle M\rangle$ happens to be left continuous at this point we are back in the previous case. So assume that $\Delta\langle M\rangle_{T_{k}} \neq 0$. Then

$$
\Delta\langle M\rangle_{T_{k}}\langle M\rangle_{T_{k}-}^{+}+\langle M\rangle_{T_{k}} \Delta\langle M\rangle_{T_{k}}^{+}=\langle M\rangle_{T_{k}}\langle M\rangle_{T_{k}}^{+}-\langle M\rangle_{T_{k}-}\langle M\rangle_{T_{k}-}^{+}=\Delta P_{T_{k}}
$$

This proves (i). Similarly we have

$$
\begin{aligned}
& \Delta\langle M\rangle_{T_{k}}+\langle M\rangle_{T_{k}-} \Delta\langle M\rangle_{T_{k}}^{+}\langle M\rangle_{T_{k}}=\langle M\rangle_{T_{k}}-\langle M\rangle_{T_{k}-}+\langle M\rangle_{T_{k}-} P_{T_{k}}-P_{T_{k}-}\langle M\rangle_{T_{k}} \\
& =\left(I-P_{T_{k}-}\right)\langle M\rangle_{T_{k}}-\langle M\rangle_{T_{k}-}\left(I-P_{T_{k}}\right)=\Delta P_{T_{k}}\langle M\rangle_{T_{k}}
\end{aligned}
$$

which proves the second assertion.
In the notation that we introduced above we are now able to present the principal result of this section.

THEOREM 3.3 (i) $c(m, M)$ is a right continuous process.
(ii) With κ as in lemma 3.1 we have for $m=\kappa . M$ the following integral representation:

$$
\begin{aligned}
c(m, M) & =-\int(\kappa\langle M\rangle-\langle m, M\rangle) d\langle M\rangle^{+}(\kappa\langle M\rangle-\langle m, M\rangle)^{T} \\
& =-\int\left(\kappa-\langle m, M\rangle\langle M\rangle^{+}\right)\langle M\rangle d\langle M\rangle^{+}\langle M\rangle\left(\kappa-\langle m, M\rangle\langle M\rangle^{+}\right)^{T} \\
& =-\int\left(\kappa-\langle m, M\rangle_{-}\langle M\rangle_{-}^{+}\right)\langle M\rangle_{-} d\langle M\rangle^{+}\langle M\rangle_{-}\left(\kappa-\langle m, M\rangle_{-}\langle M\rangle_{-}^{+}\right)^{T} \\
& =+\int\left(\kappa-\langle m, M)_{-}\langle M\rangle_{-}^{+}\right)\left(I-\Delta\langle M\rangle\langle M\rangle^{+}\right) d\langle M\rangle\left(\kappa-\langle m, M\rangle_{-}\langle M\rangle_{-}^{+}\right)^{T}
\end{aligned}
$$

PROOF (i) This is a simple consequence of right continuity of all involved processes if we restrict our attention to the open intervals $\rrbracket T_{k}, T_{k+1}[$. Therefore we consider what happens at the T_{k} (on $\left\{T_{k}<\infty\right\}$). Define the process q on $\rrbracket T_{k}, T_{k+1}$ [by $q_{t}=\langle m, M\rangle_{t} F(k) R_{t}(k)^{-1}$, where $R_{t}(k)$ is as in lemma 2.2. We will show that $\lim _{t!T_{k}} q_{t} q_{t}^{T}$ exists. Write $q_{t}=q_{t}^{1}+q_{t}^{2}$, with $q_{t}^{1}=\langle m, M\rangle_{T_{k}} F(k) R_{t}(k)^{-T}$ and $q_{t}^{2}=\left(\langle m, M\rangle_{t}-\langle m, M\rangle_{T_{k}}\right) F(k) R_{t}(k)^{-T}$. First we will show that $\lim _{t \downarrow T_{k}} q_{t}^{2}=0$. It is sufficient to prove that $\operatorname{tr}\left[q_{t}^{2}\left(q_{t}^{2}\right)^{T}\right]$ tends to zero for $t \downarrow T_{k}$. Write $q_{t}^{2}\left(q_{t}^{2}\right)^{T}=$ $\int_{\left(T_{k}, t\right]} \kappa d\langle M\rangle\langle M\rangle_{t}^{+} \int_{\left(T_{k}, t\right]} d\langle M\rangle \kappa^{T} \geq 0$. Let κ_{i} be the i-th row of κ and write $\langle M\rangle_{t}^{+}=$ $\sum_{j=1}^{n} Q_{j t} Q_{j t}^{T}$, where the $Q_{j t}$ are \mathbf{R}^{n} valued random variables and $Q_{j t}^{T} Q_{j t}=0$ if $i \neq j$. Then $\operatorname{tr}\left(q_{t}^{2} q_{t}^{2 T}\right)=\sum_{i, j}\left[\int_{\left(T_{k}, t\right]} \kappa_{i} d\langle M\rangle Q_{j t}\right]^{2}$, which is by Schwartz' inequality less than

$$
\begin{align*}
& \sum_{i, j} \int_{\left(T_{k}, t\right]} \kappa_{i} d\langle M\rangle \kappa_{i}^{T} \int_{\left(T_{k}, t\right]} Q_{j t}^{T} d\langle M\rangle Q_{j t}= \\
& \sum_{i} \int_{\left(T_{k}, t\right]} \kappa_{i} d\langle M\rangle \kappa_{i}^{T} \sum_{j} Q_{j t}^{T}\left(\langle M\rangle_{t}-\langle M\rangle_{T_{k}}\right) Q_{j t}= \\
& \operatorname{tr} \int_{\left(T_{k}, t\right]} \kappa d\langle M\rangle \kappa^{T} \operatorname{tr}\left[\left(\langle M\rangle_{t}-\langle M\rangle_{T_{k}}\right)\langle M\rangle_{t}^{+}\right] \tag{3.1}
\end{align*}
$$

The first factor of this product tends to zero as $t \downarrow T_{k}$. Consider now the second factor. First we notice that $\operatorname{tr}\left[\langle M\rangle_{t}\langle M\rangle_{t}^{+}\right]=\operatorname{tr}\left[F(k) F(k)^{T}\right]=\operatorname{tr}\left[F(k)^{T} F(k)\right]=r_{t}$. (Remember that $r_{t}=\operatorname{rank}\langle M\rangle_{t}$). Next we compute

$$
\begin{aligned}
& \operatorname{tr}\left[\langle M\rangle_{T_{k}}(M\rangle_{t}^{+}\right]=\operatorname{tr}\left[G(k) W(k) G(k)^{T} F(k) V_{t}(k)^{-1} F(k)^{T}\right]= \\
& \operatorname{tr}\left[V_{t}(k)^{-1} F(k)^{T} G(k) W(k) G(k)^{T} F(k)\right]= \\
& \operatorname{tr}\left[V_{t}(k)^{-1}\left[\begin{array}{cc}
W(k) & 0 \\
0 & 0
\end{array}\right]\right]=\operatorname{tr}\left[R_{t}(k)^{-1}\left[\begin{array}{cc}
W(k) & 0 \\
0 & 0
\end{array}\right] R_{t}(k)^{-T}\right]= \\
& \operatorname{tr}\left\{\left[\begin{array}{cc}
a_{t}(k)^{-1} & * \\
0 & *
\end{array}\right]\left[\begin{array}{cc}
W(k) & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
a_{t}(k)^{-T} & 0 \\
* & *
\end{array}\right]=\right. \\
& \operatorname{tr}\left[\begin{array}{c}
\left(a_{t}(k) a_{t}(k)^{T}\right)^{-1} W(k) \\
0
\end{array}\right]=\operatorname{tr}\left[\left(a_{t}(k) a_{t}(k)^{T}\right)^{-1} W(k)\right]
\end{aligned}
$$

which tends to $\operatorname{tr}\left[W(k)^{-1} W(k)\right]=r_{T_{k}}$. Hence $\lim _{t\rfloor T_{k}}\left[\left(\langle M\rangle_{t}-\langle M\rangle_{T_{k}}\right)\langle M\rangle_{t}^{\dagger}\right]=r_{T_{k}+}-$ $r_{T_{k}}<\infty$. So from equation (3.1) we obtain that indeed $q_{t}^{2} \rightarrow 0$ as $t \downarrow T_{k}$. Secondly we look at $q_{t}^{\text {l }}$. From lemma 2.4 we see that there exists a random matrix $A(k)$ such that $\langle m, M\rangle_{T_{k}}=A(k) G(k)^{T}$. Hence

$$
\begin{aligned}
q_{t}^{1} & =A(k) G(k)^{T} F(k) R_{t}(k)^{-T} \\
& =A(k)\left[\begin{array}{ll}
I & 0
\end{array}\right]\left[\begin{array}{cc}
a_{t}(k)^{-T} & 0 \\
* & *
\end{array}\right] \\
& =A(k)\left[\begin{array}{ll}
a_{t}(k)^{-T} & 0
\end{array}\right] .
\end{aligned}
$$

So $q_{i}^{1}\left(q_{t}^{1}\right)^{T}=A(k)\left(a_{t}(k) a_{t}(k)^{T}\right)^{-1} A(k)^{T} \rightarrow A(k) W(k)^{-1} A(k)^{T}$, since $W(k)$ is invertible and $a_{t}(k) a_{t}(k)^{T} \rightarrow W(k)$ by lemma 2.2. Because of the fact that $\lim _{t\rfloor} T_{k} q_{i}^{2}=$

0 , and that $\alpha_{t}(k)$ is bounded for $t \downharpoonright T_{k}$, we get $\lim _{t \backslash T_{k}} q_{t} q_{t}^{T}=\lim _{t \downarrow T_{k}} q_{t}^{1}\left(q_{t}^{1}\right)^{T}=$ $A(k) W(k)^{-1} A(k)^{T}$.
But $\langle m, M\rangle_{T_{k}}\langle M\rangle_{T_{k}}^{+}\langle M, m\rangle_{T_{k}}=A(k) G(k)^{T} G(k) W(k)^{-1} G(k)^{T} G(k) A(k)^{T}$ $=A(k) W(k)^{-1} A(k)^{T}$, which gives right continuity of $\langle m, M\rangle\langle M\rangle^{+}\langle M, m\rangle$ at the T_{k} (on $\left\{T_{k}<\infty\right\}$), thus proving the first assertion of the theorem. In order to prove the second one we proceed as follows. Because $c(m, M)$ is right continuous we can use the results of lemma 3.2 in the computations below.

$$
\begin{align*}
d c(m, M)= & \kappa d\langle M\rangle \kappa^{T}-\langle m, M\rangle_{-}\langle M\rangle_{-}^{+} d\langle M\rangle \kappa^{T} \\
& -\langle m, M\rangle_{-} d\langle M\rangle^{+}\langle M, m\rangle-\kappa d\langle M\rangle\langle M\rangle^{+}\langle M, m\rangle \tag{3.2}
\end{align*}
$$

from which we obtain by lemma 3.2

$$
\begin{align*}
d c(m, M)= & -\left(\kappa\langle M\rangle_{-}-\langle m, M\rangle_{-}\right) d\langle M\rangle^{+}(\kappa\langle M\rangle-\langle m, M\rangle)^{T} \\
& +\kappa d P\langle M\rangle \kappa^{T}-\langle m, M\rangle_{-} d P \kappa^{T}-\kappa d P\langle M, m\rangle \tag{3.3}\\
= & -(\kappa\langle M\rangle-\langle m, M\rangle) d\langle M\rangle^{+}(\kappa\langle M\rangle-\langle m, M\rangle)^{T} \\
& +\kappa d P\langle M\rangle_{-} \kappa^{T}-\langle m, M\rangle_{-} d P \kappa^{T}-\kappa d P\langle M, m\rangle_{-} \tag{3.4}
\end{align*}
$$

It is immediately seen that on $] T_{k}, T_{k+1}$ [the last three terms vanish, whereas on $\left\{T_{k}<\infty\right\}$ we have

$$
\Delta P_{T_{k}}\langle M\rangle_{T_{k}-}=\Delta P_{T_{k}} P_{T_{k}-}(M\rangle_{T_{k}-}=0
$$

and

$$
\langle m, M\rangle_{T_{k}} \Delta P_{T_{k}}=\langle m, M\rangle_{T_{k}} P_{T_{k}-} \Delta P_{T_{k}}=0
$$

since $P_{T_{k}}-\Delta P_{T_{k}}=0$. This proves the first formula of the second assertion. The other ones follow similarly.

REMARK At $t=T_{k}$ it is not true that $\Delta\langle M\rangle_{t}^{+} \leq 0$ and that $\langle M\rangle_{t} \Delta\langle M\rangle_{t}^{+}\langle M\rangle_{t} \leq 0$. However for all t one has $\langle M\rangle_{t_{-}} \Delta\langle M\rangle_{t}^{+}\langle M\rangle_{t-} \leq 0$. This is trivially true on the open intervals $\rrbracket T_{k}, T_{k+1} \llbracket$. Consider what happens at T_{k} on $\left\{T_{k}<\infty\right\}$ if $\Delta\langle M\rangle_{T_{k}} \neq 0$. We know that $G(k) W(k) G(k)^{T}-F(k-1) V_{T_{k}-}(k-1) F(k-1)^{T} \geq 0$ or, with an obvious decomposition of $W(k)$:

$$
\left[\begin{array}{cc}
W(k)_{11}-V_{T_{k}-}(k-1) & W(k)_{21} \\
W(k)_{12} & W(k)_{22}
\end{array}\right] \geq 0 .
$$

Hence, since $W(k)_{22}$ is invertible, we get

$$
\begin{equation*}
W(k)_{11}-W(k)_{12} W(k)_{22}^{-1} W(k)_{21}-V_{T_{k}-}(k-1) \geq 0 \tag{3.5}
\end{equation*}
$$

Now look at

$$
\begin{aligned}
& \langle M\rangle_{T_{k}-} \Delta\langle M\rangle_{T_{k}}^{+}\langle M\rangle_{T_{k}-} \\
= & \langle M\rangle_{T_{k}-}\langle M\rangle_{T_{k}}^{+}\langle M\rangle_{T_{k}-}-\langle M\rangle_{T_{k}-} \\
= & F(k-1) V_{T_{k}-}(k-1)\left[F(k-1)^{T} G(k) W(k)^{-1} G(k)^{T} F(k-1)-\right. \\
& \left.V_{T_{k}-}(k-1)^{-1}\right] V_{T_{k}-}(k-1) F(k-1)^{T} .
\end{aligned}
$$

Consider the term in brackets. Again in obvious notation, it becomes

$$
\begin{aligned}
& {\left[W(k)^{-1}\right]_{11}-V_{T_{k}-}(k-1)^{-1}=} \\
& {\left[W(k)_{11}-W(k)_{12} W(k)_{22}^{-1} W(k)_{21}\right]^{-1}-V_{T_{k}-}(k-1)^{-1} \leq 0,}
\end{aligned}
$$

from equation(3.5). Thus we have proved the following
COROLLARY 3.4 The process $c(m, M)$ is non decreasing.

4 linear dependence

In this section we will study a suitably defined notion of linear dependence between two square integrable martingales m and M. By analogy with the situation in which one deals with multidimensional random variables we have the following

DEFINITION 4.1 (i) m is said to be linearly dependent on M if the process $c(m, M) \in \mathbf{R}^{k \times k}$ is indistuinguishable from zero.
(ii) m and M are said to be mutually linearly dependent if both $c(m, M)$ and $c(M, m)$ are indistuinguishable from zero.

Here is the main result of this section.
THEOREM 4.2 m is linearly dependent on M iff there exists a (possibly random) matrix $C \in \mathbf{R}^{k \times n}$ with $C\langle M\rangle$ a predictable process such that $m=C M$. Moreover in this case $C\langle M\rangle=\langle m, M\rangle$. Furthermore m and M are mutually linearly dependent iff there exist matrices C_{1} and C_{2} such that $m=C_{1} M$ and $M=C_{2} m$. In the latter case we also have that C_{1} and C_{2} are each others Moore-Pentose inverses.

REMARK The matrix C in theorem 4.2 is not necessarily $\mathcal{F}_{0^{-}}$measurable. See example 3.

PROOF Define $\gamma_{t}=\langle m, M\rangle_{t}\langle M\rangle_{t}^{+}$. Then $\gamma_{t}\langle M\rangle_{t}=\langle m, M\rangle_{t}$ from lemma 2.4. On $\rrbracket T_{k}, T_{k+1}$ [we have

$$
\begin{aligned}
d \gamma_{t} & =\langle m, M\rangle_{t-} d\langle M\rangle_{t}^{+}+d\langle m, M\rangle_{t}\langle M\rangle_{t}^{+} \\
& =\gamma_{t-}\langle M\rangle_{t-} d\langle M\rangle_{t}^{+}+\kappa_{t} d\langle M\rangle_{t}\langle M\rangle_{t}^{+} \\
& =\left(\gamma_{t-}-\kappa_{t}\right)\langle M\rangle_{t-} d\langle M\rangle_{t}^{+}
\end{aligned}
$$

So if $c(m, M)=0$, then from theorem 3.3 we obtain that γ is constant on $\rrbracket T_{k}, T_{k+1}[$. This also implies that γ admits right limits at T_{k} if $T_{k}<\infty$. We need some more properties of γ. On $\left\{T_{k}<\infty\right\}$ we have

$$
\begin{align*}
& \left(\gamma_{T_{k}+}-\gamma_{T_{k}}\right) G(k)=0 \tag{4.1}\\
& \gamma_{T_{k}}-\gamma_{T_{k}-}=\kappa_{T_{k}}\left[G(k) G(k)^{T}-F(k-1) F(k-1)^{T}\right]=\kappa_{T_{k}} \Delta P_{T_{k}} \tag{4.2}
\end{align*}
$$

Indeed right continuity of $\langle m, M\rangle$ gives

$$
\gamma_{T_{k}}(M\rangle_{T_{k}}=\langle m, M\rangle_{T_{k}}=\lim _{t \backslash T_{k}}\langle m, M\rangle_{t}=\lim _{t \mid T_{k}} \gamma_{t}\langle M\rangle_{t}=\gamma_{T_{k}+}\langle M\rangle_{T_{k}}
$$

Hence $\left(\gamma_{T_{k}+}-\gamma_{T_{k}}\right)\langle M\rangle_{T_{k}}=0$, which is equivalent to equation (4.1). Next we use lemma 3.2 to write

$$
\begin{aligned}
\gamma_{T_{k}}-\gamma_{T_{k}-} & =\langle m, M\rangle_{T_{k}}\langle M\rangle_{T_{k}}^{+}-(m, M\rangle_{T_{k}-}\langle M\rangle_{T_{k}-}^{+} \\
& =\langle m, M\rangle_{T_{k}-} \Delta\langle M\rangle_{T_{k}}^{+}+\kappa_{T_{k}} \Delta\langle M\rangle_{T_{k}}\langle M\rangle_{T_{k}}^{+} \\
& =\gamma_{T_{k}-}(M\rangle_{T_{k}-} \Delta\langle M\rangle_{T_{k}}^{+}+\kappa_{T_{k}} \Delta\langle M\rangle_{T_{k}}\langle M\rangle_{T_{k}}^{+} \\
& =\gamma_{T_{k}-}\langle M\rangle_{T_{k}-} \Delta\langle M\rangle_{T_{k}}^{+}-\kappa T_{k}\langle M\rangle_{T_{k}-} \Delta\langle M\rangle_{T_{k}}^{+}+\kappa \kappa_{T_{k}} \Delta P_{T_{k}} \\
& =\left(\gamma_{T_{k}-}-\kappa \kappa_{T_{k}}\right)\langle M\rangle_{T_{k}-} \Delta\langle M\rangle_{T_{k}}^{+}+\kappa T_{T_{k}} \Delta P_{T_{T_{k}}}
\end{aligned}
$$

The assumption that $c(m, M)=0$ yields the first term zero from theorem 3.3, which gives equation 4.2. Notice that equation 4.1 and equation 4.2 imply

$$
\begin{equation*}
\left(\gamma_{T_{k}}-\gamma{T_{k-}}\right)\langle M\rangle_{T_{k}-}=0,\left(\gamma_{T_{k+}}-\gamma_{T_{k}}\right)\langle M\rangle_{T_{k}}=0 \tag{4.3}
\end{equation*}
$$

Hence $\gamma_{T_{k}}\langle M\rangle_{T_{k}-}=0$ and $\Delta\left(\gamma_{T_{k}}\langle M\rangle_{T_{k}}\right)=\gamma_{T_{k}} \Delta\langle M\rangle_{T_{k}}$, or $\Delta\langle m, M\rangle_{T_{k}}=\gamma_{T_{k}} \Delta\langle M\rangle_{T_{k}}$. Define now $C=\lim _{t \rightarrow \infty} \gamma_{t}$. We claim that this is the matrix in the assertion of the theorem. Notice that on the set $\Omega_{k}=\left\{T_{k}<\infty, T_{k+1}=\infty\right\} C$ equals $\gamma_{T_{k+}}$. Furthermore $\bigcup_{k=0}^{n} \Omega_{k}=\Omega$ and $\Omega_{k} \cap \Omega_{i}=$ if $k \neq l$. First we prove the following facts. $C M$ is a martingale and $C M_{t}=\gamma_{t} M_{t}=(\gamma \cdot M)_{t}$.
From lemma 2.3: $C M_{t}=C\langle M\rangle_{t}\langle M\rangle_{t}^{+} M_{t}$. On Ω_{k} we have for $j \leq k$:

$$
\begin{aligned}
& C(M\rangle_{T_{j}}=\gamma_{T_{k+}}\langle M\rangle_{T_{j}}=\sum_{i=1}^{k}\left(\gamma_{T_{i}+}-\gamma_{T_{i-1}+}\right)\langle M\rangle_{T_{j}}=\sum_{i=1}^{k}\left(\gamma_{T_{i}+}-\gamma_{T_{i}-}\right)\langle M\rangle_{T_{j}}= \\
& \sum_{i=1}^{j}\left(\gamma_{T_{i}+}-\gamma_{T_{i}-}\right)\langle M\rangle_{T_{j}}=\gamma_{T_{j}+}\langle M\rangle_{T_{j}}
\end{aligned}
$$

since $\left(\gamma_{T_{i}+}-\gamma_{T_{i}-}\right)\langle M\rangle_{T_{j}}=0$ if $i<j$. But

$$
\gamma_{T_{+}+}\langle M\rangle_{T_{j}}=\left(\gamma_{T_{3}+}-\gamma_{T_{j}}\right)\langle M\rangle_{T_{3}}+\gamma_{T_{j}}\langle M\rangle_{T_{j}}=\gamma_{T,}\langle M\rangle_{T}
$$

by equation(4.3).
Furthermore on $\Omega_{k} \times[0, \infty) \cap \rrbracket T_{j}, T_{j+1} \llbracket$ we have in the same way $C\langle M\rangle_{t}=\gamma_{j+}\langle M\rangle_{t}$, because $\left(\gamma_{T_{i}+}-\gamma_{T_{i}-}\right) F(j)=0$ if $j<i$ and so $C\langle M\rangle$ is equal to $\gamma(M\rangle$.
Hence $C M_{t}=\gamma_{t} M_{t}=(\gamma . M)_{t}+\int_{[0,7]} d \gamma_{s} M_{s-}$. Now on Ω_{k} for $j \leq k$ we have $\Delta \gamma_{T_{j}} M_{T_{j}-}=\Delta \gamma_{T_{j}}\langle M\rangle_{T_{j}}\langle M\rangle_{T_{j}}^{+} M_{T_{j}-}=0$. Hence $\int_{[0, t]} d \gamma_{s} M_{s-}=\sum T_{T_{j} \leq t} \Delta \gamma_{T_{j}} M_{T_{j}-}=$ 0.

Predictability of γ (lemma 2.3) gives that $C M=\gamma . M$ is indeed a martingale.
Finally we have to show that m and $C M$ are indistuinguishable. Compute ($m-$ $C M\rangle=\langle m-\gamma \cdot M\rangle=\langle(\kappa-\gamma) \cdot M\rangle=\int_{[0, t]}(\kappa-\gamma) d(M\rangle(\kappa-\gamma)^{T}$. Consider $(\kappa-$ $\gamma)_{t} d\langle M\rangle_{t}=d\langle m, M\rangle_{t}-\gamma_{t} d\langle M\rangle_{t}=d\left(\gamma_{t}(M\rangle_{t}\right)-\gamma_{t} d\langle M\rangle_{t}=d \gamma_{t}\langle M\rangle_{t-}$, which is zero on all $] T_{k}, T_{k+1} \llbracket$, because here $d \gamma_{t}=0$. At $t=T_{k}<\infty$ we also get zero from equation (4.2). This proves the only if part.
Next we prove the converse statement. Assume that $C(M)$ is predictable, equivalently $C P$ is predictable. Then the product $m=C M$ is a martingale. Indeed $C M=C P M$ is adapted. Let now $\gamma=C P$. Then $m=\gamma \cdot M+f_{0} d \gamma M_{-}=$ $\gamma \cdot M+\int_{0} d \gamma P_{-} M_{-}$. The last integral is easily seen to be zero. So m is equal to
$\gamma \cdot M$ and thus a martingale. Moreover we also obtain $\langle m, M\rangle=\gamma \cdot\langle M\rangle=\gamma\langle M\rangle-$ $\int_{0} d \gamma\langle M\rangle_{-}$, where again the last integral vanishes. But $\gamma\langle M\rangle=C\langle M\rangle$. Similarly $\langle m\rangle=C\langle M\rangle C^{T}$. Hence $c(m, M)=0$. Assume finally that m and M are mutually linearly dependent. Then there exists matrices C_{1} and C_{2} as in the first part of the theorem. They are of the form as in the first part of the proof. Therefore we can compute $C_{1} C_{2} C_{1}=\lim _{t \rightarrow \infty}\langle m, M\rangle_{t}\langle M\rangle_{t}^{+}\langle M, m\rangle_{t}\langle m\rangle^{+}\langle m, M\rangle_{t}\langle M\rangle_{t}^{+}=$ $\lim _{t \rightarrow \infty}\langle m, M\rangle_{t}\langle M\rangle_{t}^{+}\langle M\rangle_{t}\langle M\rangle_{t}^{+}=\lim _{t \rightarrow \infty}\langle m, M\rangle_{t}\langle M\rangle_{t}^{+}=C_{1}$. Here we used in the second equality the fact that $c(M, m)=0$. Similarly one can prove that $C_{2} C_{1} C_{2}=C_{2}$ and $C_{1} C_{2}=\left(C_{1} C_{2}\right)^{T}$ which shows that C_{1} and C_{2} are each others Moore-Penrose inverses (Cf [3]). This completes the proof.

REMARK: Consider the other extreme case. One always has $c(m, M)_{t} \leq\langle m\rangle_{t}$. Here equality holds iff $\langle m, M\rangle_{t}=0$. Indeed, assume that equality holds, then $\langle m, M\rangle_{t}\langle M\rangle_{t}=0$, and hence $\langle m, M\rangle_{t} P_{t}=0$ and by lemma 2.4 this implies $\langle m, M\rangle_{t}=$ 0 . The converse statement is trivjal.

By localization it is possible to formulate a whole string of corollaries, which are roughly all of the following type.

COROLLARY 4.3 Let S be a stopping time and assume that

$$
c(m, M)_{s} 1_{\{S<\infty\}}+c(m, M)_{\infty-} 1_{\{s=\infty\}}=0
$$

Then the stopped martingale m^{S} depends linearly on the stopped martingale M^{S}. Equivalently there exists C such that $1_{[0, S]}(m-C M)=0$.

PROOF It holds that $c(m, M)^{S}=c\left(m^{S}, M^{S}\right)$. Hence the assumption in the corollary implies $\lim _{t \rightarrow \infty} c\left(m^{S}, M^{S}\right)_{t}=0$. So $c\left(m^{S}, M^{S}\right)_{t}=0 \forall t \geq 0$, since $c\left(m^{S}, M^{S}\right)$ is non decreasing (corollary 3.4). The result now follows from theorem 4.2.

EXAMPLE 2: Let W be Brownian motion and ε a $N(0,1)$ distributed random variable. Assume that W and ε are independent. Let $\mu_{t}=W_{t}+1_{\{t \geq 1\}} \varepsilon$. Define $\xi:\{0, \infty) \rightarrow \mathbf{R}^{2}$ by $\xi(t)=\left[\begin{array}{l}1 \\ 0\end{array}\right] 1_{\{1\}}(t)+\left[\begin{array}{c}1 \\ t-1\end{array}\right] 1_{\{1, \infty)}(t)$ and $M=\xi . \mu$. Let $\mathcal{F}_{t}=\sigma\left\{W_{s}, s \leq t ; 1_{\{t \geq 1\}} \varepsilon\right\}$. Then M is a martingale with respect to the filtration $\mathbf{F}=\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ and

$$
\langle M\rangle_{t}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] 1_{\{1\}}(t)+\left[\begin{array}{cc}
t & \frac{1}{2}(t-1)^{2} \\
\frac{1}{2}(t-1)^{2} & \frac{1}{3}(t-1)^{3}
\end{array}\right] 1_{(1, \infty)}(t)
$$

for $\langle\mu\rangle=t+1_{(1, \infty)}(t)$. Hence $r_{t}=\operatorname{rank}\langle M\rangle_{t}=1_{\{1\}}(t)+2.1_{(1, \infty)}(t)$.
Let $K:[0, \infty) \rightarrow \mathbf{R}^{2 \times 2}$ be given by $K(t)=K^{1} 1_{\{1\}}(t)+K^{2} 1_{(1, \infty)}(t)$, and $m=K . M$. Then $\langle m, M\rangle_{t}=K .\langle M\rangle_{t}=$

$$
K^{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] 1_{\{1\}}(t)+\left\{K^{\mathbf{1}}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+K^{2}\left[\begin{array}{cc}
t & \frac{1}{2}(t-1)^{2} \\
\frac{1}{2}(t-1)^{2} & \frac{1}{3}(t-1)^{3}
\end{array}\right]\right\} 1_{(1, \infty)}(t)
$$

A computation shows:

$$
\langle M\rangle_{t}^{+}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] 1_{\{1\}}(t)+\left[\begin{array}{cc}
\frac{4}{t+3} & \frac{-6}{(t-1)(t+3)} \\
\frac{-6}{(t-1)(t+3)} & \frac{12 t}{(t-1)(t+3)}
\end{array}\right] 1_{(1, \infty)}(t)
$$

Let $K^{1}=\left[K_{i j}^{1}\right]$ and $K^{2}=\left[K_{i j}^{2}\right]$. Then $\gamma_{t}=\langle m, M\rangle_{t}\langle M\rangle_{t}^{+}=$

$$
K^{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] 1_{\{1\}}(t)+\left[\begin{array}{ll}
\frac{\left(4 K_{1}^{1}+(t-1) K_{12}^{2}\right)}{t+3} & K_{12}^{2}+\frac{6\left(K_{11}^{2}-K_{11}^{1}\right)}{(t-1)(t+3)} \\
\frac{\left(4 K_{2}^{1}+(t-1) K_{21}^{2}\right)}{t+3} & K_{22}^{2}+\frac{6\left(K_{21}^{2}-K_{1}\right)}{(t-1)(t+3)}
\end{array}\right] 1_{(1, \infty)}(t)
$$

Hence $\lim _{t l 1} \gamma_{t}$ doesn't exist for arbitrary K.
Assume now that $c(m, M)=0$, then from theorem 4.2 we know that γ is constant on $(1, \infty)$. So the following equalities have to hold: $K_{11}^{1}=K_{11}^{2}$ and $K_{21}^{1}=K_{21}^{2}$. Now γ becomes

$$
\gamma_{t}=K^{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] 1_{\{1\}}(t)+K^{2} 1_{(1, \infty)}(t)
$$

And in agreement with theorem 4.2 (cf. its proof) we see that $m=\gamma_{1+} M$.
EXAMPLE 3: Let ε_{i} be iid $\mathrm{N}(0,1)$ random variables. Let $\mathcal{F}_{n}=\sigma\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$. Let $x_{1} \ldots x_{n}$ be an orthonormal basis for \mathbf{R}^{n} and $x_{i}=0$ for $i \geq n+1$. Let furthermore $K_{i}: \Omega \rightarrow \mathbf{R}^{k \times n}$ be \mathcal{F}_{i-1} measurable. Define $M_{t}=\sum_{i \leq t} x_{i} \varepsilon_{i}, m_{t}=\sum_{i \leq t} K_{i} \Delta M_{i}$. Then $\langle M\rangle_{t}=\sum_{i \leq t} x_{i} x_{i}^{T},\langle M\rangle_{t}^{+}=\sum_{i \leq t \wedge n} x_{i} x_{i}^{T}$. A simple calculation shows that $c(m, M)=0$ and that the matrix C in theorem 4.2 becomes $C=\sum_{i \leq n} K_{i} x_{i} x_{i}^{T}$, which is \mathcal{F}_{n-1} measurable.

References

[1] K. Dzhaparidze \& P.J.C. Spreij, On SLLN for multivariate martingales, Research Memorandum Vrije Universiteit 1989-79
[2] K. Dzhaparidze \& P.J.C. Spreij, On second order optimality of regular projective estimators, part I, Research Memorandum Vrije Universiteit 1990-50
[3] P. Lancaster \& M. Tismenetsky, The Theory of Matrices, Academic Press
[4] R.S. Liptser \& A.N. Shiryayev, Theory of Martingales, Kluwer

1990.1	B. Vogelvang	Testing For Co-Iategration with Spot Prices of Some Related Agricultural Commodities
1990.2	J.C.M. van dea Eergh P. Nijkamp	Ecologically Sustainable Economic Development Concepts and Model Implications
1990-3	J.CJ.M. van den Bergh P. Nijkamp	Ecologically Sustainable Economic Development in a Regional System: A Case Study in Agri cuikural Development Planning in the Netherlands
1990-4.	C.Gorter P.Nijkamp P.Rierveld	Employers' Recruitment Behaviour and ReEmployment Probabilities of Unemployed
1990-5	K.Burger	Off-farm income and the farm-household the case of Kenyan smalliolders
1990-6	H. Visser	Crowding out and the Government Budget
1990-7	P. Rietveld	Ordinal Data in Multicriteria Decision Making, a Stochastic Dominance Approach to Siting Nuclear Power Plants
1990-8	G. van der Lago P.H.M. Ruys DJJ. Talman	Signaling devices for the supply of semipublic goods
1990.9	F.A.G. den Butter	Lebbour Productivity Slowdowe and Technical Progress: An empirical anayysis for The Netberlands
1990-10	R.W. van Zijp	Neo-Austrian Business Cycie Theory
1990.11	J.C. van Ours	Matching Ubemployment and Vacancies: The Efficiency of the Dutch Labour Market
1990-12	B. Vogetvang	Hypotheses Testing Concerning Relationships between Spor Prices of Various Types of Coffee
1990-13	A.F. de Vos I.J. Steyn	Stochastic Noalincarity: A Firm Basis for the Flexible Functionsl Form
1990-14	Y.H. van Emmerií D. de Jong W.WA. Zurrmond D.N. Dikkersvan Enden	Opereren in overleg. geprotocolieerde samenwerking le-ze-Hja bij dagchirurgie
1990-15	TJJ.B. Wolters	Mediation and Collective Bargaining A Disgnotic Approach
1990-16	E.M.A. Schotte: J. Kocelewijn	Financieringsprobletmatick qan startende onderaeminger: cen mogelijke verklaring op basis van empirisch onderzoek.
1990-17	E. Hinter H.P. Smit	Saruration and Model Specification of Passen ger car Ownership
1990-18	F.A.G. den Butter	Sociale zekerheid, de wig ein economische groei

1990-19	FA.G. den Butter R.F. v.d. Wingaert
1990-20	J.P. de Groot R. Ruben
1990-21	R. Ruben
1990-22	J. van Ours G. Ridder
1990-23	A.F. de Vos J.J. de Vries
$1990-24$	D. van der Wal
1990-25	R.J. Veldowijk M. Boogarard M.V. vau Dijk E.R.K. Spoor
1990.26	B. Hanzon
1990-27	R.W. van Z.jp
1990-28	J. Rowwendal
1990-29	J. Rouwendal
1990.30	J. Rovwendal
1990-31	J.A. Vijbrief
1990-32	J.G.W. Simens H.P. Wansink
1990-33	J.C. van Ours T. Zoethout
1990.34	H.J. Bierens
1990-35	T. Kuhlman
1990-36	T. Kuhbran
1990-37	T. Kublman
1990-38	R. Zuidema
1990-39	G.v.d.Laan

Who is Correcting the Error ? A Co-inte gration Approacb for Wages, Wage Space and Labour Conflicts in the Netherlands

Sislemats de Produccion y Transferencia de Teconologla en la Economin Cafetalera de Ceatroumberica
Campesinado y Reforma Agraria en El Salvador
Vacancies and the Recruitment of New Emptoyecs

The Likelihood Function of a Gederalized Gravity Model; Handling the Itmplict Singularity of a onalineair Transformation
Geloofwayrdigheid en het Nederlandse wisseikoersbeleid
EDSOs implosion and explosion concepts to atoctate a part of application maintenance

The area enclosed by the (oriented) Nyquist diagram and the The area enclosed by the (oriented) Nyquist diagg
Hibbert-Schmidt-Hankel norm of a linear system

Why Lucas is not a Hayekian
On discrete choice under uncertainty
A generalization of the logit model and its application
On the equitable distributioa of the housing stock
Stochastic warket equilbria with efficient rationing (with an application to the Dutch housing market)
The effects of unemployment insurance on the labour maritet
Traftic Ban, a means to combat smog?

De Interne Arbeidsmarkt van de Gemeente Amsterdam
A Note On the Limiting Distribution of Sample Autocorrela-

The Economic Integration of Refugees in Developing
Countries: A Research ModeL.
Towards a Definition of Refugees.
Organized versus Spontaneous Settiement of Refugees in frica.

The Neo-Austrian View on Interest
General Equilibrium in a Closed International Trade Model

