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1 Introduction 
There is a very large literature which studies product forms in queueing networks 
(see, for example [7], [13], [14], and the references therein). However, most of these 
authors consider equilibidum behaviour only. For the transient behaviour of queueing 
networks there seem to be very few analytical results although the transient behaviour 
of single queues has been studied extensively (see, for example [9]). Here, the time 
dependent probability distribution is expanded in terms of the eigenvalues and eigen-
vectors of the transition matrix. For networks of queues, however, this method seems 
to be of little value. In this case the number of eigenvectors and eigenvalues would 
be almost impossible to handle. Therefore, it seems of great interest to give closed 
form (e.g. product form) expressions for the transient probability distribution. 

The transient behaviour of open networks of M/G/oo queues with homogeneous 
Poisson input is studied in [8]. In [4] these results are extended to a tandem network 
of M/G/oo queues with non-homogeneous Poisson input. [5] studies the transient 
behaviour of closed queueing networks of M/G/oo queues and open networks of 
M/G/oo queues with non-homogeneous Poisson input. It is shown in these refer
ences that a network of M/G/oo queues has a transient product form distribution. 
Furthermore, it is shown that this distribution converges for open queueing networks 

* Department of Econometrics, Free University, Amsterdam, The Netherlands 
^Department of Mathematics, Unversity of Western Australia, Nedlands, Western Australia, 6009 

1 



with a homogeneous Poisson input process and for closed queueing networks to the 
well known product form equilibrium distribution. The method used in these refer
ences to derive the transient product form distribution is an independence argument. 
It relies on the fact that the sample paths for individual jobs in a queueing net
work consisting of M/G/oo queues only are independent and therefore the transient 
probability distribution has product form. It is assumed in these references that the 
network is initially empty in the open network case and that all jobs start at the same 
queue in the closed network case. Up to now, however, networks consisting only of 
M/G/oo queues seem to be the only networks studied in great detail. 

Based on the experience with equilibrium product form distributions one would 
expect that networks in which non M/G/oo queues appear may also possess a product 
form transient distribution. However, in this paper we show that for a Markovian 
network to have a transient product form distribution all queues must be M/M/oo 
queues. This states the main result of this paper: 

• For a network to have product form transient distribution it is necessary that all 
queues are infmite server queues. 

In the remaining part of the introduction we first describe the model. Then we 
introducé canonical forms for the transient product form distribution. In section 2 
we give sufficiënt conditions for the transient distribution to be of product form. In 
sections 3 and 4 respectively we use the canonical form to give necessary conditions 
for an open resp. closed queueing network to have product form. It then turns out 
to be the case that it is necessary and sufficiënt for the network to have a transient 
product form distribution that all queues be infinite server queues. 

Consider a continuous-time queueing network consisting of N stations, labelled 
1 ,2 , . . . , Ar in which one type of job can move between the stations. A state of the 
queueing network is a vector ra = (rai , . . . , rajv), where ra2- denotes the number of jobs 
at queue i, i = 1 , . . . , N. Assume that the queueing network can be represented by 
a continuous-time Markov chain with state space V C A ^ = { 0 , 1 , 2 , . . . } ^ . The 
transition rate from state ra to state ra' is denoted by q(n,n'). 

Assume that the transition rates are of the form 

q(n, ra - e,- + e,-) = p^ , ,_, ' i,j = 0 , . . . , N, n e V, (1.1) 
<f>{n) 

where p^ denotes the probability that a job leaving queue i routes to queue j , i,j = 
1,...,N, poj denotes the probability that an entering job routes to queue j , j = 
1,... ,N a n d p t 0 denotes the probability that a job leaving queue i leaves the network, 
i = 1,...,N and where e,- denotes the zth unit vector, i = 1,...,N, e0 = 0, the 
vector consisting of zeros only and i>(-), <ƒ>(•) are arbitrary functions such that </>(•) > 
0, V(-) > 0, and ip{fh) = 0 if mt < 0 for some i. It is known (cf. [1], [6], [12]) that 
for transition rates of the form stated in (1.1) a necessary and sufficiënt condition for 
the process to have product form equilibrium distribution 
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Tr(n) = B<f>(n) O 4k neV (1.2) 

is that the coefficients {ck}k=i satisfy the traffic equations 

N 
ci = Z ) c ^ ' i + Poj J = 1, • • •, N. (1.3) 

t = i 

The form (1.3) for the traffic equations varies slightly from that given by many 
authors. The usual form for the traffic equations has p0j replaced by \p0j with A the 
parameter of a Poisson arrival process. The fact that pQj appears here is a consequence 
of the fact that we have written all transitions (including arrivals) in the form (1.1). 
This point is discussed in more detail in section 1.1. Also, note that the function ij>(-) 
does not appear in the equilibrium distribution. This is a direct consequence of the 
form of the global balance equations. 

In this paper we will show that a necessary and sufficiënt condition for the time-
dependent distribution P(n,t) of a queueing network with homogeneous transition 
rates given in (1.1) and initial conditions 

P(n,0) = J30*(n)IItf' 
N 

'ik 
Jfc=l 

to be of product form, defined by 

TV 

P(n,t) = B(t)cf>(n)l[ck(t)
n* neV (1.4) 

fc=i 

is tha t the network consist of M/M/oo queues only and that the coefficients {ck{t)}k
w

=1 

satisfy the time-dependent version of the traffic equations 

~ = J2 {ci(t)pik - ck{t)pki} + Pok - CkPko k = l,...,N (1.5) 

with initial conditions 

c*(o) = 6, 

where for a closed queueing network we set pok = Pko = 0, k = l , . . . , i V in the 
relations above and where {/u-}fc=i is a set of coefficients defined in terms of the 
transition rates between specified states. 

Note that , for a given physical model, there is freedom in setting the parameters 
in the description above. This can be immediately seen by observing (1.1), where we 
are allowed to multiply both <f>(-) and tp(-) by an arbitrary constant without affecting 
the transition rates, or by observing (1.5) for a closed queueing network where we are 
allowed to multiply the Ck(t) by an arbitrary constant. Therefore, since we wish to 
give necessary and sufficiënt conditions for the time-dependent distribution to be of 
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product form, we first transform the model such that all freedom in the coefncients 
appearing in the model is removed. This gives slightly different formulations for the 
open and closed model and also changes the form of the time-dependent version of the 
traffic equations for the open queueing network. Therefore, in the discussion below, 
we will consider the open and closed network separately. 

1.1 Caiionical form for the open network 

In this paper we consider an open queueing network with state independent Poisson 
input with parameter A. The transition rate q(n,n + ej) for an arriving job is then 
given by 

q(n, n + e.,) = Xpoj j = 1 , . . . , N. 

From (1.1) we then obtain 

xb(fi) = X<b{n) Vn e V. 

In the following lemma we summarize all changes this implies for P(h,t). This 
lemma provides a unique form for the transition rates already obtained in [2] and 
[6]. However, since it also determines the parameters of the time-dependent queueing 
network and also gives a transformation for the coefncients Ck(t) we have inserted it 
here. 

L e m m a 1.1 (Canonical form) Let P(n,t) be a time-dependent probability distri-
bution onV={n:n = ( n i , . . . , n^),rii > 0, i = 1 , . . . , N] of the form 

N 

P(n,t) = Ê(t)4>(n) J J cfc(;t)
n* neV, t>0 

k=i 

and let ƒ (n, i) be a function on the set V of the form 

[n — i 
Z ( M = ^ " . ^ n€V,i = 0,...,N (1.6) 

satisfying 

f(h,0) = X n<EV. (1.7) 

Then by defining 

B(t) = B{t)$(0) (1.8) 

(1.9) « * ) - ^ y N m LUI . 
ck(t) = Xck(t) (1.10) 
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P(n, t) and ƒ (n, i) can be written in the canonical form 

N 

P(n,t) = B{t)(j>{n)Y[ck{t)nk neV,t>0 (1.11) 
fc=i 

neV, i = l,...,N (1.12) 

(1.13) 

P r o o f Comparison of (1.6) and (1.7) gives for all n G V 

$(n ) = \4>{n). (1.14) 

Substitution of (1.8), (1.9) and (1.10) into the right-hand side of (1.11) gives 

f(n,i) = m 
ere 

#0) = 1. 

N 

B(t)<j>(n)Hck(t)
n> = B(t)m ?(n) 

5(<)ftn)nc*(i)n*-

- T - l 

«* 
iV 

n (A^(^)) nk 

Substitution of (1.14) and (1.9) into the right-hand side of (1.6) immediately gives 
the right-hand side of (1.12) and from (1.9) it immediately follows that <̂ >(0) = l.o 

Inserting the transformation (1.10) in the time-dependent traffic equations (1.5) 
gives 

1 dck(t)
 N 

TT- = *52{ci(t)Pik ~ ck(t)pki} + Xpok -ckpk0 fc = l , . . . , JV , (1.15) 

with initial conditions 

cjb(O) = \£k-

This is the time-dependent version for the traffic equations used by. many authors 
when the arrival process is a state independent Poisson process. Note that for the 
original process with transition rates (1.1) and stationary distribution (1.2) this is 
not the appropriate form. However, for the case of the transformed model, the traffic 
equations (1.15) are equivalent to (1.5). 

The condition (1.7) imposed on ƒ(•) implies that the arrival process to the open 
queueing network is a state-independent Poisson process with parameter A. With the 
transformation defined in the lemma above the transition rates for the open network 
are given by 

q(n, n-ei + ej) = p{j " ^ i = l,...,N, j = 0 , . . . , iV 
<p{n) 

q(n,n + ej) = Xpoj j = l,...,N. 

which is in agreement with the transition rates obtained in [2] and [6]. 
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1.2 Canonïca l form for t h e closed ne twork 

Note that ij) does not appear in the time-dependent probability distribution defined 
in (1.4). In the stationary case this is a consequence of the global balance equations. 
Also, it was shown in section 1.1 that to model an open queueing network with state 
independent Poisson arrivals it is necessary that ij) be a constant multiple of <ƒ>. In the 
closed case, however, it is intuitively obvious that the function ij)(-) should appear 
explicitly in the time-dependent distribution. This can be argued as follows: For 
fixed n and i the role of ij){n — e4) is to speed up or delay transitions out of state 
n due to the departure of a job at station i or transitions into state n due to the 
arrival of a job at station i. If ij)(n — e,) is changed then the arrival rate to and from 
state n is changed. While this does not affect the equilibrium probability of being in 
state n it will affect the time-dependent probability for most initial conditions. Thus 
there is no hope that a closed queueing network with general ij){-) could have a time-
dependent distribution of the form (1.4). Therefore, we assume from the start that 
for the closed network ij){-) = </>(•). This agrees with the condition that is imposed 
on the open network by assumption of state independent Poisson arrivals. 

Note that there still remain some degrees of freedom in the parameters of the 
process. In the following lemma we give a transformation which removes all freedom 
from the model. 

L e m m a 1.2 (Canonical form) Let P(n,t) be a time-dependent probability distri
bution on V = {n : n = ( n x , . . . ,n/v),nj > 0,i = 1 , . . . , N, J2jLi nj — M} of the 
form 

N 

P(n, t) = B(t)<f>(n) I J Ck{tTk neV, t>0 
fc=i 

and let ƒ (n, i) be a function on the set V of the form 

/ ( M = S S ^ nev, i = i,...,N. 
<j>(n) 

Define 

K=fiM^ 
M 

then by defining 

Ck(t) = cifc(i) 
N -

E Ci(t) 

fel Vi 
k= 1,...,JV, t > 0 

B(t) = B(t)4>(0) 

4>(n) 

N m -,M 

E 
i=l Vi J 

t >0 

cj>(n) m 

(1.16) 

(1.17) 

(1.18) 

P(n,t) and f(n,i) can be written in the canonical form 
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N 

P(n, t) = B(t)<j>(n) I J Ck(t)nk neV, t > O 
it=i 

/ ( M ^ t l ^ n€V, » = 1 iV m 
where 

and 

m = i 

f;£iÖ) = 1 V f > 0 

(1.19) 

(1.20) 

(1.21) 

(1.22) 

Proof For fixed t P(n,t) is a probability distribution over V, therefore for all k we 
have that 0 < dk(t) < oo for all t and for all t there exists a k such that Ck(t) > 0. 
By assumption we have that <f>{-) > 0, which implies 

n A Ut) 
0 <Y-ï±-t < oo 

from which we obtain that (1.16) is well-defined. 
Inserting (1.16), (1.17) and (1.18) into the right-hand side of (1.19) gives by using 

that £ i l i m = M 

B(t)<j>(n)fiCk(tr = B(t)m (jr dM\ | ^ f j ê A ( t r 
*=1 \i=l Pi / <P(°) fc=l 

= P(n,t). 

Inserting (1.16) into the left-hand side of (1.22) gives 

r j Isr^ C 'V) 

k=i Vi=i Pi . 

nk 

N 

E Ciit) N 1 
E -«(*) 

j= l Pi i=l Pi 

• N 

E 
. 1 = 1 A * * Mi 

T - l 

1 

which completes the proof. o 

Substitution of the transformation (1.16) into the time-dependent trafïic equations 
(1.5) gives the following form 

1 dCk^)--ytci{t)pik-ck(t) k = l,...,N. 
Hk dt 

i = i 

In this paper we will assume henceforth that all queueing networks, closed or 
open, are represented in the appropriate canonical form. 
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2 Sufficiënt conditions 

In this section we give a sufficiënt condition for the transient probability distribution 
to be of product form. 

The transition rates for the open queueing network are given by 

q(n,n-ei + ej)=pij— ' i,j = l,...,N (2.1a) 
(p(n) 

q(n,n + ej) = \poj j = l , . . . , i V (2.1b) 

(J)\fl — g • ] 

q(n,n - e^ = pi0— ' i = l,...,N. (2.1c) 
4>(n) 

Thus, q(n,n — et- + e.j) can be written as Pijf(n,i) where the f(n,i) are given for 
the open and closed models respectively by (1.12) and (1.20). We thus assume that 
(1.13) resp. (1.21) and (1.22) are also satisfied. For a closed queueing network the 
transition rates are given by (2.1a), obtained from the transition rates for the open 
network by setting pio — poi = 0, i = 1,...,N. Note that we have assumed that 
4>(n) > 0 for all n E N^ and <j>(n) = 0 if rii < 0 for some i. 

A probability distribution P(n,t) is said to be the time-dependent probability 
distribution for the process with transition rates q(n, n') if P(n, t) satisfies the forward 
Kolmogorov equations (cf. [14]) 

^ j M = J2{P(n',t)q(n>,n) - P(n,t)q(n,n')} (2.2) 
n ' 

with initial conditions 

P ( n , 0 ) = P o (n) . 

The product form transient distribution (1.4) satisfies the forward Kolmogorov equa
tions if and only if the following relation holds for all n 6 V and for a lH > 0 

1 W)+£**M = f;^_|l{Cj(^,_Ct(iK.} 
B(t) dt fec,-(i) dt - ^ Ci(t)<j>(n) 

N 

+ J2{ci(t)pio-Xpoi} (2.3) 
»=i 

^ <f>(n — eA . . 

as can easily be verified by substituting (1.4) and (2.1) into (2.2). 
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Remark 2.1 (Lévy's d ichotomy) In order to derive (2.3) from (2.2) we implicitly 
used the fact that P(n,t) > 0 for all n £ V for all t > 0. This can be justified as 
follows. If P(n,t) = 0 for some t, then, from Lévy's dichotomy (cf. [3, page 126]), 
P(n,t) = 0 for all t > 0. This implies that for some k0 for which nko > 0 we have 
that cko(t) = 0 for all t > 0. However, if this is the case, then P(n,t) = 0 for all n 
such that nko > 0. Therefore, for all t > 0 queue ko cannot contain any jobs and we 
may remove queue k0 from the network. Hence we may assume that P(n,t) > 0. 

Remark 2.2 (State space V) If the product form transient distribution (1.4) sat-
isfies the forward Kolmogorov equations then for the open queueing network we obtain 

P(0,t) = B{t)4>(0) = B(t) 

which is non-zero. Thus the state n = 0 must have non-zero probability for all time t. 
Similarly, for the closed network, 

P(Mei,t) = £(i)<KM e i)c;(*)M i = 1, • . . , N 

which is non-zero unless the number of customers in queue i is zero for all t, which, 
as remarked above, we can discard. 

The following theorem gives a sufficiënt condition for the transient probability dis
tribution to be of product form. For a network of M/G/oo queues, with non-
homogeneous Poisson input in the open network case, this product form was obtained 
in [5]. However, the formulation used in that paper is rather different from the for-
mulation used in the theorem below. The transient form for the traffic equations does 
not appear in [5]. Furthermore, the initial conditions in the theorem below are more 
general than the initial conditions in [5]. Therefore, we give the theorem in terms of 
our formulation and also include the proof of the theorem. 

T h e o r e m 2.3 (SufRcient condit ions) Consider a queueing network with product 
form initial distribution 

P0(n) = B0^n)HCk
k neV 

k=\ 

where <f>(-) satisfies 

<f>(n - ek) 

ftn) 

Then 

= fiknk k = l,...,N. (2.4) 

P(n,t) = 5(t)^(n) IJ Cfc(*)B* (2-5) 
k=i 

l JV where the {ck(t)}^=1 satisfy the traffic equations 
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1 dck(t) = ^ C j ( i ) ^ + Xp^ _ ^ ^ k = h ^ ^ N (2>6) 

•un'i/i initial conditions 

c*(0) = 6 (2-7) 

an<i i/ie normalization constant B(t) satisfies 

^ = | W ) P * " W < 2 '8 ) 

un'i/i initial conditions 

B{0) = B0. (2.9) 

Proof Insertion of (2.4) into (2.3) gives 

1 dBCt) A f / . 

B(t) dt t = i 

= 11 TTk \ 11 {c;(*)Pji - dWPij} + APo; - Ci(t)pi0 - -—jr- \ 
i=\ ci\l) [j=t r* a i ) 

which is obviously satisfied if (2.6) and (2.8) hold. The initial conditions (2.7) and 
(2.9) give 

P(n,0) = Po(n) 

which implies that (2.5) gives the transient probability distribution of the process 
with transition rates satisfying (2.4). • 

Reniark 2.4 (Explicit form for P(n,t)) Note that the above theorem applies to 
both the open and the closed network case. In the closed case interpret pko = Pok — 0 
in (2.6) and (2.8). 

From (2.4) we obtain 

N 1 / 1 \nk 

fei nkï \nkJ 

For the closed network case we find from (2.8) and (2.9) that B(t) = B0 for all t > 0. 
From (1.22) we then obtain 

P(n,i) = A f ! T T - V ( — V n£V,t>0. 
fei nk\ V H J 
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For the open network case we find from (2.8) 

dlogBjt) 

Jt 

N 

J2 {Ci(t)PiO ~ M)i} 
t'=l 

N ( ( N 

t = i ^ \ j = i 

_"l_da{t) 

i=l Pi 

- Ap( 'Oi 

dt 

which implies 

N 
B(t) = B0]J exp 

k=l 

c*C0 - tk 

Pk 

N 

üeXP 
fc=l 

ck(t) 

From (2.10) we then obtain 

N 

P ( n , i ) = H e x P 
k=i 

ck(t) 

Pk 

l_ 

nk\ 

'ck(t) 

, Pk , 

nk 

Pk 

n eV,t>0. 

Remark 2.5 (Mixed open and closed networks) Theorem 2.3 applies to open 
and closed networks separately, but it also applies to mixed queueing networks where, 
for example, part of the network is closed and part of the network is open. This is 
a direct consequence of the product form initial distribution which guarantees that 
separate parts of the network are independent at t = 0. However, if these parts do 
not interact then they remain independent and the product form holds for all t > 0. 
This observation is not mentioned in [5]. 

Remark 2.6 (T ime-dependent input process) Note that , in the proof above, 
we may replace A by X(t) . This implies that the results from [5] are generalized in 
the theorem above to product form initial conditions. 

Remark 2.7 (General initial condit ions) Note tha t , since theforward Kolmogorov 

equations are a set of linear differential equations, if P^(n,t) is a solution of the 

forward Kolmogorov equations with initial conditions PQ'(n), i = 1 , . . . , / then 

I3i=i kiP^\n, t) is a solution of the forward Kolmogorov equations with initial condi

tions Yli=i hPo (n)- This allows us to further extend the possible initial distributions 

to non product form initial conditions. 

3 Necessary conditions for the open network 

In this section we consider a Markovian open queueing network. We will show that a 
necessary condition for the network to have a transient product form distribution is 
that all queues are M/M/oo queues. First we give a general lemma considering the 
solution of the traffic equations. This lemma will be used in the proof of the necessity 
result stated in Theorem 3.3. 
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L e m m a 3.1 Let {ni}^ be a set of positive numbers, { A , } ^ and {Ci}iLi be sets of 
non-negative numbers and P = [pij], i,j = 1,...,N be a stochastic matrix whose 
essential submatrices are strictly substochastic and such that 

Vj = 1 , . . . ,N 3 a sequence ih,..., ijk such that ^ihViHinVini3z • "Viiki > 0.(3.1) 

Let {ciit)}^ be a solution to the set of differential equations 

-^f- = -ci(t) + J2cJ(t)pji + Xi » = 1 JV (3.2) 
H-i j-i 

such that 

c,-(0)=& i = l,...,N. (3.3) 

Then if there exists n € N^ \ {0} such that 

Ua(tr (3.4) 

is independent oft, it must be the case that the initial conditions are such that the 
Ci(t) are in equilibrium. That is, the £; satisfy 

N 

3=1 

Proof Define the vectors c(f), A and £ such that [c(t)]i = c,-(t), [A],- = A; and '[£],- = £,• 
and the matrix M. such that 

[ 0 otherwise. 

The system of equations (3.2) with initial conditions (3.3) can now be written 

dc(t) 

~dt 

such that 

= c(t)[P - I]M + XM (3.5) 

5(0) = {. (3.6) 

The assumption that the essential submatrices of P are strictly substochastic implies 
that all the eigenvalues of (P — I)M have negative real parts (see [11]) and so the 
solution of (3.5) can be written in the form (see, e.g. [10]) 

J rn(j) 

c(t) = X(I - P)"1 + J2E Aiite-'^ji (3-7) 
j-l 1=0 
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where the set {—aj}j=1 contains the distinct eigenvalues of ( P — I)M., which have 
algebraic multiplicity m(j) + l, ordered so that Re(am+i) > Re(am) and Im(am+i) > 
Im(am) if Re(am) = Pe(a: m + i ) and the Wji are linearly independent vectors. The 
Aji are constants determined by the initial conditions (3.6) and the factor X(I — P ) - 1 

arises as a particular solution to (3.5). The matrix (I — P)~l contains only non-
negative entries (see Theorem 2.6 of [11]). Moreover, assumption (3.1) implies that 
X(I — P ) _ 1 contains only positive entries. 

The individual components of (3.7) can be written 

J rn(j) 

«w = 42e-ao1 + E E 4?tl e~ajt (3-8) 
j=l 1=0 

where, for convenience, we have denoted a0 = 0 and AQQ = [X(I — P ) - 1 ] ; . For fixed i 

J(i) = max{ j > 0 : 3/ with Aj? f 0} 

and for fixed i and j < J(i) 

j _ \ max{! > 0 : A^ =̂  0} if such an l exists 
1% \ 0 otherwise. 

J{%) is well defined because AQ\ ^ 0. Using (3.8) and the ordering of the CKJ it follows 
that the coëfficiënt of 

in Ci(t)ni is B(i) = (Aj^LJ(i).)
ni which is non-zero. The coëfficiënt of 

J>- j ( . ) . ' 

exp - E niaJ(i)t (3.9) 

in the expansion of (3.4) is 

flBur. 

Now for n ^ 0 € NQ (3.9) depends on t unless aj^) = 0 Vi. If this is not the case 
(3.9) is linearly independent of the other terms in the expansion of (3.4). It follows 
that , for (3.4) to be independent of t, ctj(i) = 0 Vi which in turn implies J(i) = 0 Vi. 

Thus, from (3.8) 

«(t) = A$ = mi - pn 
and the system is in equilibrium. D 

13 



Remark 3.2 In the following theorem £,-, A; and p^ will be interpreted as initial 
conditions, arrival parameters and routing parameters for an open network of queues. 
In this context the ijth. entry of (ƒ — P ) _ 1 gives the expected number of visits of a job 
to station j per sojourn time in the network conditional on it entering the network 
in station i. Thus the jth. entry of 

^ - T - A U - P ) - 1 

is the expected number of visits of a job to station j per sojourn in the network. 
By Assumption (3.1) this is non-zero. If this assumption is not satisfied there exist 
queues which cannot be reached from outside the network. Assume queue i is such a 
queue. Then in (3.8) above A$ — 0. There are now two cases to be considered: 

(i) There exist j,l such t'hat Ajt' > 0, in which case B(i) > 0 and an argument 
similar to that used above leads to the conclusion that (3.4) is dependent of t. 

(ii) c,(t) = 0 Wt, which implies £,• = 0 and queue i started off empty, as did all other 
queues j with pji > 0. In this case these queues never have any jobs and can 
be removed from the model. 

Conversely, if queue i is such that it can be reached from outside the network but 
customers can never depart the network having reached queue i the assumption that 
the essential submatrices of (I — P) are strictly substochastic no longer holds, and 0 
is an eigenvalue of (I — P). In this case the i th component of the particular solution 
of (3.5) has the form 

A$tj j > 0 

where A § ^ 0. It follows that Ci(t)
ni and n£Li Ci{t)ni can never be independent of t. 

This is to be expected since, in this case, there exists no equilibrium distribution for 
the queueing network. 

The last case to be considered is that in which there exist queues to which jobs 
can neither arrive from outside the network nor depart to outside the network. In 
such a situation there must exist an irreducible closed network which is isolated from 
any other nodes in the network. In this case we need a result slightly different to 
Lemma 3.1. This is given in Lemma 4.1 in section 4. 

T h e o r e m 3.3 Assume the network has an initial distribution of the form 

P(n,0) = B04>(n)Hek
k. (3.10) 

Then it is necessary for the time-dependent probability distribution to be of product 
form 

N 

P(n,t) = B(t)^(n)Y[ck(t)
n" (3.11) 

fc=i 
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that for the set of numbers {(ik}k=i defined as 

the {ck(t)}%=1 satisfy 

]_dcip_ = £ + _ 
fik dt f-[ 

with initial condition 

ck(0) = & (3.14) 

and that the normalization constant B(t) satisfies 

B\t) ^ = E i-^i + «MP*} (3-15) 

with initial condition 

B(0) = B0. (3.16) 

Furthermore, if the network is not in equilibrium, then it is necessary for the existence 
of a product form transient distribution that 

,,-x = ^nk- (3.17) 
<p{n) 

Proof Relation (2.3) must hold for all n, therefore in the light of Remark 2.2 insertion 
of n = 0 is allowed. Using the f act that <f>(n) = 0 if n,- < 0 for some i this gives (3.15). 
From (3.10) and (3.11) we obtain for n = 0 that B(0) — B0 which proves (3.16). 
Insertion of (3.15) into (2.3) gives 

E ^ ^ f - E ^ ^ { g teMw - C(0P«} - «(*)*, + APo>) .(3.18) 

Insertion of n = e; into this relation and use of (1.13) and (3.12) gives the traffic 
equations. From (3.10) and (3.11) we obtain for t = 0 and n = et- that the initial 
condition for Ck(t) is given by Cfc(0) = £&. Insertion of (3.13) in (3.18) gives 

0 = f4.ML^} (3.19) 
éïc-(t) dt \ fwftn) ƒ V J 

which must hold for all n. We now show by an inductive argument that for all n </>(•) 

is given by 

N , f i \ nk 

^ ) = n — - • (3-20) 
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If n = O then, by (1.13) < (̂0) = 1 which satisfies (3.20). Now assume that (3.20) holds 
for all n such that ]C;=i ni < M — 1, then for n such that X)t"=i n«' = - ^ w e obtain by 
insertion of (3.20) for n — et- into (3.19) 

0 = " i ^ ( t ) f i " i / 1 y>-gM 

= f j5_&i(2/i_J_TW.Ln 021) 
From Lemma 3.1 and Remark 3.2 we obtain, unless the process is in equilibrium, 
that for at least some t > 0 

AT 
n i dci(t) d N 

n ck(tr 
u=l 

Ï0. 

Therefore, from (3.21) it follows that (3.20) holds for n, which completes the induction 
step. 

Taking the quotiënt of (3.20) for n — e, and n immediately implies that (3.17) 
holds. D 

4 Necessary conditions for the closed network 

In this section we turn to closed queueing networks. Because the state space is 
restricted to V = {n : YliLi ni = M} the induction argument used for open queueing 
networks cannot be applied. We are able only to prove that if one queue of a network 
with time-dependent product form is an M/M/oo queue then, unless the network is 
in equilibrium, all the queues must be M/M/oo queues. The queues can always be 
re-labelled so that this "special" queue is queue number 1. Lemma 4.1, below, gives 
a preliminary result needed for the theorem. In the analysis below we assume that 
the network is irreducible. Note that this is not a restriction since we can analyse 
the irreducible subnetworks separately if the network is reducible. 

L e m m a 4.1 Let {ni]^=1 be a set of positive numbers and {£i}iLi be a set of non-
negative numbers, P = [p,-j] be an irreducible stochastic matrix and {^(t)}^ be a 
solution to the set of differential equations 

- ^ = -«(*) + £c,-(*)p* < = l .-" . tf (4-1) 

such that 

c,-(0)=& i = l,...,N 

and 
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£ £ i W = l V*. (4.2) 
j = l A4 ' 

Then if there exist n 6 V = {n E N^ : Y^iLi ni = M} other than Mei such that 

n ci(tr (4.3) 

is independent oft, it must be the case that the initial conditions are such that the 
ct'(t) are in equilibrium, i.e. the £,• satisfy 

N 

(j = ^2^iPij j = l,...,N. 

Proof Equation (4.1) can be written 

dc(t) 

dt 

such that 

c(t)(P - I)M 

c(0) = l 

and the individual components Ci(t) still have the form (3.8) except that the term 
Aooe_ a o ' arises not as a particular solution to the inhomogeneous differential equation, 
but because o 0 = 0 is now an eigenvalue (of multiphcity 1) of (P — I)M. It follows 
that the AQQ are the equilibrium values for the closed network. The c;(i) can be 
chosen such that (4.2) holds by the lemma on canonical form. 

Using similar arguments to the proof of Lemma 3.1 we can conclude that the 
coëfficiënt of 

t exp 
N 

t = 2 

in the expansion of (4.3) is YliL2 -^(0 which is non-zero. 

Thus (4.3) is independent of t only if Aj] = 0 in (3.8) for all j > 0. In this case 

d(t) = A g = &, i = 2,...,N. However, by (4.2), for all t 

V .=2 rt / 

= 6-
The network is thus in equilibrium. o 

T h e o r e m 4.2 Assume the network has an initial distribution of the form 

P(n,0) = B o ^ ( n ) n C -
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Then it is necessary for the time-dependent probability distribution to be of product 
form 

P(n,t) = B(t)<f>(n)f[ck(t)
ni< (4.4) 

fc=i 

that for the set of numbers {/J-k}i^=i defined as 

_ <f>{{M - l )e f c ) 

^k M<}>{Mek) 

the {cfc(i)}f=1 satisfy 

7^=1;*-*} (4-5) 

with initial condition 

c*(0) = & (4-6) 

and that 

B(t) = B0 t > 0. (4.7) 

Furthermore, if queue 1 is an independent M/M/oo queue, and if the network is 
not in equilibrium, then it is necessary for the existence of a product form transient 
distribution that 

— J T \ — = Vknk. (4.8) 
<p{n) 

P r o o f Insertion of n = Mei into (2.3) gives after rearranging the terms 

1 dB(t)ci(t) tldci(t) , , J ^ f / x , N , , , n . 

m^rir+ujrtr = M g <*«** - «•««*} • <«) 
Summation of (4.9) over all i gives by using (4.2) 

dB(t) 
dt 

0 

which implies (4.7). Insertion of (4.7) into (4.9) implies that the traffic equations 
(4.5) hold. Insertion of n = Mei into (4.4) for t = 0 gives (4.6). Insertion of (4.5) 
and (4.7) into (2.3) gives 

^ Ci{t) dt { Hi<P{n) J 

Now assume that queue 1 is an independent M/M/oo queue with service rate ni/ii 

if ni j ° D S a r e a t station 1, then the transition rates can be rewritten as 
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q(n,n- ez + e,-) = ( ^ l ^ l ( i ^ 1) + n ,w l (* = 1) ) p ö (4.11) 

where v is the vector which is obtained from n by removing the ls t component and 
<f> is the function which is obtained from (f> by removing the l s t component from the 
argument of <f> and 1{A) is the indicator function of event A. Note that <f> is defined 
up to a multiphcative constant only, therefore, without loss of generality we may 
assume that ^6(0) = 1. Insertion of (4.11) into (4.10) gives 

which must hold for all v in the set V = Iv : V{ > 0, X ^ 2
 vi — M\. The remaining 

part of the proof is very similar to the proof of Theorem 3.3. By using Lemma 4.1 
we obtain by induction that , unless the process is in equilibrium 

4>(v - e^ 
— = ViHi. o 

5 Discussion and general remarks 

The major contribution of this paper is a proof of the fact that a Markovian queueing 
network which is not in equilibrium can have the transient product form 

P{n,t) = B{t)cf>(n)TLck{t)nk (5.1) 
k=i 

only if it is a network of infmite server queues. 
In addition we prove the result that a network of M/M/ co queues with an initial 

product form distribution 

P(n,0) = Bo<j>(n)l[Ckk 

N 

k=l 

has the transient product form distribution (5.1) where the Ck(t) satisfy the time 
dependent traffic equations 

1 dck(t) = £ ^ ^ + XpQk _ Ck{t) ( 5 2 ) 

A * * dt i=i 

subject to 

c*(o) = 6-
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These two results can be combined to show that it is necessary and sufficiënt for a 
network of queues, not in equilibrium, to have a product form transient distribution 
that it be a network of infinite server queues. 

For more specific initial conditions, but more general arrival characteristics and 
service time distributions the sufficiency part of this result has been previously estab-
lished in [4], [5] and [8]. However, the time dependent traffic equations (5.2) appear 
to be new, as is the expression of the open and closed models in canonical form. 

Our results have the advantage of reducing the derivation of the transient distri
bution of the network to the solution of a set of linear differential equations with a 
number of variables equal to the number of queues in the network. 

There are several observations that can immediately be made from our results. 
It is clear from the form of (3.7) that as t —•>• oo P(n,t) approaches the equilibrium 
distribution 7r(n). For open networks it is of interest to also consider the case where 
the arrival rate to queue i is a function of time (say Xpoi = A t(i)). This was considered 
in [4] and [5] where it was shown that networks of queues with non-homogeneous 
Poisson input have a product form transient distribution. It is easy to show, using 
methods similar to ours, that if a Markovian network of queues with non-homogeneous 
Poisson input has product form then (3.13) - (3.16) must be satisfied. However, it is 
unclear how to argue, in general, results analogous to Lemma 3.1 and Remark 3.2. 
These results are used in the proof of Theorem 3.3 only to show that if a network is 
not in equilibrium then for some t > 0 

lirir^ (5-3) 
If (5.3) can be assumed then (3.17) also holds for networks with non-homogeneous 
Poisson input. 

A similar observation can be made with respect to the proof of Theorem 4.2. 
Statements (4.5) - (4.7) can be shown to follow from product form even if (j> is replaced 
by an arbitrary ij) in the numerator of (2.1a) and if it is not assumed that one queue 
is an infinite server queue. These assumptions are used only in the proof of (4.8). 

If a network of queues is to have product form for arbitrary service time distri
butions then it follows from our analysis that it must be a network of infinite server 
queues merely by observing that exponential service times are special cases of general 
service times. 
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