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Aggregation of stochastic processes 

Richard J. Boucherie* 

Abstract 

For a sequence of stochastic processes the aggregated process, that is a process 
for which the transition rates are an amalgamation of the transition rates of the 
processes in the sequence, is introduced. A sufficiënt condition is given, called 
cross-balance, a generalization of global balance to a sequence of processes, 
under which the equilibrium distribution of the aggregated process is shown 
to be the same amalgamation of the equilibrium distributions of the processes 
in the sequence. A number of examples are discussed including a construction 
method for constructing the equilibrium distribution. 

Keywords: Aggregated process, Cross-balance, Equilibrium distribution, Se­
quence of queueing networks. 

1 Introduction 
Over the last decades considerable attention has been paid to the determination 
of equilibrium distributions of stochastic processes arising from queueing networks. 
However, most of this work considers product form equilibrium distributions only. 
The Jackson network [7] was found to possess a product form solution. Since then, 
the class of networks that possess a product form equilibrium distribution has been 
extended considerably. As of today, this class is known to contain BCMP networks 
[1], networks with blocking (cf. [6], [11]), networks with batch movements (cf. [4], [5]) 
and networks with batch movements and blocking (cf. [2], [3]). Also, a lot of work 
has been done on understanding why a stochastic process possesses a product form 
equilibrium distribution. [8] introduces the notion of quasi-reversibility, [13] connects 
quasi-reversible queues, [14] introduces weak coupling and [10] connects reversible 
Markov processes to give an explanation of the existence of product form equilibrium 
distributions. At this moment, for a wide class of stochastic processes product form 
equilibrium distributions are proven to exist, however, the class of stochastic pro­
cesses with a product form equilibrium distribution is a very restricted class. This 
paper aims to extend this class to a class with a more general form of equilibrium 
distribution. In particular, we extend the class of stochastic processes with a single 
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underlying transition structure leading to one product form equilibrium distribution 
to a class of stochastic processes with an equilibrium distribution that is a sum of 
product forms such as arising from processes which are subject to various underlying 
transition structures. We consider an amalgamation of stochastic processes each of 
which has an equilibrium distribution and provide a so-called cross-balance condition 
such that the equilibrium distribution of this amalgamation is itself an amalgamation 
of the equilibrium distributions of the underlying stochastic processes. 

A well-known result in the theory of stochastic processes is the following. Consider 
a process that can start in K different configurations and starts in configuration k 
with probability r ^ l Then, without any constraints on the transition rates of the 
process, the equilibrium distribution n is given by 

* = £,.(*)*<*) (1.1) 
k=l 

where ÏT<*> i s the equilibrium distribution for configuration k. However, this result is 
valid only if the process selects a configuration at the start and always remains in the 
selected configuration. If the process can, independent of the previous or successive 
transitions, select upon each transition from a set of configurations via which the 
transition will be made, i.e. if the transition rates q are a mixture of the transition 
rates of the configurations 

g = £r<*ty*> (1.2) 
fc=i 

where qW is the transition rate for configuration k, then the equilibrium distribution 
will, in general, not be of the form (1.1) with n^ the equilibrium distribution for 
configuration k. This paper gives a sufficiënt condition on the transition rates qW 
for the aggregated process, that is the process with transition rates (1.2), to have an 
equilibrium distribution (1.1). This sufficiënt condition is cross-balance, a generaliza-
tion of global balance to sequences of processes. It relates the transition rates qW for 
process k in the sequence to the transition rates q(k) for process Ar' in the sequence. 

Section 2 presents the model and main result of this paper. Section 3 gives some 
examples to the theory, in particular, Example 3.6 presents a construction method for 
constructing the equilibrium distribution for a stochastic process. This construction 
method is based on cross-balance and devides the state space of the process in possibly 
overlapping state spaces for the processes in the sequence. Finally, section 4 gives 
some concluding remarks. 

2 Model 

Consider a sequence of K continuous-time queueing networks, labelled k = 1, , K, 
consisting of N stations. Assume that each queueing network in the sequence can be 
represented by a stable, regular, continuous-time Markov chain at N^ = {ra : ra = 
(n 1 } . . . , n/v), ra,- € N0 — {0,1,2, • • •}, i = 1 , . . . , TV}, where ra,- denotes the number of 
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jobs at station i, i = 1 , . . . , N. The transition rate from state ft to state ft' for network 
k is denoted by q^(n, ft'), k = 1,...,K. Assume that for a set V^ C N^ the process 
with transition rates qW is irreducible and that there exists a unique equilibrium 
distribution *<*> at V<*>, k = l,...,K, i.e. x<*ï = {*M(n), ,r (*)(„) > 0, ft G V<*>} is 
the unique solution to the global balance equations at V^ (cf. [9]) 

£ { ^ { f t ^ n , ft') - T«(ft,)ï(*)<n', ft)} = 0 ft G V(fc). (2.1) 
n ' /n 

For a sequence of queueing networks define the following process. 

Definition 2.1 (Aggregated process) Consider a sequence of queueing networks 
with transition rates q(k\ k = 1,...,K. The aggregated process with aggregation 
coefficients r ^ G R, the set of real numbers, k — 1 , . . . , K such that for all ft, ft' G 
N?, ft ^ ft' 

J><*ty*>(ft,ft')>0 (2.2) 

is the process at N^ with transition rates q defined as 

q(n,ft') = £ r<*ty*>(ft,ü') ft, ft' G N?. (2.3) 
J b = l 

Remark 2.2 (Aggregation coefficients) Note that in the definition above it is 
not assumed that r ^ > 0. Therefore, condition (2.2) is necessary for the transition 
rates q to be properly defined. If r'W > 0 for all k then (2.2) is trivially satisfied. ü 

Remark 2.3 (State space) The state space V of the aggregated process cannot be 
immediately obtained from the state spaces V^ of the processes in the sequence. 
For example, consider a sequence of two queueing networks such that V^ O V^ ^ 0 
and V^ ^ 0 2 ) . Let ft0 G V^ and define a sequence of states ft0, fti, • • •, ftj-i, ftj 
such that ft,- G V(1) and ft< £ V™ U V™, i = l,...,j - 1. If ?(1)(ft,-,fti+i) > 
0, i = 0, ...,j — 1 then the state space of the aggregated process contains the states 
fti, . . . ,ftj_i which are not elements of the state spaces of the processes in the se­
quence. This implies that, at least in some cases, V D UJÜLI V^- Also, the case where 
V C U*Li V^ *s possible. For example, consider the following sequence of three 
queueing networks. Assume that q^ = q^\ V^ = V^ D V^h Then the aggre­
gated process with aggregation coefficients r ^ = 1, r^ = — 1, r^ = 1 satisfies (2.2) 
and is given by q(n,n') = qW(n,n') with state space V = F ( 3 ) C V(1) = ULi v^-

If we define g(*)(ft,ft') = 0 if ft or ft' £ V^ then the state space of the aggregated 
process is determined by the state spaces of the processes in the sequence. However, 
this seems to be an unnecessary assumption. In the sequel of this paper we reconsider 
the problem of determining V when the notion of cross-balance is introduced. It will 
be shown that the state space V is a subset of the union of the V^ if the sequence 
satisfies cross-balance (see Lemma 2.8). • 
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The remaining part of this section relates the equiHbrium distribution ir of the aggre­
gated process to the equiHbrium distributions ir^ of the processes in the sequence. 
In order to avoid problems with the normalizing constant when deriving this relation 
we first consider invariant measures rather than equiHbrium distributions. As a con-
sequence of the assumption on the existence of ir^ there exists an invariant measure 
at V(k\ i.e. a set of non-negative numbers m^ = {rrSk\n), n € V^} that satisfies 
the global balance equations (2.1), for the processes in the sequence, k = 1 , . . . , K. 
The following lemma gives a sufficiënt condition for the aggregated process to have 
an invariant measure m that is a sum of the invariant measures for the networks in 
the sequence. This sufficiënt condition will be interpreted in Remark 2.6. The state 
space V of the aggregated process is not determined in this lemma. Therefore, m is 
defined at TVf. 

Lemma 2.4 Consider a sequence of K queueing networks with transition rates q^k\ 
state spaces V^ C N^ and invariant measures m^-k\ k = 1, . . . ,K. Then the 
aggregated process with aggregation coefficients Ak\ k = 1 , . . . , K such that 

K 

J2AkWk\n)>0 n€iVf 

kas an invariant measure m given by 
K 

™(rc) = X> (* ) m ( f c )(«) n'EN? (2.4) 

if for all k, k', k, k' = 1 , . . . , K, the following relation holds for all n € N^ 

E {mW(n)qW(n,n') + mM(n)g<*>(ii,7i')} 

= E{™(*H«0?(*V,rc)W*V)?(fcH^«)}- (2-5) 

Proof It is sufficiënt to prove that m defined in (2.4) satisfies the global balance 
equations for the aggregated process 

E {m(n)?(n, n') - m(n')q(n', n)} = 0. (2.6) 
n'£n 

Substitution of (2.3) and (2.4) into the global balance equations gives 

E {m(n)q(n,n') — m(n')q(n',n)} 
n'£n 

= 7? E E E r (*M*'} {mW(n)q^(n,n') - m^(n')q^'\n\n)} 
" " üY*i Jk=l k'=l 

= ^ E E r( t ,r(*0 f E {mW(n)€(fc')(n,n') + m(*')(n)?«(n,n')} 
z n k=i k'=i \BYB 

- E {m^{n')q^(n',n) + m^(n')q^{n',n)} 
n'£n 

= o 
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where the second equality is obtained via changing the order of summation and the 
last equality by using (2.5). O 

Remark 2.5 (K = 2) If K = 2, Lemma 2.4 gives a necessary and sufficiënt condi­
tion for the existence of an invariant measure of the form (2.4) for the aggregated 
process. This can easily be seen by substitution of (2.3) and (2.4) in the global 
equations (2.6): 

(r(i) + r<a>) Y, {m{n)q(n,n') - m(n')q(n',n)} 
n'£n 

= E ({r(1)mW(n) + r « m « ( n ) } {r^\ntfi') + r^q^(n,n')} 
n'/n 

- {r^m^in') + r<2W2>(n')} {rWq{1) (*',*) + r^q(2)(n',n)}) 

= E ( r ( 1 ) r W {"»(1)(*»)«(1)(«»«') " rnW(n')qW{n', n)} 
n'£n 

+r(D r(2) {mW(n)qW(h,n') + ro<2>(n)s(1)(n,«') 

-m«(n , )? ( 2 ) (n , ,n ) - mW(n')? (1)(«',n)} 

+r(2)r(2) {mW(n)qW(n,n') - m^(n')q^(n',n)}) 

= r(Dr(2) £ p ) ( B ) ^ ) ( B , s ' ) + mW(fi)gW(n Is') 

-mW(n')9 (2 )(n',n) - m (2)(n')? (1)(n',n)} 

where the last equality is obtained by using global balance for both networks sep-
arately. This implies that global balance for the aggregated process is equivalent 
to (2.5). ü 

Remark 2.6 (Interpretation of (2.5)) (2.5) is a technical relation. However, as 
can be seen from Remark 2.5, there is an obvious way to interpret this relation. When 
we add the global balance equations for processes k and k' to (2.5) we obtain after 
rearranging terms 

E { ( / » ( n ) + mW(n)) (qlk\n,n') + q(k'\n,n'))} 

= E {(n»(*)(«0 + «* ( *V) ) {q{k)(n',n) + q^'\n',n))}. 

Under the assumptions of Lemma 2.4 this relation is equivalent to (2.5). Therefore, 
(2.5) expresses that for all k, k' m^ + m^ is an invariant measure for the process 
with transition rates qW + q(k'\ O 

As can be seen from Remark 2.5, (2.5) gives a general condition for the existence of 
an invariant measure m for the aggregated process. However, (2.5) seems to be a 
rather complicated condition to verify. Therefore, in the following definition we give 
a more practical form of balance, so-called cross-balance, which implies (2.5). 



In the definition below we do not make any assumptions on the state space of 
the processes in the sequence. We start afresh with a sequence of processes with 
transition rates q(k\ k = 1,...,K. ff a sequence satisfies cross-balance the state 
spaces V^ of the processes are determined and also, as can be seen from Lemma 2.8, 
the state space V of the aggregated process is determined by the state spaces V^ of 
the processes in the sequence. 

Definition 2.7 (Cross-balance) Consider a sequence of queueing networks with 
transition rates q^k\ k = 1 , . . . , ^ . If there exists a collection of measures m^ = 
{mW(rc), n 6 N?}, k = l,...,K such that for all k,k', Ar, k' = 1 , . . . , K and for all 
n€N? 

£ {m^(n)q^(n,n') - ro<*V)«<*>(n',n)} = 0 (2.7) 
n'£n 

then the sequence of queueing networks satisfies cross-balance with measures mSk\ k = 
1,...,K. 

Note that in the definition above it is not assumed that the measures m^ are invariant 
measures for the processes in the sequence. However, since (2.7) must hold for all 
k, k', for k = k' this implies that m ^ is an invariant measure for process k. This 
implies that the state spaces V^ of the processes in the sequence are determined by 
cross-balance also. Therefore, cross-balance is a generalization of global balance to 
sequences of processes. 

Based on the assumptions made on the uniqueness of the equilibrium distributions, 
the following lemma reduces the state space of the aggregated process to the union 
of the state spaces of the processes in the sequence. 

Lemma 2.8 Consider a sequence of queueing networks with transition rates q(k\ 
state spaces V^ and unique equilibrium distributions x^. Then, if there exists a set 
of constants &k' > 0, k = 1 , . . . ,K, such that the sequence satisfies cross-balance with 
measures c^k'ir^k\ k — 1,...,K, then the aggregated process cannot have transitions 
out of the set V = U*Li V^k\ i.e. for all k it must be the case that if n € V and 
n'£V thenqW(n,n') = Q. 

Proof Let n0 6 V, say n0 G V(fco), and nx £ V, then 7r(*°)(n0) > 0 and *W(ni) = 0 
for all k, k = 1 , . . . , K. Assume that q(no,ni) > 0, then for some k, say kj, we must 
have that q^kl\no,fii) > 0. Now consider cross-balance for ko and ki at n\: 

= - £ ctoM*»>(n')0(fcl)(*»',ni) 

< -c(*»M*ö)(no)9(*1>(no,n1)<0 

which is in contradiction with the assumption that the sequence satisfies cross-
balance. D 
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In this paper we consider sequences of networks satisfying cross-balance only. There-
fore, without loss of generality, we may now assume that the initiaï distribution of 
the aggregated process is such that with probability 1 the process starts at U*=i V^ • 

The following theorem states the main result of this paper. In this theorem 
the equilibrium distribution of the aggregated process is related to the equilibrium 
distributions of the processes in the sequence. 

Theorem 2.9 (Main result) Consider a sequence of queueing networks with tran-
sition rates q^k\ state spaces V^k\ and unique equilibrium distributions ir^ at V^k\ 
k = 1,...,K. If there exists a set of constants é® > 0, k = 1,...,K such that 
the sequence satisfies cross-balance with measures é-k^^k\ k = \,...,K then the 
aggregated process with aggregation coefficients r^ such that 

£ r(*) c(*) = C, C > o , (2.8) 

has an equilibrium distribution ir at state space V = UjtLi V^ given by 

T(") = ?7E r ( f c ) c W 7 r ( f c ) (" ) » € V . (2.9) 
c k=i 

Proof By Lemma 2.8, the state space of the aggregated process is given by V as 
defined in the theorem. It is sufficiënt to prove that 7r defined in (2.9) is a probability 
distribution at V and satisfies the global balance equations (2.6). 

Assume that for some n0 7r(n0) < 0. Then (2.2) and cross-balance imply 

0 = £><*> E { ^ ^ « ( ^ ^ ( ^ . n O - ^ ^ n ' ^ C n ' . n o ) } 

= E ( E r W W ) ( n o ) ^ ( i S o , n ' ) - c W ^ ( n O £ r < * V V . * * ) l 
n'^fio U = l k=l J 

= E_ {C7r(n0)q
{k,)(no, n') - é-k">^k'\n')q{n', n0)} < 0. 

Thus, 7r(n) > 0 for all n £ V. Summation of r yields 

E *(*) = E 4 E r<*>c<*M*>(n) = I £ r^cM £ *<*>(») = 1 

which implies 0 < ir(n) < 1 for all n € V and ir(V) = 1. Now consider a sequence 
of mutually exclusive events Ei C N^ then, since for all k w^ is a probability 
distribution 

oo i K oo -i K oo 

* ( U * ) = 77 D r{k)cik)*{k)(l) Ei) = ± E r « c « 2 > « ( i * ) 

= E^E^(^W(^) = E^.)-
»=i ° fc=i t = i 

Note that (2.7) implies (2.5). Now apply Lemma 2.4 with m.W = <;(*)*•(*), 



Remark 2.10 (Interpretation) Consider a queueing network that can start in K 
different configurations. If with probability r ^ the network starts in configuration 
k with transition rates qW and equilibrium distribution ir^ then the equilibrium 
distribution of this network is given by 

fc=i 

which is exactly the form we obtain by inserting c ^ = 1, r ^ > 0 such that 
Y^kr^ = 1 into Theorem 2.9. This form is obvious when we select once and for 
all a process with corresponding transition rates in advance. In contrast, the aggre-
gated process presented here allows to select from a set of transition rates qM at any 
transition. With probability r ^ it selects transition rate qW for a particular tran­
sition, independent of the previous or successive transitions. In this case the above 
form is no longer obvious. For the process to have this form for the equilibrium dis­
tribution there will be some restrictions on the transition rates q(kK These conditions 
are given by cross- balance. E 

Remark 2.11 (Aggregation coefficients r^ and coefficients c ^ ) The coeffi­
cients c(*) introduced in the main result are not essential for the theory, for example 
with c ^ = 1 Theorem 2.9 remains valid. In the applications, however, these coef­
ficients play a very important role. In many cases a sequence of queueing networks 
satisfies cross-balance for a special choice of the c ^ only (cf. Examples 3.2, 3.3). In 
some applications the coefficients c ^ will replace the normalizing constant and will 
be chosen such that at the union of the state spaces of the processes in the sequence 
the invariant measures for the processes are the same (cf. Examples 3.5, 3.6). 

In the main result above the aggregation coefficients are not necessarily positive, 
for example see Remark 2.3 and Example 3.6. Note that the aggregation coefficients 
may be chosen such that C = 1. This can, without loss of generality, be obtained 
by replacing r^ : = r^-. Note, however, that (2.9) does not express a mixture of the 
distributions ir(k\ This would be the case if fW > 0 for all k, which in the general 
setting is not necessary. ü 

Remark 2.12 (Uniqueness of ir) Although the initial condition of the aggregated 
process is such that with probability 1 the process starts at UitLi V^k\ the aggregated 
process is not necessarily irreducible, and thus, the equilibrium distribution of the 
aggregated process is not necessarily unique. In general, conditions on the processes 
in the sequence and the aggregation coefficients which guarantee that the equilibrium 
distribution of the aggregated process is unique are hard to give. These conditions 
will depend on the specific form of the transition rates (cf. Examples 3.1 and 3.2). 
However, in some cases general conditions are possible. For example, in each of the 
following two cases it can easily be verified that the equilibrium distribution of the 
aggregated process is unique. 

(1) If r^ > 0 for all k and the state spaces are such that 
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y(0 n y(.+i) ^ 0 i = l,...,K-l. 

(2) If the state spaces are such that 

y ( O n y ( ' + 1 ) ^ 0 i = i,...,K-l 

y(.) \ jy( . - i ) u y(.-+D} ^ 0 * = 2,...,ÜT - 1. 

3 Examples 

This section gives some examples of sequences of processes that satisfy cross-balance. 
The aim of this section is to illustrate some applications, such as the construction 
method for the equilibrium distribution in 3.6, and to give some examples of the 
implications of cross-balance on the transition rates of the processes in the sequence. 
These examples show that the notion of cross-balance unifies various known special 
situations and leads to possible new examples. First, in Example 3.1, we consider 
a Standard simple example that can directly be incorporated in the theory. This 
example combined with Example 3.2 shows that the uniqueness of the equilibrium 
distribution of the aggregated process depends on the specific form of the transition 
rates of the processes in the sequence. In particular, it depends on the transition 
rates between the state spaces of the processes in the sequence. Examples 3.3 and 3.4 
consider some well-known processes from the literature. In Example 3.3 we consider 
the truncated process, and in Example 3.4 we show that a process and its time-
reversed process satisfy cross-balance. Example 3.5 gives a novel example. In this 
example two processes are combined into one aggregated process. The implications 
on the transition rates of the two processes are worked out in detail as to illustrate 
the implications of cross-balance. In Example 3.6 the approach is different. Here 
we start with a process with given transition rates and state space. We construct a 
sequence of processes such that the aggregated process has the same transition rates 
and state space as the original process and we use this sequence of processes to derive 
the equilibrium distribution of the original process. 

3.1 Disjunct state spaces; reducible aggregated process 

Consider a sequence of K queueing networks consisting of TV stations with transition 
rates q(k\ state space V^ and unique equilibrium distribution 7r^ at V^h\ k = 
l,...,K. Assume that V^ n V™ = 0 for all k # k' and define V = ULi V{k)- K 
the transition rates q^k\ k = 1,...,K are such that 

qW(n, n') = 0 if n' £ V<*> or n' € Vw and n € V \ V(fc) (3.1) 
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the sequence of queueing networks trivially satisfies cross-balance with measures ir^k\ 
k = 1 , . . . , K. The aggregated process cannot make any transitions between the state 
spaces yW. Therefore, the aggregated process is reducible and has an equilibrium 
distribution 

K 
7r(n) = X>(*>7r<*>(n) neV (3.2) 

*=i 

for arbitrary coefficients r ^ > 0, J2kr^ = !• 
The following example is of interest. Consider a closed queueing network consist-

ing of J stations, labeled j = 1 , . . . , J. Let V^ = {n: n = ( n i , . . . , nj), J2J=i nj — 
k}, k = 1 , . . . , K, qW the transition rates of network k and ir^ the corresponding 
equilibrium distribution. This sequence satisfies cross-balance with measures 7rW. 
The equilibrium distribution of the aggregated process is given by (3.2), where r ^ 
represents the probability of starting with k jobs. An example similar to this example 
is given in [12, p. 6]. 

3.2 Disjunct state spaces; irreducible aggregated process 
The essential assumption in the example above is not that the state spaces of the 
processes in the sequence are disjunct, but that the aggregated process cannot make 
any transitions between the state spaces of the processes in the sequence. For ex­
ample, consider a sequence of 2 queueing networks with transition rates q^\ qt2\ 
state space V^\ V^ and unique equilibrium distribution n^ at V^\ ir^ at V(2). 
Assume that VW n V® = 0. Let the transition rates be as in (3.1) but add for fixed 
nx G W, n2 6 V™ 

qw(n2,ni) = ax > 0, q^){nun2) = a2 > 0. 

Then the sequence satisfies cross-balance with measures 

m(i) = _ Ü 1 TTW m(2) _ Q2 „.fa) 
TcU(nxf ' m *M{n2f • 

The aggregated process with aggregation coefficients Ax\r^ > 0 has a unique equi­
librium distribution ir at V = V^ U V^ given by 

3.3 Truncation 

Consider a queueing network with transition rates q^\ state space V^ and unique 
equilibrium distribution TT^ at V ^ . Assume that there exists a set V^ C V^ such 
that for each state in V^ separately the rate out of V^ is balanced with the rate 
into y<2), i.e. for all n 6 V™ 

10 



£ {x(1)(n)?(1)(n,n') - ^ ( « W . * » ) } = 0. 
n'6V(i)\VW 

Then the truncated process with transition rates q^ defined as 

q {n,n) \ 0 otherwise 

has an equilibrium distribution TT^ at V^ defined by 

The sequence g ^ , g(2) satisfies cross-balance with measures 

T7lv ' = 7P ' , 771 „ « ^ ,W(S). 
n6V(2) 

3.4 Time reversal 

Consider a queueing network with transition rates q(x\ state space V and unique 
equilibrium distribution ir^. In reversed time, the queueing network has the same 
equilibrium distribution ir^ = TK1) at state space V. The transition rates qW of the 
time-reversed process are defined as the set of numbers that satisfies (cf. [9]) 

*W{n)qW(n, n') = ir^(n')q^(n', n). (3.3) 

By summation of (3.3) one directly verifies that the sequence of a process and its 
time-reversed process satisfies cross-balance with measures m ^ = w^\ m^ — ir^ 
and the aggregated process has equihbrium distribution ir = ir^\ 

An intuitive interpretation of the aggregated process with aggregation coefficients 
r^\ r^ is the following. For process qW the time passes by at rate 1, therefore 
for the process with transition rates r^q^ time passes at rate r'M. For the time-
reversed process with rates qW time passes at rate —1, therefore for the process with 
rates r^qW time passes at rate — r&h For the aggregated process time passes at rate 
r(i) _ ,-(2)̂  D u t giace the process is stationary the speed at which time passes does 
not play a role in determining the equilibrium distribution. Therefore, the process 
for which time passes at rate r ^ — r^ has the same equihbrium distribution as the 
process for which time passes at rate 1. 

3.5 Nearly disjunct s ta te spaces 

In this example we consider a sequence of 2 processes. We will modify the transition 
rates of these processes such that the sequence satisfies cross-balance under the re-
striction that the equihbrium distributions of the processes in the sequence remain 
unchanged. To this end, note that for a process with transition rates q^k\ state 
space VM and equilibrium distribution it^ at V^ the transition rates q(k\n,n') for 
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(3.4) 

n £ V^ can be arbitrarily changed without affecting the equilibrium distribution 

Consider a sequence of 2 processes derived from a queueing network, that is, the 
transitions allowed for the processes are those allowed in a queueing network only, 
i.e. a job is allowed to enter the system at station i corresponding to a transition 
from state n to state n + e,-, a job is allowed to leave station i and route to station j 
corresponding to a transition from state n to state n — e,• + e, and a job is allowed 
to leave the system from station i corresponding to a transition from state n to state 
n — e,-. The rates at which jobs enter or leave the stations is given by <j)^ for process 
k, k = 1,2. The transition rates qW for the processes are then given by 

q(1)(n,n') = ^(1>(n,n')l(0 < n'{ < j / x ) ) if n' = n + etVn - e,-,n - e< + e j 

g(2)(n,n') = <}P\n,n')l{j\x) < n(- < j\2)) if n' = n + e,-,n - e,-,n - e,- + e,-. 

Then the state spaces of the processes in the sequence are given by 

V(1) = {n: 0 < rii < j \ l \ i = 1 , . . . , N} , 

V™ = {n : j f > < m < J?\ i = 1,. . . ,7V}. 

Assume that equilibrium distributions T^ and ir^ exist, i.e. ir^, TT^ satisfy 

£ {7rW(n)#)(n,n')-7rW(n ,)^ (A : )(n',n)} = 0 fc = 1,2. (3.5) 

Then, for some arbitrary coefficients cP\ ë?\ the sequence satisfies cross-balance 
with measures m ^ = ë^n^ if and only if the transition rates q^k\n,n') for n $. V^ 
are defined as 

?(1)(n0 + e,-,n0) = J)^,- + ̂  xg(a)("o, ft? + e.) i = l,...,N (3.6a) 

q(1)(n,n') = 0 if n' 6 V® \ V^ (3.6b) 

q^ino-e^no) = .f^-^ „(Dfo^ _ e.) i = l TV (3.6c) 

?(2)(n,n') = 0 if n' £ V™ \ V(2) (3.6d) 

where e,- denotes the zth unit vector, i.e. the vector with zth entry 1 and all other 
entries 0 and üo = (J[ , . . . , j\j ). Note that (3.6a) and (3.6c) are well-defined since 
the equilibrium distributions TT^ are known. (3.6a), (3.6b) determine the transition 
rates of process 1 at V^ and (3.6c), (3.6d) determine the transition rates of process 
2 at VW. 

We will now show that the sequence of processes with transition rates defined in 
(3.4) satisfies cross-balance with measures m ^ = c(fcMfc), k = 1,2, if and only if the 
transition rates are modified as given in (3.6a) - (3.6d). To this end, first note that 
we have to check (2.7) for k ̂  k' only, since for k = k' (2.7) is already given by (3.5). 
If k = 1, k' = 2 and n 6 V(2) \ V(1) we have that m^(n) = 0 and (2.7) reduces to 
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J2m^(n')q^(n',n)=0. 

Since m^{n') > O for all n' 6 V(2) this relation can hold if and only if (3.6b) holds. 
For k = 2, k' = 1 we find that cross-balance can hold for n € Vw \ V(2) if and only 
if (3.6d) holds. If k = 1, k' = 2 and n € F ( 1 ) \ F ( 2 ) we obtain by using (3.6d) 

£ {mW(n)qW(n,n') - m^(n')q^(n',n)} 

= E {m(1)(n)<?(2>(n, n') - ^ « ( « ' ^ ( 0 ' , n)} 

{ m ^ n ) ^ 2 ^ * ! , n0) — m^(no)q^(nQ, n) ii n = n0 — e,-
0 otherwise 

where the last equality is obtained by observing that the process can make transitions 
allowed in (3.4) only. This implies that cross-balance can hold if and only if (3.6c) 
holds. The argument for (3.6a) can be given in a similar way. It remains to check that 
with the transition rates defined in (3.6a) - (3.6d) the sequence satisfies cross-balance 
for n = n0. For k = 1, k' = 2 and n = n0 we obtain 

J2 {mW(no)g(2)(n0, n') - m^(n')q^(n\ n0)} 

= E {m{1\no)q{2)(no,n')-mM(n')qU(n',n0)} 
n'ev(2) 
N 

= J2 {™(1)("o)?(2)("o, n0 + e,) - mW(n0 + e,-)g(1)("o + e;, n0)} = 0 

where the last equality is obtained by using (3.6a). For k = 2, k' = 1 and fi = n0 we 
find that (2.7) holds from (3.6c). 

The aggregated process with aggregation coefficients r ^ = r, r^ = 1 — r, 0 < 
r < 1 has a unique equilibrium distribution at V = V ^ U 0 2 ) given by 

7r(n) = r^l\n) + (1 - r)7r(2)(n) n € F ( 1 ) U V(2). 

Remark 3.1 (Discussion) In this example, the state spaces V^l\ V^ intersect 
in exactly one point. This is crucial for the simple analysis presented above. For 
example, there are no restrictions on the transition rates qW at V^k\ which, in 
general, will be the case. However, this example can be generalized to state spaces 
that intersect in several points. The analyses will become more complex and also 
there will be restrictions on the transition rates of the processes in the sequence. 
However, this example does reflect some of the key features of a sequence that satisfies 
cross-balance: 

• For n' £ V(*) cross-balance implies that q^k\n,n') = 0 for all n; 

• Relation (2.7) in the definition of cross-balance may be replaced by: For all 
n € V<*> 
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J2 {mW(n)}( i '>(n,n') - m^(n')q^(n', n)} = 0. 
n'^n, n'gVC') 

Tb illustrate the implications of (3.6a) and (3.6c) on the transition rates of the 
aggregated process, consider the following explicit example. Let for k = 1,2 

<f>(k)(n,n') = <f>(n,n,) = 
Xpoi if n' = n + e,-
HiPij if n' = n — e,- + e? 
/f.p.o if n' = n — e;. 

Then with {7 ,}^ ! the solution of the traffic equations 

N 

li = ^Poi + X) WH i = l,...,N 
i= i 

both process 1 and 2 have a unique product form equilibrium distribution 

where m is given by 

and ^ y is the normaHzing constant for process k. (3.6a), (3.6c) give the following 
relations for the transition rates. 

9(1)(«o + e,-,n0) = m—Pm 

°i ^ ( n o - e i , n 0 ) = A^p t 0 . 

(3.7a) 

(3.7b) 

H the transition rates satisfy these equations then the equilibrium distribution of the 
aggregated process with aggregation coefficients r^\ r^ is given by 

7r(n) 

-(i) nter r ( l ) c ( l ) + r(2)c(2) 1 1 ^ . 

r(l)-Lr(2) V 

if n € V^> \ V& 

+ r* (3.8) 

In terpre ta t ion 3.2 Note that, although the equilibrium distributions of the pro-
cesses in the sequence are of product form, the equilibrium distribution of the aggre­
gated process is not of product form. 

The transition rates given in (3.7a), (3.7b) seem to have a strange form. However, 
they can be rewritten as 
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qW(n0 + ei,n0) = mp*Q 

g (2 )(no-e,-,n0) = Ap̂ -

where p* are the transition probabilities of the time-reversed process. Thus, (3.7a) 
represents a departure from the network and (3.7b) represents an arrival to the net-
work. The transition rates of the aggregated process are given by 

q(n,n')= < 

rW<f>{n,n') if n' € V™ \ V™ 

(*i (r(1)p*o + r(2)P«o) if n = n0 + e,-, n' = n0 

A (r^poi + r<a>pg,.) if n = n0 - e,-, n' = n0 

r®<l>(n,n') if n' € V(2) \ VW 

The probability of leaving the system from state n0 + e; is changed and also the 
probability of entering the system to state ÜQ is changed. The form of the transition 
rates of the aggregated process, however, is exactly the same as the form of the 
transition rates of the processes in the sequence. 

3.6 Construction method 
In the previous example, the state spaces V ^ and V^ intersect in exactly one point. 
In that case, we were able to construct transition rates qW at V^ and qW at V ^ such 
that the sequence satisfies cross-balance. In the case of identical invariant measures 
for both processes in the sequence one would expect that the aggregated process 
allows the same invariant measure. However, as can be seen from (3.8) for the special 
case of product form invariant measures, this is not true. In this example, we extend 
the previous example to state spaces that intersect in several points. Also, in the case 
of identical invariant measures for the processes in the sequence, we will show that 
it is possible to construct an aggregated process such that the aggregated process 
allows the same invariant measure. Moreover, this example shows that for a given 
process, we can construct a sequence of processes such that the aggregated process has 
the same transition rates as the original process. This implies that the equilibrium 
distribution for the original process is given by the equilibrium distribution of the 
aggregated process. Thus, this section gives a construction method for constructing 
the equilibrium distribution for a process via the equilibrium distributions for the 
processes in the sequence. For simplicity, we restrict our attention to a system with 
two queues. This example can be generalized to queueing networks with N queues 
(N > 1). 

Consider a two station queueing network with transition rates 

( <f>(n, n') if n, n' E V 
and n' = n + e,-, n' — n — e,-, n' = n — et- + tj (3.9) 

0 otherwise 
where V is given by 
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V = {n : O < n'f < J,} U {J{ - 1 < nj} . 

We will now construct a sequence of queueing networks that satisfies cross-balance 
such that the aggregated process has transition rates q as defined above and give 
the equilibrium distribution for the aggregated process and thus for the process with 
transition rates q explicitly. 

First, consider the following sequence of 2 queueing networks with transition rates 
qW of network k defined by 

q{1)(n,n') = q(n,n')l(Q < n,-,nj < Ji) 

q{2)(n,n') = q(nin')l{Ji - 1 < nt-,n<). 

Then the state spaces of the networks in the sequence are given by 

VW = {n: 0<TH< Ji} , V(2) = {n : J, - 1 < n,} . 

Assume that there exist invariant measures for these processes, i.e. some sets of non-
negative numbers m^\ m^ that satisfy 

2 {m<*>(n)9<*>(n, n') - m^(n')q^(n', n)} = 0 k = 1,2. 
n'#n. n'6V(*) 

As can be seen from Figure 1, the state spaces V^ and V^ intersect in exactly four 
points. In order to guarantee that the sequence satisfies cross-balance we have to 
assume that q^\ q^ satisfy the following relations at the intersection of the state 
spaces. In these relations the states are labelled as depicted in Figure 1, where, for 
example n3 = (Ji — 1, J2) , n4 = (Ju J2), n7 = (Ji — 1, J2 - 1), "s = (Ji, J2 - 1)- The 
first relation (3.10a) represents cross-balance for state n4, the second relation (3.10b) 
represents cross-balance for state n7 and the third relation (3.10c) expresses that the 
total flow in the box consisting of rc3, n4, n7, n8 is balanced. 

mW(n4){qW(n4,n3) + qU(n4,n8)} 

= m^n3)q^n3ln4) + mw(n8)q
{'2)(n8,n4) (3.10a) 

m^(n7){q^(n7,n3) + q^(n7,n8)} 

= mW(n3)?(1)(n3,n7) + m«(n 8 ) 9 W(n 8 ,n r ) (3.10b) 

m ( 1 ) fa ) {?(2)("3,n4) + q{2\n3,n7) + q^(n3,n8)} 

+m (1 )(n4) {q{2)(n4, n3) + q^{n4l n8)} 

W 1 ) ( "7 ){? ( 2 ) ( " r , n 3 ) + g(2)(n7,n8)} 

W 1 } ( n 8 ) {<?(2)(n8, n3) + <Z(2)("s, n4) + <jr(2)(n8, n7)} 

= mW(n3) {qW(n3,n4) + qW(n3,n7) + ?W(n3 , n8)} (3.10c) 
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y(2) 

o • 

Ü2 rö3 n4 n5 

n6 ri7 rlg « 9 

n10 n n 

Figure 1. State spaces and labelling of states 

+m (2)(n4) {? (1)(n4,n3) + g (1)(n4,n8)} 

W 2 ) ( " ? ) {? (1)(n7,n3) + ? (1 )(«r,n8)} 

W 2 ) ( " s ) {?(1)(«8,n3) + ? (1)("s, n4) + q{1)(n8, n7)} 

Furthermore, as in Example 3.5, we have to define the transition rates q^ at V^ 
and qW at V™ such that the sequence satisfies cross-balance. Note that this does not 
affect the invariant measures m^kK To this end, by analogy with (3.6a) and (3.6c), 
define the following transition rates. 

. _ . Tn(1\n3){qW(n3,n0) + qW(n3,n4) + qW(n3,n7) + qW(n3,n8)} 

{mW(n4)qW(n4,n3) + m^(n7)qW(n7,n3) + m^(n8)q^(n8,n3)} 

m(2)(no) 

7(1) 

q{1)(nun4) = 

qW(ns,n4) = 

rnW(n3)qW(n3,n0) + mW(n4)qW(n4,nQ) (1),_ _ . 
= /ow- \ T'{n0,n3) q(1)(n0,n4) = ^YT^T 

rnW(n4)qW(n4,ni) 

q{1)(n9,n8) = 

mM{nx) 

mW(n4)q(2\n4,n5) 

m(2)(n5) 

W(n8) {gW{n8, n3) + qW(n8, n4) + qW{n8, n7) + qW{n8, n9)} 

W(n9) 
m 
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{mW(n3)qW(n3,ns) + m^(n4)qW(n4,n8) + m(2)(n7)g<1)(n7,n8)} 

m(2)(ng) 

„(Dte * \ - m(1)("4)g (2)("4,n9) + m(1)(n8)g(2)(n8,n9) (1) ?^(n 9 ,n 4 ) - - ^ r - j ? ^ 9 , n 8 ) 

m, x ^ ( 2 )(«3) (? (1)("3,n2) + ?W(n3,n4) + ?(1)(rc3,n7) + <Z(1)(n3,n8)} 
q ("""3) = l SS(S) ' 

{m(1)(n4)9(2)(n4,n3) + mM(n7)qW(n7,n3) + mW(n8)9«(ns,iSs)} 

TO' (D(n2) 

TO"^(n2) 

" K ' n 7 ) " roÖ)(^) 

ro<2>(n8) {ïW(n8 ,n3) + ?(1)(n8,n4) + gW(n8,n7) + ?W(n 8 ) n u )} 
q(){nu,n8) = i ±-

mi l ' (nn) 

{TO(1)(n3)g(2)(n3, n8) + m W f a ^ f o , n8) + mW(n7)g(2>(n7, n8)} 

mW(nn) 

«O») f» « ï - m(2)("7)g (1)(^7,riu) + mW(ng)g(1)(w8,nu) (2), . 
ffu(nii,nr) - ^ y ^ g u ( » u , n 8 ) 

The sequence of processes with transition rates q^\ qW as specified above satisfies 
cross-balance and the aggregated process with aggregation coefficients r^\ r^ has 
a unique equilibrium distribution x at V given by 

TT = B(rMmW + r « m P > ) 

where B is a normalizing constant. The transition rates of the aggregated process, 
however, are not equal to the transition rates of the original process (3.9). Therefore, 
we have to add another network to the sequence to correct for this difference. To this 
end, define the process with transition rates q^ given by 

( qW{n,n') if n € W \ V™ 

aW(nn')-\ ^ " ' ^ «»€VW\VW 
q ^ n > - \ q(ü,n') if n,n' € W n V™ 

{ 0 otherwise. 

The aggregated process with aggregation coefficients r^ = 1, r^ = 1, A3^ = —1 has 
transition rates q as given in (3.9). Therefore, we have now constructed a sequence 
of queueing networks such that the transition rates of the aggregated process equal 
the transition rates of the original process. Now we have to construct the equilibrium 
distribution for the aggregated process. To this end, assume that process 3 allows 

18 



an invariant measure m^ at V^3^ = V^ PI V&K As before, we can give general 
condition on q^\ q(2\ q^ such that the sequence satisfies cross-balance with mea-
sures ra*1), rnS2\ m^3K Under these conditions we can then conclude the equilibrium 
distribution of the aggregated process and thus the equilibrium distribution of the 
original process. However, to illustrate the implications of these assumptions on the 
transition rates of the original process, we will consider a special case. Assume that 
for n 6 V^ the invariant measures satisfy 

mM(n) = mW(n) = m®(n) = m(n). 

Then it is obvious that under the assumptions previously made for q^ and q^2\ 
without any further assumptions on q^3\ the sequence satisfies cross-balance. The 
transition rates for the aggregated process with aggregation coefficients r ^ = 1, 
r(2) = 1, A3) = — 1 are given in (3.9). Furthermore, the aggregated process has a 
unique equilibrium distribution n at V given by 

where B is a normalizing constant. 
In order to derive the equilibrium distribution of the aggregated process we only 

need the following assumption on the processes in the sequence and thus on the 
original process. 

• There exists a measure m for the original process that satisfies the global balance 
equations at V^k\ k = 1,2,3, i.e. for all n G V^ and for k = 1,2,3, m is a 
solution to 

y") {m(n)q(n, n') — m(n')q(n', n)} = 0. 
n'£n, n'eVW 

The other assumptions made on the transition rates of the processes in the sequence, 
i.e. (3.10a) - (3.10c) are implied by this assumption. (3.10a) is implied by global 
balance at Ü4 for process 1, (3.10b) by global balance at Ü7 for process 2, and (3.10c) 
is trivially satisfied since mf^ = mS^ and q^ = qW at V^3\ 

4 Concluding remarks 

In this paper we have considered sequences of queueing networks. For a sequence 
of queueing networks we have introduced the aggregated process. Based on cross-
balance we have shown that the equilibrium distribution for the aggregated process 
is an amalgamation of the equilibrium distributions of the processes in the sequence. 
In the examples we have shown that sequences such as a process and a truncated 
process or a process and its time-reversed process satisfy cross-balance. Also, for an 
explicit example, we have given a construction method for constructing the equilib­
rium distribution based on cross-balance. 
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