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Abstract 

The theory of chaos is nowadays receiving a great deal of attention 

among social scientists. Many attempts are being made to offer a raean-

ingful interpretation and application of notions of chaos in social 

systems. 

The present paper aims to link chaos theory to spatial interaction 

analysis by focusing attention on the conditions under which a general 

utility function related to a dynamic logit model for spatial interac

tion analysis will exhibit chaotic behaviour. 

In addition, the present paper will also analyze the impact of this 

dynamic logit model upon a more general spatial system, notably a Lotka-

Volterra system in the context of a transportation network including 

congestion phenomena. Time lags will also be incorporated in order to 

account for non-instantaneous effects in prey-predator type of interac-

tions. 

Finally, it will be shown that under certain conditions on the 

parameters of the spatial system concerned a so-called Hopf bifurcation 

will take place. In other words, unstable system's behaviour may emerge 

for particular lag values reflecting the influence from the past. 

The theoretical analysis in the paper will be illustrated by means 

of various simulation experiments. 
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1. Introduction 

It is increasingly realized that the evolutionary patterns of many 

spatial phenomena require dynamic modes of analysis (see Dendrinos and 

Mullally, 1985, and Nijkamp and Schubert, 1985). Conventional macro 

types of dynamic spatial models however, have not offered a satisfactory 

potential for replicating and predicting spatial evolution at a suffi-

ciently detailed level. 

In the recent past, much attention has been given to micro-based 

behavioural models of choice. Especially the disaggregate models of 

choice based on logit or probit analysis have gained much popularity, 

not only in a theoretical respect (see McFadden, 1974, and Domencich and 

McFadden, 1975), but also in an empirical respect (see among others Van 

Lierop, 1986, and Van Wissen and Rima, 1988). 

Logit (and probit) models belong to the family of discrete models 

which have received a great deal of attention among social scientists. 

These models are essentially based on the principle of utility maximiza-

tion: it is assumed that an individual decision-maker's preferences 

regarding available choice options can be described by means of a 

utility function and that each individual decision-maker will choose the 

altemative with the highest utility level for him or her. 

Fields of application of such discrete choice models are inter alia 

migration analysis, residential choice analysis, industrial location 

analysis, travel mode choice analysis etc (see the special issue of 

Regional Science and Urban Economics, edited by Nijkamp, 1987, and 

Golledge and Timmermans, 1988). 

However, a full dynamic analysis of disaggregate choice models - at 

both the micro level of individual behaviour and the meso level of 

groups or spatial entities - has not yet been developed, although con-

siderable progress has been made in the area of longitudinal data 

analysis (see in particular Heekman, 1981, and for a review also Fischer 

and Nijkamp, 1987). Thus so far contributions to dynamic logit models 

are very scarce. Some examples can be found in studies by Ben-Akiva and 

De Palma (1986), De Palma and Lefevre (1983), Haag (1986), Leonardi 

(1983), and Weidlich and Haag (1988). All these authors show that the 

logit model can be considered as a particular case of a more general 

Markovian model describing the probability that an individual moves from 

i to j during an infinitesimal interval of time. In the review article 

of Fischer and Nijkamp (1987), the authors point out various flaws in 

the use of dynamic discrete models of choice, such as the problem of 
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structural state dependence, of serial correlation (or spurious state 

dependence), of multi-actor decisions, and of heuristic choice styles. 

In addition, the econometrics of dynamic choice modelling (including 

stationarity and attrition bias) and the transferability of results 

towards other groups or spatial entities still deserves more attention. 

The present paper draws on previous recent contributions to dynamic 

choice models from the present authors, where they showed the formal 

equivalence and compatibility between (macro) spatial interaction models 

and (micro)logit models, in both a static and a dynamic context. In the 

present paper we will in particular develop a further dynamic extension 

of a logit model by focusing attention on the conditions under which a 

dynamic logit model can exhibit chaotic behaviour. Here we will analyse 

a dynamic logit model - taking as a frame of reference modal split 

choice in a transportation network - by incorporating dynamic congestion 

effects. For this purpose a special type of Lotka-Volterra's predator-

prey model with time delays will be designed. It will be shown in the 

paper that under given conditions upon the parameters of the system (in 

particular when the lag parameter reflecting the influence from the past 

exceeds a critical value) a so-called Hopf bifurcation - and conse-

quently unstable system's behaviour - may emerge. 

2. Dynamic Logit Models and Chaotic Behaviour 

Dynamic discrete models of choice may be derived as an extension of 

static models (see Heekman, 1981). The dynamic logit model can however 

also emerge as a solution to an optimal control problem whose objective 

functlon is a cumulative entropy function. We can easily demonstrate 

this by taking as an illustration a dynamic system's model for a 

transportation network in which all origin-destination flows are time 

dependent (see Nijkamp and Reggiani, 1988a): 
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T 
max u> = f - T-. (in T..-1) dt 

O !J IJ 

s.t. 

0. = p. 0. + 5. (ÏT.. - S T..) 
1 ' i l 1 \ 11 . 1 1 

(2.1) 

ET.. =0. 
j LJ ^ 

ET.. = D. 
i !J J 

S S T . , c.. - C 
i j lJ ^ 

where O., i.e. the total volume of flows from origin i, can be regarded 

as a state variable, whilst the flows T.. may be considered as control 

variables (e.g. by regulating the network capacity on a given sector 

from i to j). D. is supposed to be a certain given attraction indicator 

for place j; c.. is the unit transportation cost between i and j, and C 

is the total cost; p. reflects the transition rate of the origin system 

whilst S. denotes the spinoff effects upon i caused by inflows and out-

flows. The justification and further analysis of problem (2.1) can be 

found in Nijkamp and Reggiani (1988b; 1989a), where it has also been 

shown that the solution of (2.1) is a dynamic spatial interaction model 

of the following type: 

T. . „_ W. __ exp (-K c. . _) 
il ,t 1 ,t F n ,t/ 

L i *- r) v T.T „.— / „ „ \<--*-J 
i,t 

'j,t 0. _ S W. _ exp {-K c . ^s J ' *" J,t F ij,t) 
J 

where P. can be considered as the probability of choosing destination 
J > *~ 

j at time t; W. is a weight (balancing) factor and K a distance decay 

parameter. 

Equation (2.2) can be easily transformed (by supposing for the sake of 

simplicity W. =1) into: 

exp (u. ) 
?• - - ^ , — r (2-3) 
j,t S exp (u ) 

j J' 

where u. represents the utility of moving to j at t 
J >c 

ime t. 
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Equation (2.3) is clearly the Standard form of a logit model in its 

multi-period generalisation. This is still however, a comparative static 

model. Given the theoretical framework of (2.3) let us therefore now 
d P. 

consider the rate of change of P. with respect to time (i.e., — - ^ r — ) : 

dP . d exp (u ) 

dt j,t dt KZ exp (u. ) K/i' ' 

It is easy to see that expression (2.4) leads to: 

exp (u.) exp (u.) 
P. = ü. = j—r- (1 - = 1—r-) (2.5) 
j j E exp (u.) v E exp (u ) J v 

j J j J 

or: 

P. = xx. P. (1-P.) (2.6) 
J J J J 

In (2.5) and (2.6) we have omitted the symbol t for the sake of 

simplicity. Relationship (2.6) has some very interesting properties, as 

the right hand side is partly a Verhulst equation. By assuming that the 

utility of travelling increases linearly with time, through a fixed 

parameter a, we would have: 

ü. = const = a (2.7) 
J 

so that then the final expression (2.6) becomes: 

P. = a P. (1-P.) (2.8) 
J J J 

The right hand side of (2.8) is now apparently a Verhulst expression, 

which is often used in a description of a dynamic system marked by 

saturation phenomena. Equation (2.8) is then clearly a logistic expres

sion for the derivative of a logit model, under assumption (2.7) (see 

also Figure 1). The logistic evolutionary model has been adopted in 

dynamic spatial interaction models among others by Allen and Sanglier 

(1978) and Wilson (1981). However, the lack of a microeconomic founda

tion in these models has been criticized (see Haag, 1989). Therefore our 

result (2.8) is highly interesting, as it represents the dynamic equa

tion of the logit model based on economie random-utility theory. 
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Figure 1. Logistic growth curve of choice probabilities 

If we assume now a unit time period (i.e., in discrete terms), then 

equation (2.8) can be approximated as follows: 

P- -̂ i - P. ,. - a P. ,. (1-P. J , 
j,t+1 j,t j,t j,ty' 

(2.9) 

while (2.9) can be rearranged in the following form: 

J,t+1 J . t j , t 
(2.10) 

Expression (2.10) takes one of the forms of the difference equations 

that represent logistic growth in a difference equation system (see also 

Wilson and Bennett, 1985). 

We will now compare expression (2.10) with the Standard equation for 

logistic growth, i.e., 

Xt+]_ - N Xt (1-Xt) (2.11) 

where N is a constant. The equivalent of the constant N in (2.10) is 

cH-1, so that we can rewrite (2.10) as follows: 

N-l P. ^. -NP. _ (1 - ̂V1 P. J j,t+l j,t N j,ty 
(2.12) 

It is evident that if we make the transformation X. = P. (N-l)/N, 
J > t j , t 

equation (2.12) can be written in the canonical form (2.11) (by follow

ing Wilson's (1981) procedure). However, in our case it is interesting 

to explore whether X. exceeds 1, in order to avoid unrealistic behaviour 

in the dynamic logit model. The previous Verhulst dynamic equation 
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(2.11) was more thoroughly investigated by May (1976). May (1976) showed 

for system (2.11) that, if: 

1 < N < 3 (2.13) 

X tends to a stable equilibrium value as t becomes large. For the 

range: 

3 < N < 4 (2.14) 

there are various kinds of periodic solutions, but as soon as N > 3.8495 

the behaviour is oscillatory but chaotic, i.e., with no discernible 

regularity. Thus our simple dynamic logit model may in principle embody 

chaotic behaviour as soon as the model is specified in difference equa-

tion form (see for a broad review of chaotic models also Nijkamp and 

Reggiani, 1988c). 

Simulation experiments show that sometimes P. may assume values 

smaller than 0 or greater than 1. In our model on travel behaviour such 

negative values would reflect unfeasible system's behaviour. Such a 

situation would according to Wilson and Bennett (1985) have to be inter-

preted as 'negative divergence'. In such cases, which may occur for 

values of N larger than 3.8495 (or for 2.8495 < a < 3), one would have 

to switch in simulation experiments to a non-negative value of P. or to 

values of P.<1 (thus causing sudden jumps in the system's trajectory). 

In the next section the stability of logit results will be investigated 

by means of various simulation experiments. 

3. Simulation Experiments 

In this section we will present results of some simulation experi

ments in order to compare the behaviour of our dynamic logit model 

(2.12) (in the context of travel behaviour) with the dynamic structure 

of the well-known May model (2.11) (in the context of the behaviour of 

biological populations). Two simulations runs will be described. 

3.1 Regular motion pattern 

In our simulation it will be assumed that N = 3 in the equations 

(2.11) and (2.12), whilst the initial value is X=P.=0.1. The results are 

presented in Figures 2 and 3. 



2 popuMkm 

2 0.677 T 

nfl im in H 
2 0.589 -

0.502 - f 
2 

2 0.414 

0.326 « 
0.0 

i • i • | • • 
J Ï J Ï 
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II l y 11II II I I I 
* * i • ' ' • ' • • i ' • • » ' • • i • i • i • • • i • i • i • i • i • • • i • i • i 

12.500 25.000 37.500 50.000 

TKT» 

Figure 2. May's law for N = 3 

2 population 

2 1.004 

2 0.778 -

2 0.552 

0.326 

0.100 - r - r - r 
0.0 50.000 

Figure 3. Logit model for N = 3. 

It is evident that in both cases a regular pattern emerges. However, the 

dynamic logit model illustrated in Fig. 3 shows unrealistic values of P. 

(in particular P.>1), and therefore other values of N have to be con-

sidered. 
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3.2 Irregular motion pattern 

Here we assume, in accordance with our exposition in the previous 

section, a parameter value N = 3.9. The initial values of the variables 

are again the same. The results for both types of models can be seen in 

Figures 4 and 5. 

2 populatlon 

2 0.799 

2 0.600 -

0.401 

0202 

2 0.00348 
37.500 

• I I u ^ 
• 11 f • 11 i I ^ I i • i • i ~i 

50.000 

Figure 4. May's law for N = 3.9 
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2 population 

1.133 

0.855 -

0.578 -

0.301 -

0.0238 

Figure 5. Logit model for N - 3.9 

It is clear that in both cases an oscillatory, though irregular 

motion appears, the only difference being the amplitude of the two 

phenomena. Therefore we can conclude that our dynamic logit model (2.12) 

belongs to the family of May models; it exhibits chaotic behaviour for 

certain values of the parameter N in particular for 3.8..<N<4. However, 

also for N>3, model (2.12) shows values of P.>1 which are less 

plausible. These values can also be verified by means of the related 

bifurcation diagrams (see Nijkamp and Reggiani, 1989b). In conclusion, 

when the marginal utility function a related to the dynamic logit model 

(2.4) is less than ~ 2 (note a — N-l), we have stable solutions in 

choosing alternative j; when 2<a<3 unfeasible movements may arise. 

Consequently, in the latter case the dynamic logit model may result in 

unrealistic values. 

4. Dynamic Logit Models with Time Lags for Congestion Effects 

4.1 Introduction 

So far we gave assumed away the impact of capacity constraints 

(except for the implicit inference of a fixed transport cost c..), but 

no real congestion phenomenon was included (see also Rietveld, 1988). 
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For the sake of simplicity we consider now - without loss of generality 

a choice situation in which P. represents the probability of choosing 

the mode of transport j (instead of the destination like in section 2). 

Consequently we also assume that the variation of probability is, ac-

cording to (2.8), not incorporating the impact of congestion. 

Congestion can be included in (2.8) by considering a capacity con-

straint in case of a high travel demand as a specific type of 'predator' 

which has a negative impact on growth of mobility ('prey') for mode j. 

Thus capacity limits are assumed to 'absorb' excess mobility. 

Furthermore we will take into consideration the fact that, for mode j, 

congestion decreases with a reduction of flows, and increases with 

mobility. 

We can write the previous considerations in a formal way as the 

following prey-predator type of model: 

P. = a P. (1-P.) - B P.Q. 
J J J H J J 

j = 1 J (4.1) 

Q. «= -7 Q. + e Q. P. 
3 J J J 

In (4.1) Q. represents the congestion phenomena measured by the lack of 

capacity in the mode of transport j; a>0 is the growth rate of mobility 

in the absence of congestion; 7>0 is the indigenous lack of congestion 

in the absence of travellers; jö>0 is the rate at which mobility 

decreases in mode j, owing to congestion in j; e>0 is the rate at which 

congestion increases. 

System (4.1) is a special type of the well-known Lotka-Volterra 

model with limited prey (see Volterra, 1931). Clearly system (3.1) has a 

non-trivial equilibrium point for the following values of P. and Q.: 

It can be shown that equilibrium point (3.2) is a stable focus (see 

e.g., MacDonald, 1975; Nijkamp and Reggiani, 1987). 

Let us now introducé a time delay in system (4.1) in order to take into 

account also the case of a non-instantaneous effect of congestion on P.. 

This requires the inclusion of time lags in Lotka-Volterra dynamics. 

Lotka-Volterra equations with delays have been largely discussed in the 

literature but usually with a time lag incorporated in the predator 
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equation (see e.g., Cushing, 1977; Farkas, 1984; MacDonald, 1976, 1977; 

Volterra, 1931). It is interesting to observe however, that in our 

specific case of traffic congestion, we have evidently a delayed effect 

of Q. on the prey P.. Consequently, the first equation has to include 

past values of Q.. Therefore we can replace Q. in the first equation of 

(3.1) by the following expression: 

t 
** (t) - ƒ Qi <r) G (t-r) dr (4.3) 
-I -co -* 

where G(t) = a exp (-at), with a>0, is a weight kernel function satisfy-

ing the normalisation condition |G| = 1, i.e., 

t oo 

ƒ G(t-r) dr - ƒ G(s)ds = 1 (4.4) 
-oo O 

Mathematically, G serves to describe the importance of lag effects 

before period t (see also Cushing, 1977). Thus the per capita growth of 

mobility P. depends on the past history of Q.. 

It should be noted that other forms of G can be used as well (see 

MacDonald, 1977). The (simple) exponential form of G is easy to handle 

as we can then easily define the cumulative congestion impact from the 

past as follows: 

R. - a (Q. - R.) (4.5) 
J J J 

where l/a can be interpreted as "a measure of the influence of the past" 

(see also El-Owaidy and Ammar, 1988). 

Therefore, system (4.1) can be replaced by the following three-

dimensional ordinary differential system: 

P. - a P. (1-P.) - 0 P. R. 
J J J J J 

Q. = -7 Q. + e Q. P. (4.6) 

R. = a (Q. - R.) 
J J J 

where the dot symbol denotes a differentiation of the pertaining vari-

able with respect to t. 
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4.2 Equilibrium Analysis 

In this section we assume that E ( ) represents an expres

sion for equilibrium values pertaining to the system of 3 equations with 

3 variables in (4.6). It is now clear that E Q (0,0,0) and E, (1,0,0) are 

two trivial equilibrium points of a system (4.6). 

Then we also find: 

E2 (P*. Q*, R*) = (J ; | (1 - J) ; S (i . 2» (4.7) 

E„ is an equilibrium point in the positive octant iff 

< 1 (4.8) 

The variational matrix (i.e., the Jacobian system of first-order 

derivatives) of system (4.6) is: 

V (P., Q., R.) 
J J J 

a - 2a P. - B R. 0 -SP. 
J H J J 

e Q. -7 + eP. 0 
J 3 

0 a -a 

(4.9) 

Then we can easily derive that matrix (4.9) for the equilibrium point E„ 

is equal to: 

V 2 = 

7 - a— 
e 

ea cry 

P ' P 
0 

0 

0 

a 

0 

-a 

(4.10) 

V_ has the following characteristic equation: 

A + (a + a-) A + a a- X + a cry 
e e 

7 
a a-1-

e 

= 0 (4.11) 

By using the Routh-Hurwitz criteria (see Gandolfo, 1983), we know that 

E» is asymptotically stable if (4.8) holds and 

a > 
e -y.e - cry (4.12) 

The critical value 
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a* = e 2"^ ' a7 (4.13) 

Is clearly positive under the condition: 

W 2 
6 > 7 +V 7 + 4 s 7 ( 4 1 4 ) 

By following Marsden and McCracken (1976) it can also be shown that at 

a a Hopf bifurcation (i.e. an unstable equilibrium point surrounded by 

a stable limit cycle) takes place. It means that the time delay has a 

destabilizing effect on system (4.1): in particular the stability of 

system (4.1) is lost when the measure of the influence of the past 
1 1 

(i.e., —) surpasses the positive value —^ , i.e., when the influence of 
a 

the past increases. 
Having achieved this plausible result, a further step could be to 

examine whether the Hopf bifurcation at a is supercritical (i.e., the 

point loses its stability by expelling a stable periodic orbit) or sub

critical (i.e., the'point loses its stability by absorbing a non-stable 

periodic orbit) (see Sparrow, 1982). If the bifurcation is subcritical a 

chaotic behaviour of the 'Lorenz type' may emerge (see again Marsden and 

McCracken, 1976) in our dynamic system (4.1). Such phenomena would re-

quire much more thorough research. In a final section we will present 

various simulation results for our dynamic congestion model. 

5. Simulation Experiments 

In this section some results from various simulation experiments, 

related to the previous section on congestion effects, will be 

described. In particular it will be shown how the parameter a, related 

to the time delay, influences the stability of system (4.6). Especially 
•k 

when a surpasses the critical value a , the system becomes stable; when 
ie 

a decreases (below a ), we have a destabilizing effect due to the in-

creased influence of the past. 

For this simulation the following parameter values will be assumed: 

7 = 0.1 a = 2.4 0 - 0.5 (5.1) 

When according to condition (4.14) we choose: 
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e - 0.75 (5.2) 

the following critical value a results from (4.13) 

a = 0.33 (5.3) 

The initial values are assumed to be: 

P. = Q. = R. = 0.4 
J J J 

(5.4) 

The results for different values of a are printed in Figures 6 , 7 , 8 , 9 

and 10. After the reference pattern (Figure 6), two simulation runs for 

both increasing and decreasing values of a will be presented, respec-

tively. 

1 congestion 2 population 3 auxvariable 

1 9233 
2 0.894 
3 7.499 

1 
2 
3 

1 
2 
3 

7.025 
0.670 
5.724 

4.817 
0.447 
3.950 

1 2.608 
2 0223 
3 2.175 

1 ^ 0.400 
2 5.581 e-6 
3 0.400 00 50.000 

Figure 6. Results for a = a =0.33 
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(a) Simulations for increasing values of a > a* 

1 congestion 2 population 3 auxYariable 

1 5.822 
2 0.878 
3 5.647 

1 4.467 
2 0.663 
3 4.335 

1 
2 
3 

1 
2 
3 

1 
2 
3 

3.111 
0.449 
3.023 

1.756 
0235 
1.712 

0.400 \ 
0.0202 4 

0.400 o 0 50.000 

Figure 7. Results for a = 1. 

1 congestion 2 population 3 auxyariabte 

1 5.174 
2 0.868 
3 5.138 

1 
2 
3 

1 
2 
3 

1 
2 
3 

1 
2 
3 

3.980 
0.664 
3.954 

2.787 
0.459 
2.769 

1.593 
0.255 H 
1.585 

0.400 
0.0507 
0.400 o.O 

. . / - " " ^ 

/ * \ 

12.500 
r • i ' | • l • 

25.000 

Tin» 

1 • ' • i • ' • • ' • • t • • • • • • • i 

37.500 50.000 

Figure 8. Results for a = 1.( 
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(b) Simulations for decreasing values of a < a 

1 congestion 2 population 3 auxYariabte 

1 12.543 
2 0.899 
3 8.735 

1 
2 
3 

1 
2 
3 

9.507 
0.674 
6.651 

6.472 
0.450 
4.568 

1 3.436 
2 0.225 H 
3 2.484 

1 0.400 
2 6.958e-11 0.400 o.O 12.500 

• *2 -1 i i • i '2' i • i • i ' 2 T 

25.000 37.500 
Time 

50.000 

Figure 9. Results for a = 0.2 

1 congestion 2 population 3 auxvariable 

1 1563.606 
2 0.916 
3 21.725 

1 1172.804 
2 0.687 
3 16.394 

1 
2 
3 

1 
2 
3 

1 
2 
3 

782.003 
0.458 
11.063 

391.201 
0.229 
5.731 

0.400 
0.0 

0.400 50.000 

Figure 10. Results for a = 0.001 
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It should be noted that in the second case (Figure 10) we have 

chosen a very long time delay (a->0) which is in general less meaningful 

(see also MacDonald, p.321), but which shows clearly the formal be-

haviour of the model. 

Thus our simulation results clarify the theoretical observations 

made in section 4. Other simulation experiments with different parameter 

values invariably show that time delays can induce instability: in par

ticular under certain conditions imposed upon the parameters, a Hopf 

bifurcation takes places at the critical value a and the amplitude of 

the population oscillations increases for values of the parameter a 

below a . 

6. Conclusions 

In this paper the link between chaos theory and spatial interaction 

has been examined. 

Firstly, it has been shown that under certain conditions a dynamic 

logit model - in the context of mobility flows - may exhibit irregular 

motion. Secondly, the dynamic logit model can be incorporated in a more 

general spatial system, in particular a Lotka-Volterra system with time 

lags, which takes into account non-instantaneous congestion phenomena. 

It has been shown that time delay has a destabilizing effect on the 

previous system, in particular when the influence of the past exceeds a 

critical value, at which a Hopf bifurcation emerges. Finally, simulation 

experiments illustrate the above mentioned theoretical observations. 

The previous expositions on the behaviour of relatively simple 

dynamic non-linear models appear to embody a wealth of new theoretical 

insights. In a practical context, such models have so far hardly been 

tested because of lack of time series data. This is a major flaw in 

current dynamic transportation modeling. Clearly, current attempts at 

dealing with longitudinal öata sets may remove part of these shortcom-

ings, but there is still a clear need for more rigorous research 

endeavours in this field. For the time being, simulation experiments 

have to be used as substitutes for missing information. Nevertheless, 

also such simulation models demonstrate clearly that the presence of a 

chaotic structure in a dynamic system may generate unforeseeable sys

tem' s behaviour. Thus our results also incorporate caveats concerning 
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the use of straightforward extrapolation and prediction methods in case 

of non-linear dynamic models. 

Acknowledgement: The second author acknowledges the grant by C.N.R. 

nr. 88.00409.11. Her thanks go also to Orietta 

Pedemonte for various stimulating discussions. 



19 

References 

Allen, P.M., and M. Sanglier, Dynamic Models of Urban Growth, Journal of 
Social and Biological Structures. vol. 1, 1978, pp. 265-280. 

Ben-Akiva, M., and A. De Palma, Analysis of a Dynamic Residential 
Location Choice Model with Transaction Costs, Journal of Regional 
Science, vol. 26, n.2, 1986, pp. 321-341. 

Cushing, J.M., Integrodifferential Equations and Delay Models in 
Population Dynamics. Lecture Notes in Biomathematics, vol. 20, Springer-
Verlag, Berlin, 1977. 

Dendrinos, D.S., and H. Mullally, Urban Evolution. Oxford University 
Press, New York, 1985. 

DePalma, A., and C. Lefevre, Individual Decision-Making in Dynamic 
Collective Systems, Journal of Mathematical Sociologv. vol. 9, 1983, pp. 
103-124. 

Domencich, T., and D. McFadden, Urban Travel Demand: A Behavioural 
Analysis. North-Holland, Amsterdam, 1975. 

El-Owaidy, H., and A.A. Ammar, Stable Oscillations in a Predator-Prey 
Model with Time Lag, Journal of Mathematical Analysis and Applications. 
vol. 130, 1988, pp. 191-199. 

Farkas, M. Stable Oscillations in a Predator-Prey Model with Time Lag, 
Journal of Mathematical Analysis and Applications, vol. 102, 1984, pp. 
175-188. 

Fischer, M.M. and P. Nijkamp, From Static Towards Dynamic Discrete 
Choice Modelling: A State of the Art Review, Regional Science and Urban 
Economics. vol. 17, no.1, 1987, pp. 3-27. 

Gandolfo, G., Economie Dynamics: Methods and Models. North-Holland, 
Amsterdam, 1983. 

Golledge, R. and H.J.P. Timmermans (eds)., Behavioural Modelling in 
Geography and Planning. Croom Helm, London, 1988. 

Haag, G., Spatial Interaction Models and their Micro-Foundation, 
Advances in Spatial Theory and Dynamics (A.E. Andersson, D.F. Batten, B. 
Johansson and P. Nijkamp, eds.), North-Holland, Amsterdam, 1989, pp. 
165-174. 

Haag, G., A Stochastic Theory for Residential and Labour Mobility in-
cluding Travel Networks, Technological Change. Employment and Spatial 
Dynamics (P. Nijkamp ed.), Springer-Verlag, Berlin, 1986, pp. 340-357. 

Heekman, J.J. Statistical Models for Discrete Panel Data, Structural 
Analysis of Discrete Data with Econometrie Applications (C.F. Manski and 
D. McFadden, eds.), MIT Press, Cambridge, Mass., 1981. pp. 114-178. 

Leonardi, G., An Optimal Control Representation of a Stochastic 
Multistage-Multiactor Choice Process, Evolving Geographical Structures 
(D. Griffith and A. Lea, eds.), Martinus Nijhoff, The Hague, 1983, pp. 
62-72. 



20 

Lierop, W.F.J. van, Spatial Interaction and Residential Location 
Analysis. Gower, Aldershot, 1986. 

MacDonald, N., Time Delay in Prey-Predator Models, Mathematical 
Biosciences. vol. 28, 1976, pp. 321-330. 

MacDonald, N., Time Delay in Prey-Predator Models-II. Bifurcation 
Theory, Mathematical Biosciences. vol. 33, 1977, pp. 227-234. 

Marsden, J.E. and H. McCracken, The Hopf Bifurcation and its 
Applications. Springer Verlag, Berlin, 1976. 

May, R.H., Simple Mathematical Models with very Complicated Dynamics, 
Nature, vol. 261, 1976, pp. 459-467. 

McFadden, D., Conditioned Logit Analysis of Qualitative Choice 
Behaviour, Frontiers in Econometrics (P. Zarembka, ed.), Academie Press, 
New York, 1974, pp. 105-142. 

Nijkamp, P. (ed.), Discrete Spatial Choice Analysis: Special Issue 
Regional Science and Urban Economics. vol. 17, no.1, 1987. 

Nijkamp, P., and A. Reggiani, A New Methodology for the Analysis of 
Dynamic Spatial Interaction Models, Proceedings VIII Annual Conference 
of Italian Regional Science Association. 1987, vol.2, Cagliari. 

Nijkamp, P., and A. Reggiani, Analysis of Dynamic Spatial Interaction 
Models by Means of Optimal Control, Geographical Analysis. vol. 20, 
1988a, pp. 18-30. 

Nijkamp, P., and A. Reggiani, Entropy, Spatial Interaction Models and 
Discrete Choice Analysis: Static and Dynamic Analogies, European Journal 
of Operational Research, vol. 36, no. 2, 1988b, pp. 186-196. 

Nijkamp, P., and A. Reggiani, Theory of Chaos in a Space-Time 
Perspective, Paper presented at the thirty-fifth North American Meeting 
of the Regional Science Association, Toronto, 1988c. 

Nijkamp, P., and A. Reggiani, Spatial Interaction and Input-Output 
Models: A Dynamic Stochastic Multiobjective Framework, Readings on 
Input-Output Analysis (R. Miller, K. Polenske and A. Rosé, eds.), 1989a 
(forthcoming). 

Nijkamp, P., and A. Reggiani, Logit Models and Chaotic Behaviour, 
Research Memorandum, Dept. of Economics, Free University, Amsterdam, 
1989b. 

Nijkamp, P. and U. Schubert, Structural Change in Urban Systems, Sistemi 
Urbani, no.2, 1985, pp. 155-176. 

Rietveld, P., Employment Effects of Changes in Transport Infrastructure; 
Methodological Aspects of the Gravity Model, Research Memorandum, Dept. 
of Economics, Free University, Amsterdam, 1988. 

Sparrow, C , The Lorenz Equations: Bifurcations. Chaos. and Strange 
Attractors. Springer-Verlag, Berlin, 1982. 



21 

Volterra, V., Lecons sur la Theorie Mathématique de la Lutte pour la 
Vie, Gauthier-Villars, Paris, 1931. 

Weidlich, W., and G. Haag (eds.)> Interregional Migration. Springer 
Verlag, Berlin, 1988. 

Wilson, A.G., Catastrophe Theorv and Bifurcation. Croom Helm, London, 
1981. 

Wilson, A.G. and R.J. Bennett, Mathematical Methods in Human Geography 
and Planning. J. Wiley, Chichester, 1985. 

Wissen, L.G. van, and A. Rima, Modelling Urban Housing Market Dynamics. 
North-Holland Publ. Co., Amsterdam, 1988. 



1986-1 Peter Nijkamp New Technology and Regional Developmeht 

1986-5 Floor Brouwer Aspects and Application of an Integrated 
Peter Nijkamp Environmental Model with a Satelllte Design 

(E 85/<t> 

1986-3 

1986-<i 

1986-5 

1986-6 

19B6-7 

19B6-B 

19B6-9 

1986-10 

1986-11 

1986-12 

1986-13 

1986-14 

Peter Nijkamp 

Peter Nijkamp 

Peter Nijkamp 

Peter Nijkamp 
Jacques Poot 

Henk Folmer 
Peter Nijkamp 

Floor Brouwer 
Peter Nijkamp 

Han Dieperink 
Peter Nijkamp 

Peter Nijkamp 
Aura Reggiani 

E.R.K. Spoor 

V. Kouwenhoven 
A. Twijnstra 

F.C. Palm 
E. Vogel vang 

M. Wortel 
A. Twijnstra 

1986-15 A. de Grip 

1986-16 F.C. Palm 
C.C.A. Winder 

25 Years of Regional Science: Retrospect 
and Prospect 

Information Centre Policy in a Spatial 
Perspeetive 

Structural Dynamics in Cities 

Dynamics of Genera!iséd Spatial Interaction 
Models 

Methodologie*! Aspects of Impact Analysis 
of Regional Economie Policy 

Mixed Oualitative Calculus as a Tool in 
Policy Model ing 

Spatial Dispersion of Industrial Innova-
tion: a Case Study for the Netherlands 

A Synthesis between Macro and Micro Models 
in Spatial Interaction Analysis, with Spe
cial Reference to Dynamics 

De fundamenten van LINC 

Dverheidsbetrekkingen in de strategie en 
organisatie van ondernemingen 

A short run econometrie analysis of the in
ternational coffee market 

Flexibele Pensioénering 

Causes of Labour Market Imperfections in 
the Dutch Construction Industry 

The Stochastic life cycle consumption mo
del: theoretical results and empirical 
evidence 

1986-17 Guus Holtgrefe DSS for Strategie Planning Purposes: a 
Future Source of Management Suspicion 
and Disappointment? 

1986-18 H. Visser 
H.G. Eijgenhuijsen 
J. Koelewi jn 

The financing of industry in The Nether
lands 

1986-19 T. W o l t e r s Onderhandeling en bemiddeling in het be-
roepsgoederenvervoer over de weg 

1986-20 S.C.W. Eijfflnger 
J.W. in 't Veld 

De re 

1986-21 E.R.K. Spoor Knowl 
entit 

1986-22 J.T.C. Kool 
A.H.O.M. Merkies 

On th 
and M 
Serie 

1986-23 W. van Li erop 
L. Braat 

Multi 
logic 

1986-2". R.M. Buitelaar 
J.P. de Groot 
H.J.W. Wij land 

Agrar 
marke 

1986-25 E.R.K. Spoor & 
S.J.L. Kramer 

Reval 

1986-26 Herman J. Bierens Armax 
appli 
lands 

' 1986-27 Jan Rouwendal 
Piet Rietveld 

Searc 
with 

1986-28 W. Keizer The c 
sitio 

1986-29 Max Spoor Finan 
of th 

1986-30 L.J.J. van Hekelen De on 
zicht 

1986-31 F.A. Rooien Een v 
produ 
infor 

1986-32 H.J. Bierens Model 
of st 

1986-33 R. Huiskamp Large 
struc 
tions 
appro 

1986-3<i W.J.B. Smits Direc 
op ex 
tion 

1986-35 P. Nijkamp Infor 

1986-36 H. Blommestein Adopt 
P. Nijkamp evolu 


