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On the effect of some jockeying 
between parallel processors 

Nico M. van Dijk 
Free University, Amsterdam 

Abstract A number of parallel processors is studied in which waiting jobs 
can jockey to a next processor at some jockeying rate. This model arises in 
distributed systems but has not been solved explicitly so f ar. An error 
bound will be provided on the effect of jockeying for small jockeying 
rates. Particularly, a simple throughput bound is hereby obtained. 
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1. Introduction. 

Distributed systems are rapidly evolving with present day technology deve-
lopments in telecommunication and computer networks and as such appear to 
become a major trend in the next decade. A price that one pays, however, 
for the improvement such as in reachability and performance that dis
tributed systems provide are the various conflicts that they bring along 
such as due to selected accessing, common resources and synchronization re-
quirements. An elegant overview of these aspects was recently presented in 

As a particular illustrative example of these conflicts, this reference 
mentions the system of a finite number of parallel processors with sepa
rate inputs so that jobs may have to wait at a processor while one of the 
other processors is f ree. An expression for the probability of such an 
event is given in [3]. A way to somewhat resolve this inefficiency conflict 
is to let waiting jobs jockey to a next processor at some jockeying rate. 
As of today, however, this system has proven to be intractible for 
establishing an explicit closed form solution. 

This note therefore takes a different approach by providing error bounds on 
the effect of jockeying for different values of the jockeying rate. Par-
ticularly, by studying the extreme case without jockeying a simple bound on 
the throughput is hereby obtained. 

The technique to this end is based on Markov reward arguments and the 
estimation of so-called bias-terms. This approach seems promising for 
extension to related issues such as the effect of propagation delays in 
communication networks. 

2.1 Model 

Consider a system of M separate finite and exponential single-server queues 
numbered 1,...,M, with at queue i a Poisson arrival input with intensity 
Aĵ  , exponential service times with parameter nt and a finite capacity 
buffer for at most ̂  jobs, the one in service included. A job is lost upon 
arrival if it finds the buffer fuil. In addition, each job waiting in queue 
i, the one in service thus excluded, will jump over to try out the next 
queue i+1 at a rate ai . If queue i+1 is full it will return to the position 
it came from at queue i. Otherwise it joins the end of queue i+1, where 
i+l=l for i=N. 

We are interested in the throughput L of this system, that is the total 
number of jobs that per unit of time actually enter one of the queues or, 
equivalently, leave one of the queues, when the system is in steady state. 
As of yet, there doesn't seem to be an explicit expression for L. For small 
rates aL though, one might intuitively expect the case of completely 
separated queues, that is with all ai=0, to provide a reasonable bound on 
the throughput as given by 

(1) L - St Aill-ECAi.^.Ni)] 

where E^,/^,!^) is Erlang's Standard loss expression (e.g. [2]). In what 
follows we aim to formalize this intuition by providing an error bound for 
the effect of different aL-values on the throughput. In particular, we will 
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obtain an error bound on 

(2) JL - L| 

2 .2 Error bounds 

Compare two systems as described in section 2.1 with a-values {öi } and 
{ai} for systems 1 and 2 respectively. Here some or even all of the a± 's 
or ai 's are allowed to be equal to 0. 

Let state k = (k1(...,k„) denote that currently k£ jobs are present in 
queue i, the one in service included, i—l,...,N. Then clearly, the under-
lying queueing processes for systems 1 and 2 constitute a continuous-time 
irreducible Markov chain at 

S = {klk^Ni, i-1, .. . ,N}. 

From now on, we always denote an expression for system 1 with an upper bar 
symbol "-" while no symbol is used when corresponding to system 2. The 
symbol "(-)" is used when the expression is to be read for both systems. 
Further, the vectors i.+ei and k-ei are equal to k up to one job more ( + 
sign) respectively less (- sign) at station i. Finally, let 1{A} denote an 
indicator of an event A, i.e. 1{A}=1 if A is satisfied and 1{A}=0 other-
wise, and read i+l=l for i=N. 

In order to compare the corresponding continuous-time models in a recursive 
manner we will apply the Standard uniformization method (cf. [4], p.110) by 
letting 

(3) Q > 2, [AA + Mi +
C^NJ 

and defining discrete-time Markov chains (X(t)jt=0,1,2, . . . } and 
{X(t)11=0,1,2,.. . } with one-step transition probabilities for a transition 
from state k in k' by: 

- A ^ ^ ^ Q - , (k'-fcfe,), (i^N) 

M i l { k i > o } Q - i , ( k ' - k - e , ) , (i<N) 

-
'«'[ki-ljl 1 , Q"1. (k'=k-ei+ei+1), (i<N) l L x J {ki>i} {k i + 1<N i + 1}

 x x 1 + 1 / ' 

-l-tÂ l -Mil -ajki-ljl 1 JQ"1, 
1 x { k ^ N ^ P l {ki>0} l L 1 {k^i} {ki + 1 < N i + 1}

 J X 

(k'=k) 

Then, by virtue of the uniformization technique and Standard Markov reward 
arguments, the throughputs L and L for systems 1 and 2 respectively, can 
be obtained by 

(5) V - limN,ffl [Q/N] \ l (Ö) 
(-) 

where 0 = (0,...,0) denotes the empty state and where VN(.) is a func-
tion at S recursively determined by V0(.)=0 and 

(4) V(k,k') 
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(6) (V^ + 1(k) - E ^ l ^ . ^ j Q - i + S -/p'Ck.k'/v^k') 

The following lemma will be crucial for establishing an error bound. It 
provides estimates for so-called bias-terms Vn(k')-Vn(k) uniformly in n. 

Lemma 1 For all n>0 and i<M: 

(7) 0 < Vn(k+ei) - Vn(k) < 1 

Proof We will apply induction to n. Clearly, (7) holds for n=0. Suppose 
it holds for all i=l M and n<m. Then, for n=m+l and arbitrary i we can 
substitute (6) for k+e± and k. Before doing so it is noted in advance, 
however, that some terms will be artificially added and subtracted or split 
in order to obtain compatible terms that can be compared pairswise. Also in 
the final result the sixth term is indeed 0 but kept in for use of an 
argument later on. Further, let h=Q"1 and read k-l=0 for k=0. 

(8) vm+1(k+ei) - vffi(k) 

E h/i, 1 + h/i, + 

2 hA, 1 VmCk+e,+eL) + 

hA, 1 Vm(k+ei+ei) + hA, 1 Vm(ic+ei) + 
1 { k i + K N i } m V 1 1 1 { k i + l = N i } m V l J 

E ha,[k,-1] 1 Vm(k-e,+e, + 1+e, ) + 

ha,_,[k. ,-1] 1 Vm(k-e,.1+eL+ei) + 
i 1 l i 1 J { l . + K K ^ m v 1 l 1 1 / 

ha, . [k, ,-1] 1 Vm(k+e,) 

h^ki 1 < N ^„(k+ei-ej+ei + i) + 
t k i + l < N i + l ' 

{1 - [S hA, 1 + hA, 1 
j/i J {kj<Nj} 

+ E h/j, 1 + 
{ k i < N i } j#i ^ < k j > 0 > 

h^ + s,,u ^[^-U \>i + 1 ^ l }
 + h a i - IVx" 1! ^ ^ + 
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E h/x, 1 + h/i, 1 + 
_ j * i ~ { k , > O } ^ 1 { k £ > O } 

E hA, 1 V r a ( k + 0 + hA, 1 V r a(k+e1> + 
• { k j < N j } m J x { k i < N i } m V *•' 

E h/i, 1 V m (k -e J i ) + h / j ± l V m ( k - e i ) + h/x± 1 Vm (k) + 
j # i ^ J { k j > 0 } m V J ̂  ^ { k i > 0 } m V x ' H l { k i = 0 } m 

E h a , [ k , - 1 ] 1 V m ( k - e , + e i + 1 ) + 

h a , . , [k. i - l ] 1 V m ( k - e 1 , + e , ) + 
i l L i l J { k i + K N i } m V 1 1 l / 

ha i - , [ k . , - 1 ] 1 V_(k-e , , + e , ) + 
i i L ! i J { k i + 1 = N i } m ^ i 1 i ' 

ha± [ k i - 1 ] 1 V m ( k - e i + e i + 1 ) + ha^ 1 Vm(k) + 
1 1 ^ i + i < K i + i ) <k i + i < N i + i > m 

{1 - [E hA, 1 
j*i J {kj<Nj} 

+ hA, 1 + S h/j, 1 + hix, + 
1 {k i<N i} j/i ̂  < kj > 0> 

ha, [k,-1] 1 + ha, , [k.,-1] 1 + 
/ i - l , i J J J { k j + l < N , } ï l i - i i { k i < N i } 

h Q i t k i - 1 ] 1 + ha , 1 
1 1 < ki+l < Ni+l> * { k i + 1 < N i + . 

Vm(k) 

h/x^ 1 + 
^ { k i = 0 } 

E h A, 1 [ V f k + e ^ + e , ) - V _ ( k + e . ) ] + 
j # i J { k , < N , } L m V J 1 m J ' J 

J J 

hA£ 1 [ V m ( k + e i + e i ) - Vm (k+e, ) ] + 

V - i . i ^ [ k ó - 1 l 1
{ k j + 1<N .+ l }^^-e j +e j + 1 + e i ) - V m ( k - e j + e J + 1)] + 

h « i - i [ k l - i - l ] l { k i + 1 < H i } [ V B ( k - e i . 1 + e i + e 1 ) - V B ( k - e i . 1 + e i ) ] + 

l « i - i t k i - i - l ] l { 1 C i + 1 . H i } [ V B ( k + e i ) - V B ( k - e i . 1 + e i ) ] + 
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h a ^ - l ] 1 ,[Vm(k+e i + 1 ) - V m (k - e i + e i + 1 ) ] + 
t k i + l < N i + l ' 

h«i 1 k <N , IV m (k+e 1 + 1 ) - Vm(k)] + 

t k i + 1 < N i + 1 J 

{1 - [2 hA, 1 + hA, 1 + Z hp4 1 + hu, + 
j*i J {kj<Nj} x {ki<N1} j#i ^J {kj>0} H l 

2 ha, [k,-l] lr +^0,., [kj.i-l] 1 + 

hai [ ki ] ̂ k <N >]) fVm(t+ei) - Vm(k)]. 
{k i + 1<N i + 1} 

We can now apply our induction hypothesis (7) for n=m and all i. The right 
hand side of expression (8) is then directly estimated from below after 
observing that in its tenth term we can write: Vm (k+eĵ ) -Vm (k-e^ l+ei) = 
Vm (ï+e^-L) -Vm (ï) for l=k-ei_1+ei , and in its eleventh term: Vm(k+ei + 1) 
- Vm(k-ei+ei + 1) - VB(i+ei)-VB1(i) for i-k-ei+e1 + 1. 

To estimate this right hand side from above by 1, now recall that its sixth 
term is equal to 0 while its probability coëfficiënt h^l^. =0} -̂s exactly 
equal to the first additional term. By also recalling (3)1 and h=l/Q and 
substituting the upper estimate 1 from (7) as per induction hypothesis, 
summing all terms yields an upper estimate 1. Inequality (7) has thus been 
proven for n=m+l, which completes the proof. 

D 

We are now able to present the main result. 

Theorem 1. With L and L the throughputs of arbitrary {ai } and {ai 
models, we have: 

(9) |1 - L| < 2M max± lai-ajN 

Proof. From (6) we conclude: 

(io) vn+1(k) - vn+1(k) = 

sg p(k,k')[vn(k)-vn(k'); 

i 

S£t [p(k,k')-p(k,k')]Vn(k') 
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w h i l e from ( 4 ) : 

d l ) s £ j [ p ( k 1 k ' ) - p ( k , k ' ) ] v n ( k ' ) -

2 i ^ - a J I l q - U Q " 1 l { k i > o } l { k i + i < N i + i } [ V n ( k - e i + e i + 1 ) - V n ( k ) ] 

By w r i t i n g 

(12) V n ( k - e 1 + e i + 1 ) - V n ( k ) = [ V n ( k - e i + e i + 1 ) - V n ( k - e ± ) ] + [ V n ( k - e i ) - V n ( k ) ] , 

t a k i n g a b s o l u t e v a l u e s and a p p l y i n g ( 7 ) , we c o n c l u d e from ( 1 0 ) - ( 1 2 ) : 

(13) max. | V n + 1 ( k ) - V n + 1 ( k ) | < max . | v n (k) -Vn (k) J+2MQ" * maXi | ^ - t t i ^ . 

As V 0 ( . ) = V 0 ( . ) = 0 , i t e r a t i n g (13) f o r n - 0 , 1 , . . . , N - l y i e l d s : 

(14) VH (k) - VN(k) < 2NMQ'1 maXi 1 ^ -aL \^i 

for arbitrary k and N. Substituting k=Ö and applying (5) completes the 
proof. 

D 

As a practical corollary, substituting ak= 0 for all i leads to: 

Corollary With L the throughput of a given {a^J-system and L thè value 
as per (1) by Erlang's loss formula: 

(15) |L-L| < 2M max± ai^i 

Remark The factors M and THi in (9) or (15) are simple robust bounds but 
can in fact be sharpened by employing (11) and (12) more technically. For 
example, NA can be reduced to the expected queue length at station i. 

Remark Alternatively, assuming a jockeying rate aL (k±) at station i when 
hL jobs are present, where aL(kL) is nondecreasing in kA,i~l,...,M, the 
proofs of lemma 1 and theorem 1 can most easily be modified to show that 

|L-L| < max. S.[ö(k)-ai(k)] 
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